JPH06196421A - Plasma device - Google Patents

Plasma device

Info

Publication number
JPH06196421A
JPH06196421A JP4357467A JP35746792A JPH06196421A JP H06196421 A JPH06196421 A JP H06196421A JP 4357467 A JP4357467 A JP 4357467A JP 35746792 A JP35746792 A JP 35746792A JP H06196421 A JPH06196421 A JP H06196421A
Authority
JP
Japan
Prior art keywords
plasma
chamber
sample
bell jar
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4357467A
Other languages
Japanese (ja)
Inventor
Hirokazu Arai
宏和 新井
Kenjiro Koizumi
建次郎 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4357467A priority Critical patent/JPH06196421A/en
Publication of JPH06196421A publication Critical patent/JPH06196421A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the generation of particles from a bell-jar and to relax a temperature change to contrive to inhibit the generation of particles from the bell-jar and an adhesion preventive plate. CONSTITUTION:A bell-jar 4, which is subjected to frost treatment and is subjected to surface-roughening processing, is provided in a plasma producing chamber 1, which is provided with a microwave introducing window 1a and a plasma lead-out window 1b, a gas intro-ducing tube 9 and an exhaust tube 11 are connected to a sample chamber 3, which is connected to the chamber 1 and is arranged with a placement stage 8 for placing a sample S, and an adhesion preventive plate 5 is provided on the inner surface of the chamber 3, on the stage 8 and extending over one end part of the tube 11. An upper warming wall 6 and a lower warming wall 7 are respectively provided on the sidewall of the chamber 1 and on the sidewall and bottom wall of the chamber 3 and the outer surfaces of the end parts of the tube 11. An exciting coil 12 is provided on the periphery of the wall 6 and extending over one end part of a waveguide 2 connected to the chamber 1. A warm liquid is circulated in the walls 6 and 7 and the sample S is subjected to plasma treatment while the bell-jar 4 and the plate 5 are warmed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマを利用して半導
体素子または電子材料を加工するプラズマ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma device for processing semiconductor elements or electronic materials using plasma.

【0002】[0002]

【従来の技術】電子サイクロトロン共鳴(以下ECRと
いう)を利用したプラズマ装置は、低いガス圧で電離度
が高いプラズマを生成でき、イオンエネルギの広範な選
択が可能であり、イオンの指向性及び均一性に優れる等
の利点を有していることから、高集積半導体素子の製造
における薄膜形成またはエッチング等のプロセスには欠
かせないものとして研究,開発が行われている。
2. Description of the Related Art A plasma apparatus utilizing electron cyclotron resonance (hereinafter referred to as "ECR") can generate a plasma having a high ionization degree at a low gas pressure, can select a wide range of ion energy, and can direct and uniform the ions. Since it has advantages such as excellent properties, research and development have been carried out as essential for processes such as thin film formation or etching in the manufacture of highly integrated semiconductor devices.

【0003】図6は従来のECRプラズマ装置を示す模
式的断面図であり、図中1はプラズマを生成するプラズ
マ生成室である。プラズマ生成室1の下方には試料室3
が連接されており、プラズマ生成室1の上部壁中央には
ここを封止する石英ガラスのマイクロ波導入窓1aが、ま
た試料室3との間を仕切る下部壁中央には前記マイクロ
波導入窓1aと対向する位置に円形のプラズマ引出窓1bが
それぞれ備えられている。そしてプラズマ生成室1内に
は上部壁から側壁にわたって重金属汚染を防止するため
に透明な石英ガラスの容器であるベルジャ14が配設され
ている。
FIG. 6 is a schematic cross-sectional view showing a conventional ECR plasma device, in which 1 is a plasma generating chamber for generating plasma. A sample chamber 3 is provided below the plasma generation chamber 1.
, A quartz glass microwave introduction window 1a for sealing the plasma generation chamber 1 at the center of the upper wall, and the microwave introduction window at the center of the lower wall for partitioning the sample chamber 3. Circular plasma extraction windows 1b are provided at positions facing 1a, respectively. A bell jar 14, which is a transparent quartz glass container, is arranged in the plasma generation chamber 1 from the upper wall to the side wall in order to prevent heavy metal contamination.

【0004】前記マイクロ波導入窓1aには他端を図示し
ない高周波発振器に接続した導波管2の一端を接続して
あり、またプラズマ生成室1の周囲及びこれに接続した
導波管2の一端部にわたってこれらを取り囲むようにこ
れらと同心状に励磁コイル12を配設してある。
One end of a waveguide 2 whose other end is connected to a high-frequency oscillator (not shown) is connected to the microwave introduction window 1a, and the periphery of the plasma generation chamber 1 and the waveguide 2 connected to it are connected. Exciting coils 12 are arranged concentrically with these so as to surround them over one end.

