JP3762306B2 - LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE - Google Patents

LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE Download PDF

Info

Publication number
JP3762306B2
JP3762306B2 JP2002028159A JP2002028159A JP3762306B2 JP 3762306 B2 JP3762306 B2 JP 3762306B2 JP 2002028159 A JP2002028159 A JP 2002028159A JP 2002028159 A JP2002028159 A JP 2002028159A JP 3762306 B2 JP3762306 B2 JP 3762306B2
Authority
JP
Japan
Prior art keywords
light
fresnel lens
optical member
light source
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028159A
Other languages
Japanese (ja)
Other versions
JP2003228102A (en
Inventor
良治 天明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002028159A priority Critical patent/JP3762306B2/en
Priority to US10/354,744 priority patent/US6974236B2/en
Priority to CNB031023487A priority patent/CN1212538C/en
Priority to KR1020030007178A priority patent/KR100578627B1/en
Publication of JP2003228102A publication Critical patent/JP2003228102A/en
Application granted granted Critical
Publication of JP3762306B2 publication Critical patent/JP3762306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stroboscope Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照明装置、特に上下方向の厚みに余裕がない光学機器に好適な照明装置及びそれを用いた撮影装置に関するものであり、例えばカメラ本体(撮影本体)の一部に装着して、カメラ本体の撮影動作と連動させて照明光(閃光)を被写体側へ効率良く照射し、撮影する際に好適なものである。
【0002】
【従来の技術】
従来、カメラ等の撮影装置に用いられている照明装置は、光源とこの光源から発せられた光束を前方に導く反射傘やフレネルレンズ等の光学部品とで構成されている。
【0003】
このような照明装置において、光源から様々な方向に射出した光束を効率よく必要照射画角内に集光させるために、従来より種々の提案がなされている。特に近年、今まで光源の前に配置されていたフレネルレンズのかわりに、プリズム・ライトガイド等の全反射を利用した光学部材を配置することによって、集光効率の向上と上下方向の光学系の薄型化を両立させたものが提案されている。
【0004】
この種の提案としては、本出願人が特開平10−115852号公報で示したように、光源から光学部材に入射させた光束を、上下方向は上下側面に形成された全反射面によって、左右方向は射出面に設けたシリンドリカルレンズ、もしくはフレネルレンズによってそれぞれ集光させる、小型で集光効率の高いプリズムを用いた照明光学系がある。
【0005】
【発明が解決しようとする課題】
近年、カメラ等の撮影装置においては、装置自体の小型化が従来にも増して一層進みつつある。特に最近の傾向として、カメラの上下方向の高さを低く抑えたいという要望が強く、これに伴ってカメラの上部に位置するストロボ発光部に対しても上下方向の厚みの薄型化への要望が強い。このような背景から、光学性能の劣化のない薄型ストロボ光学系の実用化が強く望まれている。
【0006】
そこで、複数回反射しても効率低下の少ない全反射光学系を利用して、上下方向の厚みを抑えた薄型発光部を特開平10-115852号公報で提案してきた。これは、光源から光学部材に入射させた光束を、上下方向(閃光放電管の径方向)は上下側面に形成された全反射面によって集光させることによって薄型化を図り、左右方向(閃光放電管の長手方向)は射出面に設けたシリンドリカルレンズ、またはフレネルレンズによって効率良く集光させることによって、薄型で効率の良い照明光学系を構成したものである。
【0007】
一方、上記方式によるストロボ光学系の問題としては、以下のことが挙げられる。まず、左右方向(閃光放電管の長手方向)の集光を行う為に射出面にシリンドリカルレンズを設けた場合、集光効果を上げるため曲率を小さく設定しているが、このような強い屈折力を与えることにより周辺部は中央部に対し落ち込みができ、そのまま外観部として表に出すのが困難な形状になっている。このため、製品化する際には、反射板や別部材の保護パネル等の部品を追加する必要があり、コスト高になるばかりでなく、照明光学系としても多くの部品を介することになるため効率が低下してしまうという欠点があった。さらに、この改良案として射出面にフレネルレンズを形成したものも提案しているが、通常のフレネルレンズを用いた場合には、開口面積は広いものの、この開口面積をすべて有効に使うことが困難な為に、必ずしもスペース効率及び光学系の効率の双方を向上させた照明光学系になってはいるとは言えなかった。
【0008】
以上のことから、本発明が解決しようとする最大の課題は、必要最小限の部品構成で、かつ与えられた開口面積を最も有効に使った薄型照明光学系の提案することであり、いままで有効に使われていなかった光束を他に部品を追加することなく効率良く集めて、集光性を上昇させようとするものである。
【0009】
