JP4544513B2 - Illumination device and imaging device - Google Patents

Illumination device and imaging device Download PDF

Info

Publication number
JP4544513B2
JP4544513B2 JP2004162604A JP2004162604A JP4544513B2 JP 4544513 B2 JP4544513 B2 JP 4544513B2 JP 2004162604 A JP2004162604 A JP 2004162604A JP 2004162604 A JP2004162604 A JP 2004162604A JP 4544513 B2 JP4544513 B2 JP 4544513B2
Authority
JP
Japan
Prior art keywords
light
light source
optical
reflecting
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004162604A
Other languages
Japanese (ja)
Other versions
JP2005345575A (en
JP2005345575A5 (en
Inventor
信久 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004162604A priority Critical patent/JP4544513B2/en
Publication of JP2005345575A publication Critical patent/JP2005345575A/en
Publication of JP2005345575A5 publication Critical patent/JP2005345575A5/ja
Application granted granted Critical
Publication of JP4544513B2 publication Critical patent/JP4544513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Stroboscope Apparatuses (AREA)

Description

本発明は、光源からの光束を被照明領域に効率良く照射する照明装置と、該照明装置を有する撮影装置に関するものである。   The present invention relates to an illuminating device that efficiently irradiates a region to be illuminated with a light beam from a light source, and an imaging device having the illuminating device.

従来のカメラ等の撮影装置に用いられている照明装置は、光源と、この光源から発せられた光束を前方(被写体側)の被照射領域に導く反射鏡やフレネルレンズ等の光学部品とで構成されている。   An illumination device used in a conventional photographing apparatus such as a camera is composed of a light source and optical components such as a reflector and a Fresnel lens that guide a light beam emitted from the light source to a front (subject side) irradiated area. Has been.

このような照明装置のうち、光源から様々な方向に射出した光束を、小型で効率よく必要照射画角内に集光させるようにした照明装置が、従来より種々の提案されている。
Among the lighting apparatus as described above, the light beams emitted in various directions from a light source, a small lighting apparatus that is focused efficiently required irradiation angle of view have been various proposals from the prior art.

特に、近年、光源の前側(被写体側)に配置されていたフレネルレンズのかわりに、プリズム・ライトガイド等の全反射を利用した光学部材を配置することによって、集光効率の向上、小型化を図ったものが提案されている。   In particular, in place of the Fresnel lens that has been placed on the front side (subject side) of the light source in recent years, optical components using total reflection such as prisms and light guides can be placed to improve light collection efficiency and reduce size. What has been proposed has been proposed.

この種の提案としては、光源中心から射出した光束のうち光軸に近い成分は光学プリズムのシリンドリカルレンズの屈折により、また、光軸から離れた周辺成分はシリンドリカルレンズの上下に形成された反射面により、それぞれ光軸方向に略平行な光束に変換された後、光学プリズムの射出面に形成された複数の凸レンズとその前方に配置された光学パネルに形成された凹レンズにより光学作用を受けて被写体側に照射される。   As a proposal of this type, the component close to the optical axis in the light beam emitted from the center of the light source is due to refraction of the cylindrical lens of the optical prism, and the peripheral components away from the optical axis are the reflecting surfaces formed above and below the cylindrical lens. Are converted into light beams substantially parallel to the optical axis direction, and then subject to an optical action by a plurality of convex lenses formed on the exit surface of the optical prism and a concave lens formed on the optical panel disposed in front of the convex lenses. Irradiated to the side.

そして、光学プリズムと光学パネルとの光軸方向距離を変化させることによって、照明光の照射範囲(角度)を変化させるようになっている。このような構成により、照明光の照射範囲の変更が可能であり、小型で集光効率の高い照明装置が実現される(特許文献1参照)。   And the irradiation range (angle) of illumination light is changed by changing the optical axis direction distance of an optical prism and an optical panel. With such a configuration, the illumination light irradiation range can be changed, and a small-sized lighting device with high light collection efficiency is realized (see Patent Document 1).

また、特許文献2には、光学部材を1部材で照射範囲の変更が可能な照明装置が提案されている。図8は該照明装置の断面図であり、図8(b)は代表光線のトレース図である。   Patent Document 2 proposes an illumination device capable of changing the irradiation range with one optical member. FIG. 8 is a cross-sectional view of the illumination device, and FIG. 8B is a trace diagram of representative rays.

この照明装置は、光源2と、この光源2の前側に配置された光学部材4と、光源2の後側および光源2と光学部材4との間の前側空間を覆うように配置され、光源2からの光を前方に反射させる反射部材3とを有する。   The illuminating device is disposed so as to cover the light source 2, the optical member 4 disposed on the front side of the light source 2, the rear side of the light source 2 and the front space between the light source 2 and the optical member 4. And a reflecting member 3 that reflects light from the front.

そして、光学部材4の入射面側に、光軸L付近において光源2から入射する光に正の屈折力を与える正屈折部4aと、この正屈折部4aよりも周辺側であって反射部材3のうち上記前側空間を覆う部分で反射した光が通過する領域よりも光軸側に、光源2から入射する光を前方に反射させる反射部4c,4c’とを設けるとともに、光源2と光学部材4との光軸方向における相対的位置関係の変更により光学部材4から射出する光の照射範囲を可変としている(特許文献2参照)。
特開2000−298244号公報(段落0100〜0102、図1、2等) 特開2003−287792号公報(段落0010〜0014、図1、2等)
Then, on the incident surface side of the optical member 4, a positive refracting portion 4 a that gives positive refractive power to light incident from the light source 2 in the vicinity of the optical axis L, and a reflecting member 3 that is on the peripheral side of the positive refracting portion 4 a Reflecting portions 4c and 4c ′ for reflecting light incident from the light source 2 forward are provided on the optical axis side of the region through which the light reflected by the portion covering the front space passes, and the light source 2 and the optical member The irradiation range of the light emitted from the optical member 4 is variable by changing the relative positional relationship in the optical axis direction with respect to the reference numeral 4 (see Patent Document 2).
JP 2000-298244 A (paragraphs 0100 to 0102, FIGS. 1 and 2 etc.) Japanese Patent Laying-Open No. 2003-287792 (paragraphs 0010 to 0014, FIGS. 1 and 2 etc.)

しかしながら、上記特許文献1の照明装置における光学部材は、光学プリズムと光学パネルの2つの部材を必要としている。   However, the optical member in the illumination device of Patent Document 1 requires two members, an optical prism and an optical panel.

また、上記特許文献2の照明装置では、光源中心から射出した光束のうち光軸に近い成分は光学部材のシリンドリカルレンズの屈折より、また、光軸から離れた周辺の成分はシリンドリカルレンズの上下に形成された反射面により、さらに、上下方向の成分は光束を前方に反射させる反射部材の反射部によって、それぞれ光軸方向に略平行な光束に変換する必要があるため、光学部材(光学プリズム)の開口部の高さ方向を小型化することが難しかった。   In the illumination device disclosed in Patent Document 2, a component close to the optical axis of the light beam emitted from the center of the light source is refracted by the cylindrical lens of the optical member, and a peripheral component away from the optical axis is above and below the cylindrical lens. Because of the formed reflecting surface, the vertical component needs to be converted into a light beam substantially parallel to the optical axis direction by the reflecting part of the reflecting member that reflects the light beam forward, so that an optical member (optical prism) It was difficult to downsize the height direction of the opening.

本発明の目的は、小型で、かつ良好な配光特性が得られる照明装置を提供するものである。   The objective of this invention is providing the illuminating device which is small and can obtain a favorable light distribution characteristic.

上記の目的を達成するために、本発明の照射装置は、光源と、該光源からの光を照射方向に向かわせるための光学部材および反射部材とを有する照明装置であって、光学部材は、正の屈折力を有する入射面と、負の屈折力を有する射出面と、光源から入射面よりも周辺側に進んだ光を射出面に向けて反射する反射面とを有する。   In order to achieve the above object, an irradiation apparatus according to the present invention is a lighting device including a light source, an optical member for directing light from the light source in an irradiation direction, and a reflection member. An incident surface having a positive refractive power, an exit surface having a negative refractive power, and a reflective surface that reflects light traveling from the light source toward the peripheral side of the incident surface toward the exit surface.

そして、反射部材は、光源から反射面よりも周辺側に進んだ光を反射する第1の面と、該第1の面からの光を射出面に向けて反射する第2の面とを有する。   The reflecting member has a first surface that reflects light traveling from the light source to the peripheral side of the reflecting surface, and a second surface that reflects light from the first surface toward the exit surface. .

本発明によれば、光学部材に設けられた反射面と、反射部材の第1の面及び第2の面とにより、光源から進んだ光を効率よく集光することができ、射出面を小さくすることができる。   According to the present invention, the light traveling from the light source can be efficiently collected by the reflecting surface provided on the optical member and the first surface and the second surface of the reflecting member, and the exit surface can be reduced. can do.

このため、小型で、かつ良好な配光特性が得られる照明装置を実現することができる。
For this reason , the illuminating device which is small and can obtain a favorable light distribution characteristic is realizable.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、図1から図5を参照して本発明の実施例1の照明装置について説明する。   Hereinafter, the lighting apparatus according to the first embodiment of the present invention will be described with reference to FIGS.

図1は本実施例の照明装置をカメラ(撮像装置)の上辺部に搭載したときの本実施例の概略構成図である。   FIG. 1 is a schematic configuration diagram of this embodiment when the illumination device of this embodiment is mounted on the upper side of a camera (imaging device).