【0005】一方試料室3の側壁には反応ガスを供給す
るためのガス供給管9及びガスを排出する排気管11が接
続されている。また試料室3内にはプラズマ引出窓1bに
対向して載置台8が配設されており、載置台8上には試
料室3の側壁に開口されたウェハ等の試料Sを搬入する
搬入口10から搬入された試料Sが静電吸着等の手段にて
着脱可能に載置されている。そして前記プラズマ引出窓
1bが開口された試料室3の上部壁を除く試料室3の内
面,載置台8の表面及び排気管11の内面には、高圧,高
速の砂を吹き付けるフロスト処理によってその内面を粗
面加工された石英製の防着板5が配設されている。
On the other hand, a gas supply pipe 9 for supplying a reaction gas and an exhaust pipe 11 for discharging the gas are connected to the side wall of the sample chamber 3. A mounting table 8 is disposed inside the sample chamber 3 so as to face the plasma extraction window 1b, and a loading port for loading a sample S such as a wafer opened on the side wall of the sample chamber 3 into the mounting table 8 The sample S carried in from 10 is detachably mounted by means such as electrostatic adsorption. And the plasma extraction window
The inner surface of the sample chamber 3 excluding the upper wall of the sample chamber 3 in which 1b is opened, the surface of the mounting table 8 and the inner surface of the exhaust pipe 11 are roughened by frosting with high-pressure, high-speed sand. A quartz deposition preventive plate 5 is provided.

【0006】このような装置にて試料S表面を加工する
には、排気管11にて所要の真空度に設定したプラズマ生
成室1及び試料室3にガス供給管9より反応ガスを供給
し、励磁コイル12にて磁界を形成しつつプラズマ生成室
1内にマイクロ波を導入してプラズマを生成し、生成し
たプラズマを励磁コイル12にて形成される発散磁界によ
って試料室3内の載置台8上の試料S周辺に導き、試料
S表面に成膜またはエッチング等の処理を施す。
In order to process the surface of the sample S with such an apparatus, the reaction gas is supplied from the gas supply pipe 9 to the plasma generation chamber 1 and the sample chamber 3 which are set to the required vacuum degree by the exhaust pipe 11. A microwave is introduced into the plasma generation chamber 1 while forming a magnetic field by the exciting coil 12 to generate plasma, and the generated plasma is diverged by the divergent magnetic field formed by the exciting coil 12 to place the table 8 in the sample chamber 3. The sample S is guided to the periphery of the sample S and the surface of the sample S is subjected to processing such as film formation or etching.

【0007】[0007]

【発明が解決しようとする課題】ところでECRプラズ
マ装置では、試料表面を加工するのと並行してプラズマ
中のイオン及び試料が反応してその生成物が試料室の壁
面に堆積し、これが剥離して微小異物であるパーティク
ルとなって試料上に落下し、試料の加工不良を引き起こ
す。これに対して従来の装置では、前述した防着板の表
面の凹凸に生成物を強固に付着させることにより、生成
物の剥離を防止してパーティクルの発生を抑制してい
る。
By the way, in the ECR plasma apparatus, the ions in the plasma and the sample react in parallel with the processing of the sample surface, and the product is deposited on the wall surface of the sample chamber, which is separated. And become particles that are minute foreign substances and fall on the sample, causing defective processing of the sample. On the other hand, in the conventional device, the product is strongly adhered to the irregularities on the surface of the adhesion-preventing plate described above to prevent the product from peeling and suppress the generation of particles.

【0008】しかしこの生成物はベルジャにも堆積す
る。図7は従来のベルジャの表面粗さを測定した結果を
示すグラフである。図7から明らかな如く従来のベルジ
ャの表面粗さは0〜0.6 kÅと滑らかであり、この範囲
に非常にゆるやかな凹凸が存在している。従ってベルジ
ャに堆積した生成物は、ここから容易に剥離してパーテ
ィクルを発生する。
However, this product also deposits on Berja. FIG. 7 is a graph showing the results of measuring the surface roughness of a conventional bell jar. As is apparent from FIG. 7, the surface roughness of the conventional bell jar is as smooth as 0 to 0.6 kÅ, and very gentle unevenness exists in this range. Therefore, the product accumulated on the bell jar is easily separated from the product to generate particles.