そして本発明の目的は、今までの照明光学系に比べて極端に薄型化を図ると共に、光源からのエネルギを高い効率で利用し、照射面上で均一な配光特性を保った照明ができるスチルカメラ、ビデオカメラ等に好適な照明装置及びそれを用いた撮影装置を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本出願に係る第1の発明の照明装置は、光源手段からの光束を前方に配置した光学部材および後方を覆う反射傘とを介して所定の照射角の照射光として照射する照明装置において、該光学部材は該光源手段に対向した入射面、該入射面からの光束の一部を全反射させる反射面、該入射面と対向しフレネルレンズ面を形成した射出面とを有し、前記フレネルレンズ面を構成する二つの面の内フレネルレンズの光軸に近いほうの面をエッジ面とすると、該フレネルレンズのエッジ面の光軸となす角度を光軸中心から離れるに従って大きくとると共に、該光学部材の側面形状を、該フレネルレンズエッジ面に光束を導く曲面形状としたことにある。
【0011】
特に、上記光学部材のフレネルレンズ面は、前記光源の長手方向に対して略垂直方向に形成されている。
【0012】
また、光学部材の側面形状の曲率中心は、フレネルレンズの光軸中心側にあり、フレネルレンズ面より照射面側に存在している。
【0013】
また前記反射傘の形状が前記光源手段の中心とほぼ同心形状の反射面を少なくとも一部に形成している。
【0014】
上記構成をとることによって、極端に上下方向の薄型化を図った照明光学系においても、効率良く照射面上で均一な配光特性を保った照明ができる。
【0015】
また、単一の光学部材で左右方向の集光と上下方向の集光を独立に制御できる為、一度形状が決定されると製造上のばらつきがなく光学特性の安定した照明光学系を構成できる。
【0016】
さらに、基本的な光線制御を光学部材の屈折と全反射によって行っているため、光源からのエネルギを効率良く利用することができ、また、単一の光学部材内ですべての光制御が可能なため、照明光学系全体を極めて小型にかつ安価に構成することができる。
【0017】
【発明の実施の形態】
(第1の実施例)
以下、図面を参照して本発明の実施例を説明する。
【0018】
図1〜図4は、本発明の第1実施例による照明装置、特に本実施例では閃光発光装置を示しており、図1は閃光発光装置の光学系を構成する要部の閃光放電管の中心軸を含む平面で切った断面図、図2は閃光発光装置の光学系を構成する要部の縦断面図、図3は閃光発光装置の主要光学系のみの分解斜視図、図4は本発明を適用したカメラの斜視図である。尚、図1では、光源から射出した代表光線の光線トレース図も合わせて示している。
【0019】
図1(a)、図1(b)は、同一断面形状について光源から射出させた光束のうち照射面上で光軸中心方向に向かう光束のみの光路を示したものであり、照明光学系の各部品の中で実際に使用する領域を示すと共に、照射面上の光軸中心に向かう成分がどのような光路で形成されているかを特定できるようにしたものである。
【0020】
本実施例による閃光発光装置は、図4に示すようにカメラ本体の正面から見て右上部に配置され、射出窓は縦フレネルレンズが形成された上下に薄い形態になっている。
【0021】
同図において、1は閃光発光部、11は撮影装置本体、12は撮影レンズを備えるレンズ鏡筒、13はレリーズボタン、14は撮影レンズをズーミングする為の操作部材であり、この操作部材を前側に倒すとテレ方向に、後ろ側に倒すとワイド方向にそれぞれズームさせることができる。15はカメラの各種のモードを切り替えるための操作ボタン、16はカメラの動作をユーザーに知らせる為の液晶表示窓、17は外光の明るさを測定する測光装置の覗き窓、18はファインダーの覗き窓である。なお、閃光発光部を除くそれぞれの機能については公知の技術であるので、ここでは詳しい説明は省略する。尚、本発明の機械的構成要素は前述の構成に限定されるものではない。
【0022】
次に、本発明の主眼である閃光発光部の光学特性を規定する構成要素について、図1〜図3を用いて更に詳しく説明する。
【0023】
同図において、2は閃光を発し、左右を長手とした円筒形状の閃光放電管(キセノン管)である。3は閃光放電管2から射出した光束のうち光射出方向の後方に向かう成分を光射出方向に反射させる反射傘であり、内面が高反射率面で形成された光輝アルミ等の金属材料、または内面に高反射率の金属蒸着面が形成された樹脂材料等で構成されている。4は閃光放電管2から直接射出した光束及び反射傘3で反射して入射した光束を、被写体側へ効率良く照射させる照明光束導光用の光学部材である。上記光学部材4の材料としては、アクリル樹脂等の透過率の高い光学用樹脂材料、またはガラス材料が適している。
【0024】
上記構成において、撮影装置11は、従来公知の技術であるように、たとえば「ストロボオートモード」にカメラがセットされている場合には、レリーズボタン13がユーザーによって押された後に、不図示の測光装置で測定された外光の明るさと装填されたフィルムの感度によって、閃光発光装置を発光させるか否かを不図示の中央演算装置が判断する。中央演算装置が撮影状況下において「閃光発光装置を発光させる」と判定した場合には、中央演算装置が発光信号を出し、反射傘3に取り付けられた不図示のトリガーリード線を介して閃光放電管2を発光させる。発光された光束は、照射光軸と反対方向に射出された光束は反射傘3を介して、また、照射方向に射出した光束は直接、前面に配置した光学部材4に入射し、この光学部材4を介して所定の配光特性に変換された後、被写体側に照射される。
【0025】
本発明は、特に撮影装置の照明光学系の全体形状を極端に薄型化しつつ、そのときの必要照射範囲の配光特性を均一に保った照明装置の提案であり、以下図1から図2を用いてこの最適形状の設定方法に関してさらに詳しく説明する。
【0026】
図1は、本発明の第1実施例の閃光発光装置の光学系を構成する要部の閃光放電管の中心軸を含む平面で切った断面図であり、左右方向の集光特性の最適化を図る為の基本的な考え方を示す図である。尚、図1(a)〜図1(b)は、同一の断面図を示しており、照射面上の光軸中心方向に照射される光束の光線トレース部も付記している。尚、図中の各部の番号は、図2、図3に対応している。
【0027】
図1(a)に示すように、閃光放電管2から射出された光束は、光学部材4の入射面4aから入射した後、射出面側に形成したフレネルレンズ面4bから射出される。このとき、フレネルレンズの屈折力によって、閃光放電管の実質的な発光範囲であるアーク長よりも広い幅の領域から照射面の射出光軸方向に向かう光束が存在し、集光効果が得られることがわかる。しかし、同図からもわかるように、集光作用を持たせる為にフレネルレンズを形成した場合には、フレネルレンズのエッジ部で不連続点を生じ、光学系の開口部の面積に対し射出光軸方向に寄与しない領域が存在している。また、この現象は、発光部の中心から離れた周辺の領域で多く発生していることわかる。すなわち、フレネルレンズを使用することによって屈折による大幅な集光効果が得られる半面、照明光学系の開口部に関しては必要以上に広くなってしまい、本来の開口全面を使ったスペース効率の良い光学系とはなっていないことがわかる。
【0028】
本実施例では、このようなフレネルレンズ面上で射出光軸方向に向かう光束が存在しない領域の開口部を有効に使って、効率の良い光学系を形成することである。また、この効果によって、与えられた開口面積の中で最大のガイドナンバーを導き出す光学系を構成することである。
【0029】
このような構成とする為、本実施例では、図1(b)に示すような光学部材4の各部の形状の工夫を行っている。すなわち、光学部材4の側面部4c、4c’を最適な曲面形状とし、この面で光を全反射面させる。さらに、全反射後の光束をフレネルレンズ部のエッジ面に導き、このエッジ面で屈折させて射出光軸方向に向かわせる光路を新たに形成する。このことによって、図1(a)に示した光束に加えて図1(b)に示した光束が付加されることになり、光学部材4の射出面4bのほとんどすべての面から、射出光軸方向に向かう光束が存在することになり、開口面積を最も有効に利用した光学系を構成することができる。
【0030】
尚、図示の本実施例では、光学部材4の全反射面4c、4c’の面形状としては、フレネルレンズ射出面に接するR50(曲率半径50mm)のシリンドリカルレンズ形状としている。このシリンドリカルレンズ面とは、図1の紙面上では曲率を与えているが、図面垂直方向に対しては曲率を与えていない形状となっている。また、フレネルレンズのエッジ面の傾きに関しても、この面で屈折後に射出光軸方向に向かわせるように、エッジ面の角度をフレネルレンズ面の光軸中心から離れるにつれて、各面の角度が急角度(大きくなるよう)になるように傾きを変化させている。尚、フレネルレンズのエッジ面とは、フレネルレンズを構成する二つの面の内、フレネルレンズの光軸に近いほうの面を指す。
【0031】
これは、この全反射後フレネルレンズエッジ部で屈折する成分が、照射面上で一定の方向に偏らないようにする為である。すなわち、フレネルレンズエッジ部傾きの連続的な変化と、全反射面4c、4c’の曲面化を連動させることによって、配光特性の連続性が崩れないような形状の工夫を行っている。
【0032】
本実施例の構成では、光学部材4の全反射面4c、4c’の形状として、中心軸が光軸側にあり、且つフレネルレンズ面より照射面側に存在する一定曲率(R50)のシリンドリカルレンズ面としているが、この形状に限定されるわけではなく、これと同様な効果を持たせることができる各種形状を採用しても良い。例えば、側面の全反射面にも傾きの異なる複数の面形状で構成してもよい。また、シリンドリカルレンズ面形状に限定されるわけではなく、各種2次曲面形状や、トーリック面形状のような3次元曲面形状としても良い。
【0033】
また、本実施例では、フレネルレンズのエッジ部を周辺部に向かわせるほど光軸中心との角度を徐々に大きくとるように構成しているが、これは、光源中心から離れるにしたがって、本来のフレネルレンズの屈折面で屈折が可能な領域が徐々に少なくなっていく為、フレネルエッジ面を必要以上に立てる必要がなくなる為である。また、光学部材4の側面全反射部4c、4c’で制御しやすい領域がこの全反射面に近い領域であることからも、フレネルレンズエッジ部の傾きを寝かせて、この全反射光成分を増加させることが光学系全体としてみた場合有効である。
【0034】
また、フレネルレンズ面は図3に示す通り、前記光源の長手方向に対して略垂直方向に並んで配置している。
【0035】
次に、図2の断面図を用いて、閃光発光装置の光学系の上下方向の形状について説明する。
【0036】
まず、反射傘3の断面形状は、射出光軸後方の形状を閃光放電管2とほぼ同心形状の半円筒形状(3a)としている。これは、反射傘での反射光を再度光源の中心部付近に戻すのに都合の良い形状であり、閃光放電管のガラス部の屈折または全反射による悪影響を受けにくくする効果がある。また、このように構成することによって、反射傘による反射光を光源からの直接光とほぼ等価な光束として扱えるため考えやすく、またこの後に続く光学系の全体形状を最も小型化することができ都合がよい。
【0037】
一方、反射傘3の光源より前側の射出面に近い部分3b、3b’は、射出端部に近づくにつれて開口面積の増加率が大きくなるような非球面形状で構成されている。この形状は、放電管を封止するガラス管や、光学系の不連続点において発生する配光ムラを緩和する手段として有効であり、均一な配光特性を持ったまま集光させることができる。
【0038】
次に、反射傘の射出面に配置した光学部材4の形状について説明する。図示のように、入射面4aと射出面4bの間は、入射面側を平面とし射出面側を傾きの変化が徐々に大きくなる入射面から射出面に向かうにつれて徐々に末広がりの傾斜面4d、4d’で構成されている。この4d、4d’は全反射面を構成し、反射による光量ロスが少ない極めて効率の良い反射光学系を構成している。また、この光学系の採用し複数回の反射を行わせて、発散光束を徐々に集光制御を行うことによって、上下方向の照射角度を一定範囲に抑えると共に、上下方向の高さを最小限に抑えた構成にすることが可能である。
【0039】
【発明の効果】
以上説明したように、本発明の構成をとることによって、与えられた開口面積を最も有効に使った薄型照明光学系を構成することが可能となり、いままで有効に使われていなかった光束を効率良く集めて集光性を向上させることが可能になった。
【0040】
しかも、単一の光学部材で左右方向の集光と上下方向の集光を独立に制御できる為、一度形状が決定されると製造上のばらつきがなく光学特性の安定した照明光学系を構成できる。
【0041】
さらに、基本的な光線制御を光学部材の屈折と全反射によって行っているため、光源からのエネルギを効率良く利用することができ、また、単一の光学部材内ですべての光制御が可能なため、照明光学系全体を極めて小型にかつ安価に構成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の閃光発光装置光学系の閃光放電管軸方向の断面図。
【図2】本発明の第1実施例の閃光発光装置光学系の閃光放電管径方向の縦断面図。
【図3】本発明の第1実施例の閃光発光装置の主要光学系のみの分解斜視図。
【図4】本発明の第1実施例の閃光発光装置を適用したカメラの斜視図。
【符号の説明】
4 光学部材
2 閃光放電管
3 反射傘
11 カメラ本体
12 レンズ鏡筒
13 レリーズボタン
16 液晶表示窓
17 測光装置の覗き窓
18 ファインダー覗き窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device, particularly a lighting device suitable for an optical device having no sufficient thickness in the vertical direction, and a photographing device using the same, for example, attached to a part of a camera body (shooting body), This is suitable for shooting by irradiating illumination light (flash) efficiently on the subject side in conjunction with the shooting operation of the camera body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an illuminating device used for a photographing apparatus such as a camera is composed of a light source and optical components such as a reflector and a Fresnel lens that guide a light beam emitted from the light source forward.
[0003]
In such an illuminating device, various proposals have heretofore been made in order to efficiently collect a light beam emitted from a light source in various directions within a required irradiation angle of view. In particular, in recent years, instead of the Fresnel lens that has been placed in front of the light source until now, an optical member using total reflection such as a prism and a light guide is arranged, thereby improving the light collection efficiency and improving the vertical optical system. Proposals have been made to achieve both reductions in thickness.
[0004]
As a proposal of this type, as shown in Japanese Patent Application Laid-Open No. 10-115852, the applicant has made the light beam incident on the optical member from the light source into the left and right sides by total reflection surfaces formed on the upper and lower side surfaces. There is an illumination optical system using a small prism with high light collection efficiency that is condensed by a cylindrical lens or a Fresnel lens provided on the exit surface.
[0005]
[Problems to be solved by the invention]
In recent years, in a photographing apparatus such as a camera, the size of the apparatus itself has been further reduced as compared with the related art. In particular, as a recent trend, there is a strong demand to keep the vertical height of the camera low, and accordingly, there is also a demand for thinning the vertical thickness of the strobe light emitting part located at the top of the camera. strong. Against this background, there is a strong demand for practical use of a thin strobe optical system that does not deteriorate optical performance.
[0006]
In view of this, Japanese Patent Laid-Open No. 10-115852 has proposed a thin light-emitting portion in which the thickness in the vertical direction is suppressed by using a total reflection optical system that causes little reduction in efficiency even when reflected multiple times. This is because the light beam incident on the optical member from the light source is condensed by the total reflection surfaces formed on the upper and lower side surfaces in the vertical direction (the radial direction of the flash discharge tube), and the horizontal direction (flash discharge). (Longitudinal direction of the tube) constitutes a thin and efficient illumination optical system by efficiently condensing with a cylindrical lens or a Fresnel lens provided on the exit surface.
[0007]
On the other hand, problems of the strobe optical system according to the above method include the following. First, when a cylindrical lens is provided on the exit surface to collect light in the left-right direction (longitudinal direction of the flash discharge tube), the curvature is set small to increase the light collection effect. Therefore, the peripheral part can be depressed with respect to the central part, and it is difficult to bring it out as an external part as it is. For this reason, when commercializing, it is necessary to add components such as a reflector and a separate protective panel, which not only increases the cost, but also involves many components as an illumination optical system. There was a disadvantage that the efficiency was lowered. Furthermore, as an improvement plan, a lens with a Fresnel lens formed on the exit surface is also proposed. However, when a normal Fresnel lens is used, the aperture area is large, but it is difficult to use all of this aperture area effectively. Therefore, it cannot always be said that the illumination optical system has improved both the space efficiency and the efficiency of the optical system.
[0008]
From the above, the greatest problem to be solved by the present invention is to propose a thin illumination optical system that makes the most effective use of a given aperture area with the minimum necessary component configuration. It is intended to efficiently collect light flux that has not been used effectively without adding any other components, thereby increasing the light collecting performance.
[0009]
The object of the present invention is to achieve an illumination that maintains a uniform light distribution characteristic on the irradiation surface by making the thickness extremely thin as compared with the conventional illumination optical system and using the energy from the light source with high efficiency. It is an object to provide an illumination device suitable for a still camera, a video camera, and the like, and a photographing device using the illumination device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the illumination device of the first invention according to the present application is configured as irradiation light having a predetermined irradiation angle through an optical member arranged in front of the light beam from the light source means and a reflector covering the rear. In the illumination device for irradiating, the optical member includes an incident surface facing the light source means, a reflecting surface that totally reflects a part of the light beam from the incident surface, and an exit surface that forms a Fresnel lens surface facing the incident surface. When the surface closer to the optical axis of the inner Fresnel lens of the two surfaces constituting the Fresnel lens surface is an edge surface, the angle formed by the optical axis of the edge surface of the Fresnel lens is separated from the optical axis center. The side surface shape of the optical member is a curved surface shape that guides the light beam to the edge surface of the Fresnel lens.
[0011]
In particular, the Fresnel lens surface of the optical member is formed in a direction substantially perpendicular to the longitudinal direction of the light source.
[0012]
The center of curvature of the side shape of the optical member is on the optical axis center side of the Fresnel lens, and is present on the irradiation surface side from the Fresnel lens surface.
[0013]
In addition, a reflecting surface having a shape of the reflecting umbrella substantially concentric with the center of the light source means is formed at least in part.
[0014]
By adopting the above configuration, even in an illumination optical system that is extremely thin in the vertical direction, illumination with uniform light distribution characteristics on the irradiation surface can be efficiently performed.
[0015]
In addition, since the light collection in the horizontal direction and the light collection in the vertical direction can be controlled independently with a single optical member, once the shape is determined, there is no manufacturing variation and an illumination optical system with stable optical characteristics can be configured. .
[0016]
Furthermore, since basic light control is performed by refraction and total reflection of the optical member, energy from the light source can be used efficiently, and all light control can be performed within a single optical member. Therefore, the entire illumination optical system can be configured to be extremely small and inexpensive.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
1 to 4 show an illuminating device according to a first embodiment of the present invention, particularly a flash light emitting device in this embodiment. FIG. 1 shows a flash discharge tube of a main part constituting an optical system of the flash light emitting device. 2 is a cross-sectional view taken along a plane including the central axis, FIG. 2 is a longitudinal cross-sectional view of the main part constituting the optical system of the flash light emitting device, FIG. 3 is an exploded perspective view of only the main optical system of the flash light emitting device, and FIG. It is a perspective view of the camera to which the invention is applied. In FIG. 1, a ray trace diagram of representative rays emitted from the light source is also shown.
[0019]
FIG. 1A and FIG. 1B show the optical path of only the light beam directed toward the center of the optical axis on the irradiation surface among the light beams emitted from the light source with the same cross-sectional shape. In addition to showing the region actually used in each part, it is possible to specify the optical path in which the component toward the center of the optical axis on the irradiation surface is formed.
[0020]
As shown in FIG. 4, the flash light emitting device according to the present embodiment is arranged at the upper right portion when viewed from the front of the camera body, and the exit window is thin in the vertical direction where the vertical Fresnel lens is formed.
[0021]
In the figure, 1 is a flash light emitting unit, 11 is a photographing device body, 12 is a lens barrel provided with a photographing lens, 13 is a release button, and 14 is an operation member for zooming the photographing lens. Tilt it to the tele direction, and tilt it to the back to zoom in the wide direction. 15 is an operation button for switching various modes of the camera, 16 is a liquid crystal display window for informing the user of the operation of the camera, 17 is a viewing window of a photometric device for measuring the brightness of outside light, and 18 is a viewing window of the viewfinder. It is a window. Since each function except the flash light emitting unit is a known technique, a detailed description is omitted here. In addition, the mechanical component of this invention is not limited to the above-mentioned structure.
[0022]
Next, components that define the optical characteristics of the flash light emitting unit, which is the main focus of the present invention, will be described in more detail with reference to FIGS.
[0023]
In the figure, reference numeral 2 designates a cylindrical flash discharge tube (xenon tube) that emits flash light and has a left and right longitudinal direction. Reference numeral 3 denotes a reflector that reflects in the light emission direction a component of the luminous flux emitted from the flash discharge tube 2 in the light emission direction, and a metallic material such as bright aluminum whose inner surface is formed with a high reflectance surface, or The inner surface is made of a resin material or the like having a highly reflective metal deposition surface formed thereon. Reference numeral 4 denotes an illumination light guide optical member that efficiently irradiates the subject side with the light beam directly emitted from the flash discharge tube 2 and the light beam reflected by the reflector 3 and incident. As the material of the optical member 4, an optical resin material having a high transmittance such as an acrylic resin or a glass material is suitable.
[0024]
In the above configuration, the photographing apparatus 11 is a photometric device (not shown) after the release button 13 is pressed by the user when the camera is set in the “strobe auto mode”, for example, as is conventionally known. A central processing unit (not shown) determines whether or not the flashlight emitting device emits light based on the brightness of external light measured by the device and the sensitivity of the loaded film. When the central processing unit determines that “flash light emitting device emits light” under shooting conditions, the central processing unit outputs a light emission signal and flash discharges via a trigger lead wire (not shown) attached to the reflector 3 The tube 2 is caused to emit light. The emitted light beam is emitted through the reflector 3 in the direction opposite to the irradiation optical axis, and the light beam emitted in the irradiation direction is directly incident on the optical member 4 disposed on the front surface. After being converted into a predetermined light distribution characteristic via 4, the object side is irradiated.
[0025]
In particular, the present invention is a proposal of an illuminating device in which the overall shape of the illuminating optical system of the photographing apparatus is extremely thin and the light distribution characteristics of the necessary irradiation range at that time are kept uniform. The method for setting the optimum shape will be described in more detail.
[0026]
FIG. 1 is a cross-sectional view taken along a plane including the central axis of the flash discharge tube of the main part constituting the optical system of the flash light emitting device of the first embodiment of the present invention, and optimizing the light collecting characteristic in the left-right direction. It is a figure which shows the basic idea for aiming at. 1 (a) to 1 (b) show the same cross-sectional view, and a ray tracing portion of a light beam irradiated in the center direction of the optical axis on the irradiation surface is also appended. In addition, the number of each part in a figure respond | corresponds to FIG. 2, FIG.
[0027]
As shown in FIG. 1A, the light beam emitted from the flash discharge tube 2 is incident from the incident surface 4a of the optical member 4 and then emitted from the Fresnel lens surface 4b formed on the emission surface side. At this time, due to the refractive power of the Fresnel lens, there is a light flux that travels from the region wider than the arc length, which is the substantial light emission range of the flash discharge tube, in the direction of the exit optical axis of the irradiated surface, and a light collecting effect is obtained. I understand that. However, as can be seen from the figure, when a Fresnel lens is formed to provide a condensing function, a discontinuity occurs at the edge of the Fresnel lens, and the emitted light exceeds the area of the opening of the optical system. There is a region that does not contribute to the axial direction. Further, it can be seen that this phenomenon occurs frequently in a peripheral region away from the center of the light emitting portion. In other words, by using a Fresnel lens, a significant light condensing effect can be obtained by refraction, but the aperture of the illumination optical system becomes wider than necessary, and a space-efficient optical system using the entire original aperture It turns out that it is not.
[0028]
In this embodiment, an efficient optical system is formed by effectively using an opening in a region where there is no light beam directed in the direction of the exit optical axis on the Fresnel lens surface. Another effect is to construct an optical system that derives the maximum guide number in a given aperture area.
[0029]
In order to obtain such a configuration, in this embodiment, the shape of each part of the optical member 4 is devised as shown in FIG. That is, the side surfaces 4c and 4c ′ of the optical member 4 are formed in an optimal curved surface shape, and the light is totally reflected on this surface. Further, the light beam after total reflection is guided to the edge surface of the Fresnel lens portion, and a new optical path is formed which is refracted by this edge surface and directed toward the exit optical axis direction. As a result, in addition to the light beam shown in FIG. 1A, the light beam shown in FIG. 1B is added. From almost all surfaces of the emission surface 4b of the optical member 4, the emission optical axis is obtained. There will be a light beam directed in the direction, and an optical system using the aperture area most effectively can be constructed.
[0030]
In the illustrated embodiment, the total reflection surfaces 4c and 4c ′ of the optical member 4 have a cylindrical shape of R50 (curvature radius 50 mm) in contact with the Fresnel lens exit surface. The cylindrical lens surface has a shape that gives a curvature on the paper surface of FIG. 1 but does not give a curvature in the vertical direction of the drawing. Also, regarding the inclination of the edge surface of the Fresnel lens, the angle of each surface becomes steeper as the angle of the edge surface moves away from the center of the optical axis of the Fresnel lens surface so that it is directed to the exit optical axis direction after refraction on this surface. The inclination is changed so as to be (larger). The edge surface of the Fresnel lens refers to a surface closer to the optical axis of the Fresnel lens among the two surfaces constituting the Fresnel lens.
[0031]
This is to prevent the component refracted at the edge portion of the Fresnel lens after total reflection from being biased in a certain direction on the irradiated surface. That is, the device is devised so that the continuity of the light distribution characteristics is not lost by linking the continuous change of the Fresnel lens edge portion with the curved surfaces of the total reflection surfaces 4c and 4c ′.
[0032]
In the configuration of the present embodiment, the cylindrical lens having a constant curvature (R50) in which the central axis is on the optical axis side and the irradiation surface side is present from the Fresnel lens surface as the shape of the total reflection surfaces 4c and 4c ′ of the optical member 4. Although it is a surface, it is not limited to this shape, and various shapes that can have the same effect may be adopted. For example, the total reflection surface on the side surface may be configured with a plurality of surface shapes having different inclinations. Further, the shape is not limited to the cylindrical lens surface shape, and may be various secondary curved surface shapes or three-dimensional curved surface shapes such as toric surface shapes.
[0033]
In this embodiment, the angle with the center of the optical axis is gradually increased as the edge portion of the Fresnel lens is directed toward the peripheral portion. However, as the distance from the light source center increases, This is because the refractable area on the refracting surface of the Fresnel lens gradually decreases, so that it is not necessary to raise the Fresnel edge surface more than necessary. In addition, since the region that can be easily controlled by the side total reflection portions 4c and 4c ′ of the optical member 4 is a region close to the total reflection surface, the total reflected light component is increased by laying the inclination of the Fresnel lens edge portion. This is effective when viewed as the entire optical system.
[0034]
Further, as shown in FIG. 3, the Fresnel lens surfaces are arranged side by side in a direction substantially perpendicular to the longitudinal direction of the light source.
[0035]
Next, the shape of the optical system of the flash light emitting device in the vertical direction will be described using the cross-sectional view of FIG.
[0036]
First, the cross-sectional shape of the reflector 3 is a semi-cylindrical shape (3a) that is substantially concentric with the flash discharge tube 2 in the shape behind the emission optical axis. This is a convenient shape for returning the reflected light from the reflector again to the vicinity of the center of the light source, and has the effect of making it less likely to be adversely affected by refraction or total reflection of the glass portion of the flash discharge tube. Also, with this configuration, it is easy to think because the reflected light from the reflector can be treated as a light beam that is almost equivalent to the direct light from the light source, and the overall shape of the optical system that follows can be minimized. Is good.
[0037]
On the other hand, the portions 3b and 3b ′ close to the exit surface on the front side of the light source of the reflector 3 are configured to be aspherical so that the increasing rate of the opening area increases as the exit end portion is approached. This shape is effective as a glass tube for sealing the discharge tube and a means for reducing uneven light distribution that occurs at discontinuous points in the optical system, and can collect light with uniform light distribution characteristics. .
[0038]
Next, the shape of the optical member 4 arranged on the exit surface of the reflector will be described. As shown in the drawing, between the entrance surface 4a and the exit surface 4b, the entrance surface side is a flat surface, and the exit surface side is gradually increased in inclination. 4d '. These 4d and 4d 'constitute a total reflection surface, and constitute an extremely efficient reflection optical system with little light loss due to reflection. In addition, by adopting this optical system and performing multiple reflections to gradually condense the divergent light beam, the vertical illumination angle is kept within a certain range and the vertical height is minimized. It is possible to make the configuration suppressed to a minimum.
[0039]
【The invention's effect】
As described above, by adopting the configuration of the present invention, it becomes possible to construct a thin illumination optical system that makes the most effective use of a given aperture area. It has become possible to collect well and improve the light collecting property.
[0040]
In addition, since the light collection in the left and right direction and the light collection in the vertical direction can be controlled independently with a single optical member, once the shape is determined, there is no manufacturing variation and an illumination optical system with stable optical characteristics can be configured. .
[0041]
Furthermore, since basic light control is performed by refraction and total reflection of the optical member, energy from the light source can be used efficiently, and all light control can be performed within a single optical member. Therefore, the entire illumination optical system can be configured to be extremely small and inexpensive.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flash light emitting device optical system according to a first embodiment of the present invention in a flash discharge tube axial direction.
FIG. 2 is a longitudinal sectional view of the flash light emitting device optical system of the first embodiment of the present invention in the flash discharge tube radial direction.
FIG. 3 is an exploded perspective view of only the main optical system of the flashlight emitting apparatus according to the first embodiment of the present invention.
FIG. 4 is a perspective view of a camera to which the flash light emitting device according to the first embodiment of the present invention is applied.
[Explanation of symbols]
4 Optical member 2 Flash discharge tube 3 Reflector umbrella 11 Camera body 12 Lens barrel 13 Release button 16 Liquid crystal display window 17 Viewing window 18 for photometry device Viewfinder viewing window

Claims (5)

光源手段からの光束を前方に配置した光学部材および後方を覆う反射傘とを介して所定の照射角の照射光として照射する照明装置において、該光学部材は該光源手段に対向した入射面、該入射面からの光束の一部を全反射させる反射面、該入射面と対向しフレネルレンズ面を形成した射出面とを有し、前記フレネルレンズ面を構成する二つの面の内フレネルレンズの光軸に近いほうの面をエッジ面とすると、該フレネルレンズのエッジ面の光軸となす角度を光軸中心から離れるに従って大きくとると共に、該光学部材の側面形状を、該フレネルレンズエッジ面に光束を導く曲面形状としたことを特徴とする照明装置。In an illuminating device that irradiates a light beam from a light source means as irradiation light having a predetermined irradiation angle via an optical member arranged in front and a reflector that covers the back, the optical member has an incident surface facing the light source means, The light of the inner Fresnel lens of the two surfaces that has a reflecting surface that totally reflects a part of the light flux from the incident surface and an exit surface that forms a Fresnel lens surface facing the incident surface. When the surface closer to the axis is the edge surface, the angle formed with the optical axis of the edge surface of the Fresnel lens is increased as the distance from the optical axis center increases, and the side surface shape of the optical member is set to the edge surface of the Fresnel lens. An illumination device characterized by having a curved surface shape for guiding a light beam. 上記光学部材のフレネルレンズ面は、前記光源の長手方向に対して略垂直方向に形成されていることを特徴とする請求項1記載の照明装置。  The lighting device according to claim 1, wherein the Fresnel lens surface of the optical member is formed in a direction substantially perpendicular to a longitudinal direction of the light source. 光学部材の側面形状の曲率中心は、フレネルレンズの光軸中心側にあり、フレネルレンズ面より照射面側に存在することを特徴とする請求項1記載の照明装置。2. The illumination device according to claim 1 , wherein the center of curvature of the side surface shape of the optical member is on the optical axis center side of the Fresnel lens and is on the irradiation surface side of the Fresnel lens surface. 前記反射傘の形状が前記光源手段の中心とほぼ同心形状の反射面を少なくとも一部に形成していることを特徴とする請求項1記載の照明装置。  2. The lighting device according to claim 1, wherein the reflector has a reflecting surface formed at least partially concentrically with a center of the light source means. 請求項1記載の照明装置を用いた撮影装置。  An imaging device using the illumination device according to claim 1.
JP2002028159A 2002-02-05 2002-02-05 LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE Expired - Fee Related JP3762306B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002028159A JP3762306B2 (en) 2002-02-05 2002-02-05 LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE
US10/354,744 US6974236B2 (en) 2002-02-05 2003-01-30 Illuminating apparatus
CNB031023487A CN1212538C (en) 2002-02-05 2003-01-31 Lighting apparatus
KR1020030007178A KR100578627B1 (en) 2002-02-05 2003-02-05 Illuminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028159A JP3762306B2 (en) 2002-02-05 2002-02-05 LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE

Publications (2)

Publication Number Publication Date
JP2003228102A JP2003228102A (en) 2003-08-15
JP3762306B2 true JP3762306B2 (en) 2006-04-05

Family

ID=27749466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028159A Expired - Fee Related JP3762306B2 (en) 2002-02-05 2002-02-05 LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE

Country Status (1)

Country Link
JP (1) JP3762306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078419B2 (en) * 2006-11-06 2012-11-21 パナソニック株式会社 Light emitting module and light receiving module

Also Published As

Publication number Publication date
JP2003228102A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP3891535B2 (en) Irradiation angle variable illumination device and photographing device using the same
KR100549594B1 (en) Illuminating apparatus
KR100578627B1 (en) Illuminating apparatus
JP3441991B2 (en) Illumination device and photographing device using the same
JP2005258011A (en) Illuminator and photographing apparatus
US6981775B2 (en) Illumination apparatus and camera
JPH08234277A (en) Photographic illuminator
JP4612850B2 (en) Illumination device and photographing device
US7499099B2 (en) Illumination apparatus and image-taking apparatus
JP3774621B2 (en) Illumination device and photographing device
JP4208325B2 (en) Illumination device and photographing device using the same
JP3762306B2 (en) LIGHTING DEVICE AND PHOTOGRAPHING DEVICE USING LIGHTING DEVICE
JP4587429B2 (en) Illumination device and photographing device
JP3854885B2 (en) Illumination device and photographing device
JP5224880B2 (en) Illumination device and imaging device
US7581842B2 (en) Illumination apparatus and image-taking apparatus
JP3826078B2 (en) LIGHTING DEVICE AND PHOTOGRAPHING DEVICE HAVING THE SAME
JP4544513B2 (en) Illumination device and imaging device
JP3805260B2 (en) Illumination device and photographing device using the same
JP4587159B2 (en) Illumination device and photographing device
JP2002333656A (en) Illuminator and photographing device
JP4185856B2 (en) Illumination device and imaging device
JP2005284206A (en) Lighting system and photographing device
JP2007140218A (en) Illuminating device and imaging apparatus
JP2005173380A (en) Illumination optical system and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees