JP6280355B2 - Manufacturing method of magnetic disk substrate and carrier for polishing treatment - Google Patents

Manufacturing method of magnetic disk substrate and carrier for polishing treatment Download PDF

Info

Publication number
JP6280355B2
JP6280355B2 JP2013247312A JP2013247312A JP6280355B2 JP 6280355 B2 JP6280355 B2 JP 6280355B2 JP 2013247312 A JP2013247312 A JP 2013247312A JP 2013247312 A JP2013247312 A JP 2013247312A JP 6280355 B2 JP6280355 B2 JP 6280355B2
Authority
JP
Japan
Prior art keywords
carrier
polishing
main surface
substrate
holding hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013247312A
Other languages
Japanese (ja)
Other versions
JP2015104771A (en
JP2015104771A5 (en
Inventor
裕樹 中川
裕樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013247312A priority Critical patent/JP6280355B2/en
Publication of JP2015104771A publication Critical patent/JP2015104771A/en
Publication of JP2015104771A5 publication Critical patent/JP2015104771A5/en
Application granted granted Critical
Publication of JP6280355B2 publication Critical patent/JP6280355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、磁気ディスク用基板の製造方法、及び基板の研磨処理に用いる研磨処理用キャリアに関する。   The present invention relates to a method for manufacturing a magnetic disk substrate and a polishing carrier used for polishing the substrate.

情報記録媒体の1つとして用いられる磁気ディスクには、従来より、ガラス基板が好適に用いられている。今日、ハードディスクドライブ装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスクに用いるガラス基板の寸法及び形状は目標通り精度高く作製されていることが好ましい。   Conventionally, a glass substrate has been suitably used for a magnetic disk used as one of information recording media. Today, in response to a request for an increase in storage capacity in a hard disk drive device, the density of magnetic recording has been increased. Along with this, the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head. It is preferable that the size and shape of the glass substrate used for such a magnetic disk be manufactured with high accuracy as intended.

ガラス基板の寸法及び形状を精度高く作製するために、ガラス基板の表面は研削及び研磨される。ガラス基板の研削及び研磨では、2つの定盤間に挟まれて研削あるいは研磨されるガラス基板を、研削あるいは研磨中保持するための板状の研削用あるいは研磨用のキャリアが用いられる。このキャリアには、ガラス基板を保持するための保持穴が設けられている。
従来、このキャリアとして、機械的強度及びコストの点からガラス繊維で樹脂を補強した繊維強化樹脂が広く用いられている。特に、ガラス繊維にエポキシ樹脂を含浸させた層を複数層積層させた構成のキャリアが好適に用いられる。しかし、このキャリアでは、ガラス基板が研削あるいは研磨されるとき、ガラス基板の端面(外周端面)に欠陥、例えば凹んだ傷が生じる場合がある。この傷の深さは端面に形成される他の傷に比べて深くかつ長い。この傷の凹んだ部分にスラリ中の砥粒が付着し、また、傷により発生したガラスチップが端面に付着して発塵源となる場合もある。特に、最終研磨で用いる研磨スラリ中の砥粒が端面とキャリアとの間に挟まれて微粒子として凹状の傷内に付着しさらには固着する。このように付着した微粒子は、ガラス基板に磁性層を形成するときに行うスパッタリング中にガラス基板の端面から離脱して主表面上に乗って磁性層に欠陥をつくる場合もある。
The surface of the glass substrate is ground and polished in order to accurately produce the size and shape of the glass substrate. In grinding and polishing of a glass substrate, a plate-like grinding or polishing carrier for holding a glass substrate to be ground or polished by being sandwiched between two surface plates during grinding or polishing is used. The carrier is provided with a holding hole for holding the glass substrate.
Conventionally, a fiber reinforced resin obtained by reinforcing a resin with glass fiber has been widely used as the carrier from the viewpoint of mechanical strength and cost. In particular, a carrier having a configuration in which a plurality of layers in which glass fiber is impregnated with an epoxy resin is laminated is preferably used. However, in this carrier, when the glass substrate is ground or polished, a defect, for example, a concave scratch may occur on the end surface (outer peripheral end surface) of the glass substrate. The depth of the scratch is deeper and longer than other scratches formed on the end face. In some cases, abrasive grains in the slurry adhere to the concave portions of the scratches, and a glass chip generated by the scratches adheres to the end surface to become a dust generation source. In particular, the abrasive grains in the polishing slurry used in the final polishing are sandwiched between the end face and the carrier, and are attached as fine particles in the concave wound and further fixed. The fine particles attached in this way may be detached from the end face of the glass substrate during sputtering performed when forming the magnetic layer on the glass substrate and get on the main surface to create a defect in the magnetic layer.

このような状況下、被研磨体の側端面を傷付けることがない研磨キャリアが知られている(特許文献1)。
また、薄板状ワークを研磨機用キャリアで保持して研磨する際にワークの外周端面の傷や摩耗を防止する研磨機用キャリアが知られている(特許文献2)。
上述の被研磨体の側端面を傷付けることがない研磨キャリアは、被研磨体の装填される保持穴を有して、この保持穴の内壁面の平均面粗さRacが、被研磨体の側端面の平均面粗さRasに対して、Rac < 3Rasの関係を満たすように、保持穴の内壁面が鏡面加工されている。
一方、ガラス基板等のワークの外周端面の傷や摩耗を防止する上述の研磨機用キャリアでは、ワーク保持孔の内周端面に、厚み方向に沿って中間部が湾曲して陥没する曲面凹部が形成されている。
Under such circumstances, there is known a polishing carrier that does not damage the side end face of the object to be polished (Patent Document 1).
Further, there is known a polishing machine carrier that prevents scratches and wear on the outer peripheral end surface of a workpiece when a thin plate workpiece is held and polished by a polishing machine carrier (Patent Document 2).
The above-mentioned polishing carrier that does not damage the side end face of the object to be polished has a holding hole in which the object to be polished is loaded, and the average surface roughness Rac of the inner wall surface of this holding hole is the side of the object to be polished. The inner wall surface of the holding hole is mirror-finished so as to satisfy the relationship of Rac <3Ras with respect to the average surface roughness Ras of the end surface.
On the other hand, in the above-mentioned carrier for a polishing machine that prevents scratches and wear on the outer peripheral end surface of a workpiece such as a glass substrate, the inner peripheral end surface of the work holding hole has a curved concave portion that is curved and depressed along the thickness direction. Is formed.

特開2008−006526号公報JP 2008-006526 A 特開2000−301451号公報JP 2000-301451 A

上述の研磨キャリアを用いてガラス基板の研磨を行った場合、ガラス基板の外周端面の傷がある程度抑制されるが、依然として外周端面に凹んだ傷が生じた。そして、この傷の凹んだ部分に研磨スラリ中の砥粒が付着し、また、この傷により発生したガラスチップがガラス基板の外周端面に付着して発塵源となることを十分に抑制できなかった。特に、研磨中、ガラス基板の外周端面のうち、上定盤の側に位置したガラス基板の主表面に近い部分、すなわち、ガラス基板の主表面に直交する側壁面と面取り面の接続部分近傍において、比較的深い傷が生じることを十分に抑制できなかった。
また、曲面凹部が内周端面に形成されている上述の研磨機用キャリアを用いてガラス基板の研磨を行った場合、外周端面の凹んだ傷は低減しなかった。特に、研磨中、ガラス基板の外周端面のうち、上定盤の側に位置したガラス基板の主表面に近い部分、すなわち、ガラス基板の主表面に直交する側壁面と面取り面の接続部分近傍において、比較的深い傷が生じた。
When the glass substrate was polished using the above-described polishing carrier, the scratches on the outer peripheral end surface of the glass substrate were suppressed to some extent, but the concave scratches still occurred on the outer peripheral end surface. And it cannot fully suppress that the abrasive grains in the polishing slurry adhere to the recessed part of the scratch, and the glass chip generated by the scratch adheres to the outer peripheral end surface of the glass substrate and becomes a dust generation source. It was. In particular, during polishing, in the outer peripheral end surface of the glass substrate, in the portion close to the main surface of the glass substrate located on the upper surface plate side, that is, in the vicinity of the connecting portion between the side wall surface and the chamfered surface orthogonal to the main surface of the glass substrate It was not possible to sufficiently suppress the occurrence of relatively deep scratches.
Moreover, when the glass substrate was polished using the above-described carrier for a polishing machine in which a curved concave portion was formed on the inner peripheral end surface, the concave scratches on the outer peripheral end surface were not reduced. In particular, during polishing, in the outer peripheral end surface of the glass substrate, in the portion close to the main surface of the glass substrate located on the upper surface plate side, that is, in the vicinity of the connecting portion between the side wall surface and the chamfered surface orthogonal to the main surface of the glass substrate Caused a relatively deep wound.

そこで、本発明は、基板の端面の傷の発生を抑制し、さらに、基板の主表面に微粒子等が付着して欠陥が形成されることを抑制できる、研磨処理用キャリア及び磁気ディスク用基板の製造方法を提供することを目的とする。   Therefore, the present invention suppresses the occurrence of scratches on the end surface of the substrate, and further suppresses the formation of defects due to adhesion of fine particles or the like to the main surface of the substrate. An object is to provide a manufacturing method.

本願発明者は、上述した従来の問題を解決するために、キャリアとガラス基板について鋭意検討したところ、キャリアの保持穴の内周壁面とキャリアの表面との境界部分であるエッジ部が、研削あるいは研磨中、ガラス基板の外周端面の側壁面に接触することによりガラス基板の外周端面、具体的には、ガラス基板の主表面に直交する側壁面と上定盤の側に位置する面取り面の接続部分近傍において、上記傷が数多く生じた。この事実より、ガラス基板の研磨処理中にキャリアの保持穴のエッジ部がガラス基板の側壁面に接触し、エッジ部が側壁面に集中した力を与えることにより傷をつけることがわかった。また、キャリアがガラス繊維に樹脂材料を含浸させた板材で構成されるとき、ガラス基板の研削あるいは研磨中、キャリアの厚さはガラス基板に比べて薄いにもかかわらずキャリアの主表面がこすれ、表面に樹脂に比べて硬いガラス繊維が露出し易い。さらに、キャリアの保持穴の内周壁面は、研磨処理中ガラス基板と接触して擦れるので、キャリアの主表面であって保持穴のエッジ部にはいっそうガラス繊維が露出して、エッジ部がガラス基板の外周端面に傷をつくり易い。このように、エッジ部がガラス基板の側壁面と接触して擦ることによりガラス基板の外周端面の側壁面に傷が発生し易くなる。
以上の知見より、本願発明者は、以下の発明を見出した。
In order to solve the above-described conventional problems, the inventor of the present application has intensively studied the carrier and the glass substrate. As a result, the edge portion, which is the boundary between the inner peripheral wall surface of the carrier holding hole and the surface of the carrier, is ground or During polishing, the outer peripheral end surface of the glass substrate is brought into contact with the side wall surface of the outer peripheral end surface of the glass substrate. Specifically, the side wall surface orthogonal to the main surface of the glass substrate is connected to the chamfered surface located on the upper surface plate side. In the vicinity of the part, many of the above scratches occurred. From this fact, it was found that the edge portion of the holding hole of the carrier contacts the side wall surface of the glass substrate during the polishing process of the glass substrate, and the edge portion is damaged by applying a force concentrated on the side wall surface. In addition, when the carrier is composed of a plate material in which a glass fiber is impregnated with a resin material, the main surface of the carrier is rubbed during grinding or polishing of the glass substrate even though the thickness of the carrier is smaller than that of the glass substrate, Hard glass fibers are likely to be exposed on the surface compared to the resin. Further, since the inner peripheral wall surface of the carrier holding hole is rubbed in contact with the glass substrate during the polishing process, more glass fibers are exposed at the edge of the holding hole on the main surface of the carrier, and the edge portion is made of glass. It is easy to make scratches on the outer peripheral edge of the substrate. As described above, the edge portion comes into contact with the side wall surface of the glass substrate and rubs, so that the side wall surface of the outer peripheral end surface of the glass substrate is easily damaged.
Based on the above findings, the present inventors have found the following invention.