【0009】またベルジャに堆積した生成物及び防着板
に付着された生成物は、プラズマ加工の開始時及び終了
時の温度変化によって剥離し、パーティクルを発生する
といった問題があった。本発明はかかる問題に鑑みてな
されたものであって、その目的とするところはベルジャ
からのパーティクルの発生を抑制し、また温度変化を緩
和してベルジャ及び防着板からのパーティクルの発生を
抑制するプラズマ装置を提供することにある。
Further, there is a problem that the product deposited on the bell jar and the product attached to the deposition preventive plate are peeled off due to temperature change at the start and end of the plasma processing to generate particles. The present invention has been made in view of such a problem, and its object is to suppress the generation of particles from the bell jar, and also to reduce the temperature change to suppress the generation of particles from the bell jar and the deposition preventive plate. The present invention is to provide a plasma device.

【0010】[0010]

【課題を解決するための手段】第1の発明に係るプラズ
マ装置にあっては、その内面を防護するベルジャを配設
したプラズマ生成室にて生成したプラズマを、その内面
への堆積物の付着を防ぐ防着板を配設した試料室内の試
料に導いてこれを加工するプラズマ装置において、前記
プラズマ生成室は前記堆積物を付着させるべく内面が粗
面加工されたベルジャを配設してあることを特徴とす
る。
In the plasma device according to the first aspect of the present invention, plasma generated in a plasma generation chamber provided with a bell jar that protects the inner surface of the plasma device is used to deposit deposits on the inner surface. In a plasma device for guiding and processing a sample in a sample chamber provided with an adhesion preventive plate, the plasma generation chamber is provided with a bell jar whose inner surface is roughened to attach the deposit. It is characterized by

【0011】また第2の発明に係るプラズマ装置にあっ
ては、その内面を防護するベルジャを配設したプラズマ
生成室にて生成したプラズマを、その内面への堆積物の
付着を防ぐ防着板を配設した試料室内の試料に導いてこ
れを加工するプラズマ装置において、前記ベルジャ及び
防着板を加温する手段を備えることを特徴とする。
In the plasma apparatus according to the second aspect of the present invention, the deposition preventive plate prevents the plasma generated in the plasma generation chamber having the bell jar for protecting the inner surface thereof from adhering deposits to the inner surface. In a plasma device for guiding a sample into a sample chamber in which the above is arranged and processing the sample, a means for heating the bell jar and the deposition preventive plate is provided.

【0012】更に第3の発明に係るプラズマ装置にあっ
ては、その内面を防護するベルジャを配設したプラズマ
生成室にて生成したプラズマを、その内面への堆積物の
付着を防ぐ防着板を配設した試料室内の試料に導いてこ
れを加工するプラズマ装置において、前記プラズマ生成
室は前記粗面加工されたベルジャを配設してあり、かつ
該ベルジャ及び前記防着板を加温する手段を備えること
を特徴とする。
Further, in the plasma device according to the third aspect of the present invention, the deposition preventive plate prevents plasma generated in the plasma generation chamber having a bell jar for protecting the inner surface thereof from adhering deposits to the inner surface. In a plasma device for guiding and processing a sample in a sample chamber in which the bell jar having the roughened surface is arranged, the bell jar and the deposition preventive plate are heated. It is characterized by comprising means.

【0013】[0013]

【作用】第1の発明のプラズマ装置は、プラズマ生成室
に堆積物をその内面に付着させる粗面加工されたベルジ
ャを配設してあるため、堆積物を付着し、付着した堆積
物がベルジャから剥離することを防止してパーティクル
の発生を抑制する。また第2の発明のプラズマ装置は、
プラズマ生成室内に配設されたベルジャ及び試料室内に
配設された防着板を加温する手段を備えるため、プラズ
マ処理の開始前から終了後のまでの間ベルジャ及び防着
板を加温することによって、プラズマ処理の開始時及び
終了時にあってはこれらの温度変化を緩和して堆積物の
剥離を防止し、またプラズマ処理時にあっては堆積物の
付着を抑制する。更に第3の発明のプラズマ装置は、第
1の発明に係る粗面加工されたベルジャと第2の発明に
係るベルジャ及び防着板を加温する手段とを備えるた
め、前記両作用を営んで更にパーティクルの発生を抑制
する。
In the plasma apparatus according to the first aspect of the present invention, since the bell jar having the roughened surface for adhering the deposit to the inner surface thereof is arranged in the plasma generating chamber, the deposit adheres, and the adhered deposit adheres to the bell jar. It prevents the particles from peeling off and suppresses the generation of particles. The plasma device of the second invention is
Since the bell jar disposed in the plasma generation chamber and the means for heating the deposition preventive plate disposed in the sample chamber are provided, the bell jar and the deposition preventive plate are heated from before the plasma treatment is started to after the plasma treatment is completed. As a result, at the start and end of the plasma treatment, these temperature changes are alleviated to prevent the deposits from peeling off, and at the time of the plasma treatment, the adherence of the deposits is suppressed. Furthermore, since the plasma device of the third invention comprises the bell jar having the roughened surface according to the first invention and the means for heating the bell jar and the deposition preventive plate according to the second invention, both the above-mentioned actions are performed. Furthermore, the generation of particles is suppressed.

