JP2021094693A - Manufacturing method of chamfered baseboard and chamfering device used in the same - Google Patents

Manufacturing method of chamfered baseboard and chamfering device used in the same Download PDF

Info

Publication number
JP2021094693A
JP2021094693A JP2021034996A JP2021034996A JP2021094693A JP 2021094693 A JP2021094693 A JP 2021094693A JP 2021034996 A JP2021034996 A JP 2021034996A JP 2021034996 A JP2021034996 A JP 2021034996A JP 2021094693 A JP2021094693 A JP 2021094693A
Authority
JP
Japan
Prior art keywords
grinding
work material
outer peripheral
grinding wheel
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021034996A
Other languages
Japanese (ja)
Other versions
JP7128309B2 (en
Inventor
真一 岸下
Shinichi Kishishita
真一 岸下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2021034996A priority Critical patent/JP7128309B2/en
Publication of JP2021094693A publication Critical patent/JP2021094693A/en
Application granted granted Critical
Publication of JP7128309B2 publication Critical patent/JP7128309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To enable helical grinding even if a processed material is rectangular or polygonal, to make surface roughness favorable, and to reduce the collapse of a shape.SOLUTION: In a manufacturing method of a chamfered baseboard which grinds an end face of a plate-shaped processed material W by a grinding groove 74 of an external periphery precision grinding wheel 72, a plane of the processed material W is adsorbed to a thickness direction by a chuck table 73 which is smaller than an external peripheral shape of the processed material W, a rotating shaft of the external periphery precision grinding wheel 72 is inclined to an axis in the thickness direction vertical to the plane of the processed material W, the grinding groove 74 is pressed against the end face of the processed material W from a vertical direction, and made to abut thereon, an end face upper part or a lower part of the processed material W is ground by the grinding groove 74, and after that, the external periphery precision grinding wheel 72 is relatively ascended or descended to the thickness direction with respect to the processed material W, and reground.SELECTED DRAWING: Figure 6

Description

本発明は、シリコン、サファイア、化合物、ガラス等の様々な素材、特に半導体ウエーハ、ガラスパネル等の板状被加工材の端面における高精度な面取り基板の製造方法及び装置に関し、平面形状の端部に円形以外の直線部を有する被加工材の端面加工に好適である。 The present invention relates to a method and an apparatus for manufacturing a highly accurate chamfered substrate on the end face of various materials such as silicon, sapphire, compound, and glass, particularly a plate-shaped workpiece such as a semiconductor wafer and a glass panel. It is suitable for end face processing of a work material having a straight portion other than a circular portion.

近年、ウエーハの品質向上の要求が強く、ウエーハ端面(エッジ部)の加工状態が重要視され、半導体デバイス等の作製に使用されるシリコンウエーハ等の半導体ウエーハは、ハンドリングによるチッピングを防止するため、縁部を研削することで面取り加工が行われ、研磨による鏡面面取り加工が行われている。つまり、半導体製造工程において、ウエーハ製造からデバイス製造に至るまで、エッジ特性の品質改善は必要不可欠なプロセスとなっている。 In recent years, there has been a strong demand for improving the quality of wafers, and the processing state of the end face (edge portion) of the wafer has been emphasized. Semiconductor wafers such as silicon wafers used for manufacturing semiconductor devices have been used to prevent chipping due to handling. Chamfering is performed by grinding the edges, and mirror chamfering is performed by polishing. That is, in the semiconductor manufacturing process, quality improvement of edge characteristics is an indispensable process from wafer manufacturing to device manufacturing.

シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も含まれる。 Silicone is hard and brittle, and if the end face of the wafer remains sharp during slicing, it will easily crack or chip during handling such as transportation and alignment in the subsequent processing process, and fragments will damage or contaminate the wafer surface. Or something. To prevent this, the end face of the cut wafer is chamfered with a chamfering grindstone coated with diamond. At this time, it is also included to match the diameters of the outer circumferences with variations, to match the width of the orientation flat (OF), and to match the dimensions of a minute notch called a notch.

また、スマートフォンやタブレットに用いられる、薄型化、軽量化が追求されたガラス基板には、マスキング印刷、センサー電極の形成、その後に切断することが行われ、面取りの加工品質、加工面粗さ、マイクロクラックの発生などがガラス基板の端面強度に直接影響する。 In addition, the glass substrate used for smartphones and tablets, which has been pursued to be thinner and lighter, is subjected to masking printing, sensor electrode formation, and then cutting. The generation of microcracks directly affects the end face strength of the glass substrate.

さらに、通常の研削ではレジン砥石の回転軸に対してウエーハWの主面が垂直となる状態で面取り部を研削するが、この場合、面取り部には円周方向の研削痕が発生し易い。そこで、ウエーハに対して例えばレジンボンド砥石(レジン砥石)を傾けてウエーハの面取り部を研削する、いわゆるヘリカル研削を行うことが知られている。 Further, in normal grinding, the chamfered portion is ground in a state where the main surface of the wafer W is perpendicular to the rotation axis of the resin grindstone, but in this case, grinding marks in the circumferential direction are likely to occur in the chamfered portion. Therefore, it is known to perform so-called helical grinding in which, for example, a resin bond grindstone (resin grindstone) is tilted with respect to the wafer to grind the chamfered portion of the wafer.

ヘリカル研削を行うと、通常研削に比べ面取り部の加工歪みを低減させるだけでなく、ウエーハの面取り部と砥石との接触領域が増えて面取り部の表面粗さが改善される効果が得られる。 When helical grinding is performed, not only the processing strain of the chamfered portion is reduced as compared with normal grinding, but also the contact area between the chamfered portion of the wafer and the grindstone is increased, and the surface roughness of the chamfered portion is improved.

さらに、レジン砥石等により半導体ウエーハの面取り部をヘリカル研削する際、面取り部の連続加工を行うとレジン砥石の溝の上下の角度が徐々に変化する結果、ウエーハの面取り部の上下非対称性が一層大きくなる。そのため、上下非対称の形状の溝が周囲に形成された第1の砥石の溝で円盤状のツルアーの縁部を研削してツルアーの縁部を上下非対称の溝形状に成形し、ツルアーと第2の砥石とを相対的に傾けて該第2の砥石の周囲に溝を形成し、第2の砥石により溝方向に対してウエーハを相対的に傾けて上下略対称のレジン砥石を得て、面取り部を精研削することが知られ、例えば特許文献1に記載されている。 Furthermore, when the chamfered portion of a semiconductor wafer is helically ground with a resin grindstone or the like, if the chamfered portion is continuously machined, the vertical angle of the groove of the resin grindstone gradually changes, and as a result, the vertical asymmetry of the chamfered portion of the wafer is further increased. growing. Therefore, the edge of the disc-shaped tool is ground by the groove of the first grindstone in which a groove having an asymmetrical shape is formed around the groove, and the edge of the tool is formed into a groove shape that is asymmetrical in the vertical direction. A groove is formed around the second grindstone by tilting the grindstone relatively, and the wafer is tilted relative to the groove direction by the second grindstone to obtain a resin grindstone that is substantially symmetrical in the vertical direction and chamfered. It is known to finely grind a portion, and is described in, for example, Patent Document 1.

また、面取り用砥石の回転軸をウエーハの回転軸に対して所定角度傾斜させた面取り方法において、外周研削砥石にウエーハ外周部と、OF部用の加工溝を形成することが知られ、例えば特許文献2に記載されている。 Further, in a chamfering method in which the rotation axis of the chamfering grindstone is tilted by a predetermined angle with respect to the rotation axis of the wafer, it is known that the outer peripheral portion of the wafer and the processing groove for the OF portion are formed on the outer peripheral grinding wheel. It is described in Document 2.

さらに、ノッチ部の面取り幅を一定にするため、砥石を面取り中にウエーハの厚さ方向に相対的に移動させることが知られ、特許文献3に記載されている。 Further, it is known that the grindstone is relatively moved in the thickness direction of the wafer during chamfering in order to make the chamfering width of the notch portion constant, which is described in Patent Document 3.

特開2007−165712号公報JP-A-2007-165712 特開2007−21586号公報Japanese Unexamined Patent Publication No. 2007-21586 特開2005−153129号公報Japanese Unexamined Patent Publication No. 2005-153129

上記従来技術において、特許文献1に記載のものでは、上下非対称の形状の溝が周囲に形成された第1の砥石が必要で、その形状の決定が困難である。また、円形のウエーハの場合は全周で同じ形状で済むので一意的に決定できるが、OFの付いたウエーハ基板、角に円弧が付いた矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部がある場合には、さらに困難であるばかりか、レジン砥石の溝の上下の角度の変化も円形部から非円形部へ移る位置、角部で大きくなり、全周をヘリカル研削することは極めて困難であった。つまり、角を有する基板(ワーク)の角部では砥石の溝の上面と下面のうちの片方のみ当たる片当たりが発生し、良好な面取りができなかった。 In the above-mentioned prior art, the one described in Patent Document 1 requires a first grindstone in which a groove having a vertically asymmetrical shape is formed around it, and it is difficult to determine the shape thereof. In the case of a circular waiha, the same shape can be used for the entire circumference, so it can be uniquely determined. However, a waiha substrate with an OF, a rectangular or polygonal waiha with an arc at the corner, a substrate, a cover glass, etc. are circular. If there is a part and a non-circular part, not only is it more difficult, but also the change in the vertical angle of the groove of the resin grindstone becomes large at the position where the circular part shifts to the non-circular part, and the corner part, and the entire circumference is helically ground. It was extremely difficult to do. That is, at the corners of the substrate (work) having corners, only one of the upper surface and the lower surface of the groove of the grindstone was hit, and good chamfering could not be performed.

特許文献2に記載のものでは、研削工程が複雑化し、円形部が主体で非円形部が少ない場合には良いが、矩形又は多角形の場合には適用が困難であった。 In the case described in Patent Document 2, the grinding process is complicated, and it is good when the grinding process is mainly circular and the number of non-circular portions is small, but it is difficult to apply in the case of a rectangle or a polygon.

特許文献3に記載のものでは、砥石を面取り中にウエーハの厚さ方向に相対的に移動させながら行わなければならないため、面取りの精度を上げるためにはウエーハあるいは砥石の厚さ方向のコントロールが複雑で困難であった。 In the case described in Patent Document 3, the grindstone must be moved relatively in the thickness direction of the wafer during chamfering. Therefore, in order to improve the accuracy of chamfering, the thickness direction of the wafer or the grindstone must be controlled. It was complicated and difficult.

本発明の目的は、上記従来技術の課題を解決し、OF(オリフラ)の付いたウエーハ基板、矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部とを有するものでもヘリカル研削を容易に可能として被加工物と砥石との接触領域を増やし、表面粗さを良好にし、形状崩れを改善することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and even a wafer substrate with OF (orifura), a rectangular or polygonal wafer, a substrate, a cover glass, or the like having a circular portion and a non-circular portion is helical. The purpose is to facilitate grinding, increase the contact area between the workpiece and the grindstone, improve the surface roughness, and improve the shape loss.

上記目的を達成するため、本発明は、板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削する。 In order to achieve the above object, the present invention is a method for manufacturing a chamfered substrate in which the end face of a plate-shaped work material is ground by a grinding groove of a grinding wheel, and the plane of the work material is oriented in the thickness direction. It is attracted by a chuck table smaller than the outer peripheral shape of the work material, the rotation axis of the grinding wheel is tilted with respect to the axis in the thickness direction perpendicular to the plane of the work material, and the grinding groove is formed into the work work. It is pressed against the end face of the material from the vertical direction to abut, and the upper or lower part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is placed in the thickness direction relative to the work material. Grind again by raising or lowering.

また、上記において、前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 Further, in the above, it is preferable that the width of the grinding groove is made larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.

さらに、上記において、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised relative to the work material in the thickness direction to grind or grind again. It is preferable to grind the lower part of the end face of the work material in the grinding groove, and then lower the grinding wheel in the thickness direction relative to the work material to grind again.

さらに、上記において、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above, the upper part or the lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is placed relative to the work material. It is preferable to raise or lower in the thickness direction and further grind one round.

さらに、上記において、前記研削砥石の回転軸を3〜15°傾けることが好ましい。 Further, in the above, it is preferable to incline the rotation axis of the grinding wheel by 3 to 15 °.

さらに、上記において、前記被加工材の端面の加工は、それぞれ前記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることが好ましい。 Further, in the above, it is preferable that the processing of the end face of the work material is performed by grinding the upper portion of the end face of the work material, grinding the central portion, and grinding the lower portion, respectively.

さらに、上記において、前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることが好ましい。 Further, in the above, it is preferable that the upper grinding, the central grinding, and the lower grinding are performed so as to make one round of the end face of the work piece in the grinding groove over the entire circumference.

また、本発明は、板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、を備え、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削するものである。 Further, according to the present invention, in a chamfering device for chamfering the end face of a plate-shaped work material with a grinding groove of a grinding wheel, the flat surface of the work material is adsorbed in the thickness direction, and the outer peripheral shape of the work material is used. The grinding is such that the rotation axis is tilted with respect to the small chuck table and the axis in the thickness direction perpendicular to the plane of the work material, and the grinding groove is pressed against the end face of the work material from the vertical direction to come into contact with the grinding. A grindstone is provided, and an upper part or a lower part of an end surface of the work material is ground by the grinding groove, and then the grinding grindstone is raised or lowered in the thickness direction relative to the work material. It is to be ground again.

さらに、上記のものにおいて、前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 Further, in the above, it is preferable that the width of the grinding groove is larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.

さらに、上記のものにおいて、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised relative to the work material in the thickness direction to grind again. Alternatively, it is preferable to grind the lower part of the end face of the work material in the grinding groove, and then lower the grinding wheel in the thickness direction relative to the work material to grind again.

さらに、上記のものにおいて、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above, the upper part or the lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is relative to the work material. It is preferable to raise or lower the thickness in the thickness direction and further grind one round.

さらに、上記のものにおいて、前記研削砥石の回転軸は3〜15°傾けられたことが好ましい。 Further, in the above, it is preferable that the rotation axis of the grinding wheel is tilted by 3 to 15 °.

さらに、上記のものにおいて、前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことが好ましい。 Further, in the above, it is preferable that the end face of the work piece is ground by grinding the upper part of the end face, grinding the central part, and grinding the lower part, respectively.

本発明によれば、矩形又は多角形の被加工材であっても、ヘリカル研削を可能として、表面粗さを良好にし、形状崩れを少なくすることができる。 According to the present invention, even a rectangular or polygonal workpiece can be subjected to helical grinding, the surface roughness can be improved, and the shape loss can be reduced.

本発明の一実施形態に係る面取り装置の主要部を示す平面図。The plan view which shows the main part of the chamfering apparatus which concerns on one Embodiment of this invention. 一実施形態における加工部の構成を示す斜視図。(被加工材が円形と直線部)The perspective view which shows the structure of the processed part in one Embodiment. (The work material is circular and straight) 図2における平面図。The plan view in FIG. 一実施形態における加工部の構成を示す斜視図。(被加工材が主に直線部)The perspective view which shows the structure of the processed part in one Embodiment. (Mainly the straight part of the work material) 図4における平面図。The plan view in FIG. 一実施形態における研削溝と被加工材との関係を示す側面図。(上面の加工)The side view which shows the relationship between the grinding groove and the work material in one Embodiment. (Processing of the upper surface) 一実施形態における研削溝と被加工材との関係を示す側面図。(下面の加工)The side view which shows the relationship between the grinding groove and the work material in one Embodiment. (Processing of the lower surface) 被加工材と研削砥石の上下端部との当接を説明する平面図。The plan view explaining the contact between the work material and the upper and lower ends of a grinding wheel. 従来の板材の端面加工のヘリカル研削を示す斜視図。The perspective view which shows the helical grinding of the end face processing of the conventional plate material. 従来の研削と一実施形態による研削との違いを説明する側面図。The side view explaining the difference between the conventional grinding and the grinding by one Embodiment. 一実施形態による面取り基板の製造方法により加工された被加工材の端面を示す側面図。A side view showing an end face of a work material processed by the method for manufacturing a chamfered substrate according to an embodiment. 他の実施形態による面取り基板の製造方法の手順を示す側面図。The side view which shows the procedure of the manufacturing method of the chamfered substrate by another embodiment. 本発明の実施形態に係る研削砥石と被加工材との詳細を示す側面図。The side view which shows the detail of the grinding wheel and the work material which concerns on embodiment of this invention.

以下に、本発明の実施形態について図面を参照して詳細に説明する。この実施形態により発明が限定されるものでなく、実施形態における構成要素には当業者が容易に想定できるもの、あるいは実質的に同一のものも含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The invention is not limited by this embodiment, and the components in the embodiment include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1は本発明の一実施形態に係る面取り装置の主要部を示す平面図である。面取り装置は、主に供給回収部20、加工部10を有し、その他図示していないが、プリアライメント部、洗浄部、後測定部、搬送部等から構成される。 FIG. 1 is a plan view showing a main part of a chamfering device according to an embodiment of the present invention. The chamfering device mainly has a supply / recovery unit 20 and a processing unit 10, and is further composed of a pre-alignment unit, a cleaning unit, a post-measurement unit, a transport unit, and the like, although not shown.

ウエーハ加工工程は、スライス→面取り→ラップ→エッチング→ドナーキラー→精面取りの順で行われ、工程間には汚れを取り除くため、各種洗浄が用いられる。シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、面取り工程では切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。 The wafer processing process is performed in the order of slicing → chamfering → wrapping → etching → donor killer → fine chamfering, and various cleanings are used to remove stains between the processes. Silicone is hard and brittle, and if the end face of the wafer remains sharp during slicing, it will easily crack or chip during handling such as transportation and alignment in the subsequent processing process, and fragments will damage or contaminate the wafer surface. Or something. In order to prevent this, in the chamfering process, the end face of the cut wafer is chamfered with a chamfering grindstone coated with diamond.

面取り工程は、ラッピング工程の後に行なわれることもある。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も行われる。 The chamfering step may be performed after the wrapping step. At this time, the diameters of the outer circumferences that vary are matched, the width of the orientation flat (OF) is matched, and the dimensions of a minute notch called a notch are matched.

供給回収部20は、面取り加工するウエーハWをウエーハカセット30から加工部10に供給すると共に、面取り加工されたウエーハをウエーハカセット30に回収する。この動作は供給回収ロボット40で行われる。ウエーハカセット30は、カセットテーブル31にセットされ、面取り加工するウエーハWが多数枚収納されている。供給回収ロボット40はウエーハカセット30からウエーハWを1枚ずつ取り出したり、面取り加工されたウエーハをウエーハカセット30に収納したりする。 The supply / recovery unit 20 supplies the chamfered wafer W from the wafer cassette 30 to the processing unit 10 and collects the chamfered wafer into the wafer cassette 30. This operation is performed by the supply / recovery robot 40. The wafer cassette 30 is set on the cassette table 31 and contains a large number of wafers W to be chamfered. The supply / recovery robot 40 takes out wafers W one by one from the wafer cassette 30, and stores the chamfered wafers in the wafer cassette 30.

供給回収ロボット40は3軸回転型の搬送アーム50を備えており、搬送アーム50は、その上面部に図示しない吸着パッドを備えている。搬送アーム50は、吸着パッドでウエーハWの裏面を真空吸着してウエーハWを保持する。すなわち、この供給回収ロボット40の搬送アーム50は、ウエーハWを保持した状態で前後、昇降移動、及び旋回することができ、この動作を組み合わせることによりウエーハWの搬送を行う。 The supply / recovery robot 40 is provided with a 3-axis rotary type transfer arm 50, and the transfer arm 50 is provided with a suction pad (not shown) on the upper surface thereof. The transfer arm 50 holds the wafer W by vacuum suctioning the back surface of the wafer W with a suction pad. That is, the transport arm 50 of the supply / recovery robot 40 can move back and forth, move up and down, and turn while holding the wafer W, and transports the wafer W by combining these operations.

加工部10はウエーハ面取り装置の正面部に配置されており、ウエーハWの外周面取りの全加工、すなわち、粗加工から仕上げ加工までを行う。この加工部10は、ウエーハ送り装置60、外周粗研削装置62、ウエーハWを搬送するトランスファーアーム63及び外周精研削装置61から構成されている。 The processing portion 10 is arranged on the front portion of the wafer chamfering device, and performs all processing of the outer peripheral chamfering of the wafer W, that is, from roughing to finishing. The processing section 10 includes a wafer feed device 60, an outer peripheral rough grinding device 62, a transfer arm 63 for transporting the wafer W, and an outer peripheral fine grinding device 61.

図2は、加工部10の構成を示す斜視図、図3は平面図であり、ウエーハ送り装置60は、ウエーハWを吸着保持するチャックテーブル(ウエーハテーブル)66を有している。このチャックテーブル66は、図示しない駆動手段に駆動されることにより、前後方向(Y軸方向)、左右方向(X軸方向)、及び上下方向(Z軸方向)の各方向に移動するとともに、チャックテーブル駆動モータ65に駆動されることにより中心軸(θ軸)回りに回転する。 FIG. 2 is a perspective view showing the configuration of the processing unit 10, and FIG. 3 is a plan view. The wafer feed device 60 has a chuck table (wafer table) 66 that attracts and holds the wafer W. The chuck table 66 moves in each of the front-rear direction (Y-axis direction), the left-right direction (X-axis direction), and the up-down direction (Z-axis direction) by being driven by a driving means (not shown), and the chuck is chucked. Driven by the table drive motor 65, it rotates around the central axis (θ axis).

外周粗研削装置62は、ウエーハ送り装置60のチャックテーブル66に対してY軸方向に所定距離離れた位置に配置される。この外周粗研削装置62は、外周粗研モータ67に駆動されて回転する外周粗研スピンドル68を有している。外周粗研スピンドル68は、図示しない駆動手段に駆動されることにより前後方向(Y軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。 The outer peripheral rough grinding device 62 is arranged at a position separated by a predetermined distance in the Y-axis direction with respect to the chuck table 66 of the wafer feeding device 60. The outer peripheral rough grinding device 62 has an outer peripheral rough grinding spindle 68 that is driven by an outer peripheral rough grinding motor 67 and rotates. The outer peripheral rough grinding spindle 68 is configured to be movable in each of the front-rear direction (Y-axis direction) and the up-down direction (Z-axis direction) by being driven by a driving means (not shown).

外周粗研スピンドル68には、ウエーハWの外周を粗加工(粗研削)する外周粗研削砥石69が装着され、その回転軸となる。外周粗研削砥石69は、その外周面に複数の外周粗研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が粗加工(粗研削)される。 An outer peripheral rough grinding wheel 69 that roughens (roughly grinds) the outer periphery of the wafer W is mounted on the outer peripheral rough grinding spindle 68, and serves as a rotation axis thereof. The outer peripheral rough grinding wheel 69 has a plurality of outer peripheral rough grinding grooves formed on the outer peripheral surface thereof (total shape grindstone), and by pressing the outer periphery of the wafer W against these grooves, the outer periphery of the wafer W is roughened (the outer circumference of the wafer W is roughened. Rough grinding).

外周精研削装置61は、ウエーハ送り装置60のチャックテーブル66に対してX軸方向に所定距離だけ離れた位置に配置される。この外周精研削装置61は、外周精研モータ70に駆動されて回転する外周精研スピンドル71を有している。外周精研スピンドル71は、図示しない駆動手段に駆動されることにより左右方向(X軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。外周精研スピンドル71には、ウエーハWの外周を仕上げ加工(精研削)する外周精研削砥石72が装着され、その回転軸となる。 The outer peripheral fine grinding device 61 is arranged at a position separated by a predetermined distance in the X-axis direction from the chuck table 66 of the wafer feed device 60. The outer peripheral fine grinding device 61 has an outer peripheral fine grinding spindle 71 that is driven by an outer peripheral fine grinding motor 70 and rotates. The outer peripheral refined spindle 71 is configured to be movable in each of the left-right direction (X-axis direction) and the up-down direction (Z-axis direction) by being driven by a driving means (not shown). An outer peripheral fine grinding wheel 72 that finishes (finely grinds) the outer periphery of the wafer W is mounted on the outer peripheral fine grinding spindle 71, and serves as a rotation axis thereof.

外周精研削砥石72は、その外周面に外周精研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が仕上げ加工される。 The outer peripheral grinding wheel 72 has a groove for outer peripheral grinding formed on the outer peripheral surface thereof (total shape grindstone), and the outer periphery of the wafer W is finished by pressing the outer periphery of the wafer W against the groove.

このとき、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態で行うヘリカル研削によってウエーハWの外周面取りの仕上げ加工を行う。 At this time, the wafer is subjected to helical grinding in a state where the rotation axis of the outer peripheral refined spindle 71 is tilted 3 to 15 °, preferably 6 to 10 ° in the tangential direction of the outer periphery of the wafer W with respect to the rotation axis of the chuck table 66. Finish the chamfering of the outer circumference of W.

これにより、砥粒の運動方向がウエーハWの外周の運動方向と交差し、接触面積が増大すること等より、砥石摩耗が抑制され、外周の形状崩れ等を低減できるため、通常の研削に比べて加工面(研削面)の粗さが良好となる。 As a result, the movement direction of the abrasive grains intersects with the movement direction of the outer circumference of the wafer W, and the contact area is increased, so that the wear of the grindstone can be suppressed and the shape of the outer circumference can be reduced. The roughness of the machined surface (ground surface) is improved.

次に、加工部10の動作について説明する。加工開始前の待機状態では、チャックテーブル66に保持されるウエーハWは、その中心がチャックテーブル66の回転軸と一致するように配置される。このとき、ウエーハWのOF部は所定方向(本例ではY軸方向)を向くように配置される。 Next, the operation of the processing unit 10 will be described. In the standby state before the start of machining, the wafer W held by the chuck table 66 is arranged so that its center coincides with the rotation axis of the chuck table 66. At this time, the OF portion of the wafer W is arranged so as to face a predetermined direction (Y-axis direction in this example).

また、外周粗研削砥石69及び外周精研削砥石72は、ウエーハWからそれぞれ所定距離離れた位置に位置している。具体的には、外周粗研削砥石69の回転中心はウエーハWの回転中心に対してY軸方向に所定距離離れた位置に配置され、かつ外周精研削砥石72の回転中心はウエーハWに対してX軸方向に所定距離離れた位置に配置される。 Further, the outer peripheral rough grinding wheel 69 and the outer peripheral fine grinding wheel 72 are located at positions separated from each other by a predetermined distance from the wafer W. Specifically, the center of rotation of the outer peripheral rough grinding grind 69 is arranged at a position separated by a predetermined distance in the Y-axis direction from the center of rotation of the waiha W, and the center of rotation of the outer peripheral fine grinding grind 72 is relative to the waha W. It is arranged at a position separated by a predetermined distance in the X-axis direction.

まず始めに、アライメント動作が行われる。このアライメント動作では、チャックテーブル66に保持されたウエーハWと外周粗研削砥石69及び外周精研削砥石72との上下方向(Z軸方向)について相対的な位置関係が調整される。 First of all, an alignment operation is performed. In this alignment operation, the relative positional relationship between the wafer W held on the chuck table 66 and the outer peripheral rough grinding wheel 69 and the outer peripheral fine grinding wheel 72 is adjusted in the vertical direction (Z-axis direction).

アライメント動作が完了したら、外周粗研モータ67が駆動される。次に、外周粗研削砥石69による研削(粗加工)を開始する。具体的には、外周粗研削装置62のY軸モータ(不図示)が駆動され、外周粗研スピンドル68がY軸方向に沿ってチャックテーブル66に向かって送られる。 When the alignment operation is completed, the outer peripheral rough grinding motor 67 is driven. Next, grinding (roughing) with the outer peripheral rough grinding wheel 69 is started. Specifically, a Y-axis motor (not shown) of the outer peripheral rough grinding device 62 is driven, and the outer peripheral rough grinding spindle 68 is fed toward the chuck table 66 along the Y-axis direction.

外周粗研削砥石69としては、例えば、直径202mmのダイヤモンド砥粒のメタルボンド砥石で、粒度#800であるものを使用することができる。また、外周粗研スピンドル68は、ボールベアリングを用いたビルトインモータ駆動のスピンドルで、所定の回転速度、例えば回転速度8,000rpmで回転される。 As the outer peripheral rough grinding wheel 69, for example, a metal bond grindstone having diamond abrasive grains having a diameter of 202 mm and having a particle size of # 800 can be used. Further, the outer peripheral rough grinding spindle 68 is a spindle driven by a built-in motor using ball bearings, and is rotated at a predetermined rotation speed, for example, a rotation speed of 8,000 rpm.

チャックテーブル66に向かって外周粗研スピンドル68が送られると、ウエーハWの外周が外周粗研削砥石69に形成された外周粗研削用の研削溝に接触し、ウエーハWの外周部が外周粗研削砥石69により研削されて、ウエーハWの外周面取りの粗加工が開始される。 When the outer peripheral rough grinding spindle 68 is sent toward the chuck table 66, the outer periphery of the wafer W comes into contact with the grinding groove for outer peripheral rough grinding formed on the outer peripheral rough grinding wheel 69, and the outer peripheral portion of the wafer W is rough ground. Grinding is performed by the grindstone 69, and roughing of the outer peripheral chamfer of the wafer W is started.

外周粗研削砥石69による粗加工が開始された後、始めは図2のウエーハWは円形であるので、チャックテーブル66に保持されたウエーハWが一定速度で矢印方向に回転を開始する。この回転角度、つまり加工点が直線部となるOF部に至ると、外周粗研スピンドル68をY方向である、チャックテーブル66に向かう方向の送り量を多くすると共に、外周粗研スピンドル68をX方向に直線移動させ直線部を加工する。その後、直線部の加工を終了すると、再び、チャックテーブル66に保持された板状のウエーハWを一定速度で矢印方向に回転させ、残りの円形部を研削して外周粗研削砥石69による粗加工を終了する。 After the rough machining by the outer peripheral rough grinding wheel 69 is started, since the wafer W in FIG. 2 is circular at first, the wafer W held by the chuck table 66 starts rotating in the arrow direction at a constant speed. When this rotation angle, that is, the OF portion where the machining point is a straight portion is reached, the feed amount in the direction toward the chuck table 66, which is the Y direction of the outer peripheral rough grinding spindle 68, is increased, and the outer peripheral rough grinding spindle 68 is X. Process the straight part by moving it linearly in the direction. After that, when the machining of the straight portion is completed, the plate-shaped wafer W held by the chuck table 66 is rotated again in the direction of the arrow at a constant speed, the remaining circular portion is ground, and the rough machining by the outer peripheral rough grinding wheel 69 is performed. To finish.

次に、外周精研削砥石72による仕上げ加工が同様に行われる。外周精研削砥石72は、ダイヤモンド砥粒のレジンボンド砥石が適している。また、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態でウエーハWの外周面取りの仕上げ加工が行われる。 Next, the finishing process by the outer peripheral fine grinding wheel 72 is performed in the same manner. As the outer peripheral fine grinding wheel 72, a resin bond grindstone having diamond abrasive grains is suitable. Further, the outer peripheral chamfer of the waha W is performed in a state where the rotation axis of the outer circumference refined spindle 71 is tilted by 3 to 15 °, preferably 6 to 10 ° in the tangential direction of the outer circumference of the waha W with respect to the rotation axis of the chuck table 66. Finishing is done.

さらに、外周精研削砥石72の面取り用加工溝はツルアーによって形成されるが、詳しい説明を省略する。また、外周粗研削砥石69としては、例えば、Fe、Cr、Cu等の金属粉等を主成分とし、ダイヤモンド砥粒を混ぜて成形したものが用いられる。ツルアーの材質は、外周粗研削砥石69によって加工することができる一方、外周精研削砥石72を研削することができるものを採用する。 Further, the chamfering groove of the outer peripheral fine grinding wheel 72 is formed by a truer, but detailed description thereof will be omitted. Further, as the outer peripheral rough grinding wheel 69, for example, one in which metal powder such as Fe, Cr, Cu or the like is used as a main component and diamond abrasive grains are mixed and formed is used. As the material of the turret, a material capable of grinding the outer peripheral fine grinding wheel 72 while being able to be processed by the outer peripheral rough grinding wheel 69 is adopted.

例えば炭化珪素からなる砥粒を、必要に応じて充填剤等も加えてフェノール樹脂で結合し、これを円盤状のツルアーに成形したものが望ましい。外周精研削砥石72の材質は、ツルアーによって研削することで周囲に研削溝74を形成することができる一方、形成された研磨によってシリコンウエーハ等の面取り部を精研削することができるものを用いる。例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリスチレン樹脂又はポリエチレン樹脂等を主成分とし、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒を混ぜて成形したものが望ましい。 For example, it is desirable that abrasive grains made of silicon carbide are bonded with a phenol resin by adding a filler or the like as necessary, and this is formed into a disk-shaped turret. As the material of the outer peripheral fine grinding wheel 72, a grinding groove 74 can be formed around the grinding wheel by grinding with a truer, while a chamfered portion such as a silicon wafer can be finely ground by the formed polishing. For example, it is desirable that a phenol resin, an epoxy resin, a polyimide resin, a polystyrene resin, a polyethylene resin or the like is used as a main component, and a diamond abrasive grain or a cubic boron nitride abrasive grain is mixed and molded.

また、外周精研削砥石72としては、例えば、直径50mmのダイヤモンド砥粒のレジンボンド砥石で、粒度#3000のものが用いられる。外周精研スピンドル71はエアーベアリングを用いたビルトインモータ駆動のスピンドルで、回転速度35,000rpmで回転される。 Further, as the outer peripheral fine grinding wheel 72, for example, a resin bond grindstone having diamond abrasive grains having a diameter of 50 mm and having a particle size of # 3000 is used. The outer peripheral Seiken spindle 71 is a built-in motor-driven spindle that uses air bearings and is rotated at a rotation speed of 35,000 rpm.

図4は被加工材が円形でなく、矩形の場合での加工部の構成を示す斜視図であり、図5は同様に平面図である。被加工材が円形でなく、矩形の場合は、図4、5に示すように、直線部の加工が主となる。 FIG. 4 is a perspective view showing the configuration of the processed portion when the material to be processed is not circular but rectangular, and FIG. 5 is similarly a plan view. When the work material is not circular but rectangular, as shown in FIGS. 4 and 5, the processing of the straight portion is mainly performed.

スマートフォンやタブレットの薄型化、軽量化が進むにつれてガラス基板、カバーガラス、あるいはサファイア、セラミックスが表面に使用され、端面強度が重要となり、鏡面研削において、砥粒によるチッピングの抑制と良好な面粗さが要求される。面取りの加工品質、加工面粗さ、マイクロクラックの発生などはガラス基板の端面強度に直接影響する。 As smartphones and tablets become thinner and lighter, glass substrates, cover glass, sapphire, and ceramics are used for the surface, and end face strength becomes important. In mirror grinding, chipping due to abrasive grains is suppressed and good surface roughness is achieved. Is required. Chamfering processing quality, processed surface roughness, occurrence of microcracks, etc. directly affect the end face strength of the glass substrate.

図4、5はスマートフォンやタブレットにおける矩形のガラスパネルの面取り加工を示しており、外周精研削装置61のX軸モータ(不図示)が駆動され、外周精研スピンドル71がX軸方向に沿ってチャックテーブル73に向かって送られる。 FIGS. 4 and 5 show chamfering of a rectangular glass panel in a smartphone or tablet, the X-axis motor (not shown) of the outer peripheral grinding device 61 is driven, and the outer peripheral grinding spindle 71 is moved along the X-axis direction. It is sent toward the chuck table 73.

チャックテーブル73に向かって外周精研スピンドル71が送られると、ガラスパネル(あるいはウエーハ)Wの直線部が外周精研削砥石72に形成された面取り用加工溝である外周精研削用溝に接触し、ガラスパネルWの外周部が外周精研削砥石72によりヘリカル研削されて、ガラスパネルWの外周面取りの加工が開始される。外周精研削砥石72による加工が開始された後、図4、5のガラスパネルWは矩形であるので、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動を開始する。加工点が角部に到達すると、チャックテーブル73は、90°回転しつつY軸方向に移動を行い次の直線部を加工する。以下、同様にガラスパネルWの全外周を加工していく。 When the outer peripheral fine grinding spindle 71 is sent toward the chuck table 73, the straight portion of the glass panel (or wafer) W comes into contact with the outer peripheral fine grinding groove, which is a chamfering processing groove formed on the outer peripheral grinding grindstone 72. , The outer peripheral portion of the glass panel W is helically ground by the outer peripheral fine grinding grind 72, and the outer peripheral chamfering process of the glass panel W is started. Since the glass panel W in FIGS. 4 and 5 is rectangular after the machining by the outer peripheral grinding wheel 72 is started, the glass panel W held by the chuck table 73 starts moving at a constant speed in the Y-axis direction. When the machining point reaches the corner portion, the chuck table 73 moves in the Y-axis direction while rotating 90 ° to machine the next straight portion. Hereinafter, the entire outer circumference of the glass panel W will be processed in the same manner.

また、研削砥石は、ポーラスな表面を有する面取り砥石素材に飽和脂肪酸溶液と共に潤滑剤を含ませ、表面を乾燥させて潤滑剤含浸砥石とし、この潤滑剤を含む砥石を研削時に水冷却して使用することが望ましい。これにより、砥石の切削点へ潤滑剤が確実に供給されて切削点温度を所定温度以下にすることができる。また、冷却液を水としたので、冷却液による環境汚染を防止できる。さらにウエーハ面取り装置では、砥石に潤滑剤を含浸させているので、長期にわたり潤滑剤を切削点に供給可能であり、冷却液を水としたので低温かつ環境に配慮した加工が可能となる。 Further, the grinding wheel is used by impregnating a chamfering wheel material having a porous surface with a lubricant together with a saturated fatty acid solution and drying the surface to obtain a lubricant-impregnated grindstone. It is desirable to do. As a result, the lubricant is reliably supplied to the cutting point of the grindstone, and the cutting point temperature can be lowered to a predetermined temperature or lower. Moreover, since the coolant is water, environmental pollution by the coolant can be prevented. Further, in the waiha chamfering device, since the abrasive stone is impregnated with the lubricant, the lubricant can be supplied to the cutting point for a long period of time, and since the coolant is water, low temperature and environment-friendly processing becomes possible.

チャックテーブル73は、図5に示すように矩形のガラスパネルWの形状と同様の形状であるが、外周精研削砥石72による加工時にガラスパネルW自体がやや弾性変形するようにガラスパネルWよりも十分に小さくなり、ガラスパネルWはチャックテーブル73よりオーバハングして保持されている。 As shown in FIG. 5, the chuck table 73 has a shape similar to that of the rectangular glass panel W, but is larger than the glass panel W so that the glass panel W itself is slightly elastically deformed when processed by the outer peripheral fine grinding wheel 72. It is sufficiently small, and the glass panel W is held overhanging from the chuck table 73.

具体的には、チャックテーブル73の大さきは、ガラスパネルWのX軸方向の中央からの距離をQとし、チャックテーブル73のX軸方向の中央からの距離をPとすると、Q=(1.3〜1.7)P、より望ましくはQ=1.5PとすることがガラスパネルWの吸着による固定及び研削加工の点から良い。つまり、ガラスパネルWの変形や撓み、歪みなどの加工精度への影響を避けると共に、加工時に被加工材、ガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。Y軸方向も同様であり、図5のN=(1.3〜1.7)H、より望ましくはN=1.5Hとすることが望ましい。つまり、チャックテーブル73の形状は、被加工材の外周形状よりも小さく、縦横共に、ガラスパネルWの平面形状よりも0.6〜0.8倍が望ましい。なお、矩形のガラスパネルWの形状は、縦×横が120mm×60mm程度、厚みが0.5〜1.5mm程度であり、矩形のチャックテーブル73は80mm×40mm程度が望ましい。 Specifically, for the size of the chuck table 73, where Q is the distance from the center of the glass panel W in the X-axis direction and P is the distance from the center of the chuck table 73 in the X-axis direction, Q = (1). It is preferable to set .3 to 1.7) P, more preferably Q = 1.5P, from the viewpoint of fixing and grinding by adsorption of the glass panel W. That is, while avoiding the influence of deformation, bending, and distortion of the glass panel W on the processing accuracy, the material to be processed and the glass panel W itself are slightly elastically deformed during processing, and the outer peripheral fine grinding wheel 72 is a soft resin bond grindstone. Coupled with that, the impact such as the runout is mitigated. The same applies to the Y-axis direction, and it is desirable that N = (1.3 to 1.7) H in FIG. 5, and more preferably N = 1.5H. That is, the shape of the chuck table 73 is smaller than the outer peripheral shape of the work material, and it is desirable that the shape of the chuck table 73 is 0.6 to 0.8 times larger than the planar shape of the glass panel W in both vertical and horizontal directions. The shape of the rectangular glass panel W is preferably about 120 mm × 60 mm in length × width and about 0.5 to 1.5 mm in thickness, and the rectangular chuck table 73 is preferably about 80 mm × 40 mm.

外周精研スピンドル71の回転軸をチャックテーブル73に対してガラスパネルWの外周の接線方向にθ=3〜15°、望ましくは6〜10°傾斜しているので、ガラスパネルWは外周精研削砥石72の研削溝74に対してこの角度θで当接し、砥粒の運動方向がガラスパネルWの運動方向と交差する。また、傾斜角度があまりに大きいと、研削抵抗の増大、端面における上下角部の欠け、キズなどの点で好ましくない。 Since the rotation axis of the outer peripheral refined spindle 71 is tilted with respect to the chuck table 73 in the tangential direction of the outer periphery of the glass panel W by θ = 3 to 15 °, preferably 6 to 10 °, the glass panel W is finely ground on the outer circumference. It abuts on the grinding groove 74 of the grindstone 72 at this angle θ, and the moving direction of the abrasive grains intersects with the moving direction of the glass panel W. Further, if the inclination angle is too large, it is not preferable in terms of an increase in grinding resistance, chipping of vertical corners on the end face, scratches, and the like.

図6は外周精研削砥石72の研削溝74と、被加工材Wとの関係を示す側面図であり、図に示すように、外周精研削砥石72の研削溝74の幅yは、外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の上端部が被加工材Wの上面と当接する位置から被加工材Wの下面が研削溝74の下端部に最も近づくが当接しない位置までの距離、つまり、研削溝74を角度θ傾けたときの被加工材の見掛け厚み、図6で右端部からの左端部までの寸法y0よりも広くy>y0となっている。y0は、研削溝74の直径をD、被加工材Wの厚さをtとすると、おおよそDtanθ+t/cosθとなる。研削溝74の幅を広くする方法は予めツールイングするときの転写用の溝を広くしても良いし、ツールイング時のツルアーをZ軸方向に上下に移動して研削溝74を幅広く加工しても良い。 FIG. 6 is a side view showing the relationship between the grinding groove 74 of the outer peripheral grinding wheel 72 and the workpiece W. As shown in the figure, the width y of the grinding groove 74 of the outer peripheral grinding wheel 72 is the outer peripheral grinding wheel 72. When the grinding groove 74 of the grinding wheel 72 is tilted by an angle θ, the lower surface of the workpiece W comes closest to the lower end of the grinding groove 74 from the position where the upper end of the grinding groove 74 comes into contact with the upper surface of the workpiece W. The distance to the non-contact position, that is, the apparent thickness of the work piece when the grinding groove 74 is tilted by an angle θ, y> y0 wider than the dimension y0 from the right end to the left end in FIG. y0 is approximately Dtanθ + t / cosθ, where D is the diameter of the grinding groove 74 and t is the thickness of the workpiece W. As a method of widening the width of the grinding groove 74, the groove for transfer at the time of tooling may be widened in advance, or the tooling at the time of tooling is moved up and down in the Z-axis direction to widen the grinding groove 74. You may.

次に、ヘリカル研削の加工手順を以下に説明する。
図6はガラスパネルWの上面を加工している状態を示す側面図であり、チャックテーブル73に向かって外周精研スピンドル71が送られたとき、研削溝74の右上端部の上面斜面72uがガラスパネルWの上面、図6で右上端部が当接して加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。
Next, the machining procedure of helical grinding will be described below.
FIG. 6 is a side view showing a state in which the upper surface of the glass panel W is processed, and when the outer peripheral refined spindle 71 is sent toward the chuck table 73, the upper surface slope 72u of the upper right end portion of the grinding groove 74 is formed. The upper surface of the glass panel W and the upper right end portion in FIG. 6 come into contact with each other to start machining, and then the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction to perform chamfering.

ガラスパネルWの下面は、研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点がガラスパネルWの角R部に到達すると、チャックテーブル73が回転して、角部のRを加工する。このときは円形部を研削するのと同様になり、接触領域が小さくなるので、研削溝74の上面斜面の当接は弱くなり、厚み方向の中央部の研削が主となる。以下、同様にガラスパネルWの外周を1周するまで加工していく。 The lower surface of the glass panel W does not come into contact with the lower surface of the glass panel W because the grinding groove 74 is wider than the apparent thickness of the glass panel W. The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72. When the processing point reaches the corner radius portion of the glass panel W, the chuck table 73 rotates to process the corner radius portion. At this time, it is the same as grinding a circular portion, and the contact area becomes smaller, so that the contact on the upper slope of the grinding groove 74 becomes weaker, and the central portion in the thickness direction is mainly ground. Hereinafter, in the same manner, processing is performed until the outer circumference of the glass panel W makes one round.

図7はガラスパネル下面を加工している状態を示す側面図であり、上記の加工が1周した点で、図6の状態から外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に降下させ、研削溝74の下面斜面がガラスパネルWの下面、図7左下端部の下面斜面72dが当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがX軸方向に一定速度で移動して2周目の面取りを行う。 FIG. 7 is a side view showing a state in which the lower surface of the glass panel is processed. At the point where the above processing makes one round, the outer peripheral grinding wheel 72 is raised in the Z-axis direction from the state of FIG. 6, or the chuck table 73 is formed. Is lowered in the Z-axis direction so that the lower surface slope of the grinding groove 74 comes into contact with the lower surface of the glass panel W and the lower surface slope 72d at the lower left end of FIG. That is, the grinding wheel is raised in the thickness direction relative to the work piece. After that, the glass panel W held on the chuck table 73 moves at a constant speed in the X-axis direction to chamfer the second lap.

ガラスパネルWの上面は研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。 The upper surface of the glass panel W does not come into contact with the upper surface of the glass panel W because the grinding groove 74 is wider than the apparent thickness of the glass panel W. The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72.

以上のように、ガラスパネルWに対して外周精研削砥石72の研削溝74を角度θで傾斜させて当接し、砥粒の運動方向がガラスパネルWの運動方向と交差するようにし、かつ、外周精研削砥石72の研削溝74の幅を被加工材に対して外周精研削砥石72を角度θ傾けたときの被加工材の見掛け厚みよりも幅広とすること、外周精研削砥石72をZ軸方向に上下することにより、OF等の直線部、又は矩形、多角形等の材料の面取り加工にヘリカル研削を適用することが可能となる。これにより、端面の面粗さ、加工歪を小さくし、高番手の砥石でも長時間の使用が可能である。 As described above, the grinding groove 74 of the outer peripheral fine grinding grindstone 72 is tilted at an angle θ to come into contact with the glass panel W so that the moving direction of the abrasive grains intersects with the moving direction of the glass panel W. Make the width of the grinding groove 74 of the outer peripheral fine grinding grindstone 72 wider than the apparent thickness of the work piece when the outer peripheral fine grinding grindstone 72 is tilted by an angle θ with respect to the work material. By moving up and down in the axial direction, it becomes possible to apply helical grinding to chamfering a straight portion such as OF or a material such as a rectangle or a polygon. As a result, the surface roughness and processing distortion of the end face are reduced, and even a high-count grindstone can be used for a long time.

ここで、本発明者は、図6においてθの角度をより大きくして、ガラスパネルWの上面の右上端部が上面斜面72u当接し、かつ、ガラスパネルWの下面の左下端部に下面斜面72dが当接するようにして研削を行う評価を実施した。すると、ガラスパネルWの角部のRを研削する際、必ず、ガラスパネルWは、上面斜面72uと下面斜面72dとのうち片方しか当接できない状況が発生することを見いだした。このため、ガラスパネルWの角部においては、必ず上面か下面のうちのどちらかに研削が十分で無い部分が発生することが判明した。 Here, the present inventor increases the angle of θ in FIG. 6, so that the upper right end of the upper surface of the glass panel W abuts on the upper surface slope 72u, and the lower surface slope is on the lower left lower end of the lower surface of the glass panel W. An evaluation was carried out in which grinding was performed so that 72d was in contact with each other. Then, when grinding the R at the corner of the glass panel W, it was found that the glass panel W always comes into contact with only one of the upper surface slope 72u and the lower surface slope 72d. For this reason, it has been found that at the corners of the glass panel W, there is always a portion on either the upper surface or the lower surface where grinding is insufficient.

よって、本発明者は、ヘリカル研磨を行う際、図6における、θ、y、ガラスパネルWの厚みtの関係は、「ガラスパネルWの上面又は下面のうちどちらか一方のみが研削溝74の端部(上面斜面72uまたは下面斜面72d)に接触し、もう一方は端部に接触しない」(条件1)ようにθ、y、tが選択されなければならないことを見いだした。よって、それらのパラメータのうち、どれかが決まっているならば、変更可能なパラメータを調整することによって上記条件1を満たさなければならない。その際、条件1を満たす範囲で、なるべく図6におけるy0がyに近い値である方が好ましいことが判明した。それにより、研削溝74の大部分を使用できるので、砥石の寿命も長くなるからである。 Therefore, the present inventor has a relationship of θ, y, and the thickness t of the glass panel W in FIG. 6 when performing helical polishing, “only one of the upper surface and the lower surface of the glass panel W is the grinding groove 74. It has been found that θ, y, t must be selected so that the end (upper slope 72u or lower slope 72d) is in contact and the other is not in contact with the end ”(Condition 1). Therefore, if any of these parameters is determined, the above condition 1 must be satisfied by adjusting the changeable parameter. At that time, it was found that it is preferable that y0 in FIG. 6 has a value as close to y as possible within the range satisfying condition 1. As a result, most of the grinding groove 74 can be used, so that the life of the grindstone is extended.

図8は、円形部の加工と直線部の加工とでガラスパネルWの厚み方向の上下端部で外周精研削砥石72と研削溝74との当接の違いを説明する平面図であり、外周精研削砥石72の研削溝74の円筒部と直線ワークW1の接触領域は、円筒部と円形ワークW2の接触領域より大きいだけでなく、研削溝74の上下端部の上面斜面72uあるいは下面斜面72dとの直線ワークW1の接触域Lは円形ワークW2の接触域Mより大きい。 FIG. 8 is a plan view for explaining the difference in contact between the outer peripheral fine grinding grindstone 72 and the grinding groove 74 at the upper and lower ends of the glass panel W in the thickness direction between the processing of the circular portion and the processing of the straight portion. The contact area between the cylindrical portion of the grinding groove 74 of the precision grinding wheel 72 and the straight work W1 is not only larger than the contact area between the cylindrical portion and the circular work W2, but also the upper and lower end slopes 72u or the lower surface slope 72d of the upper and lower ends of the grinding groove 74. The contact area L of the linear work W1 with is larger than the contact area M of the circular work W2.

したがって、直線ワークW1での研削抵抗は円形ワークW2の研削抵抗より大きいだけでなく、研削溝74の厚み方向の幅を円形ワークW2に合わせて面取り加工すると、直線ワークW1を面取り加工することができなくなる。また、円形ワークW2に対して上下対称に面取り加工ができるように研削溝74を作成したとしても、それを直線ワークW1に対して面取り加工すると上下面の形状が異なったものとなる。 Therefore, not only the grinding resistance of the straight work W1 is larger than the grinding resistance of the circular work W2, but also when the width of the grinding groove 74 in the thickness direction is chamfered according to the circular work W2, the straight work W1 can be chamfered. become unable. Further, even if the grinding groove 74 is created so that the circular work W2 can be chamfered vertically symmetrically, the shapes of the upper and lower surfaces will be different if the grinding groove 74 is chamfered with respect to the straight work W1.

図9は、従来の板材の端面加工に対して平面研削盤80に1軸を追加した軸傾斜方式によるヘリカル研削の例を示す。図9に示すように、精密ステージ81を傾斜角度αで配置し、砥石82の最下点を被加工材83が通過するようにしたものである。砥石82は被加工材83よりも幅広であり、バイス84によって両面を加工面の近くまで固定されている。 FIG. 9 shows an example of helical grinding by an axial tilting method in which one axis is added to the surface grinding machine 80 as opposed to the conventional end face machining of a plate material. As shown in FIG. 9, the precision stage 81 is arranged at an inclination angle α so that the work piece 83 passes through the lowest point of the grindstone 82. The grindstone 82 is wider than the work piece 83, and both sides are fixed close to the machined surface by the vise 84.

この方法では、図10(a)に示すように、被加工材83がバイス84によって、しっかりと固定されている点、砥石82の回転軸が加工面と水平となる点等より、砥石82が矢印Vのように押し付けられ、砥石82の振れ等が被加工材83へ衝撃となり、加工面にダメージを与える。また、研削によるキリコが加工面に落下することより、加工面にキリコによる傷、引っ掻きによる条痕が生じる。 In this method, as shown in FIG. 10A, the grindstone 82 is formed from the point that the work piece 83 is firmly fixed by the vise 84 and the rotation axis of the grindstone 82 is horizontal to the machining surface. It is pressed as shown by the arrow V, and the runout of the grindstone 82 causes an impact on the work piece 83, causing damage to the machined surface. In addition, since the ground chirico falls on the machined surface, scratches due to the chirico and streaks due to scratches are generated on the machined surface.

これに対して、図6、7に示したように、本発明では、被加工材Wに対して外周精研削砥石72の研削溝74を角度θ傾けている。また、チャックテーブル73はガラスパネルWの平面を載置し、この表面をエアーコンプレッサーやブロワー等で減圧し、ガラスパネルWを吸着し固定する。ガラスパネルWをチャックテーブル73よりオーバハングして垂直方向に吸着して保持した図10(b)の場合は、外周精研削砥石72の研削溝74が加工面に対して垂直に当接し、外周精研削砥石72による押し付け力が矢印Hのように働く。 On the other hand, as shown in FIGS. 6 and 7, in the present invention, the grinding groove 74 of the outer peripheral grinding wheel 72 is tilted by an angle θ with respect to the work piece W. Further, a flat surface of the glass panel W is placed on the chuck table 73, and the surface of the chuck table 73 is depressurized by an air compressor, a blower, or the like to attract and fix the glass panel W. In the case of FIG. 10B in which the glass panel W is overhung from the chuck table 73 and is attracted and held in the vertical direction, the grinding groove 74 of the outer peripheral grinding wheel 72 abuts perpendicularly to the machined surface, and the outer peripheral grinding wheel 72 is vertically contacted. The pressing force of the grinding wheel 72 works as shown by the arrow H.

したがって、加工時に被加工材、例えばガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。したがって、加工面にキズ等のダメージを与えことがなく、研削によるキリコは矢視のように排出され、加工面に落下することがなく、加工面にキリコによる傷、引っ掻きによる条痕を生じることがない。 Therefore, the material to be processed, for example, the glass panel W itself is slightly elastically deformed during processing, and the outer peripheral fine grinding wheel 72 is a soft resin bond grindstone to alleviate the impact such as runout. Therefore, there is no damage such as scratches on the machined surface, and the chirico produced by grinding is discharged like an arrow, does not fall on the machined surface, and causes scratches and streaks due to scratches on the machined surface. There is no.

図11は、以上の面取り基板の製造方法により加工された被加工材の端面を示す側面図であり、レジン砥石である外周精研削砥石72で研削後の条痕の状態を斜線で示している。研削溝74は被加工材(基板、ワーク)の厚みに対して幅を十分大きくし、被加工材に対して6〜10°の斜め角度で当接させ、研削溝74の上面と下面のうち片面のみワークに当接するようにし、他方には当てないように面取りを行った。実際には、上面を当接させた研削を被加工材の端面の全周に対して1周行い、次に下面を当接させ、さらに1周させて合計2周の研磨、面取りを行った。 FIG. 11 is a side view showing the end surface of the work material processed by the above method for manufacturing a chamfered substrate, and shows the state of the streaks after grinding with the outer peripheral fine grinding wheel 72, which is a resin grindstone, with diagonal lines. .. The width of the grinding groove 74 is sufficiently large with respect to the thickness of the work material (board, work), and the grinding groove 74 is brought into contact with the work material at an oblique angle of 6 to 10 °. The work was chamfered so that only one side was in contact with the work and the other side was not touched. In practice, grinding with the upper surface in contact was performed once with respect to the entire circumference of the end face of the material to be processed, then the lower surface was brought into contact with the surface, and another round was performed for a total of two rounds of polishing and chamfering. ..

従来のヘリカル研削による面取り加工では角部、直線部を有する被加工材で砥石の研削溝の上面と下面のうち片方のみ強く当たる片当たりが発生し良好な面取りが出来なかったが、図に示すように厚み方向の中央部Cが砥石を傾斜させた角度に応じたヘリカル研削の特有な条痕となり、良好な面粗さで形状崩れを生じていない。 In the conventional chamfering by helical grinding, good chamfering was not possible due to the strong contact of only one of the upper and lower surfaces of the grinding groove of the grindstone with the work material having corners and straight parts. As described above, the central portion C in the thickness direction becomes a peculiar streak of helical grinding according to the angle at which the grindstone is tilted, and the shape is not deformed with good surface roughness.

また、上下両端も角度、大きさ共に対称、図でTu、Tdの幅も均等であり、研削溝の端部で被加工材の端面の角部がヘリカル研削されたことによる条痕、角度、方向は研削溝の端部が当たっている分だけ異なり、それが明確に現れている。 In addition, both the upper and lower ends are symmetrical in angle and size, the widths of Tu and Td are even in the figure, and the streaks and angles due to helical grinding of the corners of the end face of the work material at the ends of the grinding groove, The direction is different by the amount that the end of the grinding groove hits, which is clearly visible.

さらに、スマートフォンやタブレットの薄型化、軽量化に伴って、従来、ガラス基板を所定の大きさに切断してから、化学強化を行い、その後に、マスキング印刷を行い、センサー電極を形成していた。それに対して、上記の面取り基板の製造方法によれば、大きなガラス基板のまま化学強化処理を施した後、マスキング印刷、センサー電極形成を形成し、その後に、切断、面取り加工を行っても、つまり、端面に化学強化されていない状態でも良好な加工面粗さが得られ、マイクロクラックの発生を抑えることができる。そして、その結果、生産効率が極めて向上し、実用上で十分な端面強度を得ることができる。 Further, as smartphones and tablets have become thinner and lighter, conventionally, a glass substrate has been cut to a predetermined size, then chemically strengthened, and then masking printing is performed to form a sensor electrode. .. On the other hand, according to the above-mentioned method for manufacturing a chamfered substrate, even if the large glass substrate is chemically strengthened, masked printing and sensor electrode formation are formed, and then cutting and chamfering are performed. That is, good processed surface roughness can be obtained even when the end face is not chemically strengthened, and the occurrence of microcracks can be suppressed. As a result, the production efficiency is extremely improved, and a practically sufficient end face strength can be obtained.

さらに、面粗さ、形状の対称性のみならず、研削溝を1回修正(ツールイング)した後、研削能力の低下、所定の外周面幅、外周角度、外周形状を満たさなくなるまでに連続して加工できる枚数も増加できる。さらに、レジン砥石である外周精研削砥石72のツールイングを繰り返し、面取り加工を連続した場合、摩耗によりレジン砥石が所定の直径以下となって、使用不可能となるまでに加工できる枚数も多くすることができる。 Further, not only the surface roughness and the symmetry of the shape, but also the grinding groove is corrected once (tooling), and then the grinding ability is lowered, the predetermined outer peripheral surface width, the outer peripheral angle, and the outer peripheral shape are not satisfied continuously. The number of sheets that can be processed can also be increased. Further, when the tooling of the outer peripheral fine grinding wheel 72, which is a resin grindstone, is repeated and the chamfering process is continued, the number of sheets that can be processed before the resin grindstone becomes smaller than the predetermined diameter due to wear and becomes unusable is increased. be able to.

以上、図6、7では、外周精研削砥石72を用いたヘリカル研削として説明したが、粗研削時、つまり、外周粗研削砥石69を用いるときも同様に2周するヘリカル研削を行っても良い。これによれば、精研削時、外周精研削砥石72の研削溝74の摩耗、目詰まり、溝形状の変形を防いで、より良好な面取り加工を行うことができる。 As described above, in FIGS. 6 and 7, the helical grinding using the outer peripheral fine grinding wheel 72 has been described, but the helical grinding may be similarly performed twice during rough grinding, that is, when the outer peripheral rough grinding wheel 69 is used. .. According to this, during fine grinding, wear, clogging, and deformation of the groove shape of the grinding groove 74 of the outer peripheral fine grinding wheel 72 can be prevented, and better chamfering can be performed.

また、被加工材の端面の上部を全周に渡って研削溝74で1周するように研削(上部の研削)し、その後、研削砥石69あるいは72を被加工材の厚さ方向に相対的に上昇させて、さらに下部を1周研削(下部の研削)することとしたが、この順序は逆でも良いし、被加工材の端面の上部、下部に研削溝74の端部である上面斜面72u、下面斜面72dのいずれも当てない中央部の研削を別途に行っても良い。 Further, the upper part of the end face of the work material is ground so as to make one round in the grinding groove 74 over the entire circumference (grinding of the upper part), and then the grinding wheel 69 or 72 is relative to the thickness direction of the work material. It was decided to grind the lower part once more (grinding the lower part), but the order may be reversed, and the upper surface slope which is the end part of the grinding groove 74 is on the upper part and the lower part of the end face of the work material. Grinding of the central portion where neither the 72u nor the lower surface slope 72d is applied may be performed separately.

図12は、中央部の研削(a)、上部の研削(b)、下部の研削(c)を示している。中央部の研削(a)は、外周精研スピンドル71に向かってチャックテーブル73が送られたとき、研削溝74の右上端部の上面斜面72u及び左下端部の下面斜面72dがいずれもガラスパネルWの上面及び下面に当接しないで加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。研削溝74が、ガラスパネルWの見掛け厚みy0(図6参照)、すなわち外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の直径をD、被加工材であるガラスパネルWの厚さtとの双方を考慮した厚みよりも十分、少なくとも20〜30%幅広となっている。 FIG. 12 shows the grinding of the central portion (a), the grinding of the upper portion (b), and the grinding of the lower portion (c). In the central grinding (a), when the chuck table 73 is sent toward the outer peripheral refined spindle 71, the upper surface slope 72u at the upper right end of the grinding groove 74 and the lower surface slope 72d at the lower left end are both glass panels. Machining is started without abutting on the upper and lower surfaces of W, and then the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction to perform chamfering. When the grinding groove 74 tilts the apparent thickness y0 of the glass panel W (see FIG. 6), that is, the grinding groove 74 of the outer peripheral grinding wheel 72 by an angle θ, the diameter of the grinding groove 74 is D, and the glass panel which is the work material. It is at least 20 to 30% wider than the thickness considering both the thickness t of W.

ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点が角のR部に到達すると、チャックテーブル73を回転させて、角部のRを加工する。ガラスパネルWの厚み方向の端部を研削溝74の上下斜面(あるいは上下端部)で研削しないので、上下非対称性に影響なく、ガラスパネルWの外周形状に係わらず加工することに適し、図2に示したような円形部が主体でOF部のような直線部がある場合に、形状を削り出すのには都合が良い。 The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72. When the processing point reaches the R portion of the corner, the chuck table 73 is rotated to process the R portion of the corner portion. Since the end portion of the glass panel W in the thickness direction is not ground on the upper and lower slopes (or upper and lower end portions) of the grinding groove 74, it is suitable for processing regardless of the outer peripheral shape of the glass panel W without affecting the vertical asymmetry. When the circular portion as shown in 2 is the main body and there is a straight portion such as the OF portion, it is convenient to carve out the shape.

図12(b)は上部の研削を示し、図12(a)の状態から外周精研削砥石72をZ軸方向に下降、あるいはチャックテーブル73をZ軸方向に上昇させ、研削溝74の右上端部の上面斜面72uにガラスパネルWの上面、図で右上端部を当接させる。つまり、研削砥石を被加工材に対して相対的に厚さ方向に下降させる。その後、チャックテーブル73に保持されたガラスパネルWをY軸方向に一定速度で移動してヘリカル研削による面取り加工が行われる。 FIG. 12B shows the upper grinding, and from the state of FIG. 12A, the outer peripheral fine grinding wheel 72 is lowered in the Z-axis direction, or the chuck table 73 is raised in the Z-axis direction, and the upper right end of the grinding groove 74 is formed. The upper surface of the glass panel W, the upper right end portion in the drawing, is brought into contact with the upper surface slope 72u of the portion. That is, the grinding wheel is lowered in the thickness direction relative to the work piece. After that, the glass panel W held on the chuck table 73 is moved in the Y-axis direction at a constant speed, and chamfering is performed by helical grinding.

図12(c)は下部の研削を示し、図12(b)の状態から外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に下降させ、研削溝74の下面斜面が、ガラスパネルWの下面、図で左下端部の下面斜面72dに当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して図12(a)、図12(b)に続いて3周目の面取りを行う。 FIG. 12 (c) shows the grinding of the lower portion, and from the state of FIG. 12 (b), the outer peripheral fine grinding wheel 72 is raised in the Z-axis direction, or the chuck table 73 is lowered in the Z-axis direction, and the lower surface of the grinding groove 74 is sloped. Is in contact with the lower surface of the glass panel W, the lower surface slope 72d of the lower left portion in the figure. That is, the grinding wheel is raised in the thickness direction relative to the work piece. After that, the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction, and chamfering is performed on the third lap following FIGS. 12 (a) and 12 (b).

図12は、中央部の研削(a)、上部の研削(b)、下部の研削(c)の順で説明したが、これに限ることなく、上部の研削(b)、中央部の研削(a)、下部の研削(c)の順など任意でも良い。ただし、中央部の研削(a)を先に行うことが、先に形状を削り出すことができる点、その後、より慎重、正確に上部の研削(b)、下部の研削(c)を行える点で優れている。 In FIG. 12, the central portion grinding (a), the upper grinding portion (b), and the lower portion grinding (c) are described in this order, but the upper portion grinding (b) and the central portion grinding (c) are not limited to this. The order of a) and grinding (c) at the bottom may be arbitrary. However, if the central portion is ground (a) first, the shape can be cut out first, and then the upper grinding (b) and the lower grinding (c) can be performed more carefully and accurately. Is excellent.

また、被加工材として、特に、図2に示したような円形部が主体でOF部のような直線部がある場合に、中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ、被加工材の外周を1周する必要はない。例えば、円形部は上部の研削(b)、下部の研削(c)だけを行い、直線部は中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ行えば良く、面粗さを良好にし、形状崩れを生じないで加工時間を短縮、研削溝74の摩耗、目詰まり、溝形状の変形を防ぐことができる。 Further, as the material to be processed, particularly when the circular portion as shown in FIG. 2 is the main body and there is a straight portion such as the OF portion, the central portion is ground (a), the upper portion is ground (b), and the lower portion is ground. It is not necessary to go around the outer circumference of the work piece once for each grinding (c). For example, if the circular portion is subjected to only the upper grinding (b) and the lower grinding (c), and the straight portion is subjected to the central portion grinding (a), the upper grinding (b), and the lower grinding (c), respectively. It is good, the surface roughness is good, the machining time is shortened without causing shape collapse, and the grinding groove 74 can be prevented from being worn, clogged, and deformed.

図6、7及び図12では、被加工材の厚さ方向に上昇、又は下降を説明したが、図13は、外周精研削砥石72の研削溝74の上面斜面72u及び下面斜面72dとの関係の詳細であり、研削溝74の斜面と面取り角度の関係を説明する。図13(a)は外周精研削砥石72を傾けないで、被加工材Wへ当接させた状態であり、面取り角度が研削溝74の上面斜面72u及び下面斜面72dの角度と一致している。 Although FIGS. 6, 7 and 12 have described the rise or fall in the thickness direction of the work material, FIG. 13 shows the relationship between the upper surface slope 72u and the lower surface slope 72d of the grinding groove 74 of the outer peripheral grinding wheel 72. The relationship between the slope of the grinding groove 74 and the chamfering angle will be described in detail. FIG. 13A shows a state in which the outer peripheral grinding wheel 72 is brought into contact with the work piece W without being tilted, and the chamfering angle coincides with the angles of the upper surface slope 72u and the lower surface slope 72d of the grinding groove 74. ..

ヘリカル研削を行うため、外周精研削砥石72を傾けた状態が図13(b)であり、3〜15°、望ましくは6〜10°であるので、加工がわずかに開始されれば、上面斜面72uと被加工材Wの上面との接触領域は図13(a)と大きな違いはない。したがって、図11で既に示したように、被加工材Wの上下両端(Tu、Tdの領域)も中央部Cと比べて条痕が斜面の分、異なる向きの条痕となり、ヘリカル研削の効果が十分に得られ、中央部と遜色なく加工歪み、表面粗さが改善される。この三つの条痕が現れるのが、以上の実施の形態の特徴でもある。 FIG. 13 (b) shows a state in which the outer peripheral fine grinding wheel 72 is tilted for helical grinding, which is 3 to 15 °, preferably 6 to 10 °. The contact area between 72u and the upper surface of the work piece W is not significantly different from that in FIG. 13A. Therefore, as already shown in FIG. 11, the upper and lower ends (Tu and Td regions) of the work material W also have streaks in different directions due to the slope as compared with the central portion C, and the effect of helical grinding is obtained. Is sufficiently obtained, processing distortion and surface roughness are improved as much as the central part. The appearance of these three streaks is also a feature of the above embodiments.

なお、説明を分かりやすくするため、図13(a)の外周精研削砥石72を傾けないことで、研削溝74の斜面を面取り角度と一致させたことを基準として、外周精研削砥石72を傾けたことを図13(b)とした。それに対して、逆に、外周精研削砥石72を傾けた図13(b)で斜面を被加工材Wの面取り角度と一致させても良い。これにより、加工の開始時点、研削量が少ない場合でも、上面斜面72uと被加工材Wの上面との接触領域が増えて、被加工材Wの上下両端の表面粗さが改善される。 In order to make the explanation easier to understand, the outer peripheral grinding wheel 72 is tilted based on the fact that the slope of the grinding groove 74 is matched with the chamfer angle by not tilting the outer peripheral grinding wheel 72 in FIG. 13 (a). This is shown in FIG. 13 (b). On the other hand, on the contrary, the slope may be made to match the chamfer angle of the work piece W in FIG. 13B in which the outer peripheral grinding wheel 72 is tilted. As a result, even when the amount of grinding is small at the start of processing, the contact region between the upper surface slope 72u and the upper surface of the work material W increases, and the surface roughness at both the upper and lower ends of the work material W is improved.

10…加工部、20…供給回収部、30…ウエーハカセット、31…カセットテーブル、40…供給回収ロボット、50…搬送アーム、60…ウエーハ送り装置、61…外周精研削装置、62…外周粗研削装置、65…チャックテーブル駆動モータ、66…チャックテーブル、67…外周粗研モータ、68…外周粗研スピンドル(回転軸)、69…外周粗研削砥石、70…外周精研モータ、71…外周精研スピンドル(回転軸)、72…外周精研削砥石、72d…下面斜面、72u…上面斜面、73…チャックテーブル、74…研削溝、80…平面研削盤、81…精密ステージ、82…砥石、83…被加工材、84…バイス、W…ウエーハ、ガラスパネル、被加工材、y0…被加工材の見掛け厚み 10 ... Machining unit, 20 ... Supply and recovery unit, 30 ... Weiha cassette, 31 ... Cassette table, 40 ... Supply and recovery robot, 50 ... Transfer arm, 60 ... Weiha feed device, 61 ... Outer peripheral fine grinding device, 62 ... Outer peripheral rough grinding Equipment, 65 ... Chuck table drive motor, 66 ... Chuck table, 67 ... Outer peripheral grinding motor, 68 ... Outer peripheral grinding spindle (rotary shaft), 69 ... Outer peripheral grinding wheel, 70 ... Outer peripheral grinding motor, 71 ... Outer peripheral grinding Grinding spindle (rotating shaft), 72 ... outer circumference fine grinding wheel, 72d ... lower surface slope, 72u ... upper surface slope, 73 ... chuck table, 74 ... grinding groove, 80 ... surface grinding machine, 81 ... precision stage, 82 ... grindstone, 83 ... Work material, 84 ... Vise, W ... Waha, glass panel, Work material, y0 ... Apparent thickness of work material

本発明は、シリコン、サファイア、化合物、ガラス等の様々な素材、特に半導体ウエーハ、ガラスパネル等の板状被加工材の端面における高精度な面取り基板の製造方法及び装置に関し、平面形状の端部に円形以外の直線部を有する被加工材の端面加工に好適である。 The present invention relates to a method and an apparatus for manufacturing a highly accurate chamfered substrate on the end face of various materials such as silicon, sapphire, compound, and glass, particularly a plate-shaped workpiece such as a semiconductor wafer and a glass panel. It is suitable for end face processing of a work material having a straight portion other than a circular portion.

近年、ウエーハの品質向上の要求が強く、ウエーハ端面(エッジ部)の加工状態が重要視され、半導体デバイス等の作製に使用されるシリコンウエーハ等の半導体ウエーハは、ハンドリングによるチッピングを防止するため、縁部を研削することで面取り加工が行われ、研磨による鏡面面取り加工が行われている。つまり、半導体製造工程において、ウエーハ製造からデバイス製造に至るまで、エッジ特性の品質改善は必要不可欠なプロセスとなっている。 In recent years, there has been a strong demand for improving the quality of wafers, and the processing state of the end face (edge portion) of the wafer has been emphasized. Semiconductor wafers such as silicon wafers used for manufacturing semiconductor devices have been used to prevent chipping due to handling. Chamfering is performed by grinding the edges, and mirror chamfering is performed by polishing. That is, in the semiconductor manufacturing process, quality improvement of edge characteristics is an indispensable process from wafer manufacturing to device manufacturing.

シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も含まれる。 Silicone is hard and brittle, and if the end face of the wafer remains sharp during slicing, it will easily crack or chip during handling such as transportation and alignment in the subsequent processing process, and fragments will damage or contaminate the wafer surface. Or something. To prevent this, the end face of the cut wafer is chamfered with a chamfering grindstone coated with diamond. At this time, it is also included to match the diameters of the outer circumferences with variations, to match the width of the orientation flat (OF), and to match the dimensions of a minute notch called a notch.

また、スマートフォンやタブレットに用いられる、薄型化、軽量化が追求されたガラス基板には、マスキング印刷、センサー電極の形成、その後に切断することが行われ、面取りの加工品質、加工面粗さ、マイクロクラックの発生などがガラス基板の端面強度に直接影響する。 In addition, the glass substrate used for smartphones and tablets, which has been pursued to be thinner and lighter, is subjected to masking printing, sensor electrode formation, and then cutting. The generation of microcracks directly affects the end face strength of the glass substrate.

さらに、通常の研削ではレジン砥石の回転軸に対してウエーハWの主面が垂直となる状態で面取り部を研削するが、この場合、面取り部には円周方向の研削痕が発生し易い。そこで、ウエーハに対して例えばレジンボンド砥石(レジン砥石)を傾けてウエーハの面取り部を研削する、いわゆるヘリカル研削を行うことが知られている。 Further, in normal grinding, the chamfered portion is ground in a state where the main surface of the wafer W is perpendicular to the rotation axis of the resin grindstone, but in this case, grinding marks in the circumferential direction are likely to occur in the chamfered portion. Therefore, it is known to perform so-called helical grinding in which, for example, a resin bond grindstone (resin grindstone) is tilted with respect to the wafer to grind the chamfered portion of the wafer.

ヘリカル研削を行うと、通常研削に比べ面取り部の加工歪みを低減させるだけでなく、ウエーハの面取り部と砥石との接触領域が増えて面取り部の表面粗さが改善される効果が得られる。 When helical grinding is performed, not only the processing strain of the chamfered portion is reduced as compared with normal grinding, but also the contact area between the chamfered portion of the wafer and the grindstone is increased, and the surface roughness of the chamfered portion is improved.

さらに、レジン砥石等により半導体ウエーハの面取り部をヘリカル研削する際、面取り部の連続加工を行うとレジン砥石の溝の上下の角度が徐々に変化する結果、ウエーハの面取り部の上下非対称性が一層大きくなる。そのため、上下非対称の形状の溝が周囲に形成された第1の砥石の溝で円盤状のツルアーの縁部を研削してツルアーの縁部を上下非対称の溝形状に成形し、ツルアーと第2の砥石とを相対的に傾けて該第2の砥石の周囲に溝を形成し、第2の砥石により溝方向に対してウエーハを相対的に傾けて上下略対称のレジン砥石を得て、面取り部を精研削することが知られ、例えば特許文献1に記載されている。 Furthermore, when the chamfered portion of a semiconductor wafer is helically ground with a resin grindstone or the like, if the chamfered portion is continuously machined, the vertical angle of the groove of the resin grindstone gradually changes, and as a result, the vertical asymmetry of the chamfered portion of the wafer is further increased. growing. Therefore, the edge of the disc-shaped tool is ground by the groove of the first grindstone in which a groove having an asymmetrical shape is formed around the groove, and the edge of the tool is formed into a groove shape that is asymmetrical in the vertical direction. A groove is formed around the second grindstone by tilting the grindstone relatively, and the wafer is tilted relative to the groove direction by the second grindstone to obtain a resin grindstone that is substantially symmetrical in the vertical direction and chamfered. It is known to finely grind a portion, and is described in, for example, Patent Document 1.

また、面取り用砥石の回転軸をウエーハの回転軸に対して所定角度傾斜させた面取り方法において、外周研削砥石にウエーハ外周部と、OF部用の加工溝を形成することが知られ、例えば特許文献2に記載されている。 Further, in a chamfering method in which the rotation axis of the chamfering grindstone is tilted by a predetermined angle with respect to the rotation axis of the wafer, it is known that the outer peripheral portion of the wafer and the processing groove for the OF portion are formed on the outer peripheral grinding wheel. It is described in Document 2.

さらに、ノッチ部の面取り幅を一定にするため、砥石を面取り中にウエーハの厚さ方向に相対的に移動させることが知られ、特許文献3に記載されている。 Further, it is known that the grindstone is relatively moved in the thickness direction of the wafer during chamfering in order to make the chamfering width of the notch portion constant, which is described in Patent Document 3.

特開2007−165712号公報JP-A-2007-165712 特開2007−21586号公報Japanese Unexamined Patent Publication No. 2007-21586 特開2005−153129号公報Japanese Unexamined Patent Publication No. 2005-153129

上記従来技術において、特許文献1に記載のものでは、上下非対称の形状の溝が周囲に形成された第1の砥石が必要で、その形状の決定が困難である。また、円形のウエーハの場合は全周で同じ形状で済むので一意的に決定できるが、OFの付いたウエーハ基板、角に円弧が付いた矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部がある場合には、さらに困難であるばかりか、レジン砥石の溝の上下の角度の変化も円形部から非円形部へ移る位置、角部で大きくなり、全周をヘリカル研削することは極めて困難であった。つまり、角を有する基板(ワーク)の角部では砥石の溝の上面と下面のうちの片方のみ当たる片当たりが発生し、良好な面取りができなかった。 In the above-mentioned prior art, the one described in Patent Document 1 requires a first grindstone in which a groove having a vertically asymmetrical shape is formed around it, and it is difficult to determine the shape thereof. In the case of a circular waiha, the same shape can be used for the entire circumference, so it can be uniquely determined. However, a waiha substrate with an OF, a rectangular or polygonal waiha with an arc at the corner, a substrate, a cover glass, etc. are circular. If there is a part and a non-circular part, not only is it more difficult, but also the change in the vertical angle of the groove of the resin grindstone becomes large at the position where the circular part shifts to the non-circular part, and the corner part, and the entire circumference is helically ground. It was extremely difficult to do. That is, at the corners of the substrate (work) having corners, only one of the upper surface and the lower surface of the groove of the grindstone was hit, and good chamfering could not be performed.

特許文献2に記載のものでは、研削工程が複雑化し、円形部が主体で非円形部が少ない場合には良いが、矩形又は多角形の場合には適用が困難であった。 In the case described in Patent Document 2, the grinding process is complicated, and it is good when the grinding process is mainly circular and the number of non-circular portions is small, but it is difficult to apply in the case of a rectangle or a polygon.

特許文献3に記載のものでは、砥石を面取り中にウエーハの厚さ方向に相対的に移動させながら行わなければならないため、面取りの精度を上げるためにはウエーハあるいは砥石の厚さ方向のコントロールが複雑で困難であった。 In the case described in Patent Document 3, the grindstone must be moved relatively in the thickness direction of the wafer during chamfering. Therefore, in order to improve the accuracy of chamfering, the thickness direction of the wafer or the grindstone must be controlled. It was complicated and difficult.

本発明の目的は、上記従来技術の課題を解決し、OF(オリフラ)の付いたウエーハ基板、矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部とを有するものでもヘリカル研削を容易に可能として被加工物と砥石との接触領域を増やし、表面粗さを良好にし、形状崩れを改善することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and even a wafer substrate with OF (orifura), a rectangular or polygonal wafer, a substrate, a cover glass, or the like having a circular portion and a non-circular portion is helical. The purpose is to facilitate grinding, increase the contact area between the workpiece and the grindstone, improve the surface roughness, and improve the shape loss.

上記目的を達成するため、本発明は、角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行うIn order to achieve the above object, the present invention is a method for manufacturing a chamfered substrate in which an end surface of a plate-shaped work material having corners and straight parts is ground by a grinding groove of a grinding wheel, and is a method of manufacturing a chamfered substrate of the work material. The flat surface is attracted in the thickness direction by a chuck table smaller than the outer peripheral shape of the work material, and the rotation axis of the grinding wheel is tilted with respect to the thickness direction axis perpendicular to the flat surface of the work material. , The grinding groove is pressed against the end surface of the work material from the vertical direction to abut, the chamfered portion on the upper part of the work material comes into contact with the upper surface slope of the grinding groove, and the chamfered portion on the lower part of the work material Grinding the upper chamfered portion on the upper surface slope so as not to contact the lower surface slope of the grinding groove is continuously performed on the entire circumference including the corner portion of the end surface of the work material, and then the grinding grindstone. Is raised in the thickness direction relative to the work material so that the lower chamfered portion of the work material comes into contact with the lower surface slope and the upper chamfered part does not come into contact with the upper surface slope. The lower chamfered portion is ground on the lower surface slope continuously over the entire circumference including the corners of the end faces of the work material, or the lower chamfered portion of the work material is on the lower surface slope. To contact and grind the lower chamfered portion on the lower surface slope so that the upper chamfered portion of the work material does not come into contact with the upper surface slope, the entire circumference including the corner portion of the end surface of the work material is to be ground. After that, the grinding wheel is lowered in the thickness direction relative to the work material so that the chamfered portion of the upper part of the work material comes into contact with the upper surface slope and the lower part is chamfered. Grinding the chamfered portion of the upper portion on the upper surface slope so that the portion does not come into contact with the lower surface slope is continuously performed on the entire circumference including the corner portion of the end surface of the work material .

また、上記において、前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 Further, in the above, it is preferable that the width of the grinding groove is made larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.

さらに、上記において、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised relative to the work material in the thickness direction to grind or grind again. It is preferable to grind the lower part of the end face of the work material in the grinding groove, and then lower the grinding wheel in the thickness direction relative to the work material to grind again.

さらに、上記において、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above, the upper part or the lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is placed relative to the work material. It is preferable to raise or lower in the thickness direction and further grind one round.

さらに、上記において、前記研削砥石の回転軸を3〜15°傾けることが好ましい。 Further, in the above, it is preferable to incline the rotation axis of the grinding wheel by 3 to 15 °.

さらに、上記において、前記被加工材の端面の加工は、それぞれ前記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることが好ましい。 Further, in the above, it is preferable that the processing of the end face of the work material is performed by grinding the upper portion of the end face of the work material, grinding the central portion, and grinding the lower portion, respectively.

さらに、上記において、前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることが好ましい。 Further, in the above, it is preferable that the upper grinding, the central grinding, and the lower grinding are performed so as to make one round of the end face of the work piece in the grinding groove over the entire circumference.

また、本発明は、角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、を備え、前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行うものである。 Further, according to the present invention, in a chamfering device for chamfering the end surface of a plate-shaped work material having corners and straight parts with a grinding groove of a grinding wheel, the flat surface of the work material is adsorbed in the thickness direction. The rotation axis is tilted with respect to the chuck table smaller than the outer peripheral shape of the work material and the axis in the thickness direction perpendicular to the plane of the work material, and the grinding groove is perpendicular to the end face of the work material. The chamfered portion on the upper part of the work material comes into contact with the upper surface slope of the grinding groove, and the chamfered part on the lower part of the work material is the lower surface slope of the grinding groove. The chamfered portion of the upper portion is continuously ground on the upper surface slope so as not to come into contact with the material, and the entire circumference including the corner portion of the end surface of the work material is continuously formed. On the other hand, the chamfered portion of the lower portion of the work material is relatively raised in the thickness direction so that the chamfered portion of the lower portion of the work material comes into contact with the lower surface slope and the chamfered portion of the upper portion does not contact the upper surface slope. Is continuously ground on the lower surface of the work material over the entire circumference including the corners of the end faces of the work material, or the chamfered portion of the lower part of the work material comes into contact with the lower surface of the work material to be processed. Grinding the lower chamfered portion on the lower surface slope so that the upper chamfered portion of the material does not come into contact with the upper surface slope is continuously performed on the entire circumference including the corner portion of the end surface of the work material, and then. The grinding wheel is lowered in the thickness direction relative to the work material so that the upper chamfered portion of the work material comes into contact with the upper surface slope, and the lower chamfered portion is brought to the lower surface slope. Grinding the chamfered portion of the upper portion on the upper surface slope without contact is continuously performed on the entire circumference including the corner portion of the end surface of the work material .

さらに、上記のものにおいて、前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 Further, in the above, it is preferable that the width of the grinding groove is larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.

さらに、上記のものにおいて、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised relative to the work material in the thickness direction to grind again. Alternatively, it is preferable to grind the lower part of the end face of the work material in the grinding groove, and then lower the grinding wheel in the thickness direction relative to the work material to grind again.

さらに、上記のものにおいて、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above, the upper part or the lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is relative to the work material. It is preferable to raise or lower the thickness in the thickness direction and further grind one round.

さらに、上記のものにおいて、前記研削砥石の回転軸は3〜15°傾けられたことが好ましい。 Further, in the above, it is preferable that the rotation axis of the grinding wheel is tilted by 3 to 15 °.

さらに、上記のものにおいて、前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことが好ましい。 Further, in the above, it is preferable that the end face of the work piece is ground by grinding the upper part of the end face, grinding the central part, and grinding the lower part, respectively.

本発明によれば、矩形又は多角形の被加工材であっても、ヘリカル研削を可能として、表面粗さを良好にし、形状崩れを少なくすることができる。 According to the present invention, even a rectangular or polygonal workpiece can be subjected to helical grinding, the surface roughness can be improved, and the shape loss can be reduced.

本発明の一実施形態に係る面取り装置の主要部を示す平面図Top view showing the main part of the chamfering apparatus which concerns on one Embodiment of this invention 一実施形態における加工部の構成を示す斜視図(被加工材が円形と直線部)Perspective view showing the configuration of the processed portion in one embodiment (the work material is a circular portion and a straight portion). 図2における平面図Top view in FIG. 一実施形態における加工部の構成を示す斜視図(被加工材が主に直線部)Perspective view showing the configuration of the processed portion in one embodiment (the material to be processed is mainly a straight portion). 図4における平面図Top view in FIG. 被加工材と研削砥石の上下端部との当接を説明する平面図Top view explaining the contact between the work material and the upper and lower ends of the grinding wheel 従来の板材の端面加工のヘリカル研削を示す斜視図Perspective view showing helical grinding of end face processing of conventional plate material 従来の研削と一実施形態による研削との違いを説明する側面図Side view explaining the difference between the conventional grinding and the grinding by one embodiment 一実施形態による面取り基板の製造方法により加工された被加工材の端面を示す側面図A side view showing an end face of a work material processed by the method for manufacturing a chamfered substrate according to an embodiment. 他の実施形態による面取り基板の製造方法を示す側面図Side view showing a manufacturing how the chamfering substrate according to another embodiment 本発明の実施形態に係る研削砥石と被加工材との詳細を示す側面図A side view showing details of the grinding wheel and the material to be processed according to the embodiment of the present invention.

以下に、本発明の実施形態について図面を参照して詳細に説明する。この実施形態により発明が限定されるものでなく、実施形態における構成要素には当業者が容易に想定できるもの、あるいは実質的に同一のものも含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The invention is not limited by this embodiment, and the components in the embodiment include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1は本発明の一実施形態に係る面取り装置の主要部を示す平面図である。面取り装置は、主に供給回収部20、加工部10を有し、その他図示していないが、プリアライメント部、洗浄部、後測定部、搬送部等から構成される。 FIG. 1 is a plan view showing a main part of a chamfering device according to an embodiment of the present invention. The chamfering device mainly has a supply / recovery unit 20 and a processing unit 10, and is further composed of a pre-alignment unit, a cleaning unit, a post-measurement unit, a transport unit, and the like, although not shown.

ウエーハ加工工程は、スライス→面取り→ラップ→エッチング→ドナーキラー→精面取りの順で行われ、工程間には汚れを取り除くため、各種洗浄が用いられる。シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、面取り工程では切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。 The wafer processing process is performed in the order of slicing → chamfering → wrapping → etching → donor killer → fine chamfering, and various cleanings are used to remove stains between the processes. Silicone is hard and brittle, and if the end face of the wafer remains sharp during slicing, it will easily crack or chip during handling such as transportation and alignment in the subsequent processing process, and fragments will damage or contaminate the wafer surface. Or something. In order to prevent this, in the chamfering process, the end face of the cut wafer is chamfered with a chamfering grindstone coated with diamond.

面取り工程は、ラッピング工程の後に行なわれることもある。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も行われる。 The chamfering step may be performed after the wrapping step. At this time, the diameters of the outer circumferences that vary are matched, the width of the orientation flat (OF) is matched, and the dimensions of a minute notch called a notch are matched.

供給回収部20は、面取り加工するウエーハWをウエーハカセット30から加工部10に供給すると共に、面取り加工されたウエーハをウエーハカセット30に回収する。この動作は供給回収ロボット40で行われる。ウエーハカセット30は、カセットテーブル31にセットされ、面取り加工するウエーハWが多数枚収納されている。供給回収ロボット40はウエーハカセット30からウエーハWを1枚ずつ取り出したり、面取り加工されたウエーハをウエーハカセット30に収納したりする。 The supply / recovery unit 20 supplies the chamfered wafer W from the wafer cassette 30 to the processing unit 10 and collects the chamfered wafer into the wafer cassette 30. This operation is performed by the supply / recovery robot 40. The wafer cassette 30 is set on the cassette table 31 and contains a large number of wafers W to be chamfered. The supply / recovery robot 40 takes out wafers W one by one from the wafer cassette 30, and stores the chamfered wafers in the wafer cassette 30.

供給回収ロボット40は3軸回転型の搬送アーム50を備えており、搬送アーム50は、その上面部に図示しない吸着パッドを備えている。搬送アーム50は、吸着パッドでウエーハWの裏面を真空吸着してウエーハWを保持する。すなわち、この供給回収ロボット40の搬送アーム50は、ウエーハWを保持した状態で前後、昇降移動、及び旋回することができ、この動作を組み合わせることによりウエーハWの搬送を行う。 The supply / recovery robot 40 is provided with a 3-axis rotary type transfer arm 50, and the transfer arm 50 is provided with a suction pad (not shown) on the upper surface thereof. The transfer arm 50 holds the wafer W by vacuum suctioning the back surface of the wafer W with a suction pad. That is, the transport arm 50 of the supply / recovery robot 40 can move back and forth, move up and down, and turn while holding the wafer W, and transports the wafer W by combining these operations.

加工部10はウエーハ面取り装置の正面部に配置されており、ウエーハWの外周面取りの全加工、すなわち、粗加工から仕上げ加工までを行う。この加工部10は、ウエーハ送り装置60、外周粗研削装置62、ウエーハWを搬送するトランスファーアーム63及び外周精研削装置61から構成されている。 The processing portion 10 is arranged on the front portion of the wafer chamfering device, and performs all processing of the outer peripheral chamfering of the wafer W, that is, from roughing to finishing. The processing section 10 includes a wafer feed device 60, an outer peripheral rough grinding device 62, a transfer arm 63 for transporting the wafer W, and an outer peripheral fine grinding device 61.

図2は、加工部10の構成を示す斜視図、図3は平面図であり、ウエーハ送り装置60は、ウエーハWを吸着保持するチャックテーブル(ウエーハテーブル)66を有している。このチャックテーブル66は、図示しない駆動手段に駆動されることにより、前後方向(Y軸方向)、左右方向(X軸方向)、及び上下方向(Z軸方向)の各方向に移動するとともに、チャックテーブル駆動モータ65に駆動されることにより中心軸(θ軸)回りに回転する。 FIG. 2 is a perspective view showing the configuration of the processing unit 10, and FIG. 3 is a plan view. The wafer feed device 60 has a chuck table (wafer table) 66 that attracts and holds the wafer W. The chuck table 66 moves in each of the front-rear direction (Y-axis direction), the left-right direction (X-axis direction), and the up-down direction (Z-axis direction) by being driven by a driving means (not shown), and the chuck is chucked. Driven by the table drive motor 65, it rotates around the central axis (θ axis).

外周粗研削装置62は、ウエーハ送り装置60のチャックテーブル66に対してY軸方向に所定距離離れた位置に配置される。この外周粗研削装置62は、外周粗研モータ67に駆動されて回転する外周粗研スピンドル68を有している。外周粗研スピンドル68は、図示しない駆動手段に駆動されることにより前後方向(Y軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。 The outer peripheral rough grinding device 62 is arranged at a position separated by a predetermined distance in the Y-axis direction with respect to the chuck table 66 of the wafer feeding device 60. The outer peripheral rough grinding device 62 has an outer peripheral rough grinding spindle 68 that is driven by an outer peripheral rough grinding motor 67 and rotates. The outer peripheral rough grinding spindle 68 is configured to be movable in each of the front-rear direction (Y-axis direction) and the up-down direction (Z-axis direction) by being driven by a driving means (not shown).

外周粗研スピンドル68には、ウエーハWの外周を粗加工(粗研削)する外周粗研削砥石69が装着され、その回転軸となる。外周粗研削砥石69は、その外周面に複数の外周粗研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が粗加工(粗研削)される。 An outer peripheral rough grinding wheel 69 that roughens (roughly grinds) the outer periphery of the wafer W is mounted on the outer peripheral rough grinding spindle 68, and serves as a rotation axis thereof. The outer peripheral rough grinding wheel 69 has a plurality of outer peripheral rough grinding grooves formed on the outer peripheral surface thereof (total shape grindstone), and by pressing the outer periphery of the wafer W against these grooves, the outer periphery of the wafer W is roughened (the outer circumference of the wafer W is roughened. Rough grinding).

外周精研削装置61は、ウエーハ送り装置60のチャックテーブル66に対してX軸方向に所定距離だけ離れた位置に配置される。この外周精研削装置61は、外周精研モータ70に駆動されて回転する外周精研スピンドル71を有している。外周精研スピンドル71は、図示しない駆動手段に駆動されることにより左右方向(X軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。外周精研スピンドル71には、ウエーハWの外周を仕上げ加工(精研削)する外周精研削砥石72が装着され、その回転軸となる。 The outer peripheral fine grinding device 61 is arranged at a position separated by a predetermined distance in the X-axis direction from the chuck table 66 of the wafer feed device 60. The outer peripheral fine grinding device 61 has an outer peripheral fine grinding spindle 71 that is driven by an outer peripheral fine grinding motor 70 and rotates. The outer peripheral refined spindle 71 is configured to be movable in each of the left-right direction (X-axis direction) and the up-down direction (Z-axis direction) by being driven by a driving means (not shown). An outer peripheral fine grinding wheel 72 that finishes (finely grinds) the outer periphery of the wafer W is mounted on the outer peripheral fine grinding spindle 71, and serves as a rotation axis thereof.

外周精研削砥石72は、その外周面に外周精研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が仕上げ加工される。 The outer peripheral grinding wheel 72 has a groove for outer peripheral grinding formed on the outer peripheral surface thereof (total shape grindstone), and the outer periphery of the wafer W is finished by pressing the outer periphery of the wafer W against the groove.

このとき、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態で行うヘリカル研削によってウエーハWの外周面取りの仕上げ加工を行う。 At this time, the wafer is subjected to helical grinding in a state where the rotation axis of the outer peripheral refined spindle 71 is tilted 3 to 15 °, preferably 6 to 10 ° in the tangential direction of the outer periphery of the wafer W with respect to the rotation axis of the chuck table 66. Finish the chamfering of the outer circumference of W.

これにより、砥粒の運動方向がウエーハWの外周の運動方向と交差し、接触面積が増大すること等より、砥石摩耗が抑制され、外周の形状崩れ等を低減できるため、通常の研削に比べて加工面(研削面)の粗さが良好となる。 As a result, the movement direction of the abrasive grains intersects with the movement direction of the outer circumference of the wafer W, and the contact area is increased, so that the wear of the grindstone can be suppressed and the shape of the outer circumference can be reduced. The roughness of the machined surface (ground surface) is improved.

次に、加工部10の動作について説明する。加工開始前の待機状態では、チャックテーブル66に保持されるウエーハWは、その中心がチャックテーブル66の回転軸と一致するように配置される。このとき、ウエーハWのOF部は所定方向(本例ではY軸方向)を向くように配置される。 Next, the operation of the processing unit 10 will be described. In the standby state before the start of machining, the wafer W held by the chuck table 66 is arranged so that its center coincides with the rotation axis of the chuck table 66. At this time, the OF portion of the wafer W is arranged so as to face a predetermined direction (Y-axis direction in this example).

また、外周粗研削砥石69及び外周精研削砥石72は、ウエーハWからそれぞれ所定距離離れた位置に位置している。具体的には、外周粗研削砥石69の回転中心はウエーハWの回転中心に対してY軸方向に所定距離離れた位置に配置され、かつ外周精研削砥石72の回転中心はウエーハWに対してX軸方向に所定距離離れた位置に配置される。 Further, the outer peripheral rough grinding wheel 69 and the outer peripheral fine grinding wheel 72 are located at positions separated from each other by a predetermined distance from the wafer W. Specifically, the center of rotation of the outer peripheral rough grinding grind 69 is arranged at a position separated by a predetermined distance in the Y-axis direction from the center of rotation of the waiha W, and the center of rotation of the outer peripheral fine grinding grind 72 is relative to the waha W. It is arranged at a position separated by a predetermined distance in the X-axis direction.

まず始めに、アライメント動作が行われる。このアライメント動作では、チャックテーブル66に保持されたウエーハWと外周粗研削砥石69及び外周精研削砥石72との上下方向(Z軸方向)について相対的な位置関係が調整される。 First of all, an alignment operation is performed. In this alignment operation, the relative positional relationship between the wafer W held on the chuck table 66 and the outer peripheral rough grinding wheel 69 and the outer peripheral fine grinding wheel 72 is adjusted in the vertical direction (Z-axis direction).

アライメント動作が完了したら、外周粗研モータ67が駆動される。次に、外周粗研削砥石69による研削(粗加工)を開始する。具体的には、外周粗研削装置62のY軸モータ(不図示)が駆動され、外周粗研スピンドル68がY軸方向に沿ってチャックテーブル66に向かって送られる。 When the alignment operation is completed, the outer peripheral rough grinding motor 67 is driven. Next, grinding (roughing) with the outer peripheral rough grinding wheel 69 is started. Specifically, a Y-axis motor (not shown) of the outer peripheral rough grinding device 62 is driven, and the outer peripheral rough grinding spindle 68 is fed toward the chuck table 66 along the Y-axis direction.

外周粗研削砥石69としては、例えば、直径202mmのダイヤモンド砥粒のメタルボンド砥石で、粒度#800であるものを使用することができる。また、外周粗研スピンドル68は、ボールベアリングを用いたビルトインモータ駆動のスピンドルで、所定の回転速度、例えば回転速度8,000rpmで回転される。 As the outer peripheral rough grinding wheel 69, for example, a metal bond grindstone having diamond abrasive grains having a diameter of 202 mm and having a particle size of # 800 can be used. Further, the outer peripheral rough grinding spindle 68 is a spindle driven by a built-in motor using ball bearings, and is rotated at a predetermined rotation speed, for example, a rotation speed of 8,000 rpm.

チャックテーブル66に向かって外周粗研スピンドル68が送られると、ウエーハWの外周が外周粗研削砥石69に形成された外周粗研削用の研削溝に接触し、ウエーハWの外周部が外周粗研削砥石69により研削されて、ウエーハWの外周面取りの粗加工が開始される。 When the outer peripheral rough grinding spindle 68 is sent toward the chuck table 66, the outer periphery of the wafer W comes into contact with the grinding groove for outer peripheral rough grinding formed on the outer peripheral rough grinding wheel 69, and the outer peripheral portion of the wafer W is rough ground. Grinding is performed by the grindstone 69, and roughing of the outer peripheral chamfer of the wafer W is started.

外周粗研削砥石69による粗加工が開始された後、始めは図2のウエーハWは円形であるので、チャックテーブル66に保持されたウエーハWが一定速度で矢印方向に回転を開始する。この回転角度、つまり加工点が直線部となるOF部に至ると、外周粗研スピンドル68をY方向である、チャックテーブル66に向かう方向の送り量を多くすると共に、外周粗研スピンドル68をX方向に直線移動させ直線部を加工する。その後、直線部の加工を終了すると、再び、チャックテーブル66に保持された板状のウエーハWを一定速度で矢印方向に回転させ、残りの円形部を研削して外周粗研削砥石69による粗加工を終了する。 After the rough machining by the outer peripheral rough grinding wheel 69 is started, since the wafer W in FIG. 2 is circular at first, the wafer W held by the chuck table 66 starts rotating in the arrow direction at a constant speed. When this rotation angle, that is, the OF portion where the machining point is a straight portion is reached, the feed amount in the direction toward the chuck table 66, which is the Y direction of the outer peripheral rough grinding spindle 68, is increased, and the outer peripheral rough grinding spindle 68 is X. Process the straight part by moving it linearly in the direction. After that, when the machining of the straight portion is completed, the plate-shaped wafer W held by the chuck table 66 is rotated again in the direction of the arrow at a constant speed, the remaining circular portion is ground, and the rough machining by the outer peripheral rough grinding wheel 69 is performed. To finish.

次に、外周精研削砥石72による仕上げ加工が同様に行われる。外周精研削砥石72は、ダイヤモンド砥粒のレジンボンド砥石が適している。また、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態でウエーハWの外周面取りの仕上げ加工が行われる。 Next, the finishing process by the outer peripheral fine grinding wheel 72 is performed in the same manner. As the outer peripheral fine grinding wheel 72, a resin bond grindstone having diamond abrasive grains is suitable. Further, the outer peripheral chamfer of the waha W is performed in a state where the rotation axis of the outer circumference refined spindle 71 is tilted by 3 to 15 °, preferably 6 to 10 ° in the tangential direction of the outer circumference of the waha W with respect to the rotation axis of the chuck table 66. Finishing is done.

さらに、外周精研削砥石72の面取り用加工溝はツルアーによって形成されるが、詳しい説明を省略する。また、外周粗研削砥石69としては、例えば、Fe、Cr、Cu等の金属粉等を主成分とし、ダイヤモンド砥粒を混ぜて成形したものが用いられる。ツルアーの材質は、外周粗研削砥石69によって加工することができる一方、外周精研削砥石72を研削することができるものを採用する。 Further, the chamfering groove of the outer peripheral fine grinding wheel 72 is formed by a truer, but detailed description thereof will be omitted. Further, as the outer peripheral rough grinding wheel 69, for example, one in which metal powder such as Fe, Cr, Cu or the like is used as a main component and diamond abrasive grains are mixed and formed is used. As the material of the turret, a material capable of grinding the outer peripheral fine grinding wheel 72 while being able to be processed by the outer peripheral rough grinding wheel 69 is adopted.

例えば炭化珪素からなる砥粒を、必要に応じて充填剤等も加えてフェノール樹脂で結合し、これを円盤状のツルアーに成形したものが望ましい。外周精研削砥石72の材質は、ツルアーによって研削することで周囲に研削溝74を形成することができる一方、形成された研磨によってシリコンウエーハ等の面取り部を精研削することができるものを用いる。例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリスチレン樹脂又はポリエチレン樹脂等を主成分とし、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒を混ぜて成形したものが望ましい。 For example, it is desirable that abrasive grains made of silicon carbide are bonded with a phenol resin by adding a filler or the like as necessary, and this is formed into a disk-shaped turret. As the material of the outer peripheral fine grinding wheel 72, a grinding groove 74 can be formed around the grinding wheel by grinding with a truer, while a chamfered portion such as a silicon wafer can be finely ground by the formed polishing. For example, it is desirable that a phenol resin, an epoxy resin, a polyimide resin, a polystyrene resin, a polyethylene resin or the like is used as a main component, and a diamond abrasive grain or a cubic boron nitride abrasive grain is mixed and molded.

また、外周精研削砥石72としては、例えば、直径50mmのダイヤモンド砥粒のレジンボンド砥石で、粒度#3000のものが用いられる。外周精研スピンドル71はエアーベアリングを用いたビルトインモータ駆動のスピンドルで、回転速度35,000rpmで回転される。 Further, as the outer peripheral fine grinding wheel 72, for example, a resin bond grindstone having diamond abrasive grains having a diameter of 50 mm and having a particle size of # 3000 is used. The outer peripheral Seiken spindle 71 is a built-in motor-driven spindle that uses air bearings and is rotated at a rotation speed of 35,000 rpm.

図4は被加工材が円形でなく、矩形の場合での加工部の構成を示す斜視図であり、図5は同様に平面図である。被加工材が円形でなく、矩形の場合は、図4、5に示すように、直線部の加工が主となる。 FIG. 4 is a perspective view showing the configuration of the processed portion when the material to be processed is not circular but rectangular, and FIG. 5 is similarly a plan view. When the work material is not circular but rectangular, as shown in FIGS. 4 and 5, the processing of the straight portion is mainly performed.

スマートフォンやタブレットの薄型化、軽量化が進むにつれてガラス基板、カバーガラス、あるいはサファイア、セラミックスが表面に使用され、端面強度が重要となり、鏡面研削において、砥粒によるチッピングの抑制と良好な面粗さが要求される。面取りの加工品質、加工面粗さ、マイクロクラックの発生などはガラス基板の端面強度に直接影響する。 As smartphones and tablets become thinner and lighter, glass substrates, cover glass, sapphire, and ceramics are used for the surface, and end face strength becomes important. In mirror grinding, chipping due to abrasive grains is suppressed and good surface roughness is achieved. Is required. Chamfering processing quality, processed surface roughness, occurrence of microcracks, etc. directly affect the end face strength of the glass substrate.

図4、5はスマートフォンやタブレットにおける矩形のガラスパネルの面取り加工を示しており、外周精研削装置61のX軸モータ(不図示)が駆動され、外周精研スピンドル71がX軸方向に沿ってチャックテーブル73に向かって送られる。 FIGS. 4 and 5 show chamfering of a rectangular glass panel in a smartphone or tablet, the X-axis motor (not shown) of the outer peripheral grinding device 61 is driven, and the outer peripheral grinding spindle 71 is moved along the X-axis direction. It is sent toward the chuck table 73.

チャックテーブル73に向かって外周精研スピンドル71が送られると、ガラスパネル(あるいはウエーハ)Wの直線部が外周精研削砥石72に形成された面取り用加工溝である外周精研削用溝に接触し、ガラスパネルWの外周部が外周精研削砥石72によりヘリカル研削されて、ガラスパネルWの外周面取りの加工が開始される。外周精研削砥石72による加工が開始された後、図4、5のガラスパネルWは矩形であるので、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動を開始する。加工点が角部に到達すると、チャックテーブル73は、90°回転しつつY軸方向に移動を行い次の直線部を加工する。以下、同様にガラスパネルWの全外周を加工していく。 When the outer peripheral fine grinding spindle 71 is sent toward the chuck table 73, the straight portion of the glass panel (or wafer) W comes into contact with the outer peripheral fine grinding groove, which is a chamfering processing groove formed on the outer peripheral grinding grindstone 72. , The outer peripheral portion of the glass panel W is helically ground by the outer peripheral fine grinding grind 72, and the outer peripheral chamfering process of the glass panel W is started. Since the glass panel W in FIGS. 4 and 5 is rectangular after the machining by the outer peripheral grinding wheel 72 is started, the glass panel W held by the chuck table 73 starts moving at a constant speed in the Y-axis direction. When the machining point reaches the corner portion, the chuck table 73 moves in the Y-axis direction while rotating 90 ° to machine the next straight portion. Hereinafter, the entire outer circumference of the glass panel W will be processed in the same manner.

また、研削砥石は、ポーラスな表面を有する面取り砥石素材に飽和脂肪酸溶液と共に潤滑剤を含ませ、表面を乾燥させて潤滑剤含浸砥石とし、この潤滑剤を含む砥石を研削時に水冷却して使用することが望ましい。これにより、砥石の切削点へ潤滑剤が確実に供給されて切削点温度を所定温度以下にすることができる。また、冷却液を水としたので、冷却液による環境汚染を防止できる。さらにウエーハ面取り装置では、砥石に潤滑剤を含浸させているので、長期にわたり潤滑剤を切削点に供給可能であり、冷却液を水としたので低温かつ環境に配慮した加工が可能となる。 Further, the grinding wheel is used by impregnating a chamfering wheel material having a porous surface with a lubricant together with a saturated fatty acid solution and drying the surface to obtain a lubricant-impregnated grindstone. It is desirable to do. As a result, the lubricant is reliably supplied to the cutting point of the grindstone, and the cutting point temperature can be lowered to a predetermined temperature or lower. Moreover, since the coolant is water, environmental pollution by the coolant can be prevented. Further, in the waiha chamfering device, since the abrasive stone is impregnated with the lubricant, the lubricant can be supplied to the cutting point for a long period of time, and since the coolant is water, low temperature and environment-friendly processing becomes possible.

チャックテーブル73は、図5に示すように矩形のガラスパネルWの形状と同様の形状であるが、外周精研削砥石72による加工時にガラスパネルW自体がやや弾性変形するようにガラスパネルWよりも十分に小さくなり、ガラスパネルWはチャックテーブル73よりオーバハングして保持されている。 As shown in FIG. 5, the chuck table 73 has a shape similar to that of the rectangular glass panel W, but is larger than the glass panel W so that the glass panel W itself is slightly elastically deformed when processed by the outer peripheral fine grinding wheel 72. It is sufficiently small, and the glass panel W is held overhanging from the chuck table 73.

具体的には、チャックテーブル73の大さきは、ガラスパネルWのX軸方向の中央からの距離をQとし、チャックテーブル73のX軸方向の中央からの距離をPとすると、Q=(1.3〜1.7)P、より望ましくはQ=1.5PとすることがガラスパネルWの吸着による固定及び研削加工の点から良い。つまり、ガラスパネルWの変形や撓み、歪みなどの加工精度への影響を避けると共に、加工時に被加工材、ガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。Y軸方向も同様であり、図5のN=(1.3〜1.7)H、より望ましくはN=1.5Hとすることが望ましい。つまり、チャックテーブル73の形状は、被加工材の外周形状よりも小さく、縦横共に、ガラスパネルWの平面形状よりも0.6〜0.8倍が望ましい。なお、矩形のガラスパネルWの形状は、縦×横が120mm×60mm程度、厚みが0.5〜1.5mm程度であり、矩形のチャックテーブル73は80mm×40mm程度が望ましい。 Specifically, for the size of the chuck table 73, where Q is the distance from the center of the glass panel W in the X-axis direction and P is the distance from the center of the chuck table 73 in the X-axis direction, Q = (1). It is preferable to set .3 to 1.7) P, more preferably Q = 1.5P, from the viewpoint of fixing and grinding by adsorption of the glass panel W. That is, while avoiding the influence of deformation, bending, and distortion of the glass panel W on the processing accuracy, the material to be processed and the glass panel W itself are slightly elastically deformed during processing, and the outer peripheral fine grinding wheel 72 is a soft resin bond grindstone. Coupled with that, the impact such as the runout is mitigated. The same applies to the Y-axis direction, and it is desirable that N = (1.3 to 1.7) H in FIG. 5, and more preferably N = 1.5H. That is, the shape of the chuck table 73 is smaller than the outer peripheral shape of the work material, and it is desirable that the shape of the chuck table 73 is 0.6 to 0.8 times larger than the planar shape of the glass panel W in both vertical and horizontal directions. The shape of the rectangular glass panel W is preferably about 120 mm × 60 mm in length × width and about 0.5 to 1.5 mm in thickness, and the rectangular chuck table 73 is preferably about 80 mm × 40 mm.

外周精研スピンドル71の回転軸をチャックテーブル73に対してガラスパネルWの外周の接線方向にθ=3〜15°、望ましくは6〜10°傾斜しているので、ガラスパネルWは外周精研削砥石72の研削溝74に対してこの角度θで当接し、砥粒の運動方向がガラスパネルWの運動方向と交差する。また、傾斜角度があまりに大きいと、研削抵抗の増大、端面における上下角部の欠け、キズなどの点で好ましくない。 Since the rotation axis of the outer peripheral refined spindle 71 is tilted with respect to the chuck table 73 in the tangential direction of the outer periphery of the glass panel W by θ = 3 to 15 °, preferably 6 to 10 °, the glass panel W is finely ground on the outer circumference. It abuts on the grinding groove 74 of the grindstone 72 at this angle θ, and the moving direction of the abrasive grains intersects with the moving direction of the glass panel W. Further, if the inclination angle is too large, it is not preferable in terms of an increase in grinding resistance, chipping of vertical corners on the end face, scratches, and the like.

周精研削砥石72の研削溝74の幅yは、外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の上端部が被加工材Wの上面と当接する位置から被加工材Wの下面が研削溝74の下端部に最も近づくが当接しない位置までの距離、つまり、研削溝74を角度θ傾けたときの被加工材の見掛け厚み、右端部からの左端部までの寸法y0よりも広くy>y0となっている。y0は、研削溝74の直径をD、被加工材Wの厚さをtとすると、おおよそDtanθ+t/cosθとなる。研削溝74の幅を広くする方法は予めツールイングするときの転写用の溝を広くしても良いし、ツールイング時のツルアーをZ軸方向に上下に移動して研削溝74を幅広く加工しても良い。 Width y of the grinding groove 74 of the outer ShuTadashi grinding wheel 72, the grinding groove 74 of the outer periphery fine grinding wheel 72 when the inclined angle theta, from the position where the upper end portion of the grinding groove 74 is in contact with the upper face of the workpiece W the distance to the position where the lower surface of the workpiece W is not closest but abutting the lower end of the grinding groove 74, i.e., the apparent thickness of the workpiece when tilting the grinding groove 74 angle theta, the left end from the right end portion Y> y0, which is wider than the dimensions y0 up to. y0 is approximately Dtanθ + t / cosθ, where D is the diameter of the grinding groove 74 and t is the thickness of the workpiece W. As a method of widening the width of the grinding groove 74, the groove for transfer at the time of tooling may be widened in advance, or the tooling at the time of tooling is moved up and down in the Z-axis direction to widen the grinding groove 74. You may.

次に、ヘリカル研削の加工手順を以下に説明する。
図10を参照して、チャックテーブル73に向かって外周精研スピンドル71が送られたとき、研削溝74の右上端部の上面斜面72uがガラスパネルWの上面、右上端部が当接して加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。
Next, the machining procedure of helical grinding will be described below.
With reference to FIG. 10, when the outer peripheral refined spindle 71 is sent toward the chuck table 73, the upper surface slope 72u of the upper right end portion of the grinding groove 74 comes into contact with the upper surface and the upper right end portion of the glass panel W for processing. Is started, and then the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction to perform chamfering.

ガラスパネルWの下面は、研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点がガラスパネルWの角R部に到達すると、チャックテーブル73が回転して、角部のRを加工する。このときは円形部を研削するのと同様になり、接触領域が小さくなるので、研削溝74の上面斜面の当接は弱くなり、厚み方向の中央部の研削が主となる。以下、同様にガラスパネルWの外周を1周するまで加工していく。 The lower surface of the glass panel W does not come into contact with the lower surface of the glass panel W because the grinding groove 74 is wider than the apparent thickness of the glass panel W. The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72. When the processing point reaches the corner radius portion of the glass panel W, the chuck table 73 rotates to process the corner radius portion. At this time, it is the same as grinding a circular portion, and the contact area becomes smaller, so that the contact on the upper slope of the grinding groove 74 becomes weaker, and the central portion in the thickness direction is mainly ground. Hereinafter, in the same manner, processing is performed until the outer circumference of the glass panel W makes one round.

記の加工が1周した点で、外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に降下させ、研削溝74の下面斜面がガラスパネルWの下面、左下端部の下面斜面72dが当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがX軸方向に一定速度で移動して2周目の面取りを行う。 In that the machining of the upper SL has one turn, increase the outer ShuTadashi grinding wheel 72 in the Z-axis direction, or the chuck table 73 is moved down to the Z-axis direction, the lower surface of the lower surface slopes glass panel W of the grinding groove 74, the left The lower surface slope 72d of the lower end is brought into contact with the lower surface. That is, the grinding wheel is raised in the thickness direction relative to the work piece. After that, the glass panel W held on the chuck table 73 moves at a constant speed in the X-axis direction to chamfer the second lap.

ガラスパネルWの上面は研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。 The upper surface of the glass panel W does not come into contact with the upper surface of the glass panel W because the grinding groove 74 is wider than the apparent thickness of the glass panel W. The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72.

以上のように、ガラスパネルWに対して外周精研削砥石72の研削溝74を角度θで傾斜させて当接し、砥粒の運動方向がガラスパネルWの運動方向と交差するようにし、かつ、外周精研削砥石72の研削溝74の幅を被加工材に対して外周精研削砥石72を角度θ傾けたときの被加工材の見掛け厚みよりも幅広とすること、外周精研削砥石72をZ軸方向に上下することにより、OF等の直線部、又は矩形、多角形等の材料の面取り加工にヘリカル研削を適用することが可能となる。これにより、端面の面粗さ、加工歪を小さくし、高番手の砥石でも長時間の使用が可能である。 As described above, the grinding groove 74 of the outer peripheral fine grinding grindstone 72 is tilted at an angle θ to come into contact with the glass panel W so that the moving direction of the abrasive grains intersects with the moving direction of the glass panel W. Make the width of the grinding groove 74 of the outer peripheral fine grinding grindstone 72 wider than the apparent thickness of the work piece when the outer peripheral fine grinding grindstone 72 is tilted by an angle θ with respect to the work material. By moving up and down in the axial direction, it becomes possible to apply helical grinding to chamfering a straight portion such as OF or a material such as a rectangle or a polygon. As a result, the surface roughness and processing distortion of the end face are reduced, and even a high-count grindstone can be used for a long time.

ここで、本発明者は、θの角度をより大きくして、ガラスパネルWの上面の右上端部が上面斜面72u当接し、かつ、ガラスパネルWの下面の左下端部に下面斜面72dが当接するようにして研削を行う評価を実施した。すると、ガラスパネルWの角部のRを研削する際、必ず、ガラスパネルWは、上面斜面72uと下面斜面72dとのうち片方しか当接できない状況が発生することを見いだした。このため、ガラスパネルWの角部においては、必ず上面か下面のうちのどちらかに研削が十分で無い部分が発生することが判明した。 Here, the present inventor increases the angle of θ so that the upper right end of the upper surface of the glass panel W abuts on the upper surface slope 72u, and the lower surface slope 72d hits the lower left lower end of the lower surface of the glass panel W. An evaluation was carried out in which grinding was performed so as to be in contact with each other. Then, when grinding the R at the corner of the glass panel W, it was found that the glass panel W always comes into contact with only one of the upper surface slope 72u and the lower surface slope 72d. For this reason, it has been found that at the corners of the glass panel W, there is always a portion on either the upper surface or the lower surface where grinding is insufficient.

よって、本発明者は、ヘリカル研磨を行う際、θ、y、ガラスパネルWの厚みtの関係は、「ガラスパネルWの上面又は下面のうちどちらか一方のみが研削溝74の端部(上面斜面72uまたは下面斜面72d)に接触し、もう一方は端部に接触しない」(条件1)ようにθ、y、tが選択されなければならないことを見いだした。よって、それらのパラメータのうち、どれかが決まっているならば、変更可能なパラメータを調整することによって上記条件1を満たさなければならない。その際、条件1を満たす範囲で、なるべくy0がyに近い値である方が好ましいことが判明した。それにより、研削溝74の大部分を使用できるので、砥石の寿命も長くなるからである。 Therefore, the present inventor has a relationship between θ , y, and the thickness t of the glass panel W when performing helical polishing, “only one of the upper surface and the lower surface of the glass panel W is the end portion (upper surface) of the grinding groove 74. It has been found that θ, y, t must be selected so that it touches the slope 72u or the lower slope 72d) and the other does not touch the end ”(Condition 1). Therefore, if any of these parameters is determined, the above condition 1 must be satisfied by adjusting the changeable parameter. At that time, in the range satisfying the condition 1, Narube rather y 0 is found to be more preferable a value close to y. As a result, most of the grinding groove 74 can be used, so that the life of the grindstone is extended.

は、円形部の加工と直線部の加工とでガラスパネルWの厚み方向の上下端部で外周精研削砥石72と研削溝74との当接の違いを説明する平面図であり、外周精研削砥石72の研削溝74の円筒部と直線ワークW1の接触領域は、円筒部と円形ワークW2の接触領域より大きいだけでなく、研削溝74の上下端部の上面斜面72uあるいは下面斜面72dとの直線ワークW1の接触域Lは円形ワークW2の接触域Mより大きい。 FIG. 6 is a plan view for explaining the difference in contact between the outer peripheral fine grinding grindstone 72 and the grinding groove 74 at the upper and lower ends of the glass panel W in the thickness direction between the processing of the circular portion and the processing of the straight portion. The contact area between the cylindrical portion of the grinding groove 74 of the precision grinding wheel 72 and the straight work W1 is not only larger than the contact area between the cylindrical portion and the circular work W2, but also the upper and lower end slopes 72u or the lower surface slope 72d of the upper and lower ends of the grinding groove 74. The contact area L of the linear work W1 with is larger than the contact area M of the circular work W2.

したがって、直線ワークW1での研削抵抗は円形ワークW2の研削抵抗より大きいだけでなく、研削溝74の厚み方向の幅を円形ワークW2に合わせて面取り加工すると、直線ワークW1を面取り加工することができなくなる。また、円形ワークW2に対して上下対称に面取り加工ができるように研削溝74を作成したとしても、それを直線ワークW1に対して面取り加工すると上下面の形状が異なったものとなる。 Therefore, not only the grinding resistance of the straight work W1 is larger than the grinding resistance of the circular work W2, but also when the width of the grinding groove 74 in the thickness direction is chamfered according to the circular work W2, the straight work W1 can be chamfered. become unable. Further, even if the grinding groove 74 is created so that the circular work W2 can be chamfered vertically symmetrically, the shapes of the upper and lower surfaces will be different if the grinding groove 74 is chamfered with respect to the straight work W1.

は、従来の板材の端面加工に対して平面研削盤80に1軸を追加した軸傾斜方式によるヘリカル研削の例を示す。図に示すように、精密ステージ81を傾斜角度αで配置し、砥石82の最下点を被加工材83が通過するようにしたものである。砥石82は被加工材83よりも幅広であり、バイス84によって両面を加工面の近くまで固定されている。 FIG. 7 shows an example of helical grinding by an axial tilting method in which one axis is added to the surface grinding machine 80 as opposed to the conventional end face machining of a plate material. As shown in FIG. 7 , the precision stage 81 is arranged at an inclination angle α so that the work piece 83 passes through the lowest point of the grindstone 82. The grindstone 82 is wider than the work piece 83, and both sides are fixed close to the machined surface by the vise 84.

この方法では、図8(a)に示すように、被加工材83がバイス84によって、しっかりと固定されている点、砥石82の回転軸が加工面と水平となる点等より、砥石82が矢印Vのように押し付けられ、砥石82の振れ等が被加工材83へ衝撃となり、加工面にダメージを与える。また、研削によるキリコが加工面に落下することより、加工面にキリコによる傷、引っ掻きによる条痕が生じる。 In this method, as shown in FIG. 8 (a), the workpiece 83 is vice 84, that it is firmly fixed, from such a point that the rotation shaft of the grinding wheel 82 is machined surface and the horizontal, the grinding wheel 82 is It is pressed as shown by the arrow V, and the runout of the grindstone 82 causes an impact on the work piece 83, causing damage to the machined surface. In addition, since the ground chirico falls on the machined surface, scratches due to the chirico and streaks due to scratches are generated on the machined surface.

これに対して、本発明では、被加工材Wに対して外周精研削砥石72の研削溝74を角度θ傾けている。また、チャックテーブル73はガラスパネルWの平面を載置し、この表面をエアーコンプレッサーやブロワー等で減圧し、ガラスパネルWを吸着し固定する。ガラスパネルWをチャックテーブル73よりオーバハングして垂直方向に吸着して保持した図(b)の場合は、外周精研削砥石72の研削溝74が加工面に対して垂直に当接し、外周精研削砥石72による押し付け力が矢印Hのように働く。 On the other hand , in the present invention, the grinding groove 74 of the outer peripheral grinding wheel 72 is tilted by an angle θ with respect to the work piece W. Further, a flat surface of the glass panel W is placed on the chuck table 73, and the surface of the chuck table 73 is depressurized by an air compressor, a blower, or the like to attract and fix the glass panel W. For Figure 8 which holds the glass panel W is adsorbed in the vertical direction to overhang from the chuck table 73 (b) is a grinding groove 74 of the outer periphery fine grinding wheel 72 abuts perpendicularly to the processing surface, the outer peripheral seminal The pressing force of the grinding wheel 72 works as shown by the arrow H.

したがって、加工時に被加工材、例えばガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。したがって、加工面にキズ等のダメージを与えことがなく、研削によるキリコは矢視のように排出され、加工面に落下することがなく、加工面にキリコによる傷、引っ掻きによる条痕を生じることがない。 Therefore, the material to be processed, for example, the glass panel W itself is slightly elastically deformed during processing, and the outer peripheral fine grinding wheel 72 is a soft resin bond grindstone to alleviate the impact such as runout. Therefore, there is no damage such as scratches on the machined surface, and the chirico produced by grinding is discharged like an arrow, does not fall on the machined surface, and causes scratches and streaks due to scratches on the machined surface. There is no.

は、以上の面取り基板の製造方法により加工された被加工材の端面を示す側面図であり、レジン砥石である外周精研削砥石72で研削後の条痕の状態を斜線で示している。研削溝74は被加工材(基板、ワーク)の厚みに対して幅を十分大きくし、被加工材に対して6〜10°の斜め角度で当接させ、研削溝74の上面と下面のうち片面のみワークに当接するようにし、他方には当てないように面取りを行った。実際には、上面を当接させた研削を被加工材の端面の全周に対して1周行い、次に下面を当接させ、さらに1周させて合計2周の研磨、面取りを行った。 FIG. 9 is a side view showing the end surface of the work material processed by the above method for manufacturing a chamfered substrate, and shows the state of the streaks after grinding with the outer peripheral fine grinding wheel 72, which is a resin grindstone, with diagonal lines. .. The width of the grinding groove 74 is sufficiently large with respect to the thickness of the work material (board, work), and the grinding groove 74 is brought into contact with the work material at an oblique angle of 6 to 10 °. The work was chamfered so that only one side was in contact with the work and the other side was not touched. In practice, grinding with the upper surface in contact was performed once with respect to the entire circumference of the end face of the material to be processed, then the lower surface was brought into contact with the surface, and then one round was performed for a total of two rounds of polishing and chamfering. ..

従来のヘリカル研削による面取り加工では角部、直線部を有する被加工材で砥石の研削溝の上面と下面のうち片方のみ強く当たる片当たりが発生し良好な面取りが出来なかったが、図に示すように厚み方向の中央部Cが砥石を傾斜させた角度に応じたヘリカル研削の特有な条痕となり、良好な面粗さで形状崩れを生じていない。 In the conventional chamfering by helical grinding, good chamfering was not possible due to the strong contact of only one of the upper and lower surfaces of the grinding groove of the grindstone with the work material having corners and straight parts. As described above, the central portion C in the thickness direction becomes a peculiar streak of helical grinding according to the angle at which the grindstone is tilted, and the shape is not deformed with good surface roughness.

また、上下両端も角度、大きさ共に対称、図でTu、Tdの幅も均等であり、研削溝の端部で被加工材の端面の角部がヘリカル研削されたことによる条痕、角度、方向は研削溝の端部が当たっている分だけ異なり、それが明確に現れている。 In addition, both the upper and lower ends are symmetrical in angle and size, the widths of Tu and Td are even in the figure, and the streaks and angles due to helical grinding of the corners of the end face of the work material at the ends of the grinding groove, The direction is different by the amount that the end of the grinding groove hits, which is clearly visible.

さらに、スマートフォンやタブレットの薄型化、軽量化に伴って、従来、ガラス基板を所定の大きさに切断してから、化学強化を行い、その後に、マスキング印刷を行い、センサー電極を形成していた。それに対して、上記の面取り基板の製造方法によれば、大きなガラス基板のまま化学強化処理を施した後、マスキング印刷、センサー電極形成を形成し、その後に、切断、面取り加工を行っても、つまり、端面に化学強化されていない状態でも良好な加工面粗さが得られ、マイクロクラックの発生を抑えることができる。そして、その結果、生産効率が極めて向上し、実用上で十分な端面強度を得ることができる。 Further, as smartphones and tablets have become thinner and lighter, conventionally, a glass substrate has been cut to a predetermined size, then chemically strengthened, and then masking printing is performed to form a sensor electrode. .. On the other hand, according to the above-mentioned method for manufacturing a chamfered substrate, even if the large glass substrate is chemically strengthened, masked printing and sensor electrode formation are formed, and then cutting and chamfering are performed. That is, good processed surface roughness can be obtained even when the end face is not chemically strengthened, and the occurrence of microcracks can be suppressed. As a result, the production efficiency is extremely improved, and a practically sufficient end face strength can be obtained.

さらに、面粗さ、形状の対称性のみならず、研削溝を1回修正(ツールイング)した後、研削能力の低下、所定の外周面幅、外周角度、外周形状を満たさなくなるまでに連続して加工できる枚数も増加できる。さらに、レジン砥石である外周精研削砥石72のツールイングを繰り返し、面取り加工を連続した場合、摩耗によりレジン砥石が所定の直径以下となって、使用不可能となるまでに加工できる枚数も多くすることができる。 Further, not only the surface roughness and the symmetry of the shape, but also the grinding groove is corrected once (tooling), and then the grinding ability is lowered, the predetermined outer peripheral surface width, the outer peripheral angle, and the outer peripheral shape are not satisfied continuously. The number of sheets that can be processed can also be increased. Further, when the tooling of the outer peripheral fine grinding wheel 72, which is a resin grindstone, is repeated and the chamfering process is continued, the number of sheets that can be processed before the resin grindstone becomes smaller than the predetermined diameter due to wear and becomes unusable is increased. be able to.

以上、外周精研削砥石72を用いたヘリカル研削として説明したが、粗研削時、つまり、外周粗研削砥石69を用いるときも同様に2周するヘリカル研削を行っても良い。これによれば、精研削時、外周精研削砥石72の研削溝74の摩耗、目詰まり、溝形状の変形を防いで、より良好な面取り加工を行うことができる。 Has been described as a helical grinding using an outer ShuTadashi grinding wheel 72, during rough grinding, i.e., may also be performed helical grinding to 2 weeks in the same manner when using outer periphery rough grinding 69. According to this, during fine grinding, wear, clogging, and deformation of the groove shape of the grinding groove 74 of the outer peripheral fine grinding wheel 72 can be prevented, and better chamfering can be performed.

また、被加工材の端面の上部を全周に渡って研削溝74で1周するように研削(上部の研削)し、その後、研削砥石69あるいは72を被加工材の厚さ方向に相対的に上昇させて、さらに下部を1周研削(下部の研削)することとしたが、この順序は逆でも良いし、被加工材の端面の上部、下部に研削溝74の端部である上面斜面72u、下面斜面72dのいずれも当てない中央部の研削を別途に行っても良い。 Further, the upper part of the end face of the work material is ground so as to make one round in the grinding groove 74 over the entire circumference (grinding of the upper part), and then the grinding wheel 69 or 72 is relative to the thickness direction of the work material. It was decided to grind the lower part once more (grinding the lower part), but the order may be reversed, and the upper surface slope which is the end part of the grinding groove 74 is on the upper part and the lower part of the end face of the work material. Grinding of the central portion where neither the 72u nor the lower surface slope 72d is applied may be performed separately.

10は、中央部の研削を示している。中央部の研削は、外周精研スピンドル71に向かってチャックテーブル73が送られたとき、研削溝74の右上端部の上面斜面72u及び左下端部の下面斜面72dがいずれもガラスパネルWの上面及び下面に当接しないで加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。研削溝74が、ガラスパネルWの見掛け厚みy0、すなわち外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の直径をD、被加工材であるガラスパネルWの厚さtとの双方を考慮した厚みよりも十分、少なくとも20〜30%幅広となっている。 Figure 10 shows the cutting Lab central portion. Grinding is the central portion, when the chuck table 73 is sent toward the periphery fine Lab spindle 71, both the lower surface slopes 72d of the upper surface slopes 72u and left lower ends of the upper right end of the grinding groove 74 of the glass panel W Machining is started without contacting the upper and lower surfaces, and then the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction to perform chamfering. Grinding grooves 74, apparent thickness y 0 of the glass panel W, that is, when grinding grooves 74 of the outer periphery fine grinding wheel 72 is inclined an angle theta, the thickness of the diameter of the grinding groove 74 D, the glass panel W is a workpiece It is at least 20 to 30% wider than the thickness considering both t and t.

ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点が角のR部に到達すると、チャックテーブル73を回転させて、角部のRを加工する。ガラスパネルWの厚み方向の端部を研削溝74の上下斜面(あるいは上下端部)で研削しないので、上下非対称性に影響なく、ガラスパネルWの外周形状に係わらず加工することに適し、図2に示したような円形部が主体でOF部のような直線部がある場合に、形状を削り出すのには都合が良い。 The central portion and the main portion of the glass panel W in the thickness direction are helically ground in contact with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72. When the processing point reaches the R portion of the corner, the chuck table 73 is rotated to process the R portion of the corner portion. Since the end portion of the glass panel W in the thickness direction is not ground on the upper and lower slopes (or upper and lower end portions) of the grinding groove 74, it is suitable for processing regardless of the outer peripheral shape of the glass panel W without affecting the vertical asymmetry. When the circular portion as shown in 2 is the main body and there is a straight portion such as the OF portion, it is convenient to carve out the shape.

図10の状態から外周精研削砥石72をZ軸方向に下降、あるいはチャックテーブル73をZ軸方向に上昇させ、研削溝74の右上端部の上面斜面72uにガラスパネルWの上面、図で右上端部を当接させる。つまり、研削砥石を被加工材に対して相対的に厚さ方向に下降させる。その後、チャックテーブル73に保持されたガラスパネルWをY軸方向に一定速度で移動してヘリカル研削による面取り加工が行われる。 From the state of FIG. 10, the outer peripheral fine grinding wheel 72 is lowered in the Z-axis direction, or the chuck table 73 is raised in the Z-axis direction, and the upper surface of the glass panel W is on the upper right slope 72u of the upper right end of the grinding groove 74, and the upper right in the figure. Bring the ends into contact. That is, the grinding wheel is lowered in the thickness direction relative to the work piece. After that, the glass panel W held on the chuck table 73 is moved in the Y-axis direction at a constant speed, and chamfering is performed by helical grinding.

周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に下降させ、研削溝74の下面斜面が、ガラスパネルWの下面、図で左下端部の下面斜面72dに当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して3周目の面取りを行う。 Increasing the outer ShuTadashi grinding wheel 72 in the Z-axis direction, or the chuck table 73 is lowered in the Z axis direction, the lower surface slopes of the grinding groove 74, the lower surface of the glass panel W, the lower surface slopes 72d of the left lower portion in FIG person Try to touch. That is, the grinding wheel is raised in the thickness direction relative to the work piece. After that, the glass panel W held by the chuck table 73 moves at a constant speed in the Y-axis direction to chamfer the third lap.

央部の研削(a)、上部の研削(b)、下部の研削(c)の順で説明したが、これに限ることなく、上部の研削(b)、中央部の研削(a)、下部の研削(c)の順など任意でも良い。ただし、中央部の研削(a)を先に行うことが、先に形状を削り出すことができる点、その後、より慎重、正確に上部の研削(b)、下部の研削(c)を行える点で優れている。 Grinding Hisashi Naka portion (a), top grinding (b), has been described in the order of the lower portion of the grinding (c), without being limited thereto, the upper portion of the grinding (b), the central portion grinding (a), The order of grinding (c) at the bottom may be arbitrary. However, if the central portion is ground (a) first, the shape can be cut out first, and then the upper grinding (b) and the lower grinding (c) can be performed more carefully and accurately. Is excellent.

また、被加工材として、特に、図2に示したような円形部が主体でOF部のような直線部がある場合に、中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ、被加工材の外周を1周する必要はない。例えば、円形部は上部の研削(b)、下部の研削(c)だけを行い、直線部は中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ行えば良く、面粗さを良好にし、形状崩れを生じないで加工時間を短縮、研削溝74の摩耗、目詰まり、溝形状の変形を防ぐことができる。 Further, as the material to be processed, particularly when the circular portion as shown in FIG. 2 is the main body and there is a straight portion such as the OF portion, the central portion is ground (a), the upper portion is ground (b), and the lower portion is ground. It is not necessary to go around the outer circumference of the work piece once for each grinding (c). For example, if the circular portion is subjected to only the upper grinding (b) and the lower grinding (c), and the straight portion is subjected to the central portion grinding (a), the upper grinding (b), and the lower grinding (c), respectively. It is good, the surface roughness is good, the machining time is shortened without causing shape collapse, and the grinding groove 74 can be prevented from being worn, clogged, and deformed.

図11は、外周精研削砥石72の研削溝74の上面斜面72u及び下面斜面72dとの関係の詳細であり、研削溝74の斜面と面取り角度の関係を説明する。図11は外周精研削砥石72を傾けないで、被加工材Wへ当接させた状態であり、面取り角度が研削溝74の上面斜面72u及び下面斜面72dの角度と一致している。 FIG. 11 shows details of the relationship between the upper surface slope 72u and the lower surface slope 72d of the grinding groove 74 of the outer peripheral grinding wheel 72, and describes the relationship between the slope of the grinding groove 74 and the chamfering angle. FIG. 11 shows a state in which the outer peripheral fine grinding wheel 72 is brought into contact with the work piece W without being tilted, and the chamfering angle coincides with the angles of the upper surface slope 72u and the lower surface slope 72d of the grinding groove 74.

ヘリカル研削を行うため、外周精研削砥石72を傾けた角度は、3〜15°、望ましくは6〜10°であるので、加工がわずかに開始されれば、上面斜面72uと被加工材Wの上面との接触領域は図11と大きな違いはない。したがって、図で既に示したように、被加工材Wの上下両端(Tu、Tdの領域)も中央部Cと比べて条痕が斜面の分、異なる向きの条痕となり、ヘリカル研削の効果が十分に得られ、中央部と遜色なく加工歪み、表面粗さが改善される。この三つの条痕が現れるのが、以上の実施の形態の特徴でもある。 To perform the helical grinding angles by tilting the periphery fine grinding wheel 72, 3 to 15 °, preferably because it is 6 to 10 °, if the processing is slightly starts, the upper surface slopes 72u and the workpiece W contact area between the upper surface of FIG. 11 and there is no big difference. Therefore, as already shown in FIG. 9 , the upper and lower ends (Tu and Td regions) of the work material W also have streaks in different directions due to the slope as compared with the central portion C, and the effect of helical grinding is obtained. Is sufficiently obtained, processing distortion and surface roughness are improved as much as the central part. The appearance of these three streaks is also a feature of the above embodiments.

なお、説明を分かりやすくするため、図11の外周精研削砥石72を傾けないことで、研削溝74の斜面を面取り角度と一致させてもよい。それに対して、逆に、外周精研削砥石72を傾け斜面を被加工材Wの面取り角度と一致させても良い。これにより、加工の開始時点、研削量が少ない場合でも、上面斜面72uと被加工材Wの上面との接触領域が増えて、被加工材Wの上下両端の表面粗さが改善される。 Incidentally, for ease of explanation, by not tilting the periphery fine grinding wheel 72 of Figure 11, the slope of the ground grooves 74 can be equal to the bevel angle. On the other hand, conversely, the outer peripheral grinding wheel 72 may be tilted so that the slope matches the chamfer angle of the work piece W. As a result, even when the amount of grinding is small at the start of processing, the contact region between the upper surface slope 72u and the upper surface of the work material W increases, and the surface roughness at both the upper and lower ends of the work material W is improved.

10…加工部、20…供給回収部、30…ウエーハカセット、31…カセットテーブル、40…供給回収ロボット、50…搬送アーム、60…ウエーハ送り装置、61…外周精研削装置、62…外周粗研削装置、65…チャックテーブル駆動モータ、66…チャックテーブル、67…外周粗研モータ、68…外周粗研スピンドル(回転軸)、69…外周粗研削砥石、70…外周精研モータ、71…外周精研スピンドル(回転軸)、72…外周精研削砥石、72d…下面斜面、72u…上面斜面、73…チャックテーブル、74…研削溝、80…平面研削盤、81…精密ステージ、82…砥石、83…被加工材、84…バイス、W…ウエーハ、ガラスパネル、被加工 10 ... Machining unit, 20 ... Supply and recovery unit, 30 ... Weiha cassette, 31 ... Cassette table, 40 ... Supply and recovery robot, 50 ... Conveyor arm, 60 ... Weiha feed device, 61 ... Outer peripheral fine grinding device, 62 ... Outer peripheral rough grinding Equipment, 65 ... Chuck table drive motor, 66 ... Chuck table, 67 ... Outer peripheral grinding motor, 68 ... Outer peripheral grinding spindle (rotary shaft), 69 ... Outer peripheral grinding wheel, 70 ... Outer peripheral grinding motor, 71 ... Outer peripheral grinding Grinding spindle (rotary axis), 72 ... outer circumference fine grinding wheel, 72d ... lower surface slope, 72u ... upper surface slope, 73 ... chuck table, 74 ... grinding groove, 80 ... surface grinding machine, 81 ... precision stage, 82 ... grindstone, 83 ... Work material, 84 ... Vise, W ... Waha, glass panel, work material

Claims (13)

板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、
前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、
前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削することを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate that grinds the end face of a plate-shaped work piece with a grinding groove of a grinding wheel.
The flat surface of the work material is attracted in the thickness direction by a chuck table smaller than the outer peripheral shape of the work material.
The rotation axis of the grinding wheel is tilted with respect to the axis in the thickness direction perpendicular to the plane of the work material, and the grinding groove is pressed against the end face of the work material from the vertical direction to abut.
The upper part or the lower part of the end face of the work material is ground by the grinding groove,
After that, a method for manufacturing a chamfered substrate, which comprises raising or lowering the grinding wheel in the thickness direction relative to the material to be processed and grinding again.
請求項1に記載の面取り基板の製造方法であって、
前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to claim 1.
A method for manufacturing a chamfered substrate, characterized in that the width of the grinding groove is made larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.
請求項1又は2に記載の面取り基板の製造方法であって、
前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、
あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to claim 1 or 2.
The upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised in the thickness direction relative to the work material and ground again.
Alternatively, the lower portion of the end face of the work material is ground in the grinding groove, and then the grinding wheel is lowered relative to the work material in the thickness direction and ground again. Manufacturing method of chamfered substrate.
請求項1から3のいずれか1項に記載の面取り基板の製造方法であって、
前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to any one of claims 1 to 3.
The upper or lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is raised in the thickness direction relative to the work material. Alternatively, a method for manufacturing a chamfered substrate, which comprises lowering the surface and grinding it once more.
請求項1から4のいずれか1項に記載の面取り基板の製造方法であって、
前記研削砥石の回転軸を3〜15°傾けることを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to any one of claims 1 to 4.
A method for manufacturing a chamfered substrate, which comprises tilting the rotation axis of the grinding wheel by 3 to 15 °.
請求項2に記載の面取り基板の製造方法であって、
前記被加工材の端面の加工は、それぞれ記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to claim 2.
A method for manufacturing a chamfered substrate, wherein the processing of the end face of the work material is performed by grinding the upper part of the end face of the work material, grinding the central part, and grinding the lower part, respectively.
請求項6に記載の面取り基板の製造方法であって、
前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることを特徴とする面取り基板の製造方法。
The method for manufacturing a chamfered substrate according to claim 6.
A method for manufacturing a chamfered substrate, wherein the upper grinding, the central grinding, and the lower grinding are performed so as to make one round of the end face of the work piece in the grinding groove over the entire circumference.
板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、
前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、
を備え、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削することを特徴とする面取り装置。
In a chamfering device that chamfers the end face of a plate-shaped work piece with a grinding groove of a grinding wheel.
A chuck table that adsorbs the flat surface of the work material in the thickness direction and is smaller than the outer peripheral shape of the work material.
The grinding wheel that tilts the rotation axis with respect to the axis in the thickness direction perpendicular to the plane of the work material and presses the grinding groove against the end face of the work material from the vertical direction to come into contact with the grinding wheel.
The upper part or the lower part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised or lowered in the thickness direction relative to the work material to be ground again. A chamfering device characterized by the fact that.
請求項8に記載の面取り装置において、
前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り装置。
In the chamfering device according to claim 8.
A chamfering device characterized in that the width of the grinding groove is made larger than the apparent thickness of the work material when the rotation axis of the grinding wheel is tilted.
請求項8又は9に記載の面取り装置において、
前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することを特徴とする面取り装置。
In the chamfering device according to claim 8 or 9.
The upper part of the end face of the work material is ground by the grinding groove, and then the grinding wheel is raised relative to the work material in the thickness direction and ground again, or the work material is A chamfering device characterized in that the lower portion of an end surface is ground by the grinding groove, and then the grinding wheel is lowered relative to the work piece in the thickness direction and ground again.
請求項8から10のいずれか1項に記載の面取り装置において、
前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することを特徴とする面取り装置。
In the chamfering device according to any one of claims 8 to 10.
The upper or lower part of the end face of the work material is ground so as to make one round in the grinding groove over the entire circumference, and then the grinding wheel is raised in the thickness direction relative to the work material. Alternatively, a chamfering device characterized in that it is lowered and further ground once.
請求項8から11のいずれか1項に記載の面取り装置において、
前記研削砥石の回転軸は3〜15°傾けられたことを特徴とする面取り装置。
In the chamfering device according to any one of claims 8 to 11.
A chamfering device characterized in that the rotation axis of the grinding wheel is tilted by 3 to 15 °.
請求項8に記載の面取り装置において、
前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことを特徴とする面取り装置。
In the chamfering device according to claim 8.
A chamfering device characterized in that the end face of the work material is ground by grinding the upper part of the end face, grinding the central part, and grinding the lower part, respectively.
JP2021034996A 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor Active JP7128309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034996A JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070909A JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015070909A Division JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it

Publications (2)

Publication Number Publication Date
JP2021094693A true JP2021094693A (en) 2021-06-24
JP7128309B2 JP7128309B2 (en) 2022-08-30

Family

ID=57245175

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015070909A Active JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A Active JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015070909A Active JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it

Country Status (1)

Country Link
JP (2) JP7005120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240837B1 (en) * 2017-11-28 2021-04-14 현대중공업 주식회사 Propulsion system for twin-screw ship
CN111037370B (en) * 2019-11-29 2021-04-27 上海磐盟电子材料有限公司 Round crystal chamfering process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165247A (en) * 1997-12-04 1999-06-22 Crystal Kogaku:Kk Chamfering method and its device
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2002160147A (en) * 2000-11-21 2002-06-04 Asahi Glass Co Ltd Edge polishing method for plate glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830291B2 (en) 1998-12-02 2006-10-04 シーグ株式会社 Method for making a grinding wheel
JP2007030119A (en) * 2005-07-28 2007-02-08 Tokyo Seimitsu Co Ltd Wafer chamfering device and wafer chamfering method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165247A (en) * 1997-12-04 1999-06-22 Crystal Kogaku:Kk Chamfering method and its device
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2002160147A (en) * 2000-11-21 2002-06-04 Asahi Glass Co Ltd Edge polishing method for plate glass

Also Published As

Publication number Publication date
JP7128309B2 (en) 2022-08-30
JP7005120B2 (en) 2022-01-21
JP2016190284A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP4441823B2 (en) Truing method and chamfering device for chamfering grindstone
JP7481518B2 (en) Truing method and chamfering device
JP2008173715A (en) Grinding method of disk-shaped substrate and grinding device
JP2021094693A (en) Manufacturing method of chamfered baseboard and chamfering device used in the same
JP6789645B2 (en) Chamfering equipment
JP6608604B2 (en) Chamfered substrate and method for manufacturing liquid crystal display device
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP5119614B2 (en) Wafer outer periphery grinding method
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP7158702B2 (en) chamfering grinder
JP2006159334A (en) Dicing dressing table structure and dicer
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP2007044853A (en) Method and apparatus for chamfering wafer
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
JP7024039B2 (en) Chamfering equipment
JP2005153129A (en) Chamfering method of notch part of notched wafer
JP2014226767A (en) Wafer chamfer device and wafer chamfer method
JP6388518B2 (en) Workpiece polishing method
JP7324889B2 (en) chamfering system
JP2018039091A (en) Polishing method
KR20230175103A (en) Forming method for truer
KR20170087300A (en) Edge grinding apparatus
JP2007021586A (en) Truing method for chamfering grinding wheel
JP2008010734A (en) Wafer chamfering apparatus, wafer chamfering method, and truing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150