すなわち、本発明の一態様は、円板状のガラス基板を上定盤及び下定盤で挟んで前記ガラス基板のガラス主表面を研磨処理する際に前記ガラス基板を保持するための保持穴を有する板状の研磨処理用キャリアである。
前記研磨処理用キャリアは、ガラス繊維に樹脂材料を含浸させた板材で構成される。 前記保持穴を画する保持穴内周壁面は、前記研磨処理用キャリアの第1のキャリア主表面と接続する前記保持穴内周壁面の接続部分から延び、前記研磨処理用キャリアの第1のキャリア主表面に対して傾斜した第1の傾斜面と、前記第1のキャリア主表面に対して直交し、前記第1のキャリア主表面に対向する第2のキャリア主表面と前記第1の傾斜面とを接続するように、前記第2のキャリア主表面と前記第1の傾斜面の間に設けられる側壁面と、を備える。
前記保持穴の中心軸を通り前記研磨処理用キャリアの板厚方向に平行な面で切断した前記保持穴の断面において、前記第1の傾斜面の断面形状は、前記第1のキャリア主表面に対する第1の傾斜角度を一定にして延びた直線形状あるいは前記第1の傾斜角度が変化した凸状の曲線形状である。
That is, one embodiment of the present invention has a holding hole for holding the glass substrate when the glass main surface of the glass substrate is polished by sandwiching a disk-shaped glass substrate between an upper surface plate and a lower surface plate. This is a plate-like carrier for polishing treatment.
The polishing carrier is made of a plate material in which a glass fiber is impregnated with a resin material. A holding hole inner peripheral wall surface defining the holding hole extends from a connection portion of the holding hole inner peripheral wall surface connected to the first carrier main surface of the polishing treatment carrier, and the first carrier main surface of the polishing treatment carrier A first inclined surface inclined with respect to the first carrier main surface, a second carrier main surface orthogonal to the first carrier main surface and opposed to the first carrier main surface, and the first inclined surface. A side wall surface provided between the second carrier main surface and the first inclined surface is provided so as to be connected .
In the cross section of the holding hole cut by a plane that passes through the central axis of the holding hole and is parallel to the thickness direction of the carrier for polishing treatment, the cross-sectional shape of the first inclined surface is relative to the main surface of the first carrier. A linear shape extending with a constant first inclination angle or a convex curve shape with the first inclination angle changed.

前記第1の傾斜面は、前記第1の傾斜角度を一定にして前記第1のキャリア主表面に対して傾斜した面であり、
前記保持穴内周壁面は、さらに、前記第1の傾斜面の端から前記側壁面の端まで延びる前記第1傾斜角度が変化した凸状の曲面を備える、こともまた好ましい。
The first inclined surface is a surface inclined with respect to the first carrier main surface with the first inclination angle constant.
It is also preferable that the inner peripheral wall surface of the holding hole further includes a convex curved surface with the first inclination angle changed from the end of the first inclined surface to the end of the side wall surface.

前記保持穴の前記断面において、前記第1の傾斜面の端から前記側壁面の端まで延びる前記凸状の曲面における曲率半径は、前記研磨処理用キャリアの板厚の0.03倍以上の長さである、ことが好ましい。   In the cross section of the holding hole, the radius of curvature of the convex curved surface extending from the end of the first inclined surface to the end of the side wall surface is 0.03 times or more the plate thickness of the polishing treatment carrier. It is preferable that it is.

前記第1の傾斜面は、前記第1の傾斜角度が変化した凸状の曲面であり、
前記保持穴の前記断面において、前記第1の傾斜面における曲率半径は、前記研磨処理用キャリアの板厚の0.03倍以上1.0倍以下である、ことが好ましい。
The first inclined surface is a convex curved surface in which the first inclination angle is changed,
In the cross section of the holding hole, it is preferable that the curvature radius of the first inclined surface is 0.03 times or more and 1.0 times or less the plate thickness of the carrier for polishing treatment.

前記第1のキャリア主表面は前記上定盤に向くように配される、ことが好ましい。   The first carrier main surface is preferably arranged so as to face the upper surface plate.

本発明の他の一態様は、
基板を、キャリアに設けられた保持孔に保持した状態で前記基板を上定盤と下定盤とで挟み、前記基板の主表面と前記上定盤及び前記下定盤とを相対的に移動させることで、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法である。当該製造方法において、 前記キャリアの板厚は、前記基板よりも薄い板厚であり、
前記キャリアは、ガラス繊維に樹脂材料を含浸させた板材で構成され、
前記保持孔を画する保持孔内周壁面は、前記キャリアの第1のキャリア主表面と接続する前記保持孔内周壁面の接続部分から延び、前記キャリアの第1のキャリア主表面に対して傾斜した第1の傾斜面と、前記第1のキャリア主表面に対して直交し、前記第1のキャリア主表面に対向する第2のキャリア主表面と前記第1の傾斜面とを接続するように、前記第2のキャリア主表面と前記第1の傾斜面の間に設けられる側壁面と、を備え、
前記保持孔の中心軸を通り前記キャリアの板厚方向に平行な面で切断した前記保持孔の断面において、前記第1の傾斜面の断面形状は、前記第1のキャリア主表面に対する第1の傾斜角度を一定にして延びた直線形状あるいは前記第1の傾斜角度が変化した凸状の曲線形状であり、
前記第1のキャリア主表面は前記上定盤に向き、前記第1のキャリア主表面と対向する第2のキャリア主表面は、前記下定盤を向くように前記キャリアは配される。
Another aspect of the present invention is:
The substrate is sandwiched between an upper surface plate and a lower surface plate with the substrate held in a holding hole provided in a carrier, and the main surface of the substrate and the upper surface plate and the lower surface plate are moved relative to each other. The method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate. In the manufacturing method, the thickness of the carrier is smaller than that of the substrate,
The carrier is composed of a plate material in which a glass fiber is impregnated with a resin material,
A holding hole inner peripheral wall surface defining the holding hole extends from a connection portion of the holding hole inner peripheral wall surface connected to the first carrier main surface of the carrier, and is inclined with respect to the first carrier main surface of the carrier The first inclined surface and the second carrier main surface orthogonal to the first carrier main surface and opposed to the first carrier main surface are connected to the first inclined surface. A sidewall surface provided between the second carrier main surface and the first inclined surface,
In the cross section of the holding hole cut by a plane passing through the central axis of the holding hole and parallel to the plate thickness direction of the carrier, the cross-sectional shape of the first inclined surface is a first shape relative to the first carrier main surface. A linear shape extending with a constant inclination angle or a convex curve shape with the first inclination angle changed,
The carrier is arranged so that the first carrier main surface faces the upper surface plate, and the second carrier main surface facing the first carrier main surface faces the lower surface plate.

前記基板の外周端面は、両側の基板の主表面に対して直交した基板側壁面と、前記基板側壁面と前記両側の基板の主表面のそれぞれとの間に設けられた基板面取り面と、を備え、
前記研磨処理を行うとき、前記下定盤の側に位置する基板面取り面と前記基板側壁面との接続部分の、前記下定盤の側に位置する前記基板の主表面からの距離Hgが、前記第1の傾斜面と前記キャリアの前記側壁面との接続部分の、前記第2のキャリア主表面からの距離Hcより短い、ことが好ましい。
The outer peripheral end surface of the substrate includes a substrate side wall surface orthogonal to the main surfaces of the substrates on both sides, and a substrate chamfered surface provided between the substrate side wall surface and the main surfaces of the substrates on both sides. Prepared,
When performing the polishing treatment, the distance Hg from the main surface of the substrate located on the lower surface plate side of the connecting portion between the substrate chamfered surface located on the lower surface plate side and the substrate side wall surface is the first surface. the connecting portion between the first inclined surface and the side wall surface of the carrier, shorter than the distance Hc from the second carrier main surface, it is preferable.

前記研磨処理は、例えば、遊離砥粒を含む研磨スラリを前記基板の主表面と前記上定盤及び前記下定盤との間に供給して行う研磨である。
前記基板は、例えば、ガラス基板である。
The polishing treatment is, for example, polishing performed by supplying a polishing slurry containing loose abrasive grains between the main surface of the substrate and the upper surface plate and the lower surface plate.
The substrate is, for example, a glass substrate.

上述の磁気ディスク用基板の製造方法および研磨処理用キャリアによれば、基板の端面への傷の発生を抑制し、さらに、基板の主表面に欠陥が形成されることを抑制できる。 According to the manufacturing method and a polishing process for a carrier of the substrate for the above-mentioned magnetic disk, suppressing the occurrence of scratches on the end face of the substrate, further, it is possible to suppress the defects are formed on the main surface of the substrate.

本実施形態のキャリアを用いる研削装置(両面研磨装置)の一例の分解斜視図である。It is a disassembled perspective view of an example of the grinding device (double-side polish apparatus) using the carrier of this embodiment. 図1に示す研削装置の一例の断面図である。It is sectional drawing of an example of the grinding apparatus shown in FIG. (a)は、本実施形態のキャリアの一例の断面図であり、(b)は、研磨中のガラス基板とキャリアの関係を説明する図である。(A) is sectional drawing of an example of the carrier of this embodiment, (b) is a figure explaining the relationship between the glass substrate under grinding | polishing, and a carrier. (a)〜(d)は、本実施形態のキャリアの保持穴内周壁面の断面の他の例を説明する図である。(A)-(d) is a figure explaining the other example of the cross section of the holding hole inner peripheral wall surface of the carrier of this embodiment. 本実施形態のキャリアの保持穴内周壁面の断面のさらに他の例を説明する図である。It is a figure explaining the further another example of the cross section of the holding hole inner peripheral wall face of the carrier of this embodiment.

以下、本発明の研磨処理用キャリア及び磁気ディスク用基板の製造方法について詳細に説明する。本明細書では、研磨処理とは、ガラス基板の研削と、この研削後のガラス基板のガラス主表面の粗さを小さくするガラス基板の研磨と、を含む。したがって、研磨処理用キャリアとは、ガラス基板の研削および研磨に用いることができるキャリアである。   The polishing carrier and the method for manufacturing a magnetic disk substrate according to the present invention will be described in detail below. In the present specification, the polishing treatment includes grinding of the glass substrate and polishing of the glass substrate to reduce the roughness of the glass main surface of the glass substrate after grinding. Therefore, the polishing carrier is a carrier that can be used for grinding and polishing a glass substrate.

(研磨装置)
本実施形態の研磨処理用キャリアを用いるガラス基板の研磨装置について図1及び図2を参照して説明する。図1は、研磨装置(両面研磨装置)の分解斜視図である。図2は、研磨装置の断面図である。研削装置についても研磨装置と同様の構成を有するので、研削装置の説明は省略する。
(Polishing equipment)
A glass substrate polishing apparatus using the polishing carrier of this embodiment will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus). FIG. 2 is a sectional view of the polishing apparatus. Since the grinding apparatus has the same configuration as the polishing apparatus, description of the grinding apparatus is omitted.

図1に示すように、研磨装置は、上下一対の定盤、すなわち上定盤50および下定盤60を有している。上定盤50および下定盤60の間に円環状のガラス基板Gが狭持され、上定盤50または下定盤60のいずれか一方、または、双方を移動操作することにより、ガラス基板Gと各定盤とを相対的に移動させることで、このガラス基板Gの両主表面を研磨することができる。なお、ガラス基板と定盤との間には、研磨砥粒を含んだ研磨スラリが供給される。以降、上定盤50及び下定盤60を総称して説明するとき、単に定盤という。   As shown in FIG. 1, the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 50 and a lower surface plate 60. An annular glass substrate G is sandwiched between the upper surface plate 50 and the lower surface plate 60, and either or both of the upper surface plate 50 and the lower surface plate 60 are moved to operate the glass substrate G and each of the surface plates. By moving the surface plate relative to each other, both main surfaces of the glass substrate G can be polished. A polishing slurry containing abrasive grains is supplied between the glass substrate and the surface plate. Hereinafter, when the upper surface plate 50 and the lower surface plate 60 are collectively described, they are simply referred to as surface plates.

図1及び図2を参照して研磨装置の構成をさらに具体的に説明する。
研磨装置において、下定盤60の上面および上定盤50の下面には、研磨パッド10が貼り付けられている。図1では、研磨パッド10はシート状に記されている。研磨パッド10には、例えば、発泡ウレタン樹脂等を用いることができる。
キャリア30は、円板状のガラス基板Gを上定盤50と下定盤60で挟んでガラス基板Gの主表面を研磨する際に、ガラス基板Gを保持するための保持穴32を有する。具体的には、キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス基板Gを収容し保持するための1または複数の保持穴32とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、ガラス基板Gを1または複数を収容し保持する。下定盤60上では、キャリア30が遊星歯車として自転しながら公転し、ガラス基板Gと下定盤60とが相対的に移動させられる。例えば、太陽歯車61が反時計回りの方向に回転すれば、キャリア30は時計回りの方向に回転し、内歯車62は反時計回りの方向に回転する。その結果、下定盤60とガラス基板Gの間に相対運動が生じる。同様にして、ガラス基板Gと上定盤50とを相対的に移動させてもよい。
The configuration of the polishing apparatus will be described more specifically with reference to FIGS.
In the polishing apparatus, the polishing pad 10 is attached to the upper surface of the lower surface plate 60 and the lower surface of the upper surface plate 50. In FIG. 1, the polishing pad 10 is shown in a sheet form. For the polishing pad 10, for example, foamed urethane resin or the like can be used.
The carrier 30 has a holding hole 32 for holding the glass substrate G when the disk-shaped glass substrate G is sandwiched between the upper surface plate 50 and the lower surface plate 60 and the main surface of the glass substrate G is polished. Specifically, the carrier 30 includes a tooth portion 31 provided on the outer peripheral portion and meshing with the sun gear 61 and the internal gear 62, and one or a plurality of holding holes 32 for receiving and holding the glass substrate G. . The sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole. The disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass substrates G. On the lower surface plate 60, the carrier 30 revolves while rotating as a planetary gear, and the glass substrate G and the lower surface plate 60 are relatively moved. For example, if the sun gear 61 rotates in the counterclockwise direction, the carrier 30 rotates in the clockwise direction, and the internal gear 62 rotates in the counterclockwise direction. As a result, a relative motion occurs between the lower surface plate 60 and the glass substrate G. Similarly, the glass substrate G and the upper surface plate 50 may be relatively moved.

上記相対運動の動作中には、上定盤50がキャリア30に保持されたガラス基板Gに対して(つまり、鉛直方向に)所定の圧力で押圧し、これによりガラス基板Gに対して研磨パッド10が押圧される。また、図2に示すように、ポンプ(不図示)によって研磨スラリが、供給タンク71から1または複数の配管72を経由してガラス基板Gと研磨パッド10との間に供給される。   During the operation of the relative movement, the upper surface plate 50 is pressed against the glass substrate G held by the carrier 30 (that is, in the vertical direction) with a predetermined pressure, whereby the polishing pad is pressed against the glass substrate G. 10 is pressed. Further, as shown in FIG. 2, a polishing slurry is supplied between the glass substrate G and the polishing pad 10 from a supply tank 71 via one or a plurality of pipes 72 by a pump (not shown).

(キャリア)
図3(a)は、保持穴32を画するキャリア30の保持穴内周壁面33の一例の断面図であり、図3(b)は、研磨中のガラス基板Gとキャリア30の関係を説明する図である。
保持穴32を画するキャリア30の保持穴内周壁面33は、キャリア30の第1のキャリア主表面34と接続する保持穴内周壁面33の接続部分36から延び、キャリア30の第1のキャリア主表面34に対して傾斜した第1の傾斜面37を備える。このとき、保持穴32の中心軸(図3(a)中の一点鎖線)を通りキャリア30の板厚方向に平行な面で切断した保持穴32の断面において、第1の傾斜面37の断面形状は、第1のキャリア主表面34に対する第1の傾斜角度θを一定にして延びた直線形状である。
(Career)
3A is a cross-sectional view of an example of the holding hole inner peripheral wall surface 33 of the carrier 30 that defines the holding hole 32, and FIG. 3B illustrates the relationship between the glass substrate G and the carrier 30 being polished. FIG.
The holding hole inner peripheral wall surface 33 of the carrier 30 that defines the holding hole 32 extends from the connection portion 36 of the holding hole inner peripheral wall surface 33 that connects to the first carrier main surface 34 of the carrier 30, and the first carrier main surface of the carrier 30. First inclined surface 37 inclined with respect to 34 is provided. At this time, in the cross section of the holding hole 32 that passes through the central axis of the holding hole 32 (the one-dot chain line in FIG. 3A) and is parallel to the thickness direction of the carrier 30, the cross section of the first inclined surface 37 The shape is a linear shape extending at a constant first inclination angle θ with respect to the first carrier main surface 34.

図3(a)に示す例では、保持穴内周壁面33は、第1の傾斜面37の他に、第1のキャリア主表面34及び第1のキャリア主表面34に対向する第2のキャリア主表面35に対して直交する側壁面38を備えている。第1の傾斜面37は、第1のキャリア主表面34と接続する保持穴内周壁面33の接続部分36と側壁面38の端との間に設けられている。側壁面38は、第1の傾斜面37と第2のキャリア主表面35との間に設けられている。側壁面38は、第1の傾斜面37の端と第2のキャリア主表面35の端を接続する。
このような保持穴内周壁面33の断面形状を有することで、図3(b)に示すように、研磨パッド10に挟まれてガラス基板Gが研磨されるとき、第1のキャリア主表面34と側壁面38との間に第1の傾斜面37が設けられるので、第1のキャリア主表面34と側壁面38とでつくられるエッジ部が存在しない。すなわち、ガラス基板Gの外周端面に接触するエッジ部はなく、ガラス基板Gの外周端面に集中した力を与えることにより傷をつけるエッジ部はない。ここで、キャリア30の板厚は、ガラス基板Gの板厚より薄く、キャリア30の側壁面38は、ガラス基板Gのガラス主表面に直交する側壁面80と当接する。このように、キャリア30の側壁面38とガラス基板Gの側壁面80とを当接させるためには、図3(b)に示す距離Hgが距離Hcより短いことが好ましい。距離Hgは、下定盤60の側に位置するガラス基板Gの面取り面82とガラス基板Gの側壁面80との接続部分81の、下定盤60の側に位置するガラス基板Gの主表面からの距離である。距離Hcは、第1の傾斜面37とキャリア30の側壁面38との接続部分43の、第2のキャリア主表面35からの距離である。
このとき、側壁面38と第1の傾斜面37との接続部分43に角が形成されるが、この角は、側壁面38と第1の傾斜面37との間に鈍角の角度で形成されるので、ガラス基板Gの外周端面に傷を付け難い。
In the example shown in FIG. 3A, the inner peripheral wall surface 33 of the holding hole has, in addition to the first inclined surface 37, the first carrier main surface 34 and the second carrier main surface facing the first carrier main surface 34. A side wall surface 38 orthogonal to the surface 35 is provided. The first inclined surface 37 is provided between the connection portion 36 of the holding hole inner peripheral wall surface 33 connected to the first carrier main surface 34 and the end of the side wall surface 38. The side wall surface 38 is provided between the first inclined surface 37 and the second carrier main surface 35. The side wall surface 38 connects the end of the first inclined surface 37 and the end of the second carrier main surface 35.
By having such a cross-sectional shape of the inner peripheral wall surface 33 of the holding hole, when the glass substrate G is polished between the polishing pads 10 as shown in FIG. Since the first inclined surface 37 is provided between the side wall surface 38 and the edge portion formed by the first carrier main surface 34 and the side wall surface 38 does not exist. That is, there is no edge portion that contacts the outer peripheral end surface of the glass substrate G, and there is no edge portion that is damaged by applying a concentrated force to the outer peripheral end surface of the glass substrate G. Here, the plate thickness of the carrier 30 is smaller than the plate thickness of the glass substrate G, and the side wall surface 38 of the carrier 30 abuts on the side wall surface 80 orthogonal to the glass main surface of the glass substrate G. Thus, in order for the side wall surface 38 of the carrier 30 and the side wall surface 80 of the glass substrate G to contact, it is preferable that the distance Hg shown in FIG. 3B is shorter than the distance Hc. The distance Hg is from the main surface of the glass substrate G located on the lower surface plate 60 side of the connecting portion 81 between the chamfered surface 82 of the glass substrate G located on the lower surface plate 60 side and the side wall surface 80 of the glass substrate G. Distance. The distance Hc is the distance from the second carrier main surface 35 of the connecting portion 43 between the first inclined surface 37 and the side wall surface 38 of the carrier 30.
At this time, an angle is formed at the connecting portion 43 between the side wall surface 38 and the first inclined surface 37, and this angle is formed between the side wall surface 38 and the first inclined surface 37 at an obtuse angle. Therefore, it is difficult to damage the outer peripheral end surface of the glass substrate G.

ガラス基板Gの外周端面への傷の形成を確実に抑制するには、後述するように、側壁面38と第1の傾斜面37との間に、円弧形状の曲面を設けて、側壁面38と第1の傾斜面37との間を滑らかにつなぐことが好ましい。   In order to reliably suppress the formation of scratches on the outer peripheral end surface of the glass substrate G, as will be described later, an arcuate curved surface is provided between the side wall surface 38 and the first inclined surface 37, and the side wall surface 38. And the first inclined surface 37 is preferably connected smoothly.

図4(a)〜(d)は、保持穴32を画するキャリア30の保持穴内周壁面33の断面の他の例を説明する図である。
図4(a)に示す保持穴内周壁面33には、図3(a)に示す第1の傾斜面37及びそく壁面38の他に、側壁面38と第2のキャリア主表面35との間に第2の傾斜面39が設けられている。第2の傾斜面39は、第2のキャリア主表面35と接続する保持穴内周壁面33の接続部分40から延び、第2のキャリア主表面35に対して傾斜している。保持穴30の断面において、第2の傾斜面39における断面形状は、第2のキャリア主表面35に対する第2の傾斜角度を一定にして延びた直線形状である。第2の傾斜面39は、第2のキャリア主表面35と接続する保持穴内周壁面33の接続部分40と側壁面38の端との間に設けられている。第2の傾斜角度は、第1の傾斜角度と同じであっても異なってもよいが、同じであることが好ましい。特に、第1の傾斜面37の長さと第2の傾斜面39の長さが同じであり、第1の傾斜角度と第2の傾斜角度が同じである場合、第1のキャリア主表面34と第2のキャリア主表面35を区別する必要がなくなる点で有効である。
FIGS. 4A to 4D are views for explaining another example of the cross section of the holding hole inner peripheral wall surface 33 of the carrier 30 that defines the holding hole 32.
In addition to the first inclined surface 37 and the slit wall surface 38 shown in FIG. 3A, the holding hole inner peripheral wall surface 33 shown in FIG. 4A has a space between the side wall surface 38 and the second carrier main surface 35. A second inclined surface 39 is provided. The second inclined surface 39 extends from the connection portion 40 of the holding hole inner peripheral wall surface 33 connected to the second carrier main surface 35 and is inclined with respect to the second carrier main surface 35. In the cross section of the holding hole 30, the cross-sectional shape of the second inclined surface 39 is a linear shape that extends with a constant second inclination angle with respect to the second carrier main surface 35. The second inclined surface 39 is provided between the connection portion 40 of the holding hole inner peripheral wall surface 33 connected to the second carrier main surface 35 and the end of the side wall surface 38. The second tilt angle may be the same as or different from the first tilt angle, but is preferably the same. In particular, when the length of the first inclined surface 37 and the length of the second inclined surface 39 are the same, and the first inclined angle and the second inclined angle are the same, the first carrier main surface 34 This is effective in that it is not necessary to distinguish the second carrier main surface 35.

図4(b)に示す保持穴内周壁面33の第1の傾斜面37の断面形状は、図3(a)に示す第1の傾斜面37の断面が直線形状であるのに対して、第1の傾斜角度θが変化する曲線形状である。この第1の傾斜面37は、キャリア30の外側に対して凸形状を成す。すなわち、保持穴内周壁面33は、キャリア30の外側に対して凸形状の曲面の第1の傾斜面37と、第1のキャリア主表面34及び第2のキャリア主表面35に対して直交した側壁面38と、を備える。第1の傾斜面37は、側壁面38と第1のキャリア主表面34との間を滑らかに接続する。なお、第1の傾斜面37の凸状の曲面における曲率半径は、キャリア30の板厚の0.03倍以上1.0倍以下であることが、ガラス基板Gの外周端面の傷を抑制する点で好ましい。上記曲率半径がキャリア30の板厚の0.03倍より小さい場合、曲面が急激に曲がるため外周端面に傷がつき易い。上述した距離Hgが距離Hcより短い限りにおいて、第1の傾斜面37の第1の傾斜角度θ(第1の傾斜面37の接線の傾斜角度)は特に制限されず、ガラス基板Gの面取り面82の、ガラス基板Gの主表面に対する傾斜角度と同等、あるいはそれよりも大きくても小さくてもよい。   The sectional shape of the first inclined surface 37 of the inner circumferential wall surface 33 of the holding hole shown in FIG. 4B is different from that of the first inclined surface 37 shown in FIG. 1 is a curved shape in which the inclination angle θ changes. The first inclined surface 37 has a convex shape with respect to the outside of the carrier 30. That is, the inner peripheral wall surface 33 of the holding hole is a side that is orthogonal to the first inclined surface 37 that is convex with respect to the outer side of the carrier 30, the first carrier main surface 34, and the second carrier main surface 35. And a wall surface 38. The first inclined surface 37 smoothly connects the side wall surface 38 and the first carrier main surface 34. Note that the radius of curvature of the convex curved surface of the first inclined surface 37 is not less than 0.03 times and not more than 1.0 times the plate thickness of the carrier 30 so as to suppress scratches on the outer peripheral end surface of the glass substrate G. This is preferable. When the radius of curvature is smaller than 0.03 times the thickness of the carrier 30, the curved surface is bent sharply and the outer peripheral end surface is easily damaged. As long as the above-described distance Hg is shorter than the distance Hc, the first tilt angle θ of the first tilted surface 37 (the tilt angle of the tangent to the first tilted surface 37) is not particularly limited, and the chamfered surface of the glass substrate G 82 may be equal to, larger or smaller than the inclination angle of the glass substrate G with respect to the main surface.

図4(c)に示す保持穴内周壁面33の第1の傾斜面37と第2の傾斜面39の断面形状は、図4(a)に示す保持穴内周壁面33が、断面形状が直線形状の第1の傾斜面37及び第2の傾斜面39であるのに対して、断面形状が円弧形状であり、キャリア30の外側に対して凸状の曲線形状である。第1の傾斜面37及び第2の傾斜面39の間に、第1のキャリア主表面34及び第2のキャリア主表面35に対して直交した側壁面38が設けられている。第1の傾斜面37、側壁面38、及び第2の傾斜面39は、互いに滑らかに接続されている。なお、第1の傾斜面37及び第2の傾斜面39の凸状の曲面における曲率半径は、キャリア30の板厚の0.03倍以上0.5倍以下であることが、ガラス基板Gの外周端面の傷を抑制する点で好ましい。   The sectional shape of the first inclined surface 37 and the second inclined surface 39 of the holding hole inner peripheral wall surface 33 shown in FIG. 4C is the same as that of the holding hole inner peripheral wall surface 33 shown in FIG. In contrast to the first inclined surface 37 and the second inclined surface 39, the cross-sectional shape is an arc shape and the curved shape is convex with respect to the outside of the carrier 30. A side wall surface 38 orthogonal to the first carrier main surface 34 and the second carrier main surface 35 is provided between the first inclined surface 37 and the second inclined surface 39. The first inclined surface 37, the side wall surface 38, and the second inclined surface 39 are smoothly connected to each other. Note that the radius of curvature of the convex curved surfaces of the first inclined surface 37 and the second inclined surface 39 is not less than 0.03 times and not more than 0.5 times the plate thickness of the carrier 30. It is preferable at the point which suppresses the damage | wound of an outer peripheral end surface.

図4(d)に示す保持穴内周壁面33の第1の傾斜面37と側壁面38との間には、第1の傾斜面37の端から側壁面38の端まで延びる第1傾斜角度θが変化した曲面41が設けられている。この曲面41は、キャリア30の外側に対して凸形状である。この曲面41は、第1の傾斜面37と側壁面38との間を滑らかにつなぐ。したがって、上述したように、第1の傾斜面37と側壁面38の間に角が形成されず、ガラス基板Gの外周端面に傷が形成され難い。このとき、保持穴32の断面において、第1の傾斜面37の端から側壁面38の端まで延びる凸状の曲面41における曲率半径は、キャリア30の板厚の0.03倍以上の長さであることが、上記角を形成させない点で好ましい。なお、上記曲率半径の上限は、ガラス基板Gの面取り面82のガラス基板Gの板厚方向に沿った長さに当たる距離をHg[mm](図3(b)参照)とし、キャリア30の板厚をt[mm]としたとき、t−Hg[mm]の長さであることが好ましい。この曲率半径の上限により、ガラス基板Gが研磨中に保持穴32から外れて破損することを抑制することができる。   A first inclination angle θ extending from the end of the first inclined surface 37 to the end of the side wall surface 38 between the first inclined surface 37 and the side wall surface 38 of the inner peripheral wall surface 33 of the holding hole shown in FIG. A curved surface 41 in which is changed is provided. The curved surface 41 is convex with respect to the outside of the carrier 30. The curved surface 41 smoothly connects between the first inclined surface 37 and the side wall surface 38. Therefore, as described above, no corner is formed between the first inclined surface 37 and the side wall surface 38, and scratches are hardly formed on the outer peripheral end surface of the glass substrate G. At this time, in the cross section of the holding hole 32, the radius of curvature of the convex curved surface 41 extending from the end of the first inclined surface 37 to the end of the side wall surface 38 is 0.03 times or more the plate thickness of the carrier 30. It is preferable that the angle is not formed. The upper limit of the radius of curvature is Hg [mm] (see FIG. 3B), which is a distance corresponding to the length of the chamfered surface 82 of the glass substrate G along the thickness direction of the glass substrate G. When the thickness is t [mm], the length is preferably t-Hg [mm]. By the upper limit of the radius of curvature, it is possible to suppress the glass substrate G from being detached from the holding hole 32 and being damaged during polishing.

図4(a)〜(d)に示す保持穴内周壁面33は、いずれも保持穴32の断面において、第1の傾斜面37の断面形状は、第1のキャリア主表面34に対する第1の傾斜角度θを一定にして延びた直線形状、あるいは第1の傾斜角度θが変化した、キャリア30の外側に対して凸状の曲線形状であるので、従来のように、キャリア主表面と側壁面とで形成されるエッジ部が存在しない。すなわち、ガラス基板Gの外周端面に接触するエッジ部はなく、また、ガラス基板Gの外周端面に集中した力を与えることにより傷をつけるエッジ部はない。   4A to 4D, the inner peripheral wall surface 33 of the holding hole has a first inclined surface with respect to the first carrier main surface 34 in the cross section of the holding hole 32. Since it is a linear shape extending with a constant angle θ, or a curved shape that is convex with respect to the outside of the carrier 30 with the first inclination angle θ changed, There is no edge formed by That is, there is no edge portion that contacts the outer peripheral end surface of the glass substrate G, and there is no edge portion that is damaged by applying a concentrated force to the outer peripheral end surface of the glass substrate G.

図5は、キャリア30の保持穴内周壁面33の断面のさらに他の例を説明する図である。図5に示す保持穴内周壁面33は、キャリア30の第1のキャリア主表面34と接続する保持穴内周壁面33の接続部分36から延び、キャリア30の第1のキャリア主表面34に対して傾斜した第1の傾斜面37を備える。第1の傾斜面37の断面形状、すなわち、保持穴32の中心軸を通りキャリア30の板厚方向に平行な面で切断したときの断面形状は、第1のキャリア主表面34に対する第1の傾斜角度θを一定にして延びた直線形状である。このとき、図3(a)に示す第1の傾斜面37を備える保持穴内周壁面33と異なり、図5に示す保持穴内周壁面33は、側壁面38を有さず、保持穴内周壁面33の全体が第1の傾斜面37で構成されている。いいかえると、第1の傾斜面37は、第1のキャリア主表面34と接続する保持穴内周壁面33の接続部分36から第2のキャリア主表面35と接続する保持穴内周壁面33の接続部分43まで延びて、保持穴内周壁面33全面は、テーパ面を成している。このような保持穴内周壁面33であっても、従来のように、キャリア主表面と側壁面とで形成されるエッジ部が存在しない。すなわち、ガラス基板Gの外周端面に接触するエッジ部はなく、また、ガラス基板Gの外周端面に集中した力を与えることにより傷をつけるエッジ部はない。この場合、第1の傾斜面37の第1の傾斜角度θは、45度以上80度以下であることが好ましい。また、ガラス基板Gの面取り面82のガラス基板Gの主表面に対する傾斜角度に対して大きいことが好ましい。これにより、研磨中のガラス基板Gが保持穴32から外れて破損することはなく、安定した研磨が可能となり、かつ、ガラス基板Gの外周端面の傷の発生を抑制することができる。
なお、図5に示す第1の傾斜面37の断面形状は、直線形状であるが、曲線形状であってもよい。図5に示す第1の傾斜面37の断面形状が曲線形状である場合、第1の傾斜角度θ(第1の傾斜面37の接線の傾斜角度)の最大値は、ガラス基板Gの面取り面82の、ガラス基板Gの主表面に対する傾斜角度と同等か、それよりも高いことが、ガラス基板Gが保持穴32から外れることなく安定してガラス基板を研磨する点で好ましい。第1の傾斜角度θは、第1の傾斜面37と第2のガラス主表面35との接続部分43において最大となるので、接続部分43における第1の傾斜角度θ(第1の傾斜面37の接線の傾斜角度)が、ガラス基板Gの主表面に対する傾斜角度と同等かそれよりも大きいことが好ましい。
FIG. 5 is a view for explaining still another example of the cross section of the inner peripheral wall surface 33 of the holding hole of the carrier 30. The holding hole inner peripheral wall surface 33 shown in FIG. 5 extends from the connection portion 36 of the holding hole inner peripheral wall surface 33 connected to the first carrier main surface 34 of the carrier 30, and is inclined with respect to the first carrier main surface 34 of the carrier 30. The first inclined surface 37 is provided. The cross-sectional shape of the first inclined surface 37, that is, the cross-sectional shape when cut by a plane passing through the central axis of the holding hole 32 and parallel to the plate thickness direction of the carrier 30 is the first cross-sectional shape with respect to the first carrier main surface 34. The linear shape extends with a constant inclination angle θ. At this time, unlike the holding hole inner peripheral wall surface 33 provided with the first inclined surface 37 shown in FIG. 3A, the holding hole inner peripheral wall surface 33 shown in FIG. 5 does not have the side wall surface 38 and the holding hole inner peripheral wall surface 33. Is entirely constituted by a first inclined surface 37. In other words, the first inclined surface 37 is connected to the connecting portion 43 of the holding hole inner peripheral wall surface 33 connected to the second carrier main surface 35 from the connecting portion 36 of the holding hole inner peripheral wall surface 33 connected to the first carrier main surface 34. The entire surface of the holding hole inner circumferential wall 33 forms a tapered surface. Even in such a holding hole inner peripheral wall surface 33, there is no edge portion formed by the carrier main surface and the side wall surface as in the prior art. That is, there is no edge portion that contacts the outer peripheral end surface of the glass substrate G, and there is no edge portion that is damaged by applying a concentrated force to the outer peripheral end surface of the glass substrate G. In this case, it is preferable that the first inclination angle θ of the first inclined surface 37 is not less than 45 degrees and not more than 80 degrees. Moreover, it is preferable that it is large with respect to the inclination angle with respect to the main surface of the glass substrate G of the chamfering surface 82 of the glass substrate G. As a result, the glass substrate G being polished is not detached from the holding hole 32 and is not damaged, and stable polishing is possible, and the occurrence of scratches on the outer peripheral end surface of the glass substrate G can be suppressed.
In addition, although the cross-sectional shape of the 1st inclined surface 37 shown in FIG. 5 is a linear shape, a curved shape may be sufficient. When the cross-sectional shape of the first inclined surface 37 shown in FIG. 5 is a curved shape, the maximum value of the first inclination angle θ (the inclination angle of the tangent to the first inclined surface 37) is the chamfered surface of the glass substrate G. It is preferable that 82 is equal to or higher than the inclination angle with respect to the main surface of the glass substrate G in order to stably polish the glass substrate without the glass substrate G being detached from the holding hole 32. Since the first inclination angle θ is maximum at the connection portion 43 between the first inclination surface 37 and the second glass main surface 35, the first inclination angle θ at the connection portion 43 (the first inclination surface 37). Is preferably equal to or larger than the angle of inclination with respect to the main surface of the glass substrate G.

図1,2に示す研磨装置では、研磨パッドを上定盤50あるいは下定盤60に貼り付けたものであるが、上定盤50あるいは下定盤60に固定砥粒を設けて、ガラス基板Gと上定盤50あるいは下定盤60との間にクーラントを供給してもよい。また、キャリア30は研磨装置の他に、ガラス基板Gを研削する研削装置に用いることもできる。
このようなキャリア30を用いた研磨装置さらには、この研磨装置と略同様の構成をした研削装置に用いて、以下に示すような磁気ディスク用ガラス基板の製造に好適に用いることができる。ガラス基板の研削装置を用いた研削では、研磨に比べて研削後のガラス基板の主表面の粗さRaは大きい。このような研削において、上定盤及び下定盤のそれぞれとガラス基板との間に研削液を供給してガラス基板の主表面を研削してもよい。あるいは、上定盤及び下定盤のそれぞれに固定砥粒を設け、この固定砥粒とガラス基板との間に潤滑液を供給してガラス基板の主表面を研削してもよい。
1 and 2, the polishing pad is attached to the upper surface plate 50 or the lower surface plate 60. The upper surface plate 50 or the lower surface plate 60 is provided with fixed abrasive grains, and the glass substrate G and A coolant may be supplied between the upper surface plate 50 or the lower surface plate 60. The carrier 30 can also be used in a grinding device for grinding the glass substrate G in addition to the polishing device.
A polishing apparatus using such a carrier 30 and further a grinding apparatus having substantially the same configuration as the polishing apparatus can be used suitably for manufacturing a glass substrate for a magnetic disk as shown below. In grinding using a glass substrate grinding apparatus, the roughness Ra of the main surface of the glass substrate after grinding is larger than in grinding. In such grinding, the main surface of the glass substrate may be ground by supplying a grinding liquid between each of the upper surface plate and the lower surface plate and the glass substrate. Alternatively, fixed abrasive grains may be provided on each of the upper surface plate and the lower surface plate, and a lubricating liquid may be supplied between the fixed abrasive particles and the glass substrate to grind the main surface of the glass substrate.

(磁気ディスク用ガラス基板の製造方法の説明)
本実施形態の製造方法では、まず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクの成形処理が行われる。次に、このガラスブランクの粗研削が行われる。この後、ガラスブランクに形状加工及び端面研磨が施される。この後、ガラスブランクから得られたガラス基板に固定砥粒を用いた精研削が行われる。この後、第1研磨、化学強化、及び、第2研磨がガラス基板に施される。なお、本実施形態では、上記流れで行うが、上記処理がある必要はなく、これらの処理は適宜行われなくてもよい。以下、各処理について、説明する。
(Description of manufacturing method of glass substrate for magnetic disk)
In the manufacturing method of the present embodiment, first, a glass blank that is a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is formed. Next, rough grinding of this glass blank is performed. Thereafter, shape processing and end face polishing are performed on the glass blank. Thereafter, fine grinding using fixed abrasive grains is performed on the glass substrate obtained from the glass blank. Thereafter, first polishing, chemical strengthening, and second polishing are performed on the glass substrate. In the present embodiment, the above process is performed. However, the above process is not necessarily performed, and these processes may not be appropriately performed. Hereinafter, each process will be described.

(a)ガラスブランクの成形
ガラスブランクの成形では、例えばプレス成形法を用いることができる。プレス成形法により、円形状のガラスブランクを得ることができる。さらに、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスブランクに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラス基板が得られる。
(A) Molding of glass blank In the molding of a glass blank, for example, a press molding method can be used. A circular glass blank can be obtained by the press molding method. Furthermore, it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method. A disk-shaped glass substrate serving as a base of the magnetic disk glass substrate can be obtained by appropriately shaping the plate-shaped glass blank produced by these known production methods.

(b)粗研削
粗研削では、具体的には、ガラスブランクを、図1,2に示す装置と同様の遊星歯車機構の周知の両面研削装置に装着される保持部材(キャリア)に設けられた保持穴内に保持しながらガラスブランクの両側の主表面の研削が行われる。この時、上述のキャリア30を用いることができる。研削材として、例えば遊離砥粒が用いられる。粗研削では、ガラスブランクが目標とする板厚寸法及び主表面の平坦度に略近づくように研削される。なお、粗研削は、成形されたガラスブランクの寸法精度あるいは表面粗さに応じて行われるものであり、場合によっては行われなくてもよい。
(B) Rough grinding In rough grinding, specifically, a glass blank was provided on a holding member (carrier) to be mounted on a well-known double-side grinding apparatus of a planetary gear mechanism similar to the apparatus shown in FIGS. The main surfaces on both sides of the glass blank are ground while being held in the holding holes. At this time, the carrier 30 described above can be used. For example, loose abrasive grains are used as the abrasive. In rough grinding, the glass blank is ground so as to approximate the target plate thickness and the flatness of the main surface. In addition, rough grinding is performed according to the dimensional accuracy or surface roughness of the formed glass blank, and may not be performed depending on the case.

(c)形状加工
次に、形状加工が行われる。形状加工では、ガラスブランクの成形後、公知の加工方法を用いて円孔を形成することにより、円孔があいた円盤形状のガラス基板を得る。その後、ガラス基板の端面の面取りを実施する。これにより、ガラス基板の端面には、主表面と直交している側壁面80(図3(b)参照)と、側壁面と両側のガラス主表面との間に、ガラス主表面に対して傾斜した面取り面82(図3(b)参照)が形成される。
(C) Shape processing Next, shape processing is performed. In the shape processing, after forming the glass blank, a circular hole is formed using a known processing method to obtain a disk-shaped glass substrate having a circular hole. Thereafter, the end surface of the glass substrate is chamfered. Accordingly, the end surface of the glass substrate is inclined with respect to the glass main surface between the side wall surface 80 (see FIG. 3B) orthogonal to the main surface and the side wall surface and the glass main surfaces on both sides. A chamfered surface 82 (see FIG. 3B) is formed.

(d)端面研磨
次にガラス基板の端面研磨が行われる。端面研磨は、例えば研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して研磨ブラシとガラス基板とを相対的に移動させることにより研磨を行う処理である。端面研磨では、ガラス基板の内周側端面及び外周側端面を研磨対象とし、内周側端面及び外周側端面を鏡面状態にする。
(D) End surface polishing Next, end surface polishing of the glass substrate is performed. The end surface polishing is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and moving the polishing brush and the glass substrate relatively, for example. In the end surface polishing, the inner peripheral side end surface and the outer peripheral side end surface of the glass substrate are to be polished, and the inner peripheral side end surface and the outer peripheral side end surface are in a mirror state.

(e)精研削
次に、ガラス基板の主表面に精研削が施される。具体的には、固定砥粒を貼り付けた定盤を用い、図1,2に示した研磨装置と同様の遊星歯車機構の両面研削装置を用いて、ガラス基板の主表面に対して研削を行う。この場合、研磨パッドの代わりに固定砥粒を定盤に設ける。具体的には、ガラス基板を、両面研削装置の保持部材である上述したキャリア30に設けられた保持穴内に保持しながらガラス基板の両側の主表面の研削を固定砥粒で行う。研削による取代量は、例えば10μm〜200μm程度である。
本実施形態の研削では、固定砥粒を含んだ研削面とガラス基板の主表面とを接触させてガラス基板の主表面を研削するが、遊離砥粒を用いた研削を行ってもよい。
(E) Fine grinding Next, fine grinding is performed on the main surface of the glass substrate. Specifically, grinding is performed on the main surface of the glass substrate using a double-side grinding device having a planetary gear mechanism similar to the polishing device shown in FIGS. Do. In this case, fixed abrasive grains are provided on the surface plate instead of the polishing pad. Specifically, grinding of the main surfaces on both sides of the glass substrate is performed with fixed abrasive grains while holding the glass substrate in the holding holes provided in the carrier 30 described above, which is a holding member of the double-side grinding apparatus. The machining allowance by grinding is, for example, about 10 μm to 200 μm.
In the grinding of this embodiment, the grinding surface containing fixed abrasive grains and the main surface of the glass substrate are brought into contact with each other to grind the main surface of the glass substrate. However, grinding using loose abrasive grains may be performed.

(f)第1研磨
次に、ガラス基板の主表面に第1研磨が施される。具体的には、ガラス基板の外周側端面を、図1,2に示される研磨装置のキャリア30に設けられた保持穴32内に保持しながらガラス基板Gの両側の主表面の研磨が行われる。第1研磨は、遊離砥粒を用いて、定盤に貼り付けられた研磨パッドを用いる。第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したクラックや歪みの除去をする。第1研磨では、主表面端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の表面粗さ、例えば算術平均粗さRaを低減することができる。
第1研磨に用いる遊離砥粒は特に制限されないが、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などが用いられる。
研磨パッドの種類は特に制限されないが、例えば、硬質発泡ウレタン樹脂ポリッシャが用いられる。
(F) 1st grinding | polishing Next, 1st grinding | polishing is given to the main surface of a glass substrate. Specifically, the main surface on both sides of the glass substrate G is polished while holding the outer peripheral side end face of the glass substrate in the holding hole 32 provided in the carrier 30 of the polishing apparatus shown in FIGS. . The first polishing uses a polishing pad attached to a surface plate using loose abrasive grains. The first polishing removes cracks and distortions remaining on the main surface when, for example, grinding with fixed abrasive grains is performed. In the first polishing, it is possible to reduce the surface roughness of the main surface, for example, the arithmetic average roughness Ra, while preventing the shape of the end portion of the main surface from excessively dropping or protruding.
The free abrasive grains used for the first polishing are not particularly limited. For example, cerium oxide abrasive grains or zirconia abrasive grains are used.
Although the kind in particular of a polishing pad is not restrict | limited, For example, a hard foaming urethane resin polisher is used.

(g)化学強化
ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウム,硝酸ナトリウム、またはそれらの混合物を加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層にあるガラス組成中のリチウムイオンやナトリウムイオンが、それぞれ化学強化液中のイオン半径が相対的に大きいナトリウムイオンやカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
化学強化を行うタイミングは、適宜決定することができるが、化学強化の後に研磨を行うようにすると、表面の平滑化とともに化学強化によってガラス基板の表面に固着した異物を取り除くことができるので特に好ましい。また、化学強化は、必要に応じて行われればよく、行われなくてもよい。
(G) Chemical strengthening The glass substrate can be appropriately chemically strengthened. As the chemical strengthening liquid, for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened.
The timing of performing chemical strengthening can be determined as appropriate, but it is particularly preferable to perform polishing after chemical strengthening because foreign matters fixed on the surface of the glass substrate by chemical strengthening can be removed along with smoothing of the surface. . Moreover, chemical strengthening should just be performed as needed and does not need to be performed.

(h)第2研磨(鏡面研磨)
次に、化学強化後のガラス基板に第2研磨が施される。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する遊星歯車機構の両面研磨装置が用いられる。具体的には、ガラス基板の外周側端面を、図1〜3に示される研磨装置のキャリア30に設けられた保持穴32内に保持しながらガラス基板Gの両側の主表面の研磨が行われる。こうすることで主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の粗さを低減することができる。第2研磨が第1研磨と異なる点は、遊離砥粒の種類が異なり及び粒子サイズが小さくなることと、研磨パッドの樹脂ポリッシャの硬度が軟らかくなることである。
(H) Second polishing (mirror polishing)
Next, 2nd grinding | polishing is given to the glass substrate after chemical strengthening. The second polishing is intended for mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus of a planetary gear mechanism having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surface on both sides of the glass substrate G is polished while holding the outer peripheral side end face of the glass substrate in the holding hole 32 provided in the carrier 30 of the polishing apparatus shown in FIGS. . By doing so, it is possible to reduce the roughness of the main surface while preventing the shape of the end portion of the main surface from excessively dropping or protruding. The second polishing differs from the first polishing in that the type of loose abrasive grains is different and the particle size is reduced, and the hardness of the resin polisher of the polishing pad is softened.

第2研磨に用いる遊離砥粒として、例えばコロイダルシリカ等の微粒子が用いられる。研磨されたガラス基板を洗浄することで、磁気ディスク用ガラス基板が得られる。
第2研磨は、必ずしも必須ではないが、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。このようにして、第2研磨の施されたガラス基板は磁気ディスク用ガラス基板となる。
As the free abrasive grains used for the second polishing, for example, fine particles such as colloidal silica are used. By cleaning the polished glass substrate, a glass substrate for a magnetic disk can be obtained.
Although 2nd grinding | polishing is not necessarily essential, it is preferable to implement by the point which can make the level of the surface unevenness | corrugation of the main surface of a glass substrate still better. Thus, the glass substrate subjected to the second polishing becomes a glass substrate for a magnetic disk.

研削装置あるいは研磨装置で行う粗研削、精研削、第1研磨及び第2研磨の少なくとも1つの研磨処理では、第1のキャリア主表面34は上定盤50に向き、第2のキャリア主表面35は、下定盤60を向くように配されることが好ましい。
また、図3(b)に、研磨中のキャリア30とガラス基板Gの関係が示されているように、研磨のとき、ガラス基板Gの面取り面82におけるガラス基板Gの板厚方向に沿った長さ、すなわち下定盤60の側に位置するガラス基板Gの面取り面82とガラス基板Gの側壁面80との接続部分81の、下定盤60の側に位置するガラス基板Gの主表面からの距離Hgが、第1の傾斜面37とキャリア30の側壁面38との接続部分43の、第2のキャリア主表面35からの距離Hcより短いことが、ガラス基板Gが研磨中に保持穴32から外れて破損すること(不安定な研磨)を防止する点で好ましい。
In at least one polishing process of rough grinding, fine grinding, first polishing, and second polishing performed by a grinding apparatus or a polishing apparatus, the first carrier main surface 34 faces the upper surface plate 50, and the second carrier main surface 35. Is preferably arranged to face the lower surface plate 60.
Further, as shown in FIG. 3B, the relationship between the carrier 30 being polished and the glass substrate G is shown along the thickness direction of the glass substrate G on the chamfered surface 82 of the glass substrate G during polishing. The length, that is, the connection portion 81 between the chamfered surface 82 of the glass substrate G positioned on the lower surface plate 60 side and the side wall surface 80 of the glass substrate G from the main surface of the glass substrate G positioned on the lower surface plate 60 side. The distance Hg is shorter than the distance Hc from the second carrier main surface 35 of the connecting portion 43 between the first inclined surface 37 and the side wall surface 38 of the carrier 30 so that the glass substrate G is polished while the holding hole 32 is being polished. It is preferable in that it is prevented from being damaged by being detached (unstable polishing).

本実施形態のキャリア30は、遊離砥粒を含むスラリをガラス基板Gの主表面と上定盤50及び下定盤60との間に供給して行う研磨のとき、ガラス基板Gの主表面に欠陥を発生させる原因となる微粒子を捕獲する傷をガラス基板Gの端面につけ難くする効果は大きい。特に、第2研磨はガラス主表面の加工処理が最終となるので、ガラス基板Gの端面に傷をつけ難くする点から、本実施形態のキャリア30を第2研磨に用いることが好ましい。   The carrier 30 of the present embodiment has a defect on the main surface of the glass substrate G when polishing is performed by supplying a slurry containing loose abrasive grains between the main surface of the glass substrate G and the upper surface plate 50 and the lower surface plate 60. The effect of making it difficult to scratch the end face of the glass substrate G that captures the fine particles that cause the generation of the defects is great. In particular, since the processing of the main surface of the glass is final in the second polishing, it is preferable to use the carrier 30 of the present embodiment for the second polishing from the viewpoint of making it difficult to damage the end surface of the glass substrate G.

(実施例、従来例)
本実施形態の効果を確認するために、種々のキャリアを作製して、このキャリアを用いて複数のガラス基板の研磨を行い、ガラス基板の外周端面の傷(端面欠陥)を調べた。ガラス基板Gの側壁面80を挟む両側の面取り面82の、ガラス基板Gの主表面に対する傾斜角度は、いずれも45度である。加工対象の磁気ディスク用ガラス基板は、2.5インチサイズで板厚が0.8mmのガラス基板とした。
上述したガラス基板Gの製造方法において(e)精研削まで行った後、下記表1〜3に示すキャリアを用いて、ガラス主表面の(f)第1研摩を以下の条件で行った。
・研磨剤:酸化セリウム(平均粒径d50:1.2〜1.4μm)
・研磨パッド:軟質ウレタンパッド(スウェード)
・研磨による取代量:40μm
・キャリア:ガラス繊維から成るガラスクロスをエポキシ樹脂で含浸させた板材。
(Example, conventional example)
In order to confirm the effect of this embodiment, various carriers were prepared, and a plurality of glass substrates were polished using the carriers, and scratches (end surface defects) on the outer peripheral end surface of the glass substrate were examined. The inclination angles of the chamfered surfaces 82 on both sides of the side wall surface 80 of the glass substrate G with respect to the main surface of the glass substrate G are all 45 degrees. The glass substrate for magnetic disk to be processed was a glass substrate having a size of 2.5 inches and a thickness of 0.8 mm.
In the manufacturing method of the glass substrate G described above, (e) fine grinding was performed, and then (f) first polishing of the glass main surface was performed under the following conditions using the carriers shown in Tables 1 to 3 below.
Polishing agent: cerium oxide (average particle diameter d50: 1.2 to 1.4 μm)
・ Polishing pad: Soft urethane pad (Suede)
-Stock removal by polishing: 40 μm
Carrier: A plate material in which glass cloth made of glass fiber is impregnated with epoxy resin.

端面欠陥の評価は、レーザ顕微鏡を用いて、ガラス基板Gの側壁面80と面取り面82の接続部分の近傍の欠陥(傷)の有無と、傷の深さを調べた。レーザ顕微鏡による計測では、20倍の対物レンズを用いて、板厚方向に0.5μm間隔で形状を計測して、傷の深さを調べた。傷が見られなかった場合の評価を「無し」で表し、傷が見られたが、従来の傷に比べて浅い(具体的には従来の傷深さの70%以下)場合を「許容」と表し、従来と同様の傷の深さを持った傷(従来の傷深さの70%より深い傷)の場合、「不可」と表した。
また、保持穴内周壁面33の断面形状の曲率半径は、市販品の輪郭形状測定器を用いて計測した結果から求めた。
キャリア30の板厚をt[mm]とした。下記表1は、実施例1〜6と従来例のキャリアの形態と、端面欠陥(傷)の評価結果を示している。実施例1〜6では、第1の傾斜面37及び第2の傾斜面39の曲率半径を変更した。第1の傾斜面37及び第2の傾斜面39の曲率半径は同じに揃えた。表1に示す従来例は、第1の傾斜面37がなく、第1のキャリア主表面とキャリア側壁面が直交してできたエッジ部がある形態である。
For the evaluation of the end face defect, the presence or absence of a defect (scratch) in the vicinity of the connection portion between the side wall surface 80 and the chamfered surface 82 of the glass substrate G and the depth of the scratch were examined using a laser microscope. In measurement with a laser microscope, the depth of the scratch was examined by measuring the shape at 0.5 μm intervals in the plate thickness direction using a 20 × objective lens. The evaluation when no scratch was found was expressed as “none”, and the case where the scratch was seen but shallow compared to the conventional scratch (specifically, 70% or less of the conventional scratch depth) was “acceptable”. In the case of a flaw having a flaw depth similar to the conventional one (a flaw deeper than 70% of the conventional flaw depth), it is represented as “impossible”.
Moreover, the curvature radius of the cross-sectional shape of the inner peripheral wall surface 33 of the holding hole was obtained from the result of measurement using a commercially available contour shape measuring instrument.
The plate thickness of the carrier 30 was t [mm]. Table 1 below shows the forms of carriers in Examples 1 to 6 and the conventional example, and the evaluation results of end face defects (scratches). In Examples 1-6, the curvature radius of the 1st inclined surface 37 and the 2nd inclined surface 39 was changed. The curvature radii of the first inclined surface 37 and the second inclined surface 39 were the same. The conventional example shown in Table 1 has a form in which there is no first inclined surface 37 and there is an edge portion in which the first carrier main surface and the carrier side wall surface are perpendicular to each other.

Figure 0006280355
Figure 0006280355

下記表2は、実施例7〜11と従来例のキャリアの形態と、端面欠陥(傷)の評価結果を示している。従来例は、表1に示す従来例と同じ形態である。実施例7〜実施例11では、図5に示すように保持穴内周壁面33全体が第1の傾斜面37で構成されている形態とし、第1の傾斜角度θを変更した。   Table 2 below shows the forms of carriers of Examples 7 to 11 and the conventional example, and the evaluation results of end face defects (scratches). The conventional example has the same form as the conventional example shown in Table 1. In Example 7 to Example 11, as shown in FIG. 5, the entire inner peripheral wall surface 33 of the holding hole is configured by the first inclined surface 37, and the first inclination angle θ is changed.

Figure 0006280355
実施例11の※は、研磨できたガラス基板の端面欠陥は「無し」であったが、一部のガラス基板が保持穴から外れて破損する場合があり、安定した研磨が難しかった、ことを意味する。
Figure 0006280355
In Example 11 *, the end surface defect of the glass substrate that could be polished was “None”, but some glass substrates were detached from the holding holes and could be damaged, and stable polishing was difficult. means.

下記表3は、実施例12〜21と従来例のキャリアの形態と、端面欠陥(傷)の評価結果を示している。従来例は、表1に示す従来例と同じ形態である。実施例12〜実施例21では、図3(a)に示すように、断面形状が直線形状の第1の傾斜面37と側壁面38と、を有する保持穴内周壁面33を用いた。実施例12〜15では、第1の傾斜角度θを変更した。実施例12〜15の距離Hcは0mmであるので、実施例12〜15の形態は、実質的に図5に示す形態と同じである。実施例16〜21では、第1の傾斜角度θと距離Hcを変更した。   Table 3 below shows the forms of carriers of Examples 12 to 21 and the conventional example, and the evaluation results of end face defects (scratches). The conventional example has the same form as the conventional example shown in Table 1. In Example 12 to Example 21, as shown in FIG. 3A, a holding hole inner peripheral wall surface 33 having a first inclined surface 37 and a side wall surface 38 having a linear cross section is used. In Examples 12 to 15, the first inclination angle θ was changed. Since the distance Hc of Examples 12-15 is 0 mm, the form of Examples 12-15 is substantially the same as the form shown in FIG. In Examples 16 to 21, the first inclination angle θ and the distance Hc were changed.

Figure 0006280355
実施例14,15,18,20の※は、研磨できたガラス基板の端面欠陥は「無し」であったが、一部のガラス基板が保持穴から外れて破損する場合があり、安定した研磨が難しかった、ことを意味する。
Figure 0006280355
In Examples 14, 15, 18 and 20, the end surface defects of the polished glass substrate were “None”, but some glass substrates were detached from the holding holes and could be damaged, and stable polishing. Means it was difficult.

表1の評価結果によれば、図4(c)に示す第1の傾斜面37及び第2の傾斜面39の形態では、第1の傾斜面37及び第2の傾斜面39の曲率半径は、キャリア30の板厚t[mm]の0.01倍以上0.5倍以下であることが、端面欠陥(傷)の抑制の点で好ましく、第1の傾斜面37及び第2の傾斜面39の曲率半径は、キャリア30の板厚t[mm]の0.03倍以上0.5倍以下であることがより好ましいことがわかる。
表2の評価結果によれば、図5に示す第1の傾斜面37の形態では、第1の傾斜角度θは、0度より大きく85度以下において、端面欠陥(傷)の発生が許容範囲内であった。図5に示す第1の傾斜面37の形態では、第1の傾斜角度θは、ガラス基板が保持穴32から外れず安定した研磨ができ、かつ、端面欠陥を発生させないためには、45度(ガラス基板Gの面取り面82の主表面に対する傾斜角度)以上80度以下であることが好ましい。
表3の評価結果によれば、距離Hc=0[mm]の条件を含む、距離Hcが距離Hgより小さい条件では、第1の傾斜角度θが15度以上45度未満である場合、端面欠陥は発生しないが、一部のガラス基板Gが破損し、不安定な研磨であった。これは、ガラス基板Gの一部が保持穴32から外れ第1の傾斜面37の上に乗って、ガラス基板Gに余分な力が加わったことによる。図3(a)の第1の傾斜面37の形態において、第1の傾斜角度θが45度(ガラス基板Gの面取り面82の主表面に対する傾斜角度)以上85度以下である場合、距離Hcが距離Hgより大きくても、あるいは距離Hg以下であっても、安定した研磨ができ、かつ、端面欠陥の発生は抑制される。そして、距離Hcが距離Hgより小さい条件では、第1の傾斜角度θが15度以上85度以下であることが端面欠陥の発生を抑制する点で好ましく、表2の結果を合わせると、第1の傾斜角度θが15度以上80度以下であることが端面欠陥を発生させない点で好ましい。さらに、端面欠陥を発生させず、ガラス基板Gの安定した研磨を行う点で、45度以上80度以下であることがより好ましい。
According to the evaluation results in Table 1, in the form of the first inclined surface 37 and the second inclined surface 39 shown in FIG. 4C, the radii of curvature of the first inclined surface 37 and the second inclined surface 39 are The thickness of the carrier 30 is preferably 0.01 times or more and 0.5 times or less of the plate thickness t [mm] from the viewpoint of suppressing end face defects (scratches), and the first inclined surface 37 and the second inclined surface. It can be seen that the radius of curvature of 39 is more preferably 0.03 to 0.5 times the plate thickness t [mm] of the carrier 30.
According to the evaluation results in Table 2, in the form of the first inclined surface 37 shown in FIG. 5, the occurrence of end face defects (scratches) is within an allowable range when the first inclination angle θ is greater than 0 degree and not more than 85 degrees. It was in. In the form of the first inclined surface 37 shown in FIG. 5, the first inclined angle θ is 45 degrees so that the glass substrate can be stably polished without being detached from the holding hole 32 and an end face defect is not generated. It is preferable that it is 80 degrees or less (inclination angle with respect to the main surface of the chamfered surface 82 of the glass substrate G).
According to the evaluation results in Table 3, when the distance Hc is smaller than the distance Hg, including the condition of the distance Hc = 0 [mm], when the first inclination angle θ is not less than 15 degrees and less than 45 degrees, end face defects However, a part of the glass substrate G was damaged, resulting in unstable polishing. This is because a part of the glass substrate G comes off the holding hole 32 and rides on the first inclined surface 37, and an extra force is applied to the glass substrate G. In the form of the first inclined surface 37 in FIG. 3A, when the first inclination angle θ is not less than 45 degrees (inclination angle with respect to the main surface of the chamfered surface 82 of the glass substrate G) and not more than 85 degrees, the distance Hc. Even when the distance Hg is greater than the distance Hg or less than the distance Hg, stable polishing can be performed and the occurrence of end face defects is suppressed. In the condition where the distance Hc is smaller than the distance Hg, it is preferable that the first inclination angle θ is 15 degrees or more and 85 degrees or less from the viewpoint of suppressing the occurrence of end face defects. It is preferable that the inclination angle θ is 15 degrees or more and 80 degrees or less in that no end face defects are generated. Furthermore, it is more preferably 45 degrees or more and 80 degrees or less from the viewpoint of performing stable polishing of the glass substrate G without generating end face defects.

以上、本発明の磁気ディスク用基板の製造方法及び研磨処理用キャリアについて詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the manufacturing method of the substrate for magnetic disks and the carrier for polishing treatment of the present invention have been described in detail, the present invention is not limited to the above embodiment and examples, and various modifications can be made without departing from the gist of the present invention. Of course, improvements and changes may be made.

10 研磨パッド
30 キャリア
31 歯部
32 保持穴
33 保持穴内周壁面
34 第1のキャリア主表面
35 第2のキャリア主表面
36,40,42,43 接続部分
37 第1の傾斜面
38 側壁面
39 第2の傾斜面
41 曲面
50 上定盤
60 下定盤
61 太陽歯車
62 内歯車
71 供給タンク
72 配管
80 側壁面
81 接続部分
82 面取り面
DESCRIPTION OF SYMBOLS 10 Polishing pad 30 Carrier 31 Tooth part 32 Holding hole 33 Holding hole inner peripheral wall surface 34 1st carrier main surface 35 2nd carrier main surface 36,40,42,43 Connection part 37 1st inclined surface 38 Side wall surface 39 1st Two inclined surfaces 41 Curved surface 50 Upper surface plate 60 Lower surface plate 61 Sun gear 62 Internal gear 71 Supply tank 72 Pipe 80 Side wall surface 81 Connection portion 82 Chamfered surface

Claims (9)

円板状のガラス基板を上定盤及び下定盤で挟んで前記ガラス基板のガラス主表面を研磨処理する際に前記ガラス基板を保持するための保持穴を有する板状の研磨処理用キャリアであって、
前記研磨処理用キャリアは、ガラス繊維に樹脂材料を含浸させた板材で構成され、
前記保持穴を画する保持穴内周壁面は、前記研磨処理用キャリアの第1のキャリア主表面と接続する前記保持穴内周壁面の接続部分から延び、前記研磨処理用キャリアの第1のキャリア主表面に対して傾斜した第1の傾斜面と、前記第1のキャリア主表面に対して直交し、前記第1のキャリア主表面に対向する第2のキャリア主表面と前記第1の傾斜面とを接続するように、前記第2のキャリア主表面と前記第1の傾斜面の間に設けられる側壁面と、を備え、
前記保持穴の中心軸を通り前記研磨処理用キャリアの板厚方向に平行な面で切断した前記保持穴の断面において、前記第1の傾斜面の断面形状は、前記第1のキャリア主表面に対する第1の傾斜角度を一定にして延びた直線形状あるいは前記第1の傾斜角度が変化した凸状の曲線形状である、ことを特徴とする研磨処理用キャリア。
A plate-shaped polishing carrier having a holding hole for holding the glass substrate when the glass main surface of the glass substrate is polished by sandwiching a disk-shaped glass substrate between an upper surface plate and a lower surface plate. And
The carrier for polishing treatment is composed of a plate material in which a glass fiber is impregnated with a resin material,
A holding hole inner peripheral wall surface defining the holding hole extends from a connection portion of the holding hole inner peripheral wall surface connected to the first carrier main surface of the polishing treatment carrier, and the first carrier main surface of the polishing treatment carrier A first inclined surface inclined with respect to the first carrier main surface, a second carrier main surface orthogonal to the first carrier main surface and opposed to the first carrier main surface, and the first inclined surface. A side wall surface provided between the second carrier main surface and the first inclined surface so as to be connected,
In the cross section of the holding hole cut by a plane that passes through the central axis of the holding hole and is parallel to the plate thickness direction of the polishing treatment carrier, the cross-sectional shape of the first inclined surface is relative to the first carrier main surface. A polishing carrier, characterized in that the carrier has a linear shape extending with a constant first inclination angle or a convex curved shape in which the first inclination angle is changed.
前記第1の傾斜面は、前記第1の傾斜角度を一定にして前記第1のキャリア主表面に対して傾斜した面であり、
前記保持穴内周壁面は、さらに、前記第1の傾斜面の端から前記側壁面の端まで延びる前記第1の傾斜角度が変化した凸状の曲面を備える、請求項1に記載の研磨処理用キャリア。
The first inclined surface is a surface inclined with respect to the first carrier main surface with the first inclination angle constant.
2. The polishing process according to claim 1, wherein the inner peripheral wall surface of the holding hole further includes a convex curved surface having a first inclination angle changed from an end of the first inclined surface to an end of the side wall surface. Career.
前記保持穴の前記断面において、前記第1の傾斜面の端から前記側壁面の端まで延びる前記凸状の曲面における曲率半径は、前記研磨処理用キャリアの板厚の0.03倍以上の長さである、請求項2に記載の研磨処理用キャリア。   In the cross section of the holding hole, the radius of curvature of the convex curved surface extending from the end of the first inclined surface to the end of the side wall surface is 0.03 times or more the plate thickness of the polishing treatment carrier. The carrier for polishing treatment according to claim 2, wherein 前記第1の傾斜面は、前記第1の傾斜角度が変化した凸状の曲面であり、
前記保持穴の前記断面において、前記第1の傾斜面における曲率半径は、前記研磨処理用キャリアの板厚の0.03倍以上1.0倍以下である、請求項1に記載の研磨処理用キャリア。
The first inclined surface is a convex curved surface in which the first inclination angle is changed,
2. The polishing process according to claim 1, wherein in the cross section of the holding hole, a radius of curvature of the first inclined surface is 0.03 times or more and 1.0 times or less of a plate thickness of the polishing processing carrier. Career.
前記第1のキャリア主表面は前記上定盤に向くように配される、請求項1〜4のいずれか1項に記載の研磨処理用キャリア。   The polishing carrier according to any one of claims 1 to 4, wherein the first carrier main surface is disposed so as to face the upper surface plate. 基板を、キャリアに設けられた保持孔に保持した状態で前記基板を上定盤と下定盤とで挟み、前記基板の主表面と前記上定盤及び前記下定盤とを相対的に移動させることで、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
前記キャリアの板厚は、前記基板よりも薄い板厚であり、
前記キャリアは、ガラス繊維に樹脂材料を含浸させた板材で構成され、
前記保持孔を画する保持孔内周壁面は、前記キャリアの第1のキャリア主表面と接続する前記保持孔内周壁面の接続部分から延び、前記キャリアの第1のキャリア主表面に対して傾斜した第1の傾斜面と、前記第1のキャリア主表面に対して直交し、前記第1のキャリア主表面に対向する第2のキャリア主表面と前記第1の傾斜面とを接続するように、前記第2のキャリア主表面と前記第1の傾斜面の間に設けられる側壁面と、を備え、
前記保持孔の中心軸を通り前記キャリアの板厚方向に平行な面で切断した前記保持孔の断面において、前記第1の傾斜面の断面形状は、前記第1のキャリア主表面に対する第1の傾斜角度を一定にして延びた直線形状あるいは前記第1の傾斜角度が変化した凸状の曲線形状であり、
前記第1のキャリア主表面は前記上定盤に向き、前記第1のキャリア主表面と対向する第2のキャリア主表面は、前記下定盤を向くように前記キャリアは配される、ことを特徴とする磁気ディスク用基板の製造方法。
The substrate is sandwiched between an upper surface plate and a lower surface plate with the substrate held in a holding hole provided in a carrier, and the main surface of the substrate and the upper surface plate and the lower surface plate are moved relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate,
The thickness of the carrier is smaller than that of the substrate,
The carrier is composed of a plate material in which a glass fiber is impregnated with a resin material,
A holding hole inner peripheral wall surface defining the holding hole extends from a connection portion of the holding hole inner peripheral wall surface connected to the first carrier main surface of the carrier, and is inclined with respect to the first carrier main surface of the carrier The first inclined surface and the second carrier main surface orthogonal to the first carrier main surface and opposed to the first carrier main surface are connected to the first inclined surface. A sidewall surface provided between the second carrier main surface and the first inclined surface,
In the cross section of the holding hole cut by a plane passing through the central axis of the holding hole and parallel to the plate thickness direction of the carrier, the cross-sectional shape of the first inclined surface is a first shape relative to the first carrier main surface. A linear shape extending with a constant inclination angle or a convex curve shape with the first inclination angle changed,
The first carrier main surface faces the upper surface plate, and the carrier is arranged so that the second carrier main surface facing the first carrier main surface faces the lower surface plate. A method for manufacturing a magnetic disk substrate.
前記基板の外周端面は、両側の基板の主表面に対して直交した基板側壁面と、前記基板側壁面と前記両側の基板の主表面のそれぞれとの間に設けられた基板面取り面と、を備え、
前記研磨処理を行うとき、前記下定盤の側に位置する基板面取り面と前記基板側壁面との接続部分の、前記下定盤の側に位置する前記基板の主表面からの距離Hgが、前記第1の傾斜面と前記キャリアの前記側壁面との接続部分の、前記第2のキャリア主表面からの距離Hcより短い、請求項6に記載の磁気ディスク用基板の製造方法。
The outer peripheral end surface of the substrate includes a substrate side wall surface orthogonal to the main surfaces of the substrates on both sides, and a substrate chamfered surface provided between the substrate side wall surface and the main surfaces of the substrates on both sides. Prepared,
When performing the polishing treatment, the distance Hg from the main surface of the substrate located on the lower surface plate side of the connecting portion between the substrate chamfered surface located on the lower surface plate side and the substrate side wall surface is the first surface. the connecting portion between the first inclined surface and the side wall surface of the carrier, the second shorter than the distance Hc from the carrier main surface, a manufacturing method of a substrate according to claim 6.
前記研磨処理は、遊離砥粒を含む研磨スラリを前記基板の主表面と前記上定盤及び前記下定盤との間に供給して行う研磨である、請求項6または7に記載の磁気ディスク用基板の製造方法。   8. The magnetic disk according to claim 6, wherein the polishing treatment is polishing performed by supplying a polishing slurry containing loose abrasive grains between the main surface of the substrate and the upper surface plate and the lower surface plate. A method for manufacturing a substrate. 前記基板は、ガラス基板である、請求項6〜8のいずれか1項に記載の磁気ディスク用基板の製造方法。   The method for manufacturing a magnetic disk substrate according to claim 6, wherein the substrate is a glass substrate.
JP2013247312A 2013-11-29 2013-11-29 Manufacturing method of magnetic disk substrate and carrier for polishing treatment Active JP6280355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247312A JP6280355B2 (en) 2013-11-29 2013-11-29 Manufacturing method of magnetic disk substrate and carrier for polishing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247312A JP6280355B2 (en) 2013-11-29 2013-11-29 Manufacturing method of magnetic disk substrate and carrier for polishing treatment

Publications (3)

Publication Number Publication Date
JP2015104771A JP2015104771A (en) 2015-06-08
JP2015104771A5 JP2015104771A5 (en) 2017-01-05
JP6280355B2 true JP6280355B2 (en) 2018-02-14

Family

ID=53435218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247312A Active JP6280355B2 (en) 2013-11-29 2013-11-29 Manufacturing method of magnetic disk substrate and carrier for polishing treatment

Country Status (1)

Country Link
JP (1) JP6280355B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6008060B1 (en) * 2015-12-22 2016-10-19 旭硝子株式会社 Glass substrate for magnetic recording medium, magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and glass substrate manufacturing apparatus for magnetic recording medium
JP6128198B1 (en) * 2015-12-22 2017-05-17 株式会社Sumco Wafer double-side polishing method and epitaxial wafer manufacturing method using the same
JP6579056B2 (en) * 2016-07-29 2019-09-25 株式会社Sumco Wafer double-side polishing method
CN109129030A (en) * 2018-08-20 2019-01-04 深圳市宇顺电子股份有限公司 A kind of control method and its ito glass structure of liquid crystal display angle lap deviation
DE102019110489A1 (en) * 2019-04-23 2020-10-29 Schott Ag Glass or glass ceramic plate and method for producing such plates

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156062A (en) * 1993-11-30 1995-06-20 Kyushu Komatsu Denshi Kk Lapping carrier
JP2000210863A (en) * 1999-01-22 2000-08-02 Toshiba Ceramics Co Ltd Carrier
JP2000288922A (en) * 1999-03-31 2000-10-17 Hoya Corp Polishing carrier, polishing method and manufacture of information recording medium substrate
JP4915146B2 (en) * 2006-06-08 2012-04-11 信越半導体株式会社 Wafer manufacturing method
JP5233888B2 (en) * 2009-07-21 2013-07-10 信越半導体株式会社 Method for manufacturing carrier for double-side polishing apparatus, carrier for double-side polishing apparatus and double-side polishing method for wafer
KR101150849B1 (en) * 2009-11-27 2012-06-13 주식회사 엘지실트론 Wafer carrier and apparatus for polishing double side of wafer having the same
JP2014200869A (en) * 2013-04-03 2014-10-27 サンコースプリング株式会社 Wrapping carrier

Also Published As

Publication number Publication date
JP2015104771A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
US6852003B2 (en) Method of manufacturing glass substrate for data recording medium
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
US20070003796A1 (en) Method for manufacturing magnetic disk glass substrate and method for manufacturing magnetic disk
JP6426078B2 (en) Glass substrate for magnetic disk, glass substrate, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP6577636B2 (en) Polishing or grinding carrier manufacturing method, polishing or grinding carrier, and substrate manufacturing method
CN103158060A (en) Grinding brush, grinding method of end surface of glass substrate, production method of glass substrate
WO2017057686A1 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate body, and method for manufacturing glass substrate for magnetic disk
JP5752971B2 (en) Manufacturing method of glass substrate for information recording medium
JP6177603B2 (en) Grinding / polishing carrier and substrate manufacturing method
JP5994022B2 (en) Grinding wheel, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2015069674A (en) Manufacturing method of magnetic disk glass substrate, and polishing treatment carrier
CN105163908B (en) The manufacture method of pallet, the manufacture method of substrate for magnetic disc and disk
CN104170013B (en) The manufacture method and information recording carrier of glass substrate for information recording medium
JP5413409B2 (en) Support jig and method for manufacturing glass substrate for magnetic recording medium
JP6199047B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2014180709A (en) Manufacturing method of grindstone, and glass substrate for magnetic disk
WO2021193970A1 (en) Carrier and method for manufacturing substrate
JP5725134B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP6121759B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2012051072A (en) Method for manufacturing disk substrate
JP2014216042A (en) Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method
CN116897392A (en) Magnetic disk substrate, magnetic disk, annular substrate, and method for manufacturing magnetic disk substrate
JP2015069684A (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250