【0014】[0014]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明に係るECRプラズ
マ装置の例を示す模式的断面図であり、図中1は円筒状
のプラズマ生成室である。プラズマ生成室1の下方には
試料室3が連接されており、プラズマ生成室1の上部壁
中央にはここを封止する石英ガラスのマイクロ波導入窓
1aが、また試料室3との間を仕切る下部壁中央には前記
マイクロ波導入窓1aと対向する位置に円形のプラズマ引
出窓1bがそれぞれ備えられている。プラズマ生成室1内
には、その上部壁から側壁にわたって石英ガラス容器の
内面をフロスト処理して粗面加工されたベルジャ4が配
設されており、またプラズマ生成室1の外側にはこれを
加温する上部加温壁6が周設されている。上部加温壁6
は2重構造となっており、上端に接続された供給管6a及
び排出管6bから温流体を給排してプラズマ生成室1の外
面及びベルジャ4を加温すべくなされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a schematic cross-sectional view showing an example of an ECR plasma device according to the present invention, in which 1 is a cylindrical plasma generation chamber. A sample chamber 3 is connected below the plasma generation chamber 1, and a quartz glass microwave introduction window for sealing the sample chamber 3 is provided in the center of the upper wall of the plasma generation chamber 1.
A circular plasma extraction window 1b is provided at a position facing the microwave introduction window 1a at the center of the lower wall that separates it from the sample chamber 3. Inside the plasma generation chamber 1, there is provided a bell jar 4 which has been roughened by frosting the inner surface of the quartz glass container from the upper wall to the side wall thereof. An upper heating wall 6 for heating is provided around the wall. Upper heating wall 6
Has a double structure, and is designed to heat and discharge the warm fluid from the supply pipe 6a and the discharge pipe 6b connected to the upper end to heat the outer surface of the plasma generation chamber 1 and the bell jar 4.

【0015】前記マイクロ波導入窓1aには他端を図示し
ない高周波発振器に接続した導波管2の一端を接続して
あり、また上部加温壁6の周囲及びプラズマ生成室1に
接続した導波管2の一端部にわたってこれらを取り囲む
ようにこれらと同心状に励磁コイル12を配設してある。
The microwave introduction window 1a is connected to one end of a waveguide 2 whose other end is connected to a high-frequency oscillator (not shown), and is connected to the periphery of the upper heating wall 6 and the plasma generation chamber 1. An exciting coil 12 is arranged concentrically with one end of the wave tube 2 so as to surround them.

【0016】試料室3の側壁には反応ガスを供給するた
めのガス供給管9及びガスを排気するための排気管11が
接続されている。また試料室3内にはプラズマ引出窓1b
に対向して載置台8が配設されており、載置台8上には
試料室3の側壁に開口されたウェハ等の試料Sを搬入す
る搬入口10から搬入された試料Sが静電吸着等の手段に
て着脱可能に載置されている。
A gas supply pipe 9 for supplying a reaction gas and an exhaust pipe 11 for exhausting the gas are connected to the side wall of the sample chamber 3. In addition, the plasma extraction window 1b is provided in the sample chamber 3.
A mounting table 8 is disposed so as to oppose to each other, and the sample S carried in from a carry-in port 10 for carrying in the sample S such as a wafer opened on the side wall of the sample chamber 3 is electrostatically attracted onto the mounting table 8. It is mounted detachably by means such as.

【0017】プラズマ引出窓1bが開口された試料室3の
上部壁を除く試料室3の内面,載置台8の表面及び排気
管11の端部の内面には、フロスト処理を施された石英製
の防着板5が配設されており、試料室3の側壁,底壁及
び排気管11の端部の外面には、2重構造となった下部加
温壁7が配設されている。そして下部加温壁7に接続さ
れた供給管7a及び排出管7bから温流体を給排してこれら
を加温すべくなされている。
The inner surface of the sample chamber 3 except the upper wall of the sample chamber 3 where the plasma extraction window 1b is opened, the surface of the mounting table 8 and the inner surface of the end of the exhaust pipe 11 are made of frosted quartz. The anti-adhesion plate 5 is provided, and the lower heating wall 7 having a double structure is provided on the side wall and the bottom wall of the sample chamber 3 and the outer surface of the end of the exhaust pipe 11. The warm fluid is supplied and discharged from the supply pipe 7a and the discharge pipe 7b connected to the lower heating wall 7 to heat them.

【0018】このような装置にて試料S表面を加工する
場合は、供給管6a,7a 及び排出管6b,7b から温流体を上
部加温壁6及び下部加温壁7内に循環させて、ベルジャ
4及び防着板5を所定温度に加温した後、排気管11から
の吸引にて所要の真空度に設定したプラズマ生成室1及
び試料室3にガス供給管9より反応ガスを供給し、励磁
コイル12にて磁界を形成しつつプラズマ生成室1内にマ
イクロ波を導入してプラズマを生成し、生成したプラズ
マを励磁コイル12にて形成される発散磁界によって試料
室3内の載置台8上の試料S周辺に導き、試料S表面に
成膜及びエッチング等の処理を施す。
When processing the surface of the sample S with such an apparatus, a warm fluid is circulated through the supply pipes 6a, 7a and the discharge pipes 6b, 7b into the upper heating wall 6 and the lower heating wall 7, After heating the bell jar 4 and the deposition preventive plate 5 to a predetermined temperature, the reaction gas is supplied from the gas supply pipe 9 to the plasma generation chamber 1 and the sample chamber 3 which are set to a required vacuum degree by suction from the exhaust pipe 11. , A microwave is introduced into the plasma generation chamber 1 while forming a magnetic field by the exciting coil 12 to generate plasma, and the generated plasma is diverged by the divergent magnetic field formed by the exciting coil 12 to place the table in the sample chamber 3. 8 is guided to the periphery of the sample S, and the surface of the sample S is subjected to processing such as film formation and etching.

【0019】図2は本発明に係るベルジャの表面の粗さ
を測定した結果を示すグラフであり、その表面を段差計
にて測定したものである。図2から明らかな如く本発明
に係るフロスト処理したベルジャの表面粗さは、前述し
た従来の処理していないベルジャの場合の0〜0.6 kÅ
(図7参照)と比べて±80kÅと大幅に粗くなってお
り、また大きな凹凸及びその間にある細かい凹凸が共に
密に存在している。従ってフロスト処理したベルジャ4
は、プラズマ生成室1で生じる生成物をこの表面の凹凸
に強固に付着させることができるため、付着した生成物
の剥離を防止してパーティクルの発生を抑制する。
FIG. 2 is a graph showing the results of measuring the roughness of the surface of the bell jar according to the present invention, which is measured by a step gauge. As apparent from FIG. 2, the surface roughness of the frost-treated bell jar according to the present invention is 0 to 0.6 kÅ in the case of the conventional untreated bell jar described above.
Compared with (see Fig. 7), it is significantly roughened to ± 80kÅ, and large irregularities and fine irregularities between them are densely present. Therefore, frosted bell jar 4
Since the product generated in the plasma generation chamber 1 can be strongly adhered to the unevenness of the surface, the adhered product is prevented from peeling and the generation of particles is suppressed.

【0020】また上部加温壁及び下部加温壁は、ベルジ
ャ及び防着板を反応生成物の沸点を越える所定温度に加
温する。反応生成物は用いた試料及び反応ガスによって
異なるが、例えばシリコンウェハの試料をCl2 ガスのプ
ラズマで処理した場合反応生成物としてSiCl4 が生成さ
れ、このSiCl4 の沸点は57.6℃であるため、前記ベルジ
ャ及び防着板の温度がこの温度を越えるように上部加温
壁及び下部加温壁に通流する流体の温度を設定する。こ
のようにすることによってベルジャ及び防着板におい
て、プラズマ加工の開始時及び終了時の温度変化を緩和
して温度変化による生成物の剥離を抑制し、また加工中
は生成物の付着量を減少させることができる。
The upper heating wall and the lower heating wall heat the bell jar and the deposition preventive plate to a predetermined temperature exceeding the boiling point of the reaction product. The reaction product varies depending on the sample and reaction gas used, but for example, when a sample of a silicon wafer is treated with Cl 2 gas plasma, SiCl 4 is generated as a reaction product, and the boiling point of this SiCl 4 is 57.6 ° C. The temperature of the fluid flowing through the upper heating wall and the lower heating wall is set so that the temperatures of the bell jar and the deposition preventive plate exceed this temperature. By doing this, in the bell jar and the deposition preventive plate, the temperature change at the start and end of plasma processing is mitigated to suppress the peeling of the product due to the temperature change and reduce the amount of the product adhered during the processing. Can be made.

【0021】次に本発明装置及び従来装置によって発生
するパーティクル数を測定した比較試験の結果について
説明する。図8は従来装置によって試料をプラズマ処理
した場合の処理枚数に対する発生したパーティクルの増
加数を示すグラフである。試料にはレジストを堆積した
6インチウェハを、また反応ガスにはCl2 /O2 混合ガ
スを用いた。またパーティクルの増加数は、予め0.3 μ
m以上のパーティクル数を測定した試料を試料室の載置
台上に載置し、2分間プラズマ処理した後測定された0.
3 μm以上のパーティクル数より求めた。図8から明ら
かな如く従来装置では、パーティクルの増加数は最大で
略1,000 個、また平均で略100 個であった。
Next, the results of a comparative test in which the numbers of particles generated by the device of the present invention and the conventional device are measured will be described. FIG. 8 is a graph showing the increase in the number of generated particles with respect to the number of processed samples when the sample is plasma-processed by the conventional apparatus. A 6-inch wafer on which a resist was deposited was used as a sample, and a Cl 2 / O 2 mixed gas was used as a reaction gas. The number of particles increased is 0.3 μ in advance.
A sample of which the number of particles of m or more was measured was placed on the mounting table in the sample chamber, and the plasma treatment was performed for 2 minutes.
It was calculated from the number of particles of 3 μm or more. As is clear from FIG. 8, in the conventional apparatus, the number of particles increased was about 1,000 at maximum, and about 100 on average.

【0022】図3,4及び5は本発明装置によって前記
試料を同様にプラズマ処理した場合の処理枚数に対する
発生したパーティクルの増加数を示すグラフであり、図
3はフロスト処理していないベルジャを配設して上部加
温壁及び下部加温壁にて加温を行った場合を、図4はフ
ロスト処理したベルジャを配設して上部加温壁及び下部
加温壁にて加温を行わなかった場合を、また図5はフロ
スト処理したベルジャを配設して上部加温壁及び下部加
温壁にて加温を行った場合をそれぞれ示している。
FIGS. 3, 4 and 5 are graphs showing the increase in the number of generated particles with respect to the number of processed samples when the sample is similarly plasma-treated by the apparatus of the present invention. FIG. 3 shows a bell jar without frost treatment. Fig. 4 shows the case where the upper heating wall and the lower heating wall are heated and the frosted bell jar is installed and the upper heating wall and the lower heating wall are not heated. FIG. 5 shows a case in which a bell jar subjected to frost treatment is provided and heating is performed by the upper heating wall and the lower heating wall.

【0023】図3から明らかな如く上部加温壁及び下部
加温壁にて加温を行った場合、パーティクルの増加数は
最大で略100 個、また平均で略50個であり、従来装置の
場合よりそれぞれ1/10及び1/2に減少している。ま
た図4から明らかな如くフロスト処理したベルジャを配
設した場合、パーティクルの増加数は最大で略50個、ま
た平均で略30個であり、それぞれ従来装置の場合より更
に減少している。更に図5から明らかな如く両者を共に
実施した場合、パーティクルの増加数は平均して低く、
その数は略30個以下であり、従来装置の場合よりパーテ
ィクルの増加数が大幅に減少している。
As is apparent from FIG. 3, when heating is performed using the upper heating wall and the lower heating wall, the maximum number of particles increased is about 100, and the average number is about 50. Compared with the case, it is reduced to 1/10 and 1/2, respectively. Further, as is clear from FIG. 4, when the frosted bell jar is provided, the maximum number of particles increased is approximately 50, and the average number is approximately 30, which is further reduced as compared with the conventional device. Further, as is clear from FIG. 5, when both are performed together, the number of particles increased is low on average,
The number is about 30 or less, and the number of particles increased is greatly reduced as compared with the conventional device.

【0024】このように本発明装置は、フロスト処理し
たベルジャを用いた場合又は上部加温壁及び下部加温壁
を用いた場合だけでも良く、また両者を併用しても良
い。両者を併用した場合、パーティクルの発生を最も抑
制する。
As described above, the apparatus of the present invention may be used only when the bell jar which has been subjected to frost treatment is used or when the upper heating wall and the lower heating wall are used, or both may be used in combination. When both are used together, the generation of particles is most suppressed.

【0025】[0025]

【発明の効果】以上詳述した如く本発明のプラズマ装置
にあっては、パーティクルの発生を抑制して製品の信頼
性及び歩留まりを向上する等、本発明は優れた効果を奏
する。
As described in detail above, in the plasma device of the present invention, the present invention exhibits excellent effects such as suppressing the generation of particles and improving the reliability and yield of products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るECRプラズマ装置の例を示す模
式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an ECR plasma device according to the present invention.

【図2】本発明に係るベルジャの表面の粗さを測定した
結果を示すグラフである。
FIG. 2 is a graph showing a result of measuring surface roughness of a bell jar according to the present invention.

【図3】本発明装置によって試料をプラズマ処理した場
合の処理枚数に対する発生したパーティクルの増加数を
示すグラフである。
FIG. 3 is a graph showing an increase in the number of particles generated with respect to the number of processed samples when a sample is plasma-processed by the apparatus of the present invention.

【図4】本発明装置によって試料をプラズマ処理した場
合の処理枚数に対する発生したパーティクルの増加数を
示すグラフである。
FIG. 4 is a graph showing an increase in the number of particles generated with respect to the number of processed samples when a sample is plasma-processed by the apparatus of the present invention.

【図5】本発明装置によって試料をプラズマ処理した場
合の処理枚数に対する発生したパーティクルの増加数を
示すグラフである。
FIG. 5 is a graph showing an increase in the number of generated particles with respect to the number of processed samples when a sample is plasma-processed by the apparatus of the present invention.

【図6】従来のECRプラズマ装置を示す模式的断面図
である。
FIG. 6 is a schematic sectional view showing a conventional ECR plasma device.

【図7】従来のベルジャの表面粗さを測定した結果を示
すグラフである。
FIG. 7 is a graph showing the results of measuring the surface roughness of a conventional bell jar.

【図8】従来装置によって試料をプラズマ処理した場合
の処理枚数に対する発生したパーティクルの増加数を示
すグラフである。
FIG. 8 is a graph showing the increased number of particles generated with respect to the number of processed samples when a sample is plasma-processed by a conventional apparatus.

【符号の説明】[Explanation of symbols]

1 プラズマ生成室 2 導波管 3 試料室 4 ベルジャ 5 防着板 6 上部加温壁 7 下部加温壁 8 載置台 11 排気管 S 試料 1 plasma generation chamber 2 waveguide 3 sample chamber 4 bell jar 5 deposition plate 6 upper heating wall 7 lower heating wall 8 mounting table 11 exhaust pipe S sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 その内面を防護するベルジャを配設した
プラズマ生成室にて生成したプラズマを、その内面への
堆積物の付着を防ぐ防着板を配設した試料室内の試料に
導いてこれを加工するプラズマ装置において、 前記プラズマ生成室は前記堆積物を付着させるべく内面
が粗面加工されたベルジャを配設してあることを特徴と
するプラズマ装置。
1. A plasma generated in a plasma generation chamber having a bell jar for protecting its inner surface is guided to a sample in a sample chamber having a deposition preventive plate for preventing deposition of deposits on the inner surface. In the plasma device for processing the above, the plasma generation chamber is provided with a bell jar whose inner surface is roughened in order to attach the deposit.
【請求項2】 その内面を防護するベルジャを配設した
プラズマ生成室にて生成したプラズマを、その内面への
堆積物の付着を防ぐ防着板を配設した試料室内の試料に
導いてこれを加工するプラズマ装置において、 前記ベルジャ及び防着板を加温する手段を備えることを
特徴とするプラズマ装置。
2. A plasma generated in a plasma generation chamber having a bell jar for protecting its inner surface is guided to a sample in a sample chamber having a deposition preventive plate for preventing deposition of deposits on the inner surface. In the plasma apparatus for processing the above, a plasma apparatus comprising means for heating the bell jar and the deposition preventive plate.
【請求項3】 その内面を防護するベルジャを配設した
プラズマ生成室にて生成したプラズマを、その内面への
堆積物の付着を防ぐ防着板を配設した試料室内の試料に
導いてこれを加工するプラズマ装置において、 前記プラズマ生成室は前記粗面加工されたベルジャを配
設してあり、かつ該ベルジャ及び前記防着板を加温する
手段を備えることを特徴とするプラズマ装置。
3. The plasma generated in a plasma generating chamber having a bell jar for protecting its inner surface is guided to a sample in a sample chamber having a deposition preventive plate for preventing adhesion of deposits to the inner surface. In the plasma apparatus for processing the above, the plasma generating chamber is provided with the roughened bell jar, and is provided with means for heating the bell jar and the deposition preventive plate.
JP4357467A 1992-12-23 1992-12-23 Plasma device Pending JPH06196421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357467A JPH06196421A (en) 1992-12-23 1992-12-23 Plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357467A JPH06196421A (en) 1992-12-23 1992-12-23 Plasma device

Publications (1)

Publication Number Publication Date
JPH06196421A true JPH06196421A (en) 1994-07-15

Family

ID=18454278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357467A Pending JPH06196421A (en) 1992-12-23 1992-12-23 Plasma device

Country Status (1)

Country Link
JP (1) JPH06196421A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007673A (en) * 1996-10-02 1999-12-28 Matsushita Electronics Corporation Apparatus and method of producing an electronic device
US6087614A (en) * 1996-11-20 2000-07-11 Tokyo Electron Limited Plasma treating device
US6215087B1 (en) 1996-11-14 2001-04-10 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
US6218299B1 (en) 1996-11-14 2001-04-17 Tokyo Electron Limited Semiconductor device and method for producing the same
US6320154B1 (en) 1996-11-14 2001-11-20 Tokyo Electron Limited Plasma processing method
US6447853B1 (en) 1998-11-30 2002-09-10 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
US6454898B1 (en) * 1991-06-27 2002-09-24 Applied Materials, Inc. Inductively coupled RF Plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6727182B2 (en) 1996-11-14 2004-04-27 Tokyo Electron Limited Process for the production of semiconductor device
JP2007012560A (en) * 2005-07-04 2007-01-18 Tateyama Machine Kk Plasma treatment device
CN100440452C (en) * 2004-07-20 2008-12-03 夏普株式会社 Plasma processing system
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454898B1 (en) * 1991-06-27 2002-09-24 Applied Materials, Inc. Inductively coupled RF Plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6007673A (en) * 1996-10-02 1999-12-28 Matsushita Electronics Corporation Apparatus and method of producing an electronic device
US6215087B1 (en) 1996-11-14 2001-04-10 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
US6727182B2 (en) 1996-11-14 2004-04-27 Tokyo Electron Limited Process for the production of semiconductor device
US6218299B1 (en) 1996-11-14 2001-04-17 Tokyo Electron Limited Semiconductor device and method for producing the same
US6320154B1 (en) 1996-11-14 2001-11-20 Tokyo Electron Limited Plasma processing method
US6355902B2 (en) 1996-11-14 2002-03-12 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
US6087614A (en) * 1996-11-20 2000-07-11 Tokyo Electron Limited Plasma treating device
US6558505B2 (en) 1998-11-30 2003-05-06 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
US6547921B2 (en) 1998-11-30 2003-04-15 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
US6447853B1 (en) 1998-11-30 2002-09-10 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP4544700B2 (en) * 1999-07-29 2010-09-15 京セラ株式会社 Vacuum container and method for manufacturing the same
CN100440452C (en) * 2004-07-20 2008-12-03 夏普株式会社 Plasma processing system
JP2007012560A (en) * 2005-07-04 2007-01-18 Tateyama Machine Kk Plasma treatment device
JP4686668B2 (en) * 2005-07-04 2011-05-25 立山マシン株式会社 Plasma processing method and apparatus
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
EP2071049A1 (en) 2005-07-29 2009-06-17 Tocalo Co. Ltd. Y2O3 Spray-coated member and production method thereof
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method

Similar Documents

Publication Publication Date Title
JP7079686B2 (en) Film formation method and film formation equipment
JPH06196421A (en) Plasma device
JPS6243335B2 (en)
JPH04123257U (en) Bias ECR plasma CVD equipment
TW200823977A (en) Plasma doping method and plasma doping apparatus
JPH07335626A (en) Plasma processing device and method
JP3276514B2 (en) Plasma processing equipment
JPH10275694A (en) Plasma processing device and processing method
US5897740A (en) Plasma processing system
JP3254482B2 (en) Plasma processing apparatus and cleaning method thereof
JP2837087B2 (en) Thin film formation method
KR20010079817A (en) Plasma reactor
US5007374A (en) Apparatus for forming thin films in quantity
JPH0456770A (en) Method for cleaning plasma cvd device
WO2000074123A1 (en) Transparent window of process chamber of process apparatus, and method of manufacture thereof
JP3595885B2 (en) Plasma processing method and plasma apparatus
JP2558738B2 (en) Surface treatment method
JP3077516B2 (en) Plasma processing equipment
JPH0639709B2 (en) Plasma CVD equipment
JP3147769B2 (en) Plasma processing apparatus and processing method
JPH07273086A (en) Plasma treatment apparatus and plasma treatment method employing said apparatus
JPH10308352A (en) Plasma treatment and manufacture of semiconductor device
JPH04318175A (en) Bias ecr plasma cvd device
JP2001085411A (en) Vacuum treatment method
JP2956640B2 (en) Plasma processing equipment