1はカメラ本体、2はレンズ鏡筒部であり、不図示の撮影レンズを保持している。3はファインダ、4はレリーズボタンである。5は照明装置(発光ユニット)であり、カメラ本体1の右上部に設けている。なお、照明装置を除くそれぞれの機能については公知の技術であるので、ここでは詳しい説明は省略する。また、本発明の機械的構成要素は前述の構成に限定されるものではない。   Reference numeral 1 denotes a camera body, and 2 denotes a lens barrel, which holds a photographing lens (not shown). 3 is a viewfinder, and 4 is a release button. An illumination device (light emitting unit) 5 is provided in the upper right part of the camera body 1. In addition, since each function except an illuminating device is a well-known technique, detailed description is abbreviate | omitted here. The mechanical components of the present invention are not limited to the above-described configuration.

図2は本実施例の照明装置の斜視図、図3は該照明装置の展開斜視図である。   FIG. 2 is a perspective view of the lighting device of the present embodiment, and FIG. 3 is a developed perspective view of the lighting device.

この照明装置は、光源手段として光を発する円筒形状の閃光放電管(閃光発光管)6と、閃光放電管6からの放射光束のうち前方以外の、例えば後方(被写体側と反対方向)に放射される光束を被写体側へ反射させる反射部材(反射傘)7と、閃光放電管6から放射された光束のうち直接入射した光束及び反射部材7で反射して入射した光束を所定形状の光束として集光し、被写体側へ効率良く照射する照明光束導光用の光学部材(光学プリズム)8を有している。   This illuminating device emits light as a light source means, such as a cylindrical flash discharge tube (flash light discharge tube) 6 and a light beam emitted from the flash discharge tube 6 other than the front, for example, rearward (opposite to the subject side). A reflecting member (reflecting umbrella) 7 that reflects the reflected light beam toward the subject, and a directly incident light beam out of the light beam emitted from the flash discharge tube 6 and a light beam reflected and incident by the reflecting member 7 as a light beam having a predetermined shape It has an optical member (optical prism) 8 for guiding an illumination light beam that collects light and efficiently irradiates the subject side.

ここで、反射部材7は内側の面が高反射率面で形成された光輝アルミ等の金属材料または内側の面に高反射率の金属蒸着面が形成された樹脂材料等で構成されている。また、光学部材8の材料としては、アクリル樹脂等の透過率の高い光学用樹脂材料またはガラス材料が適している。   Here, the reflecting member 7 is made of a metallic material such as bright aluminum whose inner surface is formed with a high reflectance surface, or a resin material where a highly reflective metal deposition surface is formed on the inner surface. As the material of the optical member 8, an optical resin material or glass material having a high transmittance such as an acrylic resin is suitable.

上記構成において、カメラ本体1は、従来公知の技術であるように、たとえば「ストロボオートモード」にカメラがセットされている場合には、レリーズボタン4がユーザーによって押された後に、不図示の測光装置で測定された外光の明るさと装填されたフィルムの感度やCCDセンサ等のイメージセンサーの感度によって、照明装置を発光させるか否かを不図示の中央演算装置が判断する。   In the configuration described above, the camera body 1 is a photometering (not shown) after the release button 4 is pressed by the user when the camera is set in the “strobe auto mode”, for example, as known in the art. A central processing unit (not shown) determines whether or not the illumination device emits light based on the brightness of external light measured by the device, the sensitivity of the loaded film, and the sensitivity of an image sensor such as a CCD sensor.

そして、中央演算装置が現在の撮影状況下において「照明装置を発光させる」と判定した場合には、中央演算装置が発光信号を出し、反射部材7に取り付けられた不図示のトリガーリード線を介して閃光放電管6を発光させる。発光された光束は、被写体側と反対方向に射出された光束は反射部材7で反射して、また、被写体側に射出した光束は直接、前面に配置した光学部材8に入射し、この光学部材8を介して所定の配光特性に変換された後、被写体側に照射される。   If the central processing unit determines that the lighting device is to emit light under the current shooting conditions, the central processing unit issues a light emission signal and passes through a trigger lead wire (not shown) attached to the reflecting member 7. Then, the flash discharge tube 6 is caused to emit light. Of the emitted light beam, the light beam emitted in the direction opposite to the subject side is reflected by the reflecting member 7, and the light beam emitted to the subject side directly enters the optical member 8 disposed on the front surface, and this optical member After being converted to a predetermined light distribution characteristic via 8, the object side is irradiated.

以下、照明装置の光学特性を決める構成について、図4と図5を用いて更に詳しく説明する。   Hereinafter, the configuration for determining the optical characteristics of the illumination device will be described in more detail with reference to FIGS.

図4と図5は、本実施例の照明装置5の光学系の構成を示している。図4および図5は、該光学系の閃光放電管6の径方向を含む面での断面図であり、図4は照射角度範囲が狭い状態を、図5は照射角度範囲が広い状態をそれぞれ示している。各図の(a)、(b)は同一断面で切ったときの図であり、(b)は(a)の断面図に光線トレース部を付加したトレース図である。   4 and 5 show the configuration of the optical system of the illumination device 5 of this embodiment. 4 and 5 are cross-sectional views of the optical system including the radial direction of the flash discharge tube 6. FIG. 4 shows a state where the irradiation angle range is narrow, and FIG. 5 shows a state where the irradiation angle range is wide. Show. (A), (b) of each figure is a figure when it cuts with the same cross section, (b) is a trace figure which added the light ray trace part to sectional drawing of (a).

図4および図5を用いて、放電管の径方向(長手方向に直交する方向)である上下方向の照射角度変化の基本的な考え方を説明する。   The basic concept of the irradiation angle change in the vertical direction, which is the radial direction of the discharge tube (the direction perpendicular to the longitudinal direction), will be described with reference to FIGS.

同図においては、閃光放電管6としてガラス管の内外径を示している。この種の放電管の実際の発光現象としては、効率を向上させるため、内径一杯に発光させる場合が多く、放電管の内径一杯の発光点からほぼ均一に発光していると考えて差し支えない。しかし、説明を容易にするため、光源中心から射出させた光束を代表光束と考え、図中ではあえて光源中心から射出した光束のみを示している。実際の配光特性としては、図に示したような代表光束に加え、放電管の周辺部から射出した光束によって配光特性は全体として若干広がる方向に変化するが、配光特性の傾向としてはほとんど一致するため、以下この代表光束に従って説明する。   In the figure, the inner and outer diameters of a glass tube are shown as the flash discharge tube 6. As an actual light emission phenomenon of this type of discharge tube, in order to improve efficiency, light is often emitted to the full inner diameter, and it can be considered that light is emitted almost uniformly from the light emission point with the full inner diameter of the discharge tube. However, for ease of explanation, the light beam emitted from the center of the light source is considered as the representative light beam, and only the light beam emitted from the center of the light source is shown in the drawing. As for the actual light distribution characteristics, in addition to the representative light flux as shown in the figure, the light distribution characteristics change in a slightly widening direction as a whole by the light flux emitted from the periphery of the discharge tube, but the trend of the light distribution characteristics is as follows: Since they are almost the same, the following description will be made according to this representative light flux.

まず、図4に示すように閃光放電管6と光学部材8とが所定量離れた状態では、最も集光した状態が得られる。   First, as shown in FIG. 4, when the flash discharge tube 6 and the optical member 8 are separated by a predetermined amount, the most condensed state is obtained.

反射部材7のうち閃光放電管6の後側を覆う部分は、閃光放電管6とほぼ同心形状の半円筒形状(以下、半円筒部7aという)となっている。これは、反射部材7での反射光を再度、光源の中心部付近に戻すのに有効な形状であり、閃光放電管6のガラス部の屈折による影響を受けにくくさせる効果がある。このように構成することによって、反射部材7の後方からの反射光を光源からの直接光とほぼ等価な射出光として扱えるため考えやすく、この後に続く光学系の全体形状を小型化することも可能となり都合がよい。   A portion of the reflecting member 7 that covers the rear side of the flash discharge tube 6 has a semi-cylindrical shape (hereinafter referred to as a semi-cylindrical portion 7 a) that is substantially concentric with the flash discharge tube 6. This is an effective shape for returning the reflected light from the reflecting member 7 back to the vicinity of the center of the light source, and has the effect of making it less susceptible to the refraction of the glass portion of the flash discharge tube 6. By configuring in this way, it is easy to think because the reflected light from the rear of the reflecting member 7 can be handled as the emitted light substantially equivalent to the direct light from the light source, and the overall shape of the subsequent optical system can be reduced in size. It becomes convenient.

また、反射部材7の半円筒部7aの上下において設けられた第1の反射面(第1の面)7b、7b’は、光源中心から後述する光学部材8の第3の反射面8b、8b’よりも周辺側に進んだ光束を反射するように曲面形状に形成されている。該第1の反射面7b、7b’の前方に設けられた第2の反射面(第2の面)7c、7c’は、第1の反射面7b、7b’で反射された光束を後述する光学部材8の射出面8eに向けて反射し、該光束を光学部材8の周辺に導くよう、第1の反射面7b、7b’と同様に曲面形状に形成されている。   Also, first reflecting surfaces (first surfaces) 7b and 7b ′ provided above and below the semi-cylindrical portion 7a of the reflecting member 7 are third reflecting surfaces 8b and 8b of the optical member 8 described later from the light source center. It is formed in a curved surface shape so as to reflect the light beam that has advanced to the peripheral side of '. Second reflective surfaces (second surfaces) 7c and 7c ′ provided in front of the first reflective surfaces 7b and 7b ′ will be described later with respect to the light beams reflected by the first reflective surfaces 7b and 7b ′. Similar to the first reflecting surfaces 7b and 7b ', it is formed in a curved surface shape so as to be reflected toward the exit surface 8e of the optical member 8 and to guide the luminous flux to the periphery of the optical member 8.

次に、光学部材8の詳細形状について説明する。   Next, the detailed shape of the optical member 8 will be described.

まず、図4(a)に示すように、光学部材8の射出光軸中心付近は、光源中心から射出した光束のうち射出光軸AXLに対して第1の角度よりも小さい角度をなす光束成分であり、この成分を屈折させるために、光学部材8の光源側の射出光軸中心付近には、非球面形状のシリンドリカルレンズ面(第1の入射面)8aが形成されている。   First, as shown in FIG. 4A, the light beam component in the vicinity of the emission optical axis center of the optical member 8 forms an angle smaller than the first angle with respect to the emission optical axis AXL among the light beams emitted from the light source center. In order to refract this component, an aspherical cylindrical lens surface (first incident surface) 8a is formed in the vicinity of the center of the emission optical axis of the optical member 8 on the light source side.

そして、このシリンドリカルレンズ面8aの周辺には、光源中心から射出した光束のうちシリンドリカルレンズ面8aに入射しない、該シリンドリカルレンズ面8aよりも周辺側に進んだ光束であって、射出光軸AXLに対して第1の角度より大きい角度をなす光束が入射する第2の入射面8b、8b’が形成され、さらにその周辺には、この第2の入射面8b、8b’から光学部材8内に入射した光(屈折光)を反射(全反射)させる第3の反射面8c、8c’が形成されている。   In the periphery of the cylindrical lens surface 8a, the light beam emitted from the center of the light source does not enter the cylindrical lens surface 8a and travels to the peripheral side of the cylindrical lens surface 8a, and is incident on the emission optical axis AXL. On the other hand, second incident surfaces 8b and 8b 'on which a light beam having an angle larger than the first angle is formed are formed, and in the periphery thereof, the second incident surfaces 8b and 8b' enter the optical member 8 from the second incident surfaces 8b and 8b '. Third reflecting surfaces 8c and 8c ′ for reflecting (totally reflecting) incident light (refracted light) are formed.

さらにその周辺には、曲面に形成され、反射部材7の第2の反射面7c、7c’で反射した光束が入射する第3の入射面8d、8d’が形成されている。   Further, in the vicinity thereof, there are formed third incident surfaces 8d and 8d 'which are formed into a curved surface and into which the light beam reflected by the second reflecting surfaces 7c and 7c' of the reflecting member 7 is incident.

ここで、光学部材8の射出面8eは負の屈折力を有した凹面となっており、正の屈折力を有する第1の入射面8a、第2の入射面8b、8b’および第3の入射面8d、8d’と第3の反射面8c、8c’は、閃光放電管6と光学部材8とが所定量離れた状態で、光源中心から射出した光束が光学部材8の各部に入射し、所定の角度成分に変換させるための屈折又は全反射した後、同一の射出面8eから射出され、射出光軸AXLに対して略平行になるように形状が設定されている。   Here, the exit surface 8e of the optical member 8 is a concave surface having a negative refractive power, and the first incident surface 8a, the second incident surfaces 8b, 8b ′ and the third surface having a positive refractive power. The incident surfaces 8d and 8d ′ and the third reflecting surfaces 8c and 8c ′ allow the light beam emitted from the center of the light source to enter each part of the optical member 8 with the flash discharge tube 6 and the optical member 8 being separated by a predetermined amount. After being refracted or totally reflected for conversion to a predetermined angle component, the shape is set so as to be emitted from the same exit surface 8e and substantially parallel to the exit optical axis AXL.

図4(b)には、光源中心から射出した光束が光学部材8の各面から入射し、それぞれのどのような光路を通るかを示した光線トレース図を示している。図示のように、光源中心から射出した光束は、ほとんどすべて射出光軸AXLに対して平行に変換されている。すなわち、最も集光された状態をこの光学配置によって得ることができ、射出開口面積に対して、最も効率良く集光動作がなされている。   FIG. 4B shows a ray tracing diagram showing how the light beam emitted from the center of the light source enters from each surface of the optical member 8 and passes through each light path. As shown in the figure, almost all the light beam emitted from the center of the light source is converted in parallel to the emission optical axis AXL. That is, the most condensed state can be obtained by this optical arrangement, and the light condensing operation is performed most efficiently with respect to the exit aperture area.

一方、図5に示す状態は、閃光放電管6と光学部材8とを上記所定距離よりも接近させた状態であり、照射角度範囲をある程度広げた状態が得られるように光学配置を設定したものである。   On the other hand, the state shown in FIG. 5 is a state in which the flash discharge tube 6 and the optical member 8 are brought closer to each other than the predetermined distance, and the optical arrangement is set so as to obtain a state where the irradiation angle range is expanded to some extent. It is.

このような光学配置の場合、光学部材8の第2の入射面8b、8b’と第3の反射面8c、8c’との交点で形成されるエッジ部8f、8f’が反射部材7の第1の反射面7b、7b’に接近することになる。このことによって、光源中心から射出した光束のうち第1の反射面7b、7b’と光学部材8のエッジ部8f、8f’との隙間から、反射部材7の第1の反射面7b、7b’に向かうべき光束が減少することになる。   In the case of such an optical arrangement, the edge portions 8f and 8f ′ formed at the intersections of the second incident surfaces 8b and 8b ′ of the optical member 8 and the third reflecting surfaces 8c and 8c ′ are the first portions of the reflecting member 7. 1 reflective surface 7b, 7b '. As a result, the first reflecting surfaces 7b and 7b ′ of the reflecting member 7 from the gaps between the first reflecting surfaces 7b and 7b ′ and the edge portions 8f and 8f ′ of the optical member 8 out of the light flux emitted from the center of the light source. The luminous flux to be directed to decreases.

したがって、エッジ部8f、8f’が反射部材7の第1の反射面7b、7b’に接近するのにしたがい、この成分は極端に減少し、これと隣接した別の光路である第2の入射面8b、8b’、第3の反射面8c、8c’及びシリンドリカルレンズ面8aに振り向けられることになる。   Accordingly, as the edge portions 8f and 8f ′ approach the first reflecting surfaces 7b and 7b ′ of the reflecting member 7, this component is extremely reduced, and the second incident which is another optical path adjacent thereto. The surfaces 8b and 8b ′, the third reflecting surfaces 8c and 8c ′, and the cylindrical lens surface 8a are turned around.

ここで、反射部材7の第1の反射面7b、7b’で反射された光束は、光源である閃光放電管6と反射部材7とが一体的に保持されているために、常に射出光軸方向に対して浅い角度を持った成分に変換されている。このため、該成分(光源から第1の反射面7b、7b’に向かう光束)が減少することは被写体上に収斂していた光束が減少することになるので、配光分布の中央付近の光の強度が弱くなるということになる。   Here, the light beam reflected by the first reflecting surfaces 7b and 7b 'of the reflecting member 7 is always emitted optical axis because the flash discharge tube 6 as a light source and the reflecting member 7 are integrally held. It is converted to a component with a shallow angle with respect to the direction. For this reason, a decrease in the component (the light beam traveling from the light source toward the first reflecting surfaces 7b and 7b ′) reduces the light beam converged on the subject, so that the light near the center of the light distribution is reduced. The strength of will be weakened.

また、閃光放電管6と光学部材8とを上記所定距離よりも接近させると、デフォーカス状態となり、光学部材8の第3の反射面8c、8c’で反射した光束とシリンドリカルレンズ面8aから入射した光束は射出面8eから射出する際に発散させられる。   Further, when the flash discharge tube 6 and the optical member 8 are brought closer to each other than the predetermined distance, a defocused state is reached, and the light beam reflected by the third reflecting surfaces 8c and 8c ′ of the optical member 8 is incident from the cylindrical lens surface 8a. The emitted light beam is diverged when exiting from the exit surface 8e.

このように、本来、図4に示した最も集光した状態では、光軸中心付近の屈折領域と、その周辺の光学部材8による反射領域と、さらに周辺の反射部材7による反射領域の3つの領域をすべて集光させるように構成されていたのに対し、閃光放電管6(および反射部材7)と光学部材8との射出(照射)光軸方向における相対位置関係を変更することよって、各領域による集光状態を徐々に変化させる(すなわち、照射角度範囲を変化させる)ことができる。   As described above, in the state where the light is most concentrated as shown in FIG. 4, originally, there are three refraction regions, ie, a refraction region near the center of the optical axis, a reflection region by the peripheral optical member 8, and a reflection region by the peripheral reflection member 7. Whereas the entire region is condensed, the relative position relationship between the flash discharge tube 6 (and the reflection member 7) and the optical member 8 in the direction of the emission (irradiation) optical axis is changed. It is possible to gradually change the light collection state by the region (that is, to change the irradiation angle range).

以下、この配光分布の変化を上記3つの領域に分けて説明する。   Hereinafter, the change in the light distribution will be described by dividing it into the above three regions.

まず、光軸中心付近の屈折領域は、図4に示す光学配置において、光源中心から射出された光束を射出光軸の略一点に集光するように屈折させる。光源中心を焦点位置とする非球面シリンドリカルレンズ面8aと、その集光途中に位置し、この光束を射出光軸AXLに略平行になるように屈折させる射出面8eで構成されている。   First, the refractive region near the center of the optical axis refracts the light beam emitted from the center of the light source so as to be condensed at substantially one point on the optical axis of emission in the optical arrangement shown in FIG. The aspherical cylindrical lens surface 8a has a light source center as a focal position, and an exit surface 8e that is positioned in the middle of condensing and refracts this light beam so as to be substantially parallel to the exit optical axis AXL.

