JP4620501B2 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP4620501B2
JP4620501B2 JP2005060911A JP2005060911A JP4620501B2 JP 4620501 B2 JP4620501 B2 JP 4620501B2 JP 2005060911 A JP2005060911 A JP 2005060911A JP 2005060911 A JP2005060911 A JP 2005060911A JP 4620501 B2 JP4620501 B2 JP 4620501B2
Authority
JP
Japan
Prior art keywords
polishing pad
polishing
hole
pad
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005060911A
Other languages
Japanese (ja)
Other versions
JP2006239833A (en
Inventor
佑典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Nitta Haas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Haas Inc filed Critical Nitta Haas Inc
Priority to JP2005060911A priority Critical patent/JP4620501B2/en
Publication of JP2006239833A publication Critical patent/JP2006239833A/en
Application granted granted Critical
Publication of JP4620501B2 publication Critical patent/JP4620501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体素子などの製造工程において、化学的機械的研磨(Chemical
Mechanical Planarization;CMP)により、シリコンウエハなどの被研磨物の平坦化処理に用いる研磨パッドに関する。
The present invention provides chemical mechanical polishing (Chemical polishing) in the manufacturing process of semiconductor devices and the like.
The present invention relates to a polishing pad used for planarization of an object to be polished such as a silicon wafer by Mechanical Planarization (CMP).

半導体製造の分野では、半導体素子の微細化および多層化による高集積化に伴い、半導体層、金属層の平坦化技術が重要な要素技術となっている。ウエハに集積回路を形成する際、電極配線などによる凹凸を平坦化せずに層を重ねると、段差が大きくなり、平坦性が極端に悪くなる。また段差が大きくなった場合、フォトリソグラフィにおいて凹部と凸部の両方に焦点を合わせることが困難になり微細化を実現することができなくなる。したがって、積層中の然るべき段階でウエハ表面の凹凸を除去するための平坦化処理を行う必要がある。平坦化処理には、エッチングにより凹凸部を除去するエッチバック法、プラズマCVD(Chemical Vapor Deposition)などにより平坦な膜を形成する成膜法、熱処理によって平坦化する流動化法、選択CVDなどにより凹部の埋め込みを行う選択成長法などがある。   In the field of semiconductor manufacturing, with the high integration by miniaturization and multilayering of semiconductor elements, the planarization technology of semiconductor layers and metal layers has become an important elemental technology. When forming an integrated circuit on a wafer, if the layers are stacked without flattening the unevenness due to the electrode wiring or the like, the step becomes large and the flatness becomes extremely poor. Further, when the step becomes large, it becomes difficult to focus on both the concave portion and the convex portion in photolithography, and miniaturization cannot be realized. Therefore, it is necessary to perform a planarization process for removing irregularities on the wafer surface at an appropriate stage during the lamination. For the flattening process, an etching back method for removing uneven portions by etching, a film forming method for forming a flat film by plasma CVD (Chemical Vapor Deposition), a fluidizing method for flattening by heat treatment, a concave portion by selective CVD, etc. There is a selective growth method for embedding.

以上の方法は、絶縁膜、金属膜など膜の種類によって適否があること、また平坦化できる領域がきわめて狭いという問題がある。このような問題を克服することができる平坦化処理技術としてCMPによる平坦化がある。   The above method has problems that it is appropriate depending on the type of film such as an insulating film and a metal film, and that the region that can be flattened is extremely narrow. As a planarization technique that can overcome such problems, there is planarization by CMP.

CMPによる平坦化処理では、微細なシリカ粒子(砥粒)を懸濁した研磨用組成物を研磨パッド表面に供給しながら、圧接した研磨パッドと、被研磨物であるシリコンウエハとを相対移動させて表面を研磨することにより、広範囲にわたるウエハ表面を高精度に平坦化することができる。   In the flattening process by CMP, while the polishing composition in which fine silica particles (abrasive grains) are suspended is supplied to the surface of the polishing pad, the pressed polishing pad and the silicon wafer as the object to be polished are relatively moved. By polishing the surface, the wafer surface over a wide range can be flattened with high accuracy.

CMP処理工程では、適切な研磨処理を行うために、テストウエハを定期的に処理し、その処理結果を確認した後、製品用ウエハの処理を行っていたが、テストウエハを使用するためにコストと処理時間が必要になるという問題がある。したがって、この問題を解決するために、被研磨層の膜厚などから研磨進行度をリアルタイムで計測し、この結果をフィードバックすることで加工終了時間を決定する方法が主に採用されている。これにより加工終点の検出精度を高め、効率的に研磨を行っている。   In the CMP processing step, a test wafer is processed periodically in order to perform an appropriate polishing process, and the processing result is confirmed, and then the product wafer is processed. However, the cost for using the test wafer is low. There is a problem that processing time is required. Therefore, in order to solve this problem, a method of measuring the progress of polishing in real time from the film thickness of the layer to be polished and feeding back the result is mainly employed. As a result, the detection accuracy of the processing end point is improved and polishing is performed efficiently.

終点の検出方法としては、トルク計測方法、光学的測定方法、静電容量計測方法、振動解析方法、温度計測方法、差動トランス方法、超音波厚み計測方法、電気抵抗計測方法、スラリ分析方法などが実用されている。   End point detection methods include torque measurement method, optical measurement method, capacitance measurement method, vibration analysis method, temperature measurement method, differential transformer method, ultrasonic thickness measurement method, electrical resistance measurement method, slurry analysis method, etc. Is in practical use.

これらの方法のうち、光学的測定方法は、被研磨層の膜厚を分光反射率測定により研磨処理中に直接的に計測する方法である。たとえば、研磨処理中のウエハに対してレーザ光を照射し、その反射率によって膜厚を計測している。   Among these methods, the optical measurement method is a method in which the film thickness of the layer to be polished is directly measured during the polishing process by spectral reflectance measurement. For example, the wafer being polished is irradiated with laser light, and the film thickness is measured by the reflectance.

この測定方法では、研磨処理中にウエハに対してレーザ光の照射および反射光の受光を行うために、測定装置からウエハに到るレーザ光の光路を研磨パッド内に確保する必要がある。たとえば、研磨パッドの一部に貫通孔を設けて水など透明の液体で貫通孔を満たすことでレーザ光の光路を確保することが考えられるが、この場合、貫通孔からスラリが漏れ出してしまうために、貫通孔に透光性を有する窓部材を設ける構成が用いられている(特許文献1参照)。   In this measuring method, it is necessary to secure an optical path of laser light from the measuring device to the wafer in the polishing pad in order to irradiate the wafer with laser light and receive reflected light during the polishing process. For example, it is conceivable to provide a through hole in a part of the polishing pad and fill the through hole with a transparent liquid such as water to secure the optical path of the laser beam. In this case, the slurry leaks from the through hole. Therefore, a configuration in which a window member having translucency is provided in the through hole is used (see Patent Document 1).

しかしながら、窓部材の材質および特性が研磨パッドの他の部分と異なるために種々の問題が発生している。   However, various problems occur because the material and characteristics of the window member are different from those of other portions of the polishing pad.

窓部材の硬度が他の部分の硬度に比べて高い場合は、研磨パッドの使用時間に伴って硬い窓部材が他の部分から突出することとなり、スクラッチが発生したり、段差にウエハが引っ掛かって脱落してしまうなどの問題がある。また、窓部材の硬度が低い場合は、窓部材自体が研磨されることにより窓部材の透光性が劣化し、照射光および反射光が拡散されたり、窓部材が陥没し、そこにスラリおよび研磨屑が滞留してスクラッチが発生してしまうという問題がある。   If the hardness of the window member is higher than the hardness of other parts, the hard window member will protrude from the other part with the usage time of the polishing pad, and scratches may occur or the wafer may be caught in the step. There are problems such as dropping out. Further, when the hardness of the window member is low, the window member itself is polished to deteriorate the translucency of the window member, and the irradiation light and the reflected light are diffused, or the window member is depressed, and the slurry and There is a problem that the polishing waste accumulates and scratches occur.

これらの問題に対して、特許文献2記載の研磨パッドは、窓部材の近傍に溝部を形成し、スラリなどを溝部に沿って逃がすことで、スラリが窓部材の表面に到ることを防止している。   With respect to these problems, the polishing pad described in Patent Document 2 forms a groove in the vicinity of the window member, and escapes the slurry or the like along the groove to prevent the slurry from reaching the surface of the window member. ing.

特開2001−162520号公報JP 2001-162520 A 特開2002−1652号公報Japanese Patent Laid-Open No. 2002-1652

特許文献2記載の研磨パッドでは、スラリを十分に逃がすことができず、窓部材に起因する問題を解決するには到っていない。   The polishing pad described in Patent Document 2 cannot sufficiently release the slurry, and has not yet solved the problem caused by the window member.

本発明の目的は、研磨特性を劣化させることなく加工終点の検出が可能な研磨パッドを提供することである。   An object of the present invention is to provide a polishing pad capable of detecting a processing end point without deteriorating polishing characteristics.

本発明は、被研磨物を研磨する研磨面側に開放された凹部が、前記研磨面にわたって分布するように設けられる研磨パッドにおいて、
前記研磨パッドは円板形状であり、
前記研磨パッドの厚み方向に貫通する貫通孔の周辺部分であって、前記凹部が設けられていない無加工部分を有し、
前記貫通孔は、前記研磨面方向の断面形状が曲線部分のみからなる閉曲線であり、長手方向が研磨パッドの半径方向と垂直となるように設けられ、
前記無加工部は、前記研磨パッドの回転方向の領域が小さく、前記研磨パッドの半径方向の領域が大きくなるように設けられることを特徴とする研磨パッドである。
The present invention provides a polishing pad in which recesses opened on the polishing surface side for polishing an object to be polished are provided so as to be distributed over the polishing surface.
The polishing pad is disc-shaped,
A peripheral portion of the through hole penetrating in the thickness direction of the polishing pad, have a non-working portion of the recess is not provided,
The through hole is a closed curve in which the cross-sectional shape in the polishing surface direction consists of only a curved portion, and the longitudinal direction is provided so as to be perpendicular to the radial direction of the polishing pad,
The non-processed portion is a polishing pad characterized in that a region in the rotation direction of the polishing pad is small and a region in the radial direction of the polishing pad is large .

また本発明は、被研磨物を研磨する研磨面側に開放された凹部が、前記研磨面にわたって分布するように設けられる研磨パッドにおいて、
前記研磨パッドは円板形状であり、
前記研磨パッドの厚み方向に貫通する貫通孔の周辺部分であって、前記凹部が設けられていない無加工部分を有し、
前記貫通孔は、前記研磨面方向の断面形状が曲線部分と直線部分とを含み、前記直線部分が前記曲線部分の接線と平行な閉曲線であり、長手方向が研磨パッドの半径方向と垂直となるように設けられ
前記無加工部は、前記研磨パッドの回転方向の領域が小さく、前記研磨パッドの半径方向の領域が大きくなるように設けられることを特徴とする研磨パッドである
Further, the present invention provides a polishing pad provided so that concave portions opened on the polishing surface side for polishing an object to be polished are distributed over the polishing surface.
The polishing pad is disc-shaped ,
The peripheral portion of the through-hole penetrating in the thickness direction of the polishing pad, having a non-processed portion not provided with the recess,
The through hole has a cross-sectional shape in the polishing surface direction including a curved portion and a straight portion, the straight portion is a closed curve parallel to a tangent to the curved portion, and a longitudinal direction is perpendicular to the radial direction of the polishing pad. provided so as to,
The unprocessed portion, the polishing rotation direction of the area of the pad is small, a polishing pad, characterized in that provided as the radial region of the polishing pad is increased.

また本発明は、前記貫通孔は、前記研磨面方向の断面形状が楕円形状であり、長軸方向が研磨パッドの半径方向と垂直となるように設けられることを特徴とする。   Further, the present invention is characterized in that the through hole is provided such that a cross-sectional shape in the polishing surface direction is an elliptical shape, and a major axis direction is perpendicular to a radial direction of the polishing pad.

また本発明は、前記貫通孔の長手方向長さはmm〜8mmであり、短手方向長さは3mm〜5mmであることを特徴とする。 In the present invention, the length of the through hole in the longitudinal direction is 6 mm to 8 mm, and the length in the lateral direction is 3 mm to 5 mm.

また本発明は、前記無加工部分の前記研磨面方向の形状が円形状であることを特徴とする。   Further, the invention is characterized in that the shape of the unmachined portion in the polishing surface direction is a circular shape.

また本発明は、前記無加工部分の直径が、15mm〜60mmであることを特徴とする。   In the present invention, the diameter of the non-processed portion is 15 mm to 60 mm.

また本発明は、前記凹部は、砥粒を含むスラリを保持するための1または複数の溝であることを特徴とする。   In the invention, it is preferable that the concave portion is one or a plurality of grooves for holding a slurry containing abrasive grains.

また本発明は、前記凹部は、砥粒を含むスラリを保持するための複数の孔であることを特徴とする。   In the invention, it is preferable that the recess is a plurality of holes for holding a slurry containing abrasive grains.

本発明によれば、被研磨物を研磨する研磨面側に開放された凹部が、前記研磨面にわたって分布するように設けられる研磨パッドである。   According to the present invention, the polishing pad is provided so that the concave portions opened to the polishing surface side for polishing the object to be polished are distributed over the polishing surface.

研磨パッドは、厚み方向に貫通する貫通孔を有しており、その周辺部分であって、前記凹部が設けられていない無加工部分を有する。   The polishing pad has a through-hole penetrating in the thickness direction, and has a non-processed portion which is a peripheral portion thereof and is not provided with the concave portion.

ここで、貫通孔は研磨加工の終点検出用に設けられたもので、レーザ光の光路となる。貫通孔と凹部が設けられていない無加工部とを組み合わせることで、窓部材を使用しなくても、スラリが貫通孔に進入せず、加工終点の検出が可能であり、研磨レートなどの研磨特性を劣化させることもない。   Here, the through hole is provided for detecting the end point of the polishing process and serves as an optical path of the laser beam. By combining the through-hole and the non-machined part that is not provided with a recess, the slurry does not enter the through-hole without using a window member, and the processing end point can be detected, and polishing such as the polishing rate can be performed. The characteristics are not deteriorated.

た、前記貫通孔の断面形状が曲線部分のみからなる閉曲線、たとえば楕円形状である。また、研磨パッドは円板形状を有しており、閉曲線の長手方向が研磨パッドの半径方向と垂直となるように設けられる。 Also, the closed curve cross-sectional shape of the through hole consists only of curved portions, for example an elliptical shape. The polishing pad has a disk shape, and is provided so that the longitudinal direction of the closed curve is perpendicular to the radial direction of the polishing pad.

た、前記貫通孔の断面形状が曲線部分と直線部分とを含み、前記直線部分が前記曲線部分の接線と平行な閉曲線である。また、研磨パッドは円板形状を有しており、閉曲線の長手方向が研磨パッドの半径方向と垂直となるように設けられる。 Also, the cross-sectional shape of the through hole comprises a curved portion and a straight portion, said straight portion is parallel to the lines closed curve of the curved section. The polishing pad has a disk shape, and is provided so that the longitudinal direction of the closed curve is perpendicular to the radial direction of the polishing pad.

貫通孔の断面形状を、上記のようにすることで角部分がなくスラリの漏れが生じず、被研磨物との接触がスムーズとなる。また、長手方向を研磨パッドの半径方向と垂直とすることで、被研磨物の回転方向と短手方向とが略平行となり、貫通孔へのスラリの進入を抑制することができるとともに、レーザ光の光路を十分に確保し、検出時間を長くとれるため、検出精度を向上させることができる。さらに、スラリが貫通孔に進入したとしても、貫通孔を満たす水の表面張力により、スラリ中の砥粒などは長軸方向端部に集中するので除去が容易である。   By making the cross-sectional shape of the through hole as described above, there is no corner portion and no slurry leaks, and the contact with the object to be polished becomes smooth. In addition, by making the longitudinal direction perpendicular to the radial direction of the polishing pad, the rotation direction of the object to be polished and the short side direction are substantially parallel, so that it is possible to suppress the entry of slurry into the through-hole and the laser beam. The detection path can be sufficiently secured and the detection time can be extended, so that the detection accuracy can be improved. Furthermore, even if the slurry enters the through hole, the abrasive grains in the slurry are concentrated on the end in the long axis direction due to the surface tension of the water filling the through hole, so that the removal is easy.

また本発明によれば、前記貫通孔の長手方向長さはmm〜8mmであり、短手方向長さは3mm〜5mmである。 Moreover, according to this invention, the longitudinal direction length of the said through-hole is 6 mm- 8 mm, and a transversal direction length is 3 mm-5 mm.

長手方向長さおよび短手方向長さが上記範囲より大きくなり、貫通孔のサイズが大きくなると、研磨レートが低下し、スラリの進入によって加工検出精度も低下する。また、上記範囲より小さくなり、貫通孔のサイズが小さくなると、レーザ光の光路が確保できず、加工検出精度が低下する。   When the length in the longitudinal direction and the length in the short direction are larger than the above ranges and the size of the through hole is increased, the polishing rate is lowered, and the processing detection accuracy is also lowered due to the entry of the slurry. On the other hand, if the size is smaller than the above range and the size of the through hole is reduced, the optical path of the laser beam cannot be secured, and the processing detection accuracy is lowered.

また本発明によれば、前記無加工部分の前記研磨面方向の形状は円形状である。
これにより、無加工部分の面積を小さくし、研磨レートの低下を防ぐことができる。また、研磨パッドの回転方向の領域を大きく、半径方向の領域を小さくして研磨効率を向上させることができる。
Moreover, according to this invention, the shape of the said grinding | polishing surface direction of the said non-processed part is circular.
Thereby, the area of a non-processed part can be made small and the fall of a polishing rate can be prevented. In addition, the polishing efficiency can be improved by increasing the region in the rotation direction of the polishing pad and decreasing the region in the radial direction.

また本発明によれば、前記無加工部分の直径は、15mm〜60mmである。
直径が上記範囲より大きくなると研磨レートが低下し、小さくなるとスラリが貫通孔に進入しやすくなり加工検出精度が低下する。
Moreover, according to this invention, the diameter of the said non-processed part is 15 mm-60 mm.
When the diameter is larger than the above range, the polishing rate is lowered. When the diameter is smaller, the slurry easily enters the through hole and the processing detection accuracy is lowered.

また本発明によれば、前記凹部としては、砥粒を含むスラリを保持するための1または複数の溝、複数の孔であってもよいし、これらが混在して分布していてもよい。   According to the present invention, the recess may be one or a plurality of grooves and a plurality of holes for holding slurry containing abrasive grains, or these may be distributed in a mixed manner.

図1は、本発明の実施の一形態である研磨パッド1の平面図である。図1(a)のパッド全体図に示すように、研磨パッド1の被研磨物と接触する研磨層の表面部分には、スラリの保持、研磨屑の除去などを目的として、被研磨物を研磨する研磨面側に開放された凹部である溝2を設けている。   FIG. 1 is a plan view of a polishing pad 1 according to an embodiment of the present invention. As shown in the overall view of the pad in FIG. 1 (a), the surface of the polishing layer that contacts the object to be polished of the polishing pad 1 is polished for the purpose of holding slurry and removing polishing debris. A groove 2 which is a recess opened on the polishing surface side is provided.

研磨パッド1は、CMP装置で使用され、回転する定盤上に載置される。研磨時には、CMP装置のキャリア部に保持されたシリコンウエハなどの被研磨物と圧接され、研磨パッド1およびシリコンウエハの相対移動によって、シリコンウエハ表面を研磨する。   The polishing pad 1 is used in a CMP apparatus and is placed on a rotating surface plate. At the time of polishing, the surface of the silicon wafer is polished by relative movement of the polishing pad 1 and the silicon wafer by being pressed against an object to be polished such as a silicon wafer held on the carrier portion of the CMP apparatus.

研磨パッド1は、円板形状であり、被研磨物と接触して研磨を行う研磨層と、定盤に固定されるクッション層とからなる2層構造を有しているもの、研磨層のみからなる1層構造を有しているものいずれであってもよい。   The polishing pad 1 has a disc shape and has a two-layer structure consisting of a polishing layer for polishing in contact with an object to be polished and a cushion layer fixed to a surface plate, only from the polishing layer. Any one having a single layer structure may be used.

研磨層には、熱可塑性樹脂、熱硬化樹脂が用いられ、これらの樹脂を硬化剤などの添加物とともに金型に注入し、所定の温度により硬化させることで得られる。樹脂としては、ポリウレタンなどの発泡性樹脂が用いられる。クッション層には、不織布などが用いられる。   For the polishing layer, a thermoplastic resin or a thermosetting resin is used. The resin is injected into a mold together with an additive such as a curing agent and cured at a predetermined temperature. As the resin, a foamable resin such as polyurethane is used. A nonwoven fabric etc. are used for a cushion layer.

研磨パッド1のシリコンウエハと接触する領域には、加工終点検出のために、パッド厚み方向に貫通する貫通孔3が設けられる。加工終点検出用レーザ光の光源および反射光の受光部は、定盤の所定位置に設置され、貫通孔3の位置はレーザ光の光路となるようにこの位置に対応している。   A through hole 3 penetrating in the pad thickness direction is provided in a region of the polishing pad 1 in contact with the silicon wafer in order to detect a processing end point. The light source of the processing end point detection laser light and the light receiving portion of the reflected light are installed at predetermined positions on the surface plate, and the position of the through hole 3 corresponds to this position so as to be the optical path of the laser light.

本実施形態において、溝2は研磨パッド1の中心と同じ中心を持つ同心円状に形成されている。溝2の大きさは、被研磨物の種類、研磨の目的などによって適宜選択されるが、たとえば溝幅は200μm〜500μm程度、溝深さは300μm〜1mm程度に形成され、溝の中心間の距離である溝ピッチは、1mm〜2mm程度に形成される。   In the present embodiment, the groove 2 is formed concentrically with the same center as the center of the polishing pad 1. The size of the groove 2 is appropriately selected depending on the type of the object to be polished, the purpose of polishing, etc. For example, the groove width is formed to be about 200 μm to 500 μm, the groove depth is about 300 μm to 1 mm, and between the centers of the grooves The groove pitch, which is the distance, is formed to be about 1 mm to 2 mm.

貫通孔3の研磨面方向の断面形状は、曲線部分のみからなる閉曲線、たとえば楕円形状とする。図1(b)の破線で囲まれた貫通孔3の周辺領域Aの拡大図に示すように、貫通孔3の断面形状を楕円形状とし、長手方向が研磨パッド1の半径方向と垂直となるように貫通孔3を形成することが望ましい。   The cross-sectional shape of the through-hole 3 in the polishing surface direction is a closed curve consisting only of a curved portion, for example, an elliptical shape. As shown in the enlarged view of the peripheral area A of the through-hole 3 surrounded by the broken line in FIG. 1B, the cross-sectional shape of the through-hole 3 is elliptical, and the longitudinal direction is perpendicular to the radial direction of the polishing pad 1. Thus, it is desirable to form the through hole 3 as described above.

貫通孔3の断面形状としては、曲線部分と直線部分とを含み、前記直線部分が前記曲線部分の接線と平行な閉曲線、たとえば、図2に示すように、曲線部分である2つの半円部分5と直線部分6とを含み、直線部分6がその連結部における半円部分5の接線と平行となるように連結した形状などであってもよい。   The cross-sectional shape of the through-hole 3 includes a curved portion and a straight portion, and the straight portion is a closed curve parallel to the tangent of the curved portion, for example, two semicircular portions that are curved portions as shown in FIG. 5 and the straight part 6 may be included, and the straight part 6 may be connected so as to be parallel to the tangent of the semicircular part 5 in the connecting part.

貫通孔3の断面形状を上記のようにすることで、角部分がなくスラリの漏れが生じず、被研磨物との接触がスムーズとなる。貫通孔3の長手方向を研磨パッドの半径方向と垂直とすることで、シリコンウエハの回転方向と短手方向とが略平行となり、貫通孔3へのスラリの進入を抑制することができるとともに、レーザ光の光路を十分に確保し、検出時間を長くとれるため、検出精度を向上させることができる。また、スラリが貫通孔3に進入しても、貫通孔3を満たす水の表面張力により、スラリ中の微粒子などは長軸方向端部に集中するので除去が容易である。   By making the cross-sectional shape of the through hole 3 as described above, there is no corner portion and no slurry leaks, and the contact with the object to be polished becomes smooth. By making the longitudinal direction of the through-hole 3 perpendicular to the radial direction of the polishing pad, the rotation direction of the silicon wafer and the short-side direction are substantially parallel, and the entry of slurry into the through-hole 3 can be suppressed, Since a sufficient optical path of the laser beam can be secured and the detection time can be extended, the detection accuracy can be improved. Even if the slurry enters the through hole 3, the fine particles in the slurry are concentrated on the end in the major axis direction due to the surface tension of the water filling the through hole 3, so that the removal is easy.

貫通孔3のサイズとして、長手方向長さである長径aはmm〜8mmが望ましく、短手方向長さである短径bは3mm〜5mmが望ましい。さらに望ましくは、長径aが6mm〜7mmであり、短径bが3mm〜4mmである。望ましい径の組み合わせは、長径aが6mm、短径bが3mmの組み合わせである。長径aおよび短径bが大きくなり、貫通孔3のサイズが大きくなると、研磨レートが低下し、スラリの進入によって加工検出精度も低下する。長径aおよび短径bが小さくなり、貫通孔3のサイズが小さくなると、レーザ光の光路が確保できず、加工検出精度が低下する。 As the size of the through-hole 3, the major axis a which is the length in the longitudinal direction is preferably 6 mm to 8 mm, and the minor axis b which is the length in the short direction is preferably 3 mm to 5 mm. More preferably, the major axis a is 6 mm to 7 mm, and the minor axis b is 3 mm to 4 mm. A desirable combination of diameters is a combination in which the major axis a is 6 mm and the minor axis b is 3 mm. When the major axis a and the minor axis b are increased and the size of the through hole 3 is increased, the polishing rate is lowered, and the processing detection accuracy is also lowered due to the entry of the slurry. If the major axis a and the minor axis b are reduced and the size of the through hole 3 is reduced, the optical path of the laser beam cannot be secured and the processing detection accuracy is lowered.

本発明では、図1(b)に示すように、貫通孔3の周辺部分に溝加工を施さない無加工部分4を設けている。無加工部分4は、本来溝が形成されるべきところではあるが、溝を形成していない無加工の部分である。   In this invention, as shown in FIG.1 (b), the non-processed part 4 which does not give a groove process to the peripheral part of the through-hole 3 is provided. The non-processed portion 4 is a non-processed portion where a groove is not formed, although a groove should be originally formed.

この無加工部分4のパッド平面方向の形状は、貫通孔3の長手方向、短手方向端部と無加工部分4の外周部との距離(以下では「無加工長さ」と呼ぶ)の最大値と最大値との比が1とならない、すなわち貫通孔3の平面方向の断面形状と非相似の形状であり、たとえば貫通孔3の楕円中心を中心とする円形状に設けられる。無加工部分4を円形状とすることで、無加工部分の面積を小さくし、研磨レートの低下を防いでいる。貫通孔3と非相似形状とすることで、研磨パッドの回転方向の領域を小さく、半径方向の領域を大きくして研磨効率を向上させている。   The shape of the non-processed portion 4 in the pad plane direction is the maximum of the distance between the longitudinal and lateral ends of the through-hole 3 and the outer periphery of the non-processed portion 4 (hereinafter referred to as “non-processed length”). The ratio between the value and the maximum value is not 1, that is, a shape that is not similar to the cross-sectional shape of the through-hole 3 in the plane direction, and is provided in a circular shape centered on the elliptical center of the through-hole 3, for example. By forming the non-processed portion 4 into a circular shape, the area of the non-processed portion is reduced, and a reduction in the polishing rate is prevented. By making the shape non-similar to that of the through hole 3, the polishing area is improved by reducing the area in the rotation direction of the polishing pad and increasing the area in the radial direction.

無加工部分4のサイズとして、直径dは15mm〜60mmが望ましい。さらに望ましくは、25mm〜40mmであり、25mmが最も望ましい。直径dが大きくなると研磨レートが低下し、小さくなるとスラリが貫通孔3に進入しやすくなり加工検出精度が低下する。   As the size of the non-processed portion 4, the diameter d is preferably 15 mm to 60 mm. More desirably, it is 25 mm to 40 mm, and 25 mm is most desirable. When the diameter d increases, the polishing rate decreases. When the diameter d decreases, the slurry easily enters the through hole 3 and the processing detection accuracy decreases.

無加工長さの最大値(パッド半径方向における無加工長さ)Xは、5mm〜28.5mmが望ましく、無加工長さの最小値(パッド回転方向における無加工長さ)Yは、3.5mm〜28mmが望ましい。さらに望ましくは、最大値Xが10.5mm〜18.5mmであり、最小値Yが9mm〜17mmである。最も望ましいのは、貫通孔3の長径aが6mm、短径bが3mmであり、無加工部分4の直径dが25mmの場合であるから、最大値Xが11mm、最小値Yが9.5mmである。   The maximum unprocessed length (unprocessed length in the pad radial direction) X is desirably 5 mm to 28.5 mm, and the minimum unprocessed length (unprocessed length in the pad rotating direction) Y is 3. 5 mm to 28 mm is desirable. More desirably, the maximum value X is 10.5 mm to 18.5 mm, and the minimum value Y is 9 mm to 17 mm. Most preferably, the long diameter a of the through-hole 3 is 6 mm, the short diameter b is 3 mm, and the diameter d of the unprocessed portion 4 is 25 mm, so that the maximum value X is 11 mm and the minimum value Y is 9.5 mm. It is.

上記のような、無加工部4を有する研磨パッド1は、たとえば以下のように製造することができる。   The polishing pad 1 having the non-processed part 4 as described above can be manufactured, for example, as follows.

曲線溝加工機の定盤表面に、溝加工を施す研磨パッドを吸引固定し、定盤を回転させながらパッド表面に切削刃を押し付けることで溝2が形成される。   A polishing pad to be grooved is sucked and fixed on the surface of the surface plate of the curved groove processing machine, and the groove 2 is formed by pressing the cutting blade against the pad surface while rotating the surface plate.

研磨パッドの無加工部4に対応する部分においては、定盤表面に凹部を形成し、凹部の底部にも吸引口を設ける。この定盤にパッドを吸引固定すると、無加工部4に対応する部分が凹んだ状態で固定されるため、切削刃の先端が接触せず、溝2が形成されない無加工部分となる。   In a portion corresponding to the non-processed portion 4 of the polishing pad, a recess is formed on the surface of the surface plate, and a suction port is also provided at the bottom of the recess. When the pad is sucked and fixed to the surface plate, the portion corresponding to the non-processed portion 4 is fixed in a recessed state, so that the tip of the cutting blade does not contact and the non-processed portion where the groove 2 is not formed.

無加工部分の大きさ(直径d)は、凹部の大きさ、形状などを変更することで所望の大きさを得ることができる。   The size (diameter d) of the unprocessed portion can be obtained as desired by changing the size, shape, etc. of the recess.

なお、貫通孔3の形成は、溝加工前または溝加工後のいずれにおいて行ってもよく、形成方法も、成型時に形成する方法、成型後に切り抜いて形成する方法など既存の方法を用いることができる。   The through hole 3 may be formed either before or after grooving, and as a forming method, an existing method such as a method of forming at the time of molding or a method of cutting and forming after molding can be used. .

上記では、同心円上に形成した溝2を設けた研磨パッドについて説明したが、溝2の形状はこれに限らず、螺旋状や、図3に示すような格子状に設けてもよい。溝2を螺旋状に設ける場合の溝加工は、同心円状の加工とほぼ同じで、無加工部4に対応する部分を凹んだ状態にし、研磨パッドを回転させるとともに、切削刃を研磨パッドの半径方向に移動させればよい。また、格子状に設ける場合は、同心円状と同様に、無加工部4に対応する部分を凹んだ状態にし、定盤または切削刃を直線方向に移動させたのち、先の方向と直交する方向に移動させればよい。   In the above description, the polishing pad provided with the grooves 2 formed on concentric circles has been described. However, the shape of the grooves 2 is not limited to this, and may be provided in a spiral shape or a lattice shape as shown in FIG. The groove processing when the groove 2 is provided in a spiral shape is almost the same as the concentric processing, the portion corresponding to the non-processed portion 4 is recessed, the polishing pad is rotated, and the cutting blade is set to the radius of the polishing pad. Move in the direction. Further, in the case where it is provided in a lattice shape, as in the case of the concentric circle shape, the portion corresponding to the non-machined portion 4 is recessed, the surface plate or the cutting blade is moved in the linear direction, and then the direction orthogonal to the previous direction Move to.

さらに、上記では溝を設けた研磨パッドについて説明したが、溝に限らず複数の孔を設けた研磨パッドであってもよい。この孔は、直径が0.5mm〜2mm程度と貫通孔3の直径より小さく、孔の中心間の距離が2mm〜10mm程度に形成される。孔加工は、金型を用いる方法、ドリルやレーザなどを用いる方法など既存の加工法を用いることができる。また、溝と孔とが混在して分布していてもよい。   Furthermore, although the polishing pad provided with the groove has been described above, the polishing pad is not limited to the groove and may be a polishing pad provided with a plurality of holes. This hole has a diameter of about 0.5 mm to 2 mm, which is smaller than the diameter of the through hole 3, and the distance between the centers of the holes is formed to be about 2 mm to 10 mm. For the hole processing, an existing processing method such as a method using a mold or a method using a drill or a laser can be used. Further, the grooves and holes may be mixed and distributed.

以下では、貫通孔3の大きさ(長径、短径)および無加工部4の大きさ(直径)について検討した検討例について説明する。   Below, the examination example which examined the magnitude | size (major axis, minor axis) of the through-hole 3 and the magnitude | size (diameter) of the non-processed part 4 is demonstrated.

・貫通孔の大きさ
まず、貫通孔の大きさを変化させたときの研磨レートおよび加工終点検出精度に対する影響について検討した。
-Size of the through hole First, the influence on the polishing rate and the processing end point detection accuracy when the size of the through hole was changed was examined.

用いた研磨パッドは、発泡ポリウレタン樹脂からなり、直径が743mmである。形成した溝は、溝幅200μm、溝深さ375μm、溝ピッチ1.5mmとした。   The used polishing pad is made of a polyurethane foam resin and has a diameter of 743 mm. The formed grooves had a groove width of 200 μm, a groove depth of 375 μm, and a groove pitch of 1.5 mm.

貫通孔の大きさが、長径6mm、短径3mmのもの(検討例)、長径7mm、短径4mmのもの(検討例)、長径8mm、短径5mmのもの(検討例3)を用いた。無加工部4の大きさは、直径d25mmで各検討例で同じである。
検討結果を表1に示す。
The size of the through hole, the long diameter 6 mm, the minor diameter 3mm ones (Study Example 1), the major axis 7 mm, minor axis 4mm ones (Study Example 2), major axis 8 mm, the minor diameter 5mm ones (Study Example 3) Using. The size of the non-processed portion 4 is the same in each study example with a diameter of d25 mm.
The examination results are shown in Table 1.

Figure 0004620501
Figure 0004620501

表中の記号について、◎は実用性が高い(研磨レート、検出精度に影響なし)、○は実用性が低い(研磨レート、検出精度にやや影響あり)ことを示している。 Symbols in the tables, ◎ has high practicality (polishing rate, without affecting the detection accuracy), ○ is low practicality (polishing rate, there little affect the detection accuracy) and indicates that.

以上の検討により、貫通孔3の長径aはmm〜8mmが望ましく、短径bは3mm〜5mmが望ましい。さらに望ましくは、長径aが6mm〜7mmであり、短径bが3mm〜4mmである。最も望ましい径の組み合わせは、長径aが6mm、短径bが3mmの組み合わせであることがわかった。 From the above examination, the major axis a of the through hole 3 is desirably 6 mm to 8 mm, and the minor axis b is desirably 3 mm to 5 mm. More preferably, the major axis a is 6 mm to 7 mm, and the minor axis b is 3 mm to 4 mm. The most desirable combination of diameters was found to be a combination of a major axis a of 6 mm and a minor axis b of 3 mm.

・無加工部分の大きさ
次に、無加工部分の大きさを変化させたときの研磨レートおよび加工終点検出精度に対する影響について検討した。
-Size of unmachined part Next, the influence on the polishing rate and the processing end point detection accuracy when the size of the unmachined part was changed was examined.

用いた研磨パッドは、発泡ポリウレタン樹脂からなり、直径が743mmである。形成した溝は、溝幅210μm、溝深さ350μm、溝ピッチ1.5mmとした。   The used polishing pad is made of a polyurethane foam resin and has a diameter of 743 mm. The formed grooves had a groove width of 210 μm, a groove depth of 350 μm, and a groove pitch of 1.5 mm.

無加工部分の大きさが、直径15mmのもの(検討例)、直径25mmのもの(検討例)、直径40mmのもの(検討例)、直径60mmのもの(検討例)、直径70mmのもの(検討例)、貫通孔3の大きさは、長径aは6mm、短径bは3mmで各検討例で同じである。
検討結果を表2に示す。
The size of the unprocessed portion, a straight diameter 15 mm (Study Example 4), having a diameter of 25 mm (Study Example 5), having a diameter of 40 mm (Study Example 6), having a diameter of 60 mm (Study Example 7), the diameter The size of the through hole 3 is 70 mm (examination example 8 ), the major axis a is 6 mm, and the minor axis b is 3 mm, which is the same in each examination example.
The examination results are shown in Table 2.

Figure 0004620501
Figure 0004620501

表中の記号について、◎は実用性が高い(研磨レート、検出精度に影響なし)、○は実用性が低い(研磨レート、検出精度にやや影響あり)、△は実用困難(研磨レート、検出精度が低下)であることを示している。 Regarding the symbols in the table, ◎ is highly practical (the polishing rate and detection accuracy are not affected), ○ is less practical (the polishing rate and detection accuracy are slightly affected), and △ is difficult to use (polishing rate and detection) The accuracy is reduced ) .

以上の検討により、無加工部分4の直径dは15mm〜60mmが望ましい。さらに望ましくは、25mm〜40mmであり、25mmが最も望ましいことがわかった。   From the above examination, the diameter d of the non-processed portion 4 is desirably 15 mm to 60 mm. More desirably, it is 25 mm to 40 mm, and it was found that 25 mm is most desirable.

検討結果に従って、次のような実施例を作製した。
直径743mmで、発泡ポリウレタン樹脂からなり、長径6mm、短径3mmの貫通孔、直径25mmの無加工部分を設けた。また、溝については、溝幅230μm、溝深さ375μm、溝ピッチ1.5mmのものと、溝幅450μm、溝深さ755μm、溝ピッチ1.78mmのものを作製した。
The following examples were produced according to the examination results.
A diameter of 743 mm and made of a polyurethane foam resin was provided with a through hole having a major axis of 6 mm and a minor axis of 3 mm and an unprocessed portion having a diameter of 25 mm. Regarding the groove, a groove width of 230 μm, a groove depth of 375 μm, a groove pitch of 1.5 mm, and a groove width of 450 μm, a groove depth of 755 μm, and a groove pitch of 1.78 mm were prepared.

これらの実施例を用いて、研磨試験を行ったところ、研磨レートおよび加工終点検出精度の低下は見られなかった。   When a polishing test was performed using these examples, the polishing rate and the processing end point detection accuracy were not decreased.

本発明の実施の一形態である研磨パッド1の平面図である。1 is a plan view of a polishing pad 1 according to an embodiment of the present invention. 貫通孔3の断面形状の他の例を示す図である。It is a figure which shows the other example of the cross-sectional shape of the through-hole 3. FIG. 他の実施形態の貫通孔周辺の拡大図である。It is an enlarged view of the through-hole periphery of other embodiment.

符号の説明Explanation of symbols

1 研磨パッド
2 溝
3 貫通孔
4 無加工部分
1 Polishing pad 2 Groove 3 Through hole 4 Unprocessed part

Claims (8)

被研磨物を研磨する研磨面側に開放された凹部が、前記研磨面にわたって分布するように設けられる研磨パッドにおいて、
前記研磨パッドは円板形状であり、
前記研磨パッドの厚み方向に貫通する貫通孔の周辺部分であって、前記凹部が設けられていない無加工部分を有し、
前記貫通孔は、前記研磨面方向の断面形状が曲線部分のみからなる閉曲線であり、長手方向が研磨パッドの半径方向と垂直となるように設けられ、
前記無加工部は、前記研磨パッドの回転方向の領域が小さく、前記研磨パッドの半径方向の領域が大きくなるように設けられることを特徴とする研磨パッド。
In the polishing pad provided so that the recesses opened on the polishing surface side for polishing the object to be polished are distributed over the polishing surface,
The polishing pad is disc-shaped,
A peripheral portion of the through hole penetrating in the thickness direction of the polishing pad, have a non-working portion of the recess is not provided,
The through hole is a closed curve in which the cross-sectional shape in the polishing surface direction consists of only a curved portion, and the longitudinal direction is provided so as to be perpendicular to the radial direction of the polishing pad,
The polishing pad, wherein the non-processed portion is provided such that a region in the rotation direction of the polishing pad is small and a region in the radial direction of the polishing pad is large .
被研磨物を研磨する研磨面側に開放された凹部が、前記研磨面にわたって分布するように設けられる研磨パッドにおいて、
前記研磨パッドは円板形状であり、
前記研磨パッドの厚み方向に貫通する貫通孔の周辺部分であって、前記凹部が設けられていない無加工部分を有し、
前記貫通孔は、前記研磨面方向の断面形状が曲線部分と直線部分とを含み、前記直線部分が前記曲線部分の接線と平行な閉曲線であり、長手方向が研磨パッドの半径方向と垂直となるように設けられ
前記無加工部は、前記研磨パッドの回転方向の領域が小さく、前記研磨パッドの半径方向の領域が大きくなるように設けられることを特徴とする研磨パッド。
In the polishing pad provided so that the recesses opened on the polishing surface side for polishing the object to be polished are distributed over the polishing surface,
The polishing pad is disc-shaped ,
The peripheral portion of the through-hole penetrating in the thickness direction of the polishing pad, having a non-processed portion not provided with the recess,
The through hole has a cross-sectional shape in the polishing surface direction including a curved portion and a straight portion, the straight portion is a closed curve parallel to a tangent to the curved portion, and a longitudinal direction is perpendicular to the radial direction of the polishing pad. provided so as to,
The unprocessed portion, the small region of the rotating direction of the polishing pad, radial Migaku Ken pad you characterized in that region is provided so as to be larger in the polishing pad.
前記貫通孔は、前記研磨面方向の断面形状が楕円形状であり、長軸方向が研磨パッドの半径方向と垂直となるように設けられることを特徴とする請求項記載の研磨パッド。 The through hole, the a cross-sectional shape of the polishing surface direction elliptical polishing pad of claim 1, wherein the major axis direction is provided such that the radial and vertical polishing pad. 前記貫通孔の長手方向長さはmm〜8mmであり、短手方向長さは3mm〜5mmであることを特徴とする請求項のいずれか1つに記載の研磨パッド。 Longitudinal length is 6 mm~8mm, polishing pad according to any one of claims 1 to 3, wherein the lateral direction length is 3mm~5mm of the through hole. 前記無加工部分の前記研磨面方向の形状が円形状であることを特徴とする請求項のいずれか1つに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 4 , wherein a shape of the unprocessed portion in the polishing surface direction is a circular shape. 前記無加工部分の直径は、15mm〜60mmであることを特徴とする請求項記載の研磨パッド。 The polishing pad according to claim 5 , wherein a diameter of the unprocessed portion is 15 mm to 60 mm. 前記凹部は、砥粒を含むスラリを保持するための1または複数の溝であることを特徴とする請求項1〜のいずれか1つに記載の研磨パッド。 The recess, the polishing pad according to any one of claims 1-6, characterized in that the one or more grooves for holding slurry containing abrasive grains. 前記凹部は、砥粒を含むスラリを保持するための複数の孔であることを特徴とする請求項1〜のいずれか1つに記載の研磨パッド。 The recess, the polishing pad according to any one of claims 1-6, characterized in that the plurality of holes for holding the slurry containing abrasive grains.
JP2005060911A 2005-03-04 2005-03-04 Polishing pad Active JP4620501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060911A JP4620501B2 (en) 2005-03-04 2005-03-04 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060911A JP4620501B2 (en) 2005-03-04 2005-03-04 Polishing pad

Publications (2)

Publication Number Publication Date
JP2006239833A JP2006239833A (en) 2006-09-14
JP4620501B2 true JP4620501B2 (en) 2011-01-26

Family

ID=37046728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060911A Active JP4620501B2 (en) 2005-03-04 2005-03-04 Polishing pad

Country Status (1)

Country Link
JP (1) JP4620501B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983558A4 (en) * 2006-02-06 2011-08-10 Toray Industries Abrasive pad and abrasion device
TWI411495B (en) * 2007-08-16 2013-10-11 Cabot Microelectronics Corp Polishing pad
US9156124B2 (en) * 2010-07-08 2015-10-13 Nexplanar Corporation Soft polishing pad for polishing a semiconductor substrate
US20120302148A1 (en) 2011-05-23 2012-11-29 Rajeev Bajaj Polishing pad with homogeneous body having discrete protrusions thereon
US9067298B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with grooved foundation layer and polishing surface layer
US9067297B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with foundation layer and polishing surface layer
US9597769B2 (en) 2012-06-04 2017-03-21 Nexplanar Corporation Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
US10569383B2 (en) * 2017-09-15 2020-02-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Flanged optical endpoint detection windows and CMP polishing pads containing them

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083977A (en) * 1996-08-16 1998-03-31 Applied Materials Inc Formation of transparent window on polishing pad for mechanical chemical polishing device
JP2003197587A (en) * 2001-12-28 2003-07-11 Ebara Corp Substrate polishing apparatus
JP2003300149A (en) * 2002-02-07 2003-10-21 Sony Corp Grinding pad, grinding device, and grinding method
JP2003300151A (en) * 2002-02-07 2003-10-21 Sony Corp Grinding pad, grinding device, and grinding method
JP2004074314A (en) * 2002-08-12 2004-03-11 Nikon Corp Polishing body, polishing device equipped therewith, semiconductor device manufacturing method using the same, and semiconductor device manufactured thereby
JP2004106177A (en) * 2002-09-17 2004-04-08 Korea Polyol Co Ltd Integral polishing pad and its manufacturing method
JP2004146704A (en) * 2002-10-25 2004-05-20 Jsr Corp Polishing pad for semiconductor wafer and working method therefor
JP2004261887A (en) * 2003-02-28 2004-09-24 Rodel Nitta Co Polishing pad, manufacturing method thereof and manufacturing device for the same
WO2005000528A1 (en) * 2003-06-17 2005-01-06 Cabot Microelectronics Corporation Ultrasonic welding method for the manufacture of a polishing pad comprising an optically transmissive region

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083977A (en) * 1996-08-16 1998-03-31 Applied Materials Inc Formation of transparent window on polishing pad for mechanical chemical polishing device
JP2003197587A (en) * 2001-12-28 2003-07-11 Ebara Corp Substrate polishing apparatus
JP2003300149A (en) * 2002-02-07 2003-10-21 Sony Corp Grinding pad, grinding device, and grinding method
JP2003300151A (en) * 2002-02-07 2003-10-21 Sony Corp Grinding pad, grinding device, and grinding method
JP2004074314A (en) * 2002-08-12 2004-03-11 Nikon Corp Polishing body, polishing device equipped therewith, semiconductor device manufacturing method using the same, and semiconductor device manufactured thereby
JP2004106177A (en) * 2002-09-17 2004-04-08 Korea Polyol Co Ltd Integral polishing pad and its manufacturing method
JP2004146704A (en) * 2002-10-25 2004-05-20 Jsr Corp Polishing pad for semiconductor wafer and working method therefor
JP2004261887A (en) * 2003-02-28 2004-09-24 Rodel Nitta Co Polishing pad, manufacturing method thereof and manufacturing device for the same
WO2005000528A1 (en) * 2003-06-17 2005-01-06 Cabot Microelectronics Corporation Ultrasonic welding method for the manufacture of a polishing pad comprising an optically transmissive region

Also Published As

Publication number Publication date
JP2006239833A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4620501B2 (en) Polishing pad
JP5461104B2 (en) Holding table and grinding device
JP4904027B2 (en) Polishing pad
KR102444720B1 (en) A method for mirror-chamfering a wafer, a method for manufacturing a wafer, and a wafer
KR20160001637A (en) Method for evaluating device wafer
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
JP5119614B2 (en) Wafer outer periphery grinding method
JP6803169B2 (en) Grinding method
JP2021094693A (en) Manufacturing method of chamfered baseboard and chamfering device used in the same
JP2009105127A (en) Manufacturing method of silicon carbide wafer
JP6045926B2 (en) Grinding and polishing equipment
JP5528202B2 (en) Support tray
JP2002066905A (en) Manufacturing method for semiconductor device and device therefor
US7677957B2 (en) Polishing apparatus, method for providing and mounting a polishing pad in a polishing apparatus, and method for producing a substrate using the polishing apparatus
JP4675559B2 (en) Laminated wafer processing method
JP2010147427A (en) Method of polishing sample wafer, method of inspecting sample wafer, and tool for holding polishing object
US11195757B2 (en) Wafer processing method
JP6457802B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2004074310A (en) Polishing body, polishing device equipped therewith, semiconductor device manufacturing method using the same, and semiconductor device manufactured thereby
JP2009008569A (en) Inner diameter measuring device of disk-like substrate, inner diameter measuring method, manufacturing method of disk-like substrate, and magnetic disk manufacturing method
KR101329621B1 (en) Grinder chuck
JP2016197701A (en) Method of manufacturing optical device chip
KR101311330B1 (en) Template assembly
JP2006105919A (en) Profilometer
JP4617196B2 (en) Sample wafer and method for producing sample wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350