次に、図5に示すように、閃光放電管6と光学部材8とを上記所定距離よりも接近させると、光源とシリンドリカルレンズ面8aとが接近してデフォーカス状態となり、全体に照射範囲が広がるように作用する。また、図4に示す状態では光学部材8の第3の反射面8c、8c’の方向に導かれていた光束の一部が、図5に示す状態では新たにこの領域に入ることになるが、この成分もこの屈折光の領域によって制御される光束の延長であり、この屈折領域の中で最も照射角度の広い角度成分に変換される。   Next, as shown in FIG. 5, when the flash discharge tube 6 and the optical member 8 are brought closer to each other than the predetermined distance, the light source and the cylindrical lens surface 8a approach each other to enter a defocused state, and the entire irradiation range is set. Acts to spread. Further, in the state shown in FIG. 4, a part of the light beam guided in the direction of the third reflecting surfaces 8c and 8c ′ of the optical member 8 newly enters this region in the state shown in FIG. This component is also an extension of the light beam controlled by this refracted light region, and is converted into an angular component having the widest irradiation angle in this refracted region.

しかし、この領域での角度変化は屈折による作用であるため、少ない移動量に対しては大幅な照射角度範囲の変化は生じない。この結果、照射面上のごく中心部付近の配光分布のみが均一に押し広げられることになる。   However, since the change in angle in this region is an effect due to refraction, a large change in the irradiation angle range does not occur for a small amount of movement. As a result, only the light distribution near the very center on the irradiated surface is uniformly spread.

次に、光学部材8による反射領域について説明する。この反射領域は、光源と光学部材8との位置関係を変化させることにより、大幅に照射角度範囲を変化させることができる領域である。これは、反射による光線方向の変換で大幅に照射方向を変換できることに加え、屈折率の高い光学部材8中での反射現象が用いられるので、さらに大きな角度変換を望めるためである。   Next, the reflection area by the optical member 8 will be described. This reflection region is a region in which the irradiation angle range can be significantly changed by changing the positional relationship between the light source and the optical member 8. This is because in addition to the fact that the irradiation direction can be greatly changed by the conversion of the light beam direction by reflection, the reflection phenomenon in the optical member 8 having a high refractive index is used, so that a larger angle conversion can be expected.

図4(b)にも示すように、光源中心から射出してこの反射領域で反射した光束成分は、照射面上では周辺部のある一定の狭い角度領域の成分に変換され、射出面8eで射出光軸AXLに略平行になるように屈折させられる。   As shown in FIG. 4B, the luminous flux component emitted from the center of the light source and reflected by this reflection region is converted into a component in a certain narrow angle region at the periphery on the irradiation surface, and is emitted from the emission surface 8e. The light is refracted so as to be substantially parallel to the emission optical axis AXL.

次に、図5に示すように、閃光放電管6と光学部材8とを上記所定距離よりも接近することにより、この反射領域で反射した光束成分は発散される。図5(b)のトレース図では射出光軸AXLに対して所定角度をなす成分だけに変換されるように見えるが、実際には、光源にはある一定の大きさが存在するため、反射角度範囲もある程度広がり、また全体として見た場合には、屈折領域の光束成分とも重なり合うため、広い角度範囲でほぼ均一な角度分布を持った配光特性を得ることができる。   Next, as shown in FIG. 5, when the flash discharge tube 6 and the optical member 8 are brought closer than the predetermined distance, the light flux component reflected by this reflection region is diverged. In the trace diagram of FIG. 5 (b), it seems to be converted into only a component having a predetermined angle with respect to the emission optical axis AXL. However, in reality, the light source has a certain size, and therefore the reflection angle. The range also extends to some extent, and when viewed as a whole, it overlaps with the luminous flux component in the refraction region, so that it is possible to obtain a light distribution characteristic having a substantially uniform angular distribution over a wide angular range.

最後に、最も外側にある反射部材7による反射領域で反射した光束成分は、上述したように、図4の状態から図5の状態に向かって光源と光学部材8とが接近していくにしたがって、徐々にその成分が減少する。   Finally, as described above, the light beam component reflected by the reflection region by the outermost reflecting member 7 is moved closer to the light source and the optical member 8 from the state of FIG. 4 toward the state of FIG. Gradually, its components decrease.

このように、本実施例では、光軸方向における光源(放電管6)と光学部材8との相対位置関係の僅かな変化によって、大幅な照射角度範囲の変化を得ることができると同時に、3つの領域に分けたそれぞれの成分が各部の配光特性の変化を補うことができ、全体として均一で必要照射範囲に対して光量ロスの少ない光学系を実現することができる。   As described above, in this embodiment, a large change in the irradiation angle range can be obtained by a slight change in the relative positional relationship between the light source (discharge tube 6) and the optical member 8 in the optical axis direction. Each component divided into the two regions can compensate for the change in the light distribution characteristics of each part, and an optical system that is uniform as a whole and has a small amount of light loss with respect to the required irradiation range can be realized.

一方図示していないが、前述したように、放電管6の中心から後方に射出された光束は、反射部材7の半円筒部7aで反射し、再度、放電管6の中心を通って前方に射出される。この後の光線の振る舞いは図4(b)および図5(b)に示したものと同様である。   On the other hand, although not shown, as described above, the light beam emitted backward from the center of the discharge tube 6 is reflected by the semi-cylindrical portion 7a of the reflecting member 7, and again passes through the center of the discharge tube 6 to the front. It is injected. The behavior of the subsequent light beam is the same as that shown in FIGS. 4B and 5B.

続いて、屈折領域、光学部材8による反射領域および反射部材7による反射領域の3つの領域の最適な配分割合について説明する。   Next, an optimal distribution ratio of the three areas, that is, the refraction area, the reflection area by the optical member 8, and the reflection area by the reflection member 7 will be described.

基本的には、シリンドリカルレンズ面8aの屈折領域と、反射部材7の第1の反射面7b、7b’による反射領域とで基本的な集光光学系を形成し、これらの領域のつなぎの最小部分を光学部材8の反射領域で構成することが望ましい。   Basically, a basic condensing optical system is formed by the refraction region of the cylindrical lens surface 8a and the reflection region by the first reflection surfaces 7b and 7b 'of the reflection member 7, and the minimum connection between these regions is formed. It is desirable that the portion is constituted by the reflection region of the optical member 8.

まず、光学部材8の材料としては、成形性の面、コストの面からアクリル樹脂等の光学樹脂材料を用いることが望ましい。しかし、この種の照明装置においては、光源から光の発生と同時に多量の熱が発生される。この熱の影響を、一回の発光に発生する熱エネルギと最短発光周期とを考慮して、光学材料の選定及び放熱空間の設定を行う必要がある。   First, as a material of the optical member 8, it is desirable to use an optical resin material such as an acrylic resin from the viewpoint of moldability and cost. However, in this type of lighting device, a large amount of heat is generated simultaneously with the generation of light from the light source. It is necessary to select the optical material and set the heat radiation space in consideration of the thermal energy generated in one light emission and the shortest light emission period.

このとき、実際に最も熱の影響を受けやすいのは、光源から最も近く位置する光学部材8の各入射面であり、光源とこの入射面との最少距離を最初に決める必要がある。本実施例では、光源中心からの射出角度が射出光軸AXLに近い角度成分を直接屈折によって制御する第1の入射面8aと光源との最少距離をd、射出光軸AXLから離れた角度成分で反射(全反射)によって制御される光を入射させる第2の入射面8b、8b’と光源との最少距離をeとしてその間隔を規制する。   At this time, it is the respective incident surfaces of the optical member 8 closest to the light source that are actually most susceptible to heat, and it is necessary to first determine the minimum distance between the light source and the incident surface. In the present embodiment, the minimum distance between the light source and the first incident surface 8a that controls the angle component whose exit angle from the light source center is close to the exit optical axis AXL by direct refraction is d, and the angle component that is away from the exit optical axis AXL. The distance between the second incident surfaces 8b and 8b ′ on which light controlled by reflection (total reflection) is incident and the light source is defined as e, and the interval is regulated.

ここで、各入射面と光源との距離が大きすぎると、光学系全体が大型化するので、閃光放電管6の直径をφとすると、最少距離をd、eは、
φ/10≦d≦φ/2
φ/10≦e≦φ/2 ……(1)
の範囲にあることが望ましい。
Here, if the distance between each incident surface and the light source is too large, the entire optical system becomes large. Therefore, if the diameter of the flash discharge tube 6 is φ, the minimum distances are d and e,
φ / 10 ≦ d ≦ φ / 2
φ / 10 ≦ e ≦ φ / 2 (1)
It is desirable to be in the range.

そして、最も集光した図4に示す状態において、この光学部材8の第2の入射面8b、8b’に入射する光源中心からの光束が光軸となす角度αが、
20°≦α≦70° ……(2)
であることが望ましい。
In the most condensed state shown in FIG. 4, the angle α formed by the light beam from the center of the light source incident on the second incident surfaces 8b and 8b ′ of the optical member 8 and the optical axis is
20 ° ≦ α ≦ 70 ° (2)
It is desirable that

ここで、角度αが上記(2)式の下限である20°より小さいと、光学部材8による反射領域を形成することが困難となる。すなわち、光学部材8のエッジ部8f、8f’の角度が極めて鋭くなるとともに、光学部材8を厚み方向に深い形状とする必要があり、薄型の光学部材(光学系)を構成することが難しくなるばかりでなく、製造も困難となる。   Here, when the angle α is smaller than 20 °, which is the lower limit of the expression (2), it is difficult to form a reflection region by the optical member 8. That is, the angles of the edge portions 8f and 8f ′ of the optical member 8 become extremely sharp, and the optical member 8 needs to be deep in the thickness direction, making it difficult to form a thin optical member (optical system). Not only is it difficult to manufacture.

また、角度αが上記(2)式の上限である70°より大きくなると、反射部材7による集光領域が減少し、反射領域を反射部材7による反射領域と光学部材8による第3の反射面とに分割して向上させた集光効率を減少させ、以下の種々の問題点が発生する。   Further, when the angle α is larger than 70 ° which is the upper limit of the above expression (2), the condensing region by the reflecting member 7 decreases, and the reflecting region is reflected by the reflecting member 7 and the third reflecting surface by the optical member 8. The light collection efficiency, which has been improved by dividing into two, is reduced, and the following various problems occur.

すなわち、照射角変更に必要な光源と光学部材8の間の距離が少なくなってしてしまい、大幅な照射角度の変更が困難になってしまうという機能上の問題や、光学部材8そのものが部分的に厚く長くなってしまうために成形時間が長くなり、製作が困難となるという問題が生じる。理想的な形態としては、光学部材8による反射領域を必要最小限にまで狭め、かつ光量ロスのない形態にまとめることが望ましい。このように構成することで、厚み方向を最短まで短縮しつつ、形状的にもシンプルな構成をもった加工し易いものとすることができる。   That is, the distance between the light source and the optical member 8 necessary for changing the irradiation angle is reduced, and it becomes difficult to change the irradiation angle significantly, and the optical member 8 itself is a partial problem. Therefore, there is a problem that the molding time becomes long and the manufacture becomes difficult. As an ideal form, it is desirable to narrow the reflection area by the optical member 8 to a necessary minimum and to collect it in a form with no light loss. By comprising in this way, it can make it easy to process with a simple structure also in shape, shortening the thickness direction to the shortest.

本実施例では、以上説明した理由から、光学部材8を、光軸AXLに対してなす角度が30°〜60°の約30°の範囲に含まれる光束に対応して形成し、最適化を図っている。   In the present embodiment, for the reason described above, the optical member 8 is formed corresponding to the light flux included in the range of about 30 ° between 30 ° and 60 ° with respect to the optical axis AXL. I am trying.

次に、光学部材8において、光束を第3の反射面8c、8c’に導く第2の入射面8b、8b’の最適な形状について説明する。図4(b)および図5(b)に示すように、光源中心から射出した光束は、第2の入射面8b、8b’で大きく屈折し、射出光軸AXLから離れる方向に向かい第3の反射面8c、8c’に到達する。   Next, in the optical member 8, the optimum shape of the second incident surfaces 8b and 8b 'for guiding the light beam to the third reflecting surfaces 8c and 8c' will be described. As shown in FIG. 4B and FIG. 5B, the light beam emitted from the center of the light source is largely refracted by the second incident surfaces 8b and 8b ′ and travels in the direction away from the emission optical axis AXL. It reaches the reflecting surfaces 8c and 8c ′.

ここで、第2の入射面8b、8b’と射出光軸AXLとの傾きは、この第3の反射面8c、8c’で反射した光束が再び全反射しないような角度にすることが望ましい。したがって、本実施例では、加工的な条件も考慮し、この第2の入射面8b、8b’を、射出光軸AXLに対する傾きが5°以上の平面又は加工し易い曲面で構成している。   Here, it is desirable that the inclination between the second incident surfaces 8b and 8b 'and the exit optical axis AXL be an angle so that the light beam reflected by the third reflecting surfaces 8c and 8c' is not totally reflected again. Therefore, in this embodiment, considering the processing conditions, the second incident surfaces 8b and 8b 'are configured as a flat surface having an inclination with respect to the emission optical axis AXL of 5 ° or more or a curved surface that can be easily processed.

このように、本実施例によれば、反射部材7と1つの光学部材8という少ない構成部品でありながら、小型で必要照射範囲外への光照射による光量損失の少ない、極めて効率の良い照射角度可変型照明光学系を構成することができる。   As described above, according to the present embodiment, the reflection member 7 and the single optical member 8 are small components, but the size is small, and the amount of light loss due to light irradiation outside the necessary irradiation range is small. A variable illumination optical system can be configured.

さらに、光源の中心から射出して光学部材8の第3の反射面8c、8c’に入射する光の光軸に対してなす角度αが、20°≦α≦70°の範囲に含まれるようにすることにより、光学部材8の第1の反射面8c、8c’と、反射部材7の第1の反射面7b、7b’及び第2の反射面7c、7c’による集光効率を向上する。   Furthermore, the angle α formed with respect to the optical axis of the light emitted from the center of the light source and incident on the third reflecting surfaces 8c and 8c ′ of the optical member 8 is included in the range of 20 ° ≦ α ≦ 70 °. Thus, the light collection efficiency by the first reflecting surfaces 8c and 8c ′ of the optical member 8, the first reflecting surfaces 7b and 7b ′ and the second reflecting surfaces 7c and 7c ′ of the reflecting member 7 is improved. .

よって、射出面8e(射出開口部)を小さくすることがため、照明装置の薄型化及び上下方向の小型化が実現できる。   Therefore, since the emission surface 8e (injection opening) can be reduced, the lighting device can be made thinner and vertically smaller.

さらに本実施例による照射角可変照明光学系は、設計自由度が高く、製品として要求される大きさ・メカ精度・光学特性等に応じて最適な照射角可変機構の設計を容易に行うことができる。   Furthermore, the illumination angle variable illumination optical system according to the present embodiment has a high degree of design freedom, and it is easy to design an optimum illumination angle variable mechanism according to the size, mechanical accuracy, optical characteristics, etc. required for the product. it can.

また、構成要素が少なく、照射角可変機構が安価に構成できることや、その応用光学系も広く、各種照明光学系に応用できるなど汎用性の高い技術になっている。   In addition, it is a highly versatile technology that has a small number of constituent elements and can be configured at low cost with a variable illumination angle mechanism, and has a wide range of applied optical systems.

また、光学部材8内での集光を全反射を利用して行っている為、同一光源に対するエネルギー利用効率が高く、小型しても光学特性を低下することなく、むしろ画角内に照射される有効エネルギーを増加させることができる。   In addition, since the condensing in the optical member 8 is performed by using total reflection, the energy use efficiency for the same light source is high, and even if it is compact, it is irradiated within the angle of view without deteriorating the optical characteristics. The effective energy can be increased.

本実施例の照明装置では、放電管6の長手方向に対して垂直な方向の配光制御を、光源側に設けたシリンドリカルレンズ面8a、反射部材7の第1の反射面7b、7b’と、光学部材8の第3の反射面8c、8c’の3種5層の領域によって、図4に示すような最も集光された状態を基準に、光源と光学部材8の相対距離を変化させて照射角度範囲の変更を行う。しかし、必ずしもこの実施例に限定されるものではなく、基準状態は必ずしも全領域の光束が最も集光された状態にする必要はない。   In the illumination device of the present embodiment, the light distribution control in the direction perpendicular to the longitudinal direction of the discharge tube 6 is performed with the cylindrical lens surface 8a provided on the light source side, and the first reflecting surfaces 7b and 7b ′ of the reflecting member 7. The relative distance between the light source and the optical member 8 is changed based on the most condensed state as shown in FIG. 4 by the three types and five layers of the third reflecting surfaces 8c and 8c ′ of the optical member 8. To change the irradiation angle range. However, the present invention is not necessarily limited to this embodiment, and the reference state does not necessarily have to be a state in which the light beam in the entire region is most condensed.

これは、光源がある一定値以上の大きさを持つ光源であることや、各集光制御面と光源との距離が異なっているなどの理由から、基準となる状態の配光分布をすべて最も集光した状態にせず、あえて異ならせた方が都合がよい場合もあるためである。   This is because all the light distribution in the reference state is the most because the light source is a light source with a certain size or more and the distance between each condensing control surface and the light source is different. This is because there are cases where it is more convenient not to focus the light but to make it different.

この一例として、光源の大きさが大きい場合に、光源の近くに位置するシリンドリカルレンズ面からの照射角度がかなり広がる傾向にある。特に、光源中心より前側から発光した光束は、この広がりの傾向が強く、最も集光させる光学配置であっても、必要照射範囲外に向かう光束がないとは限らない。   As an example of this, when the size of the light source is large, the irradiation angle from the cylindrical lens surface located near the light source tends to be considerably widened. In particular, the luminous flux emitted from the front side of the center of the light source has a strong tendency to spread, and even in the most optically focused optical arrangement, there is no guarantee that there is no luminous flux going outside the necessary irradiation range.

一方、光源から一番遠ざかった位置の反射傘によって制御される光束成分は、光源の大きさがある程度大きくなっても集光度合いは低下せず、その分布は最初に設定した照射角度分布から大きく外れないものとなる。   On the other hand, the luminous flux component controlled by the reflector farthest from the light source does not decrease the degree of light collection even if the size of the light source is increased to some extent, and its distribution is larger than the initially set irradiation angle distribution. It will not come off.

このことから、光源に近い位置に制御面が存在するシリンドリカルレンズ面は、光源中心よりやや被写体側に焦点位置を形成するような形状にすることによって、このシリンドリカルレンズ面を介して射出する光束の分布が必要以上に広がることを防止することができる。   For this reason, the cylindrical lens surface having a control surface close to the light source has a shape that forms a focal position slightly closer to the subject side than the center of the light source, so that the luminous flux emitted through the cylindrical lens surface can be reduced. The distribution can be prevented from spreading more than necessary.

また、最集光状態が必ずしも必要ではない広角側を重視した照射角度範囲の変更を行う場合においても、中央のシリンドリカルレンズ面以外の反射傘および光学部材の反射面によって制御される光束に関して、一律に配光分布を最集光状態とするのではなく、やや広めの配光特性が得られるように各面の形状を設定するようにした方が都合の良い場合がある。   Even when changing the irradiation angle range with an emphasis on the wide-angle side, where the most focused state is not necessarily required, the luminous flux controlled by the reflector other than the central cylindrical lens surface and the reflecting surface of the optical member is uniform. In some cases, it may be more convenient to set the shape of each surface so as to obtain a slightly wider light distribution characteristic, instead of setting the light distribution to the most condensed state.

また、本実施例では、光源側(入射面側)の各面の構成および射出面側の各面の構成が、光軸中心に対して対称形状となっている場合について示したが、本実施例は必ずしもこのような対称形状に限定されない。例えば、光学部材8の第3の反射面8c、8c’は光軸を挟んで対称に構成されているが、このように同じ位置に形成する必要はなく、非対称形状にしてもよい。これは、反射面だけに言えることではなく、反射部材7の形状やシリンドリカルレンズ面8aの形状に関しても同様である。   In this embodiment, the configuration of each surface on the light source side (incident surface side) and the configuration of each surface on the exit surface side are shown as being symmetrical with respect to the center of the optical axis. Examples are not necessarily limited to such symmetrical shapes. For example, the third reflecting surfaces 8c and 8c 'of the optical member 8 are configured symmetrically with respect to the optical axis. However, the third reflecting surfaces 8c and 8c' do not have to be formed at the same position as described above, and may be asymmetrical. This is not only true for the reflecting surface, but the same applies to the shape of the reflecting member 7 and the shape of the cylindrical lens surface 8a.

さらに、射出面側に形成した中央部のプリズム列に関しても、左右の角度設定が異なるプリズム列を用い左右方向の配光特性に変化を持たせることができる。また、周辺部のフレネルレンズ部に関しても集光度合いに変化を持たせて、全体の配光特性に変化を持たせてもよい。   Further, with respect to the central prism row formed on the exit surface side, it is possible to change the light distribution characteristics in the left-right direction by using prism rows having different left and right angle settings. In addition, the degree of light collection may be changed with respect to the peripheral Fresnel lens portion, and the overall light distribution characteristics may be changed.

また、本実施例では、光学部材8の中央に形成されたシリンドリカルレンズ面8aが非球面形状である場合について説明したが、このシリンドリカルレンズ面8aは必ずしも非球面形状に限定されるわけではなく、円筒面で形成してもよい。また、放電管6の長手方向の集光性も考慮して、トーリックレンズ面としてもよい。   In the present embodiment, the case where the cylindrical lens surface 8a formed at the center of the optical member 8 has an aspheric shape has been described. However, the cylindrical lens surface 8a is not necessarily limited to an aspheric shape, You may form with a cylindrical surface. Further, a toric lens surface may be used in consideration of the light condensing property in the longitudinal direction of the discharge tube 6.

次に本発明の実施例2における照明装置について説明する。   Next, a lighting device according to the second embodiment of the present invention will be described.

以下、照明装置の光学特性を決める構成について、図6と図7を用いて更に詳しく説明する。   Hereinafter, the configuration for determining the optical characteristics of the illumination device will be described in more detail with reference to FIGS.

図6および図7は、照明光学系の閃光放電管の径方向を含む面での断面図であり、図6は照射角度範囲が狭い状態を、図7は照射角度範囲が広い状態をそれぞれ示している。各図の(a)、(b)は同一断面で切ったときの図であり、(b)は(a)の断面図に光線トレース部を付加したトレース図である。   6 and 7 are cross-sectional views of the illumination optical system including the radial direction of the flash discharge tube. FIG. 6 shows a state where the irradiation angle range is narrow, and FIG. 7 shows a state where the irradiation angle range is wide. ing. (A), (b) of each figure is a figure when it cuts with the same cross section, (b) is a trace figure which added the light ray trace part to sectional drawing of (a).

本実施例は、上記実施例1よりも更に高効率折な照明光学系を構成することができる。   This embodiment can constitute a more efficient illumination optical system than the first embodiment.

本実施例の照明装置は、光源手段として光を発する円筒形状の閃光放電管(閃光発光管)9と、該閃光放電管9からの放射光束のうち前方以外の、例えば後方(被写体側と反対方向)に放射される光束を被写体側へ反射させる反射部材(反射傘)10と、閃光放電管6から放射された光束のうち直接入射した光束及び反射部材10で反射して入射した光束を所定形状の光束として集光し、被写体側へ効率良く照射する照明光束導光用の光学部材(光学プリズム)11を有している。   The illuminating device of the present embodiment is a cylindrical flash discharge tube (flash light emission tube) 9 that emits light as a light source means, and, for example, rear (opposite to the subject side) other than the front of the emitted light flux from the flash discharge tube 9 A reflecting member (reflecting umbrella) 10 that reflects a light beam radiated in the direction) to the subject side, a light beam directly emitted from a light beam radiated from the flash discharge tube 6, and a light beam reflected and incident by the reflecting member 10 are predetermined. It has an optical member (optical prism) 11 for guiding an illuminating light beam that condenses as a shaped light beam and efficiently irradiates the subject side.

図6および図7を用いて、放電管の径方向(長手方向に直交する方向)である上下方向の照射角度変化の基本的な考え方を説明する。   The basic concept of the irradiation angle change in the vertical direction, which is the radial direction of the discharge tube (the direction orthogonal to the longitudinal direction), will be described with reference to FIGS.

これらの図においては、閃光放電管9としてガラス管の内外径を示している。この種の放電管の実際の発光現象としては、効率を向上させるため、内径一杯に発光させる場合が多く、放電管の内径一杯の発光点からほぼ均一に発光していると考えて差し支えない。しかし、説明を容易にするため、光源中心から射出させた光束を代表光束と考え、図中ではあえて光源中心から射出した光束のみを示している。実際の配光特性としては、図に示したような代表光束に加え、放電管の周辺部から射出した光束によって配光特性は全体として若干広がる方向に変化するが、配光特性の傾向としてはほとんど一致するため、以下この代表光束に従って説明する。   In these drawings, the inner and outer diameters of the glass tube are shown as the flash discharge tube 9. As an actual light emission phenomenon of this type of discharge tube, in order to improve efficiency, light is often emitted to the full inner diameter, and it can be considered that light is emitted almost uniformly from the light emission point with the full inner diameter of the discharge tube. However, for ease of explanation, the light beam emitted from the center of the light source is considered as the representative light beam, and only the light beam emitted from the center of the light source is shown in the drawing. As for the actual light distribution characteristics, in addition to the representative light flux as shown in the figure, the light distribution characteristics change in a slightly widening direction as a whole by the light flux emitted from the periphery of the discharge tube, but the trend of the light distribution characteristics is as follows: Since they are almost the same, the following description will be made according to this representative light flux.

まず、図6に示すように閃光放電管9と光学部材11とが所定量離れた状態では、最も集光した状態が得られる。   First, as shown in FIG. 6, when the flash discharge tube 9 and the optical member 11 are separated by a predetermined amount, the most condensed state is obtained.

反射鏡10のうち閃光放電管9の後側を覆う部分は、閃光放電管9とほぼ同心形状の半円筒形状(以下、半円筒部10aという)となっている。これは、反射鏡10での反射光を再度、光源の中心部付近に戻すのに有効な形状であり、閃光放電管9のガラス部の屈折による影響を受けにくくさせる効果がある。このように構成することによって、反射部材10の後方からの反射光を光源からの直接光とほぼ等価な射出光として扱えるため考えやすく、この後に続く光学系の全体形状を小型化することも可能となり都合がよい。
A portion of the reflecting mirror 10 that covers the rear side of the flash discharge tube 9 has a semi-cylindrical shape (hereinafter referred to as a semi-cylindrical portion 10 a) that is substantially concentric with the flash discharge tube 9. This is an effective shape for returning the reflected light from the reflecting mirror 10 again to the vicinity of the center of the light source, and has the effect of making it less susceptible to the refraction of the glass portion of the flash discharge tube 9. By configuring in this way, it is easy to think because the reflected light from the rear of the reflecting member 10 can be handled as the emitted light substantially equivalent to the direct light from the light source, and the overall shape of the subsequent optical system can be reduced in size. It becomes convenient.

一方、反射部材10の半円筒部10aの上下において設けられた反射面(第3の反射面)10b、10b’は、光源中心から後述する光学部材11の第1の反射面11c、11c’よりも周辺側に進んだ光束を反射して該光学部材の周辺に導くように曲面形状に形成されている。そして、後述するように、光学部材11の周辺部から入射した光束は、最も集光した状態の配光特性が得られる。
On the other hand, reflecting surfaces (third reflecting surfaces) 10b and 10b ′ provided above and below the semi-cylindrical portion 10a of the reflecting member 10 are from first reflecting surfaces 11c and 11c ′ of the optical member 11 described later from the center of the light source. Is also formed in a curved shape so as to reflect the light beam traveling toward the peripheral side and guide it to the periphery of the optical member. Then, as will be described later, the light distribution characteristic in the most condensed state is obtained for the light beam incident from the peripheral portion of the optical member 11.

次に、光学部材11の詳細形状について説明する。   Next, the detailed shape of the optical member 11 will be described.

まず、図6(a)に示すように、光学部材11の射出光軸中心付近は、光源中心から射出した光束のうち射出光軸AXLに対して第1の角度よりも小さい角度をなす光束成分であり、この成分を屈折させるために、光学部材11の光源側の射出光軸中心付近には、正の屈折力を有する非球面形状のシリンドリカルレンズ面(第1の入射面)11aが形成されている。   First, as shown in FIG. 6A, the light beam component in the vicinity of the emission optical axis center of the optical member 11 forms an angle smaller than the first angle with respect to the emission optical axis AXL among the light beams emitted from the light source center. In order to refract this component, an aspherical cylindrical lens surface (first incident surface) 11a having a positive refractive power is formed in the vicinity of the emission optical axis center of the optical member 11 on the light source side. ing.

そして、このシリンドリカルレンズ面11aの周辺には、光源中心から射出した光束のうちシリンドリカルレンズ面11aに入射しない成分であって、射出光軸AXLに対して第1の角度よりも大きな角度をなす光束成分が入射する第2の入射面11b、11b’が形成され、さらにその周辺には、この第2の入射面11b、11b’から光学部材11(プリズム部)内に入射した屈折光(第1の入射面11aよりも周辺側に進んだ光)を射出面11fに向けて反射(全反射)させる第1の反射面11c、11c’が形成されている。   In the vicinity of the cylindrical lens surface 11a, a light beam emitted from the center of the light source is a component that does not enter the cylindrical lens surface 11a and forms a larger angle than the first angle with respect to the emission optical axis AXL. Second incident surfaces 11b and 11b ′ on which components are incident are formed, and refracted light (first first) incident on the optical member 11 (prism portion) from the second incident surfaces 11b and 11b ′ is formed around the second incident surfaces 11b and 11b ′. The first reflecting surfaces 11c and 11c ′ are formed for reflecting (totally reflecting) the light traveling toward the peripheral side of the incident surface 11a toward the exit surface 11f.

さらにその周辺には、前述したように、反射部材10の反射面10b、10b’で反射した光束が入射する第3の入射面11d、11d’が曲面形状に形成され、第3の入射面11d、11d’から入射した反射部材10からの光束は、第2の反射面11e、11e’で射出面11fに向けて全反射される。   Further, as described above, the third incident surfaces 11d and 11d ′ into which the light beams reflected by the reflecting surfaces 10b and 10b ′ of the reflecting member 10 are incident are formed in a curved shape in the vicinity thereof, and the third incident surface 11d. , 11d ′, the light beam from the reflecting member 10 is totally reflected by the second reflecting surfaces 11e and 11e ′ toward the exit surface 11f.

ここで、光学部材11の射出面11fは、負の屈折力を持った凹面となっており、これらシリンドリカルレンズ面11a、第2の入射面11b、11b’および第1の反射面11c、11c’、第3の入射面11d、11d’ および第2の反射面11e、11e’は、閃光放電管と光学部材11とが所定量離れた状態で、光源中心から射出した光束が光学部材11の各部に入射し、所定の角度成分に変換させるための屈折又は全反射した後、同一の射出面11fから射出され、射出光軸AXLに対して略平行になるように形状が設定されている。
Here, the exit surface 11f of the optical member 11 is a concave surface having negative refractive power, and these cylindrical lens surface 11a, second incident surfaces 11b, 11b ′, and first reflecting surfaces 11c, 11c ′. the third incident surface 11d, 11d 'and a second reflecting surface 11e, 11e' in a state in which the flash discharge tube 9 and the optical member 11 is separated by a predetermined amount, the light beam emitted from the light source center of the optical member 11 After being refracted or totally reflected so as to be incident on each part and converted into a predetermined angle component, the shape is set so as to be emitted from the same exit surface 11f and substantially parallel to the exit optical axis AXL.

図6(b)には、光源中心から射出した光束が光学部材11の各面から入射し、それぞれのどのような光路を通るかを示した光線トレース図を示している。図示のように、光源中心から射出した光束は、ほとんどすべて射出光軸AXLに対して平行に変換されている。すなわち、最も集光された状態をこの光学配置によって得ることができる。よって、射出開口面積に対して、最も効率良く集光動作がなされていると言うことができる。   FIG. 6B shows a ray tracing diagram showing how the light beam emitted from the center of the light source enters from each surface of the optical member 11 and passes through each optical path. As shown in the figure, almost all the light beam emitted from the center of the light source is converted in parallel to the emission optical axis AXL. That is, the most condensed state can be obtained by this optical arrangement. Therefore, it can be said that the light condensing operation is performed most efficiently with respect to the exit aperture area.

一方、図7に示す状態は、閃光放電管9と光学部材11とを上記所定距離よりも接近させた状態であり、照射角度範囲をある程度広げた状態が得られるように光学配置を設定したものである。   On the other hand, the state shown in FIG. 7 is a state in which the flash discharge tube 9 and the optical member 11 are brought closer to each other than the predetermined distance, and the optical arrangement is set so that the irradiation angle range is expanded to some extent. It is.

このような光学配置の場合、光学部材11の第2の入射面11b、11b’と第1の反射面11c、11c’との交点で形成されるエッジ部11g、11g’が反射部材10の反射面10b、10b’に接近することになる。このことによって、光源中心から射出した光線のうち反射面10b、10b’と光学部材11のエッジ部11g、11g’との隙間から、反射部材10の反射面10b、10b’に向かうべき光束が減少することになる。   In the case of such an optical arrangement, the edge portions 11g and 11g ′ formed at the intersections of the second incident surfaces 11b and 11b ′ of the optical member 11 and the first reflecting surfaces 11c and 11c ′ are reflected by the reflecting member 10. The surfaces 10b and 10b 'will be approached. As a result, among the light rays emitted from the center of the light source, the light flux to be directed to the reflection surfaces 10b and 10b ′ of the reflection member 10 is reduced from the gap between the reflection surfaces 10b and 10b ′ and the edge portions 11g and 11g ′ of the optical member 11. Will do.

したがって、エッジ部11g、11g’が反射部材10の反射面10b、10b’に接近するのにしたがいこの成分は極端に減少し、これと隣接した別の光路である第2の入射面11b、11b’と第1の反射面11c、11c’からなるプリズム部およびシリンドリカルレンズ部11aに振り向けられることになる。   Therefore, as the edge portions 11g and 11g ′ approach the reflecting surfaces 10b and 10b ′ of the reflecting member 10, this component is extremely reduced, and the second incident surfaces 11b and 11b, which are separate optical paths adjacent thereto. 'And the first reflecting surfaces 11c and 11c' are directed to the prism portion and the cylindrical lens portion 11a.

ここで、反射部材10の反射面10b、10b’で反射された光束は、光源である閃光放電管9と反射部材10とが一体的に保持されているために、常に射出光軸方向に対して浅い角度を持った成分に変換された成分になっており、この成分が減少するということは被写体上に収斂していた光束が減少するので、配光分布の中央付近の光の強度が弱くなるということである。   Here, the luminous flux reflected by the reflecting surfaces 10b and 10b ′ of the reflecting member 10 is always held in the emission optical axis direction because the flash discharge tube 9 and the reflecting member 10 as the light source are integrally held. It is a component converted into a component with a shallow angle, and when this component decreases, the light flux converged on the subject decreases, so the intensity of light near the center of the light distribution is weak That is.

また、閃光放電管9と光学部材11とを上記所定距離よりも接近させると、デフォーカス状態となり、このプリズム部の第1の反射面11c、11c’で反射した光束とシリンドリカルレンズ面11aから入射した光束は射出面11fから射出する際に発散させられる。   When the flash discharge tube 9 and the optical member 11 are brought closer to each other than the predetermined distance, a defocused state is established, and the light beam reflected by the first reflecting surfaces 11c and 11c ′ of the prism portion is incident from the cylindrical lens surface 11a. The emitted light beam is diverged when exiting from the exit surface 11f.

このように、本来、図6に示した最も集光した状態では、光軸中心付近の屈折領域と、その周辺の光学部材11(プリズム部)による反射領域と、さらに周辺の反射部材10による反射領域の3つの領域をすべて集光させるように構成されていたのに対し、閃光放電管9(および反射鏡10)と光学部材11との光軸方向における相対位置関係を変更することよって、各領域による集光状態を徐々に変化させる(すなわち、照射角度範囲を変化させる)ことができる。   Thus, originally, in the most condensed state shown in FIG. 6, the refraction area near the center of the optical axis, the reflection area by the optical member 11 (prism part) in the vicinity thereof, and the reflection by the reflection member 10 in the vicinity. Whereas all three regions are condensed, the relative position relationship between the flash discharge tube 9 (and the reflecting mirror 10) and the optical member 11 in the optical axis direction is changed. It is possible to gradually change the light collection state by the region (that is, to change the irradiation angle range).

一方、図示していないが、前述したように、閃光放電管9の中心から後方に射出された光束は、反射部材10の半円筒部10aで反射し、再度、閃光放電管9の中心を通って前方に射出される。この後の光線の振る舞いは図6、図7に示したものと同様である。   On the other hand, although not shown, as described above, the light beam emitted backward from the center of the flash discharge tube 9 is reflected by the semi-cylindrical portion 10a of the reflecting member 10, and again passes through the center of the flash discharge tube 9. And injected forward. The behavior of the subsequent light beam is the same as that shown in FIGS.

このように、本実施例によれば、反射部材10と光学部材11という少ない構成部品でありながら、小型で必要照射範囲外への光照射による光量損失の少ない、極めて効率の良い照射角度可変型照明光学系を構成することができる。   As described above, according to the present embodiment, the reflection member 10 and the optical member 11 are small components, but the size is small and the amount of light loss due to light irradiation outside the necessary irradiation range is small. An illumination optical system can be configured.

さらに、光学部材11の第1の反射面11c、11c’及び第2の反射面11e、11e’により集光効率がさらに向上し、射出面11f(射出開口部)を小さくすることがため、小型でありながらも配光特性の良い撮像装置が得られる。   Furthermore, the first reflecting surfaces 11c and 11c ′ and the second reflecting surfaces 11e and 11e ′ of the optical member 11 further improve the light collection efficiency and reduce the exit surface 11f (exit opening). However, an imaging device with good light distribution characteristics can be obtained.

本発明の照明装置を搭載したカメラの概略構成図である。It is a schematic block diagram of the camera carrying the illuminating device of this invention. 本発明の実施例1における照明装置の斜視図である。It is a perspective view of the illuminating device in Example 1 of this invention. 本発明の実施例1における照明装置の展開斜視図である。It is an expansion | deployment perspective view of the illuminating device in Example 1 of this invention. 本発明の実施例1の照明装置において、最も狭い配光時のYZ断面図であり、(a)は構成断面図、(b)は光線トレース図である。In the illuminating device of Example 1 of this invention, it is YZ sectional drawing at the time of the narrowest light distribution, (a) is a structure sectional drawing, (b) is a ray trace figure. 本発明の実施例1の照明装置において、最も広い配光時のYZ断面図であり、(a)は構成断面図、(b)は光線トレース図である。In the illuminating device of Example 1 of this invention, it is YZ sectional drawing at the time of the widest light distribution, (a) is a structure sectional drawing, (b) is a ray trace figure. 本発明の実施例2の照明装置において、最も狭い配光時のYZ断面図であり、(a)は構成断面図、(b)は光線トレース図である。In the illuminating device of Example 2 of this invention, it is YZ sectional drawing at the time of the narrowest light distribution, (a) is a structure sectional drawing, (b) is a ray trace figure. 本発明の実施例2の照明装置において、最も広い配光時のYZ断面図であり、(a)は構成断面図、(b)は光線トレース図である。In the illuminating device of Example 2 of this invention, it is YZ sectional drawing at the time of the widest light distribution, (a) is a structure sectional drawing, (b) is a ray trace figure. 従来の照明装置のYZ断面図であり、(a)は構成断面図、(b)は光線トレース図である。It is YZ sectional drawing of the conventional illuminating device, (a) is a structure sectional drawing, (b) is a ray trace figure.

符号の説明Explanation of symbols

5 照明装置
6、9 閃光放電管(光源)
7、10 反射部材
8、11 光学部材
5 Illumination devices 6 and 9 Flash discharge tube (light source)
7, 10 Reflective member 8, 11 Optical member

Claims (5)

光源と、該光源からの光を照射方向に向かわせるための光学部材および反射部材とを有する照明装置であって、
前記光学部材は、正の屈折力を有する入射面と、負の屈折力を有する射出面と、前記光源から前記入射面よりも周辺側に進んだ光を前記射出面に向けて反射する反射面とを有し、
前記反射部材は、前記光源から前記反射面よりも周辺側に進んだ光を反射する第1の面と、該第1の面からの光を前記射出面に向けて反射する第2の面とを有することを特徴とする照明装置。
A lighting device having a light source, and an optical member and a reflecting member for directing light from the light source in the irradiation direction,
The optical member includes an incident surface having a positive refracting power, an exit surface having a negative refracting power, and a reflecting surface that reflects light traveling from the light source toward the peripheral side of the incident surface toward the exit surface. And
The reflecting member includes a first surface that reflects light traveling from the light source toward the periphery of the reflecting surface, and a second surface that reflects light from the first surface toward the exit surface. A lighting device comprising:
前記光学部材は、前記光源に対して照射光軸方向に移動可能であることを特徴とする請求項1に記載の照明装置。   The illumination device according to claim 1, wherein the optical member is movable in an irradiation optical axis direction with respect to the light source. 光源と、該光源からの光を照射方向に向かわせるための光学部材および反射部材とを有する照明装置であって、
前記光学部材は、正の屈折力を有する入射面と、負の屈折力を有する射出面と、前記光源から前記入射面よりも周辺側に進んだ光を前記射出面に向けて反射する第1の反射面とを有し、
前記反射部材は、前記光源から前記第1の反射面よりも周辺側に進んだ光を反射し、さらに前記光学部材は、前記反射部材からの光を前記射出面に向けて反射する第2の反射面を有することを特徴とする照明装置。
A lighting device having a light source, and an optical member and a reflecting member for directing light from the light source in the irradiation direction,
The optical member is configured to reflect an incident surface having a positive refractive power, an exit surface having a negative refractive power, and light that travels from the light source toward the periphery of the incident surface toward the exit surface. And a reflective surface of
The reflection member reflects light traveling from the light source toward the peripheral side of the first reflection surface, and the optical member further reflects light from the reflection member toward the emission surface. An illumination device having a reflective surface.
前記光学部材は、前記光源に対して照射光軸方向に移動可能であることを特徴とする請求項に記載の照明装置。 The lighting device according to claim 3 , wherein the optical member is movable in an irradiation optical axis direction with respect to the light source. 請求項1から4のいずれか1つに記載の照明装置と、
該照明装置により照明された被写体を撮影する撮影系とを有することを特徴とする撮影装置。
The lighting device according to any one of claims 1 to 4,
An imaging apparatus comprising: an imaging system for imaging a subject illuminated by the illumination apparatus.
JP2004162604A 2004-05-31 2004-05-31 Illumination device and imaging device Expired - Fee Related JP4544513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162604A JP4544513B2 (en) 2004-05-31 2004-05-31 Illumination device and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162604A JP4544513B2 (en) 2004-05-31 2004-05-31 Illumination device and imaging device

Publications (3)

Publication Number Publication Date
JP2005345575A JP2005345575A (en) 2005-12-15
JP2005345575A5 JP2005345575A5 (en) 2007-07-12
JP4544513B2 true JP4544513B2 (en) 2010-09-15

Family

ID=35498047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162604A Expired - Fee Related JP4544513B2 (en) 2004-05-31 2004-05-31 Illumination device and imaging device

Country Status (1)

Country Link
JP (1) JP4544513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983011B (en) * 2005-12-16 2010-09-08 艾悌亚信息技术(上海)有限公司 Method and apparatus for generating parallel-light with adjusting brightness
KR101602582B1 (en) * 2014-12-04 2016-03-11 영남대학교 산학협력단 Lighting having multi media for dental clinic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128712A (en) * 1993-10-29 1995-05-19 Fuji Photo Film Co Ltd Stroboscopic device
JP2000298244A (en) * 1999-04-15 2000-10-24 Canon Inc Lighting system and photographing device using the same
JP2003005261A (en) * 2001-06-20 2003-01-08 Canon Inc Illuminator with variable illuminating angle and photographing device using the same
JP2004191866A (en) * 2002-12-13 2004-07-08 Canon Inc Lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128712A (en) * 1993-10-29 1995-05-19 Fuji Photo Film Co Ltd Stroboscopic device
JP2000298244A (en) * 1999-04-15 2000-10-24 Canon Inc Lighting system and photographing device using the same
JP2003005261A (en) * 2001-06-20 2003-01-08 Canon Inc Illuminator with variable illuminating angle and photographing device using the same
JP2004191866A (en) * 2002-12-13 2004-07-08 Canon Inc Lighting device

Also Published As

Publication number Publication date
JP2005345575A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP3891535B2 (en) Irradiation angle variable illumination device and photographing device using the same
KR100549594B1 (en) Illuminating apparatus
JP3441991B2 (en) Illumination device and photographing device using the same
JP2000298244A (en) Lighting system and photographing device using the same
KR100684298B1 (en) Illumination apparatus and camera
JP2001066672A (en) Irradiation angle variable illuminator and photographing device using the same
JP3774621B2 (en) Illumination device and photographing device
US7499099B2 (en) Illumination apparatus and image-taking apparatus
JP3854885B2 (en) Illumination device and photographing device
JP4544513B2 (en) Illumination device and imaging device
JP4006375B2 (en) Lighting device and electronic device
JP2000250102A (en) Illuminator and photographing device using the same
JP4587429B2 (en) Illumination device and photographing device
JP5224880B2 (en) Illumination device and imaging device
JP3826078B2 (en) LIGHTING DEVICE AND PHOTOGRAPHING DEVICE HAVING THE SAME
JP2019132870A (en) Illumination device
JP3762306B2 (en) LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE
JP2004069723A (en) Illuminator and photographing device
JP4933178B2 (en) Illumination device and imaging device
JP4185856B2 (en) Illumination device and imaging device
JP4587159B2 (en) Illumination device and photographing device
JP2005173380A (en) Illumination optical system and imaging apparatus
JP2007140218A (en) Illuminating device and imaging apparatus
JP3913075B2 (en) Illumination device and photographing device
JP2005284206A (en) Lighting system and photographing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081010

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees