JP4477568B2 - Component concentration measuring apparatus and component concentration measuring apparatus control method - Google Patents

Component concentration measuring apparatus and component concentration measuring apparatus control method Download PDF

Info

Publication number
JP4477568B2
JP4477568B2 JP2005312538A JP2005312538A JP4477568B2 JP 4477568 B2 JP4477568 B2 JP 4477568B2 JP 2005312538 A JP2005312538 A JP 2005312538A JP 2005312538 A JP2005312538 A JP 2005312538A JP 4477568 B2 JP4477568 B2 JP 4477568B2
Authority
JP
Japan
Prior art keywords
sound wave
pulse wave
time
intensity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005312538A
Other languages
Japanese (ja)
Other versions
JP2007117342A (en
Inventor
卓郎 田島
勇一 岡部
孝規 清倉
和則 長沼
純一 嶋田
真司 美野
博 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2005312538A priority Critical patent/JP4477568B2/en
Publication of JP2007117342A publication Critical patent/JP2007117342A/en
Application granted granted Critical
Publication of JP4477568B2 publication Critical patent/JP4477568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人間又は動物の被検体の非侵襲な成分濃度測定装置及び成分濃度測定装置制御方法に関する。   The present invention relates to a non-invasive component concentration measurement apparatus and component concentration measurement apparatus control method for a human or animal subject.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。現在までに開発された非侵襲な成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音波を観測する、光音響法が注目されている。   With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level and other tests, blood collection is necessary, which places a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive component concentration measuring device that has been developed so far, the skin is irradiated with electromagnetic waves and absorbed by blood molecules to be measured, for example, glucose molecules in the case of blood glucose levels, and heated locally. A photoacoustic method that observes a sound wave generated from a living body due to thermal expansion has attracted attention.

しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至っていない。   However, the interaction between glucose and electromagnetic waves is small, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to a living body, so that a sufficient effect has not been achieved in measuring blood glucose levels in the living body.

図6および図7は、従来例として、光音響法による従来の血液成分濃度測定装置の構成例を示す図である。図6は光パルスを電磁波として用いた第一の従来例である(例えば、非特許文献1参照。)。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図6において、駆動回路604はパルス状の励起電流をパルス光源616に供給し、パルス光源616はサブマイクロ秒の持続時間を有する光パルスを発生し、発生した光パルスは被検体610に照射される。光パルスは被検体610の内部にパルス状の光音響信号と呼ばれる音波を発生させ、発生した音波は超音波検出器613により検出され、さらに音圧に比例した電気信号に変換される。   6 and 7 are diagrams showing a configuration example of a conventional blood component concentration measuring apparatus using a photoacoustic method as a conventional example. FIG. 6 shows a first conventional example in which a light pulse is used as an electromagnetic wave (for example, see Non-Patent Document 1). In this example, blood glucose, that is, glucose is the measurement target as the blood component. In FIG. 6, a drive circuit 604 supplies a pulsed excitation current to a pulse light source 616, the pulse light source 616 generates a light pulse having a sub-microsecond duration, and the generated light pulse is applied to a subject 610. The The light pulse generates a sound wave called a pulsed photoacoustic signal inside the subject 610, and the generated sound wave is detected by the ultrasonic detector 613 and further converted into an electric signal proportional to the sound pressure.

変換された電気信号の波形は波形観測器620により観測される。この波形観測器620は上記励起電流に同期した信号によりトリガされ、変換された電気信号は波形観測器620の管面上の一定位置に表示され、変換された電気信号は積算・平均して測定することができる。このようにして得られた電気信号の振幅を解析して、被検体610の内部の血糖値、すなわちグルコースの量が測定される。図6に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、1024個の光パルスを平均して、前記電気信号を測定しているが十分な精度が得られていない。   The waveform of the converted electric signal is observed by the waveform observer 620. This waveform observer 620 is triggered by a signal synchronized with the excitation current, the converted electrical signal is displayed at a fixed position on the tube surface of the waveform observer 620, and the converted electrical signal is measured by integrating and averaging. can do. The amplitude of the electrical signal thus obtained is analyzed, and the blood glucose level inside the subject 610, that is, the amount of glucose is measured. In the case of the example shown in FIG. 6, an optical pulse having a sub-microsecond pulse width is repeatedly generated at a maximum of 1 kHz, and 1024 optical pulses are averaged to measure the electrical signal. However, sufficient accuracy is obtained. It is not done.

そこで、より精度を高める目的で、連続的に強度変調した光源を用いる第二の従来例が開示されている。図7に第二の従来例の装置の構成を示す(例えば、特許文献1参照。)。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。説明の煩雑さを避けるために、図7により光源の数が2の場合の動作を説明する。図7において、異なる波長の光源、即ち、第1の光源601及び第2の光源605は、それぞれ駆動回路604及び駆動回路608により駆動され、連続光を出力する。   Therefore, a second conventional example using a light source that is continuously intensity-modulated has been disclosed for the purpose of improving accuracy. FIG. 7 shows a configuration of a device of the second conventional example (see, for example, Patent Document 1). In this example as well, blood sugar is the main measurement target, and high accuracy is attempted using a plurality of light sources having different wavelengths. In order to avoid complicated explanation, the operation when the number of light sources is 2 will be described with reference to FIG. In FIG. 7, light sources having different wavelengths, that is, a first light source 601 and a second light source 605 are driven by a drive circuit 604 and a drive circuit 608, respectively, and output continuous light.

第1の光源601及び第2の光源605が出力する光は、モータ618により駆動され一定回転数で回転するチョッパ板617により断続される。ここでチョッパ板617は不透明な材質により形成され、モータ618の軸を中心とする第1の光源601及び第2の光源605の光が通過する円周上に、互いに素な個数の開口部が形成されている。   Light output from the first light source 601 and the second light source 605 is intermittently driven by a chopper plate 617 that is driven by a motor 618 and rotates at a constant rotational speed. Here, the chopper plate 617 is formed of an opaque material, and a relatively small number of openings are formed on the circumference around which the light of the first light source 601 and the second light source 605 passes with the axis of the motor 618 as the center. Is formed.

上記の構成により、第1の光源601及び第2の光源605の各々が出力する光は互いに素な変調周波数f及び変調周波数fで強度変調された後、合波部609により合波され、1の光束として被検体610に照射される。 With the above-described configuration, the light output from each of the first light source 601 and the second light source 605 is intensity-modulated with the disjoint modulation frequency f 1 and modulation frequency f 2 and then combined by the combining unit 609. The object 610 is irradiated as one light beam.

被検体610の内部には第1の光源601の光により周波数fの光音響信号が発生し、第2の光源605の光により周波数fの光音響信号が発生し、これらの光音響信号は、音響センサ619により検出され、音圧に比例した電気信号に変換され、その周波数スペクトルが、周波数解析器621により観測される。本例においては、複数の光源の波長は全てグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。 The inside of the subject 610 photoacoustic signal having the frequency f 1 is generated by the light of the first light source 601, the photoacoustic signal having the frequency f 2 is generated by the light of the second light source 605, these photoacoustic signal Is detected by the acoustic sensor 619 and converted into an electric signal proportional to the sound pressure, and its frequency spectrum is observed by the frequency analyzer 621. In this example, the wavelengths of the plurality of light sources are all set to the absorption wavelength of glucose, and the intensity of the photoacoustic signal corresponding to each wavelength is measured as an electrical signal corresponding to the amount of glucose contained in the blood. The

ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの含有量を測定した値との関係を記憶しておいて、前記光音響信号の測定値からグルコースの量を測定している。
特開平10−189号公報 オウル大学(University of Oulu、Finland)学位論文「Pulse photoacoustic techniqus and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
Here, the relationship between the intensity of the measured value of the photoacoustic signal and the value obtained by measuring the glucose content with blood collected separately is stored in advance, and the amount of glucose is measured from the measured value of the photoacoustic signal. ing.
JP-A-10-189 University of Oulu (University of Oulu, Finland) thesis “Pulse photoacoustic technique and glucodesis in human blood and tissue” (IBS 951-42-6690-0, ul./200.

上述の従来例においては以下のような課題がある。即ち、人間や動物などの被検体の脈動は、血液量(体積)の変動である。そのため、被検体の脈動は、被検体の血液成分による光の吸収量を変化させ、結果として光音響信号の発生量を変化させる。   The conventional example described above has the following problems. That is, the pulsation of a subject such as a human being or an animal is a change in blood volume (volume). Therefore, the pulsation of the subject changes the amount of light absorbed by the blood component of the subject, resulting in a change in the amount of photoacoustic signal generated.

従って、従来の被検体又は被測定物の成分濃度の測定方法においては、測定時の被検体の脈動による測定誤差が非常に大きくなるという課題があった。   Therefore, the conventional method for measuring the component concentration of the subject or the object to be measured has a problem that the measurement error due to the pulsation of the subject at the time of measurement becomes very large.

上記の課題を解決するために、本発明は、所定の温度における測定対象の成分の吸光度特性から設定した異なる2波長の光を出射し、被検体又は被測定物の温度を所定の温度に合わせて、被検体又は被測定物から発生する音波を検出することにより、被検体の脈動による誤差を除いて、成分濃度を正確に測定する成分濃度測定装置及び成分濃度測定装置制御方法である。ここで、被検体とは測定対象の人間や動物であり、以下の説明においても同様である。   In order to solve the above problems, the present invention emits light of two different wavelengths set from the absorbance characteristics of the component to be measured at a predetermined temperature, and adjusts the temperature of the subject or the object to be measured to the predetermined temperature. Thus, there are provided a component concentration measuring apparatus and a component concentration measuring apparatus control method for accurately measuring a component concentration by detecting a sound wave generated from the subject or an object to be measured and removing an error due to pulsation of the subject. Here, the subject is a human or animal to be measured, and the same applies to the following description.

初めに、本発明の成分濃度測定装置及び成分濃度測定装置制御方法の基本原理を、一例として、被検体の成分濃度を測定する場合について説明する。   First, the case where the component concentration of a subject is measured will be described as an example of the basic principle of the component concentration measuring device and the component concentration measuring device control method of the present invention.

本発明では、異なる2波長の光の中の、第1の光の波長を、例えば被検体の測定対象の成分による吸光度が被検体の大部分を占める水による吸光度と顕著に異なる波長に設定し、第2の光の波長を水が第1の光の波長におけるのと合い等しい吸光度を示す波長に設定する。上記の波長の設定方法を、血液中のグルコースの濃度を測定する場合を例として図1により説明する。   In the present invention, the wavelength of the first light among the two different wavelengths of light is set to a wavelength that is significantly different from the absorbance due to water, for example, where the absorbance due to the measurement target component of the subject occupies most of the subject. The wavelength of the second light is set to a wavelength indicating the same absorbance as that of water at the wavelength of the first light. The above-described wavelength setting method will be described with reference to FIG. 1, taking as an example the case of measuring the concentration of glucose in blood.

図1は常温における水とグルコース水溶液の吸光度特性を示す。図1において、縦軸は吸光度を示し、横軸は光の波長を示している。また、図1において、実線は水の吸光度特性を示し、破線はグルコース水溶液の吸光度特性を示している。図1に示す波長λはグルコースによる吸光度が水による吸光度と顕著に異なる波長であり、波長λは、水がλにおける吸光度と合い等しい吸光度を示す波長である。従って、例えば、第1の光の波長をλと設定し、第2の光の波長をλと設定することができる。 FIG. 1 shows the absorbance characteristics of water and an aqueous glucose solution at room temperature. In FIG. 1, the vertical axis indicates the absorbance, and the horizontal axis indicates the wavelength of light. In FIG. 1, the solid line indicates the absorbance characteristic of water, and the broken line indicates the absorbance characteristic of the glucose aqueous solution. The wavelength λ 1 shown in FIG. 1 is a wavelength at which the absorbance due to glucose is significantly different from the absorbance due to water, and the wavelength λ 2 is a wavelength at which water has the same absorbance as that at λ 1 . Thus, for example, the wavelength of the first light can be set to λ 1 and the wavelength of the second light can be set to λ 2 .

以下の説明においては、一例として、第1の光の波長を測定対象の成分による吸光度が水による吸光度と顕著に異なる波長λに設定し、第2の光の波長を水が第1の光の波長λにおけるのと合い等しい吸光度を示す波長λに設定した場合を説明する。 In the following description, as an example, the wavelength of the first light is set to a wavelength λ 1 where the absorbance of the component to be measured is significantly different from the absorbance of water, and the wavelength of the second light is the first light. The case where the wavelength λ 2 is set to be equal to that at the wavelength λ 1 will be described.

上記のように設定した異なる2波長の光の各々を、同一周波数で逆位相の信号により強度変調してパルス状の光として出射し、出射された異なる2波長の光が被検体の成分に吸収されて発生する音波を検出して、検出した音波の大きさから、被検体の測定対象の成分の濃度を測定する。上記のように強度変調された異なる2波長の光を出射した場合、第1の光を測定対象の成分と水の両方が吸収して被検体から発生する第1の音波と、第2の光を被検体の大部分を占める水が吸収して被検体から発生する第2の音波とは、周波数が等しくかつ逆位相である。従って、第1の音波と第2の音波は被検体内で重畳し、音波の差として、第1の音波の中の測定対象の成分が吸収して被検体から発生する音波の大きさのみが残留する。そこで、残留した音波により、第1の光が測定対象の成分が吸収して被検体から発生する音波のみを測定することができる。上記の測定においては、測定対象の成分と水の両方が吸収して発生する音波と水が吸収して発生する音波を個別に測定して差を演算するよりも、測定対象の成分が吸収して被検体から発生する音波を正確に測定することができる。   Each of the two different wavelengths of light set as described above is intensity-modulated with a signal of the opposite phase at the same frequency and emitted as pulsed light, and the emitted two different wavelengths of light are absorbed by the component of the subject. Then, the generated sound wave is detected, and the concentration of the component to be measured of the subject is measured from the magnitude of the detected sound wave. When light of two different wavelengths whose intensity is modulated as described above is emitted, the first light wave generated from the subject by the absorption of the first light by both the component to be measured and water, and the second light The second sound wave generated from the subject by absorbing water occupying most of the subject has the same frequency and an opposite phase. Therefore, the first sound wave and the second sound wave are superimposed in the subject, and only the magnitude of the sound wave generated from the subject due to absorption of the component to be measured in the first sound wave is obtained as the difference between the sound waves. Remains. Therefore, only the sound wave generated from the subject by the first light being absorbed by the component to be measured can be measured by the remaining sound wave. In the above measurement, the measurement target component absorbs rather than the difference between the sound wave generated by the absorption of both the measurement target component and water and the sound wave generated by the water absorption. Thus, the sound wave generated from the subject can be accurately measured.

さらに、被検体と音波検出素子との接触状態などの音波測定系の誤差の要因を除いて、高精度に測定する方法を以下に説明する。波長λの光及び波長λの光の各々に対する、被検体の大部分を占める水の吸収係数をα (w)及びα (w)として、被検体の測定対象の成分のモル吸収係数をα (g)及びα (g)とすれば、波長λの光及び波長λの光の各々により被検体から発生する音波の大きさs及びsを含む連立方程式は数式(1)で表される。 Furthermore, a method for measuring with high accuracy, excluding the cause of errors in the sound wave measurement system such as the contact state between the subject and the sound wave detection element, will be described below. For each of the light of wavelength λ 1 and the light of wavelength λ 2 , the absorption coefficient of water occupying most of the subject is α 1 (w) and α 2 (w) , and the molar absorption of the component to be measured of the subject If the coefficients are α 1 (g) and α 2 (g) , the simultaneous equations including the magnitudes s 1 and s 2 of sound waves generated from the subject by the light of wavelength λ 1 and the light of wavelength λ 2 are It is expressed by Equation (1).

Figure 0004477568
Figure 0004477568

上記の、数式(1)を解いて、被検体の測定対象の成分濃度Mを求めることができる。ここで、Cは制御あるいは予想困難な係数、すなわち、被検体と音波検出素子の結合状態、音波検出素子の感度、被検体において光により音波が発生される位置と音波検出素子との間の距離、被検体の比熱及び熱膨張係数、被検体の内部の音波の速度、波長λの光及び波長λの光の変調周波数、水の吸収係数及び被検体の成分のモル吸収係数、などに依存する未知定数である。さらに数式(1)でCを消去すると次の数式(2)が得られる。 By solving the above equation (1), the component concentration M of the subject to be measured can be obtained. Here, C is a coefficient that is difficult to control or predict, that is, the coupling state between the subject and the sound wave detection element, the sensitivity of the sound wave detection element, and the distance between the position where the sound wave is generated by light in the subject and the sound wave detection element. , specific heat and thermal expansion coefficient of the object, the speed of the internal wave of the subject, the wavelength lambda 1 of light and the wavelength lambda 2 of the light modulation frequencies, the molar absorption coefficient of the component of the absorption coefficient and the subject of water, etc. It depends on the unknown constant. Further, when C is eliminated by Expression (1), the following Expression (2) is obtained.

Figure 0004477568
Figure 0004477568

ここで、波長λの光及び波長λの光の各々に対する、被検体の大部分を占める水の吸収係数α (w)及びα (w)が等しくなるように選択されているので、α (w)=α (w)が成立し、さらに、s≒sであることを用いれば、成分濃度Mは数式(3)で表される。 Here, the absorption coefficients α 1 (w) and α 2 (w) of water occupying most of the subject for each of the light of wavelength λ 1 and the light of wavelength λ 2 are selected to be equal. , Α 1 (w) = α 2 (w) is satisfied, and the fact that s 1 ≈s 2 is used, the component concentration M is expressed by Equation (3).

Figure 0004477568
Figure 0004477568

上記の数式(3)に、既知の係数として、α (w)、α (g)及びα (g)を代入し、さらに、波長λの光及び波長λの光の各々により被検体から発生する音波の大きさs及びsを測定して代入することにより、被検体の成分濃度Mを算出することができる。上記の数式(3)においては、2つの音波の大きさs及びsを個別に測定するよりも、それらの差s−sを測定して、別に測定した音波の大きさsで除する方が、被検体の成分濃度を高精度に測定することができる。 Substituting α 1 (w) , α 1 (g), and α 2 (g) as known coefficients into the above equation (3), and further by the light of wavelength λ 1 and the light of wavelength λ 2 , respectively. The component concentration M of the subject can be calculated by measuring and substituting the magnitudes s 1 and s 2 of the sound waves generated from the subject. In the above mathematical formula (3), rather than measuring the two sound wave sizes s 1 and s 2 individually, the difference s 1 -s 2 is measured and the sound wave size s 2 measured separately is measured. The component concentration of the subject can be measured with high accuracy.

そこで、本発明の成分濃度測定装置及び成分濃度測定装置制御方法においては、まず、波長λの光及び波長λの光を、互いに逆位相の変調信号により強度変調して、1の光束に合波して出射することにより、被検体から発生する音波の大きさs及び音波の大きさsが相互に重畳して生じる音波の差(s−s)を測定する。次に、波長λの光を出射して、被検体から発生する音波の大きさsを測定する。上記のように測定した(s−s)とsとから、数式(3)により(s−s)÷sを演算して被検体の測定対象の成分濃度を高精度に測定することができる。 Therefore, in the component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention, first, the light of wavelength λ 1 and the light of wavelength λ 2 are intensity-modulated by the modulation signals having opposite phases to each other to form one light beam. By combining and emitting, a difference (s 1 −s 2 ) between sound waves generated by superimposing the sound wave magnitude s 1 and the sound wave magnitude s 2 generated from the subject is measured. Next, light of wavelength λ 2 is emitted, and the magnitude s 2 of the sound wave generated from the subject is measured. From (s 1 -s 2 ) and s 2 measured as described above, (s 1 -s 2 ) ÷ s 2 is calculated by Equation (3) to accurately determine the concentration of the measurement target component of the subject. Can be measured.

本発明の成分濃度測定装置及び成分濃度測定装置制御方法における被検体の脈動による影響は以下の通りである。   The influence of the pulsation of the subject in the component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention is as follows.

本発明では、数式(3)における分子の(s−s)の値は、異なる2波長の光を電気的に強度変調して同時に照射し被検体で発生する音波の大きさとして測定することができる。一方、分母のsの値は、異なる2波長の光のうち所定の1波長の光を別途照射して被検体で発生する音波の大きさとして測定することができる。 In the present invention, the value of (s 1 -s 2 ) of the molecule in the mathematical formula (3) is measured as the magnitude of the sound wave generated in the subject by simultaneously irradiating light of two different wavelengths and simultaneously irradiating light. be able to. On the other hand, the value of s 2 in the denominator can be measured as the magnitude of a sound wave generated in the subject by separately irradiating light of a predetermined wavelength among light of two different wavelengths.

しかし、分子の(s−s)の値と分母のsの値とは、上記のように同時に測定することができず異なる時間で測定することとなるため、音波の大きさの測定の際、位相検波増幅部の積分時間を100msec〜1sec程度に設定している場合、脈動による血液量の変化による血管の構造変形の影響を受けるため、著しく異なった値となる。 However, since the value of s 1 -s 2 of the numerator and the value of s 2 of the denominator cannot be measured at the same time as described above, they are measured at different times. In this case, when the integration time of the phase detection amplification unit is set to about 100 msec to 1 sec, the value is remarkably different because it is affected by the blood vessel structural deformation due to the change in blood volume due to pulsation.

図2に、音波の大きさの脈動による変動のグラフを示す。図2では、脈拍が約60拍/秒の場合を示している。   FIG. 2 shows a graph of fluctuation due to pulsation of the sound wave size. FIG. 2 shows a case where the pulse is about 60 beats / second.

図2において、被検体から発生する音波の大きさ30、31は、被検体の組織から発生する音波の大きさ42、静脈血から発生する音波の大きさ41及び動脈血から発生する音波の大きさ40の加算として測定される。そして、図2に示すように、第1の光により発生する音波の大きさ30及び第2の光により発生する音波の大きさ31は、共に脈波20に同期して増減する。動脈の血管が脈動に同期して膨張・収縮を繰り返すためである。また、第1の光及び第2の光の混合光により発生する音波の大きさ32は、第1の光により発生する音波の大きさ30と第2の光により発生する音波の大きさ31との差分で得られ、第1の光により発生する音波の大きさ30及び第2の光により発生する音波の大きさ31と同様に、脈波20に同期して増減する。ここで、上記のように、位相検波増幅部での積分時間を100msec〜1sec程度とする場合、人体の脈拍が約60拍/秒であるとすると、積分する時点の違いにより積分値が大きく異なる。その結果、成分濃度の算出値に誤差が生じる。   In FIG. 2, the magnitudes 30 and 31 of the sound waves generated from the subject are the magnitude 42 of the sound waves generated from the tissue of the subject, the magnitude 41 of the sound waves generated from the venous blood, and the magnitude of the sound waves generated from the arterial blood. Measured as 40 additions. As shown in FIG. 2, the magnitude 30 of the sound wave generated by the first light and the magnitude 31 of the sound wave generated by the second light both increase and decrease in synchronization with the pulse wave 20. This is because the arterial blood vessel repeatedly expands and contracts in synchronization with the pulsation. The magnitude 32 of the sound wave generated by the mixed light of the first light and the second light is the magnitude 30 of the sound wave generated by the first light and the magnitude 31 of the sound wave generated by the second light. In the same manner as the magnitude 30 of the sound wave generated by the first light and the magnitude 31 of the sound wave generated by the second light, it is increased or decreased in synchronization with the pulse wave 20. Here, as described above, when the integration time in the phase detection amplification unit is set to about 100 msec to 1 sec, if the pulse of the human body is about 60 beats / second, the integration value varies greatly depending on the time of integration. . As a result, an error occurs in the calculated component concentration.

この脈拍に起因する算定濃度の増減による誤差を補正するために、最も単純には、音波の大きさの長時間の平均を取ることによって、脈波の影響を低減させることが考えられる。一方、音波を長時間に亘って平均化することは、測定時間が長くなり、拘束することによる精神的な圧迫がある。そのため、実用上は計測時間を短くすることが要請される。   In order to correct an error due to increase / decrease of the calculated concentration caused by the pulse, it is considered that the influence of the pulse wave is reduced by taking a long-time average of the magnitude of the sound wave. On the other hand, averaging the sound waves over a long period of time results in longer measurement time and mental pressure due to restraint. Therefore, in practice, it is required to shorten the measurement time.

そこで、本発明では、上記2回の音波の大きさ31、32を測定するため、音波を検出すると共に脈波20を検出することとし、さらに2回の検出の時点を2回とも脈波の所定の値となる時点とすることとした。   Therefore, in the present invention, in order to measure the magnitudes 31 and 32 of the two sound waves, the sound wave is detected and the pulse wave 20 is detected. It was decided that the time would be a predetermined value.

具体的には、本発明に係る成分濃度測定装置制御方法は、被検体の脈波の所定の値となる時点からの一定時間内に、前記被検体の脈波を検出する脈波検出手段が前記一定時間内の脈波を検出し、異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射する混合光出射手段が前記一定時間内に2波長の光を出射し、及び前記被検体で発生する音波を検出する音波検出手段が前記一定時間内に音波を検出する第1脈波音波検出手順と、前記第1脈波音波検出手順の前記時点からの前記一定時間内を除き前記被検体の脈波の所定の値となる他の時点からの前記一定時間内に、前記脈波検出手段が前記一定時間内の脈波を検出し、前記異なる2波長の光のうち所定の1波長を電気的に強度変調して出射する第1単一光出射手段が前記一定時間内に1波長の光を出射し、及び前記音波検出手段が前記一定時間内に音波を検出する第2脈波音波検出手順と、を有することを特徴とする。   Specifically, the component concentration measurement apparatus control method according to the present invention includes a pulse wave detection unit that detects a pulse wave of the subject within a predetermined time from a time when the pulse wave of the subject becomes a predetermined value. The mixed light emitting means for detecting the pulse wave within the predetermined time and electrically emitting intensity of the two different wavelengths with the signals having the same frequency and the opposite phase, and emitting the two wavelengths within the predetermined time. And a sound wave detecting means for detecting a sound wave generated in the subject detects a sound wave within the certain time, and the constant pulse wave sound wave detecting procedure from the time point of the first pulse wave sound wave detecting procedure. The pulse wave detecting means detects the pulse wave within the predetermined time within the predetermined time from another time point where the pulse wave of the subject becomes a predetermined value except for the time, and the light of the two different wavelengths First light emitting means for electrically modulating the intensity of one predetermined wavelength and emitting the same It said predetermined time light of one wavelength emitted into, and the acoustic wave detection means and having a second pulse wave detecting step of detecting an acoustic wave within the predetermined time.

本発明では、混合光出射手段は、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体の測定対象の成分及び水の吸光度特性から選定された波長λ及び波長λに設定する。そして、第1脈波音波検出手順において、混合光出射手段は第1の光及び第2の光の各々を同一周波数で逆位相の信号により電気的に強度変調して出射する。このように出射した第1の光及び第2の光が被検体に照射されると被検体から音波が発生し、音波検出手段は、被検体から発生する音波を検出する。ここで、音波検出手段により測定される音波は前述の第1の光により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light emitting means converts the light of two different wavelengths, that is, the wavelength of the first light and the wavelength of the second light into the absorbance characteristics of the component to be measured and the water according to the measurement principle described above. The wavelength λ 1 and the wavelength λ 2 selected from the above are set. In the first pulse wave sound wave detection procedure, the mixed light emitting means emits the first light and the second light by electrically modulating the intensity of each of the first light and the second light with signals having the same frequency and opposite phases. When the subject is irradiated with the first light and the second light emitted in this way, a sound wave is generated from the subject, and the sound wave detecting means detects the sound wave generated from the subject. Here, the sound wave measured by the sound wave detecting means is a difference sound wave between the first sound wave generated by the first light and the second sound wave generated by the second light.

さらに、第2脈波音波検出手順において、第1単一光出射手段は、第2の光と同様の波長の光を、第2の光と同様に強度変調して、第2の光と同様の強度で出射する。このように出射した第2の光が被検体に照射されると被検体から音波が発生し、音波検出手段は、被検体から発生する音波を検出する。   Further, in the second pulse wave sound wave detection procedure, the first single light emitting means modulates the intensity of the light having the same wavelength as that of the second light in the same manner as the second light, and is similar to the second light. It emits with the intensity of. When the subject is irradiated with the second light emitted in this manner, a sound wave is generated from the subject, and the sound wave detecting means detects the sound wave generated from the subject.

ここで、第1脈波音波検出手順において混合光出射手段が第1の光及び第2の光を出射する際、第2脈波音波検出手順において第1単一光出射手段が第2の光を出射する際に、脈波検出手段は、被検体の脈波を検出する。また、混合光出射手段が第1の光及び第2の光を出射する時間、第1単一光出射手段が第2の光を出射する時間及び脈波検出手段が脈波を検出する時間は、共に被検体の脈波の所定の値となる時点からの一定時間内であり、被検体の脈波の所定の値をトリガにした一定時間とする。また、第1脈波音波検出手順及び第2脈波音波検出手順は、いずれが先に行われてもよい。   Here, when the mixed light emitting means emits the first light and the second light in the first pulse wave sound wave detecting procedure, the first single light emitting means in the second pulse wave sound wave detecting procedure is the second light. The pulse wave detecting means detects the pulse wave of the subject. The time for the mixed light emitting means to emit the first light and the second light, the time for the first single light emitting means to emit the second light, and the time for the pulse wave detecting means to detect the pulse wave are as follows: Both are within a certain time from the time when the pulse wave of the subject becomes a predetermined value, and are set to a certain time triggered by the predetermined value of the pulse wave of the subject. In addition, either the first pulse wave sound wave detection procedure or the second pulse wave sound wave detection procedure may be performed first.

このように、本発明では、第1、第2脈波音波検出手順により脈波の所定の値をトリガにして脈波を検出し、並びに第1の光又は/及び第2の光を出射し音波を検出することで、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出することが可能である。そのため、検出した脈波及び音波から後述する音波強度の規格化が可能となり、脈動による血流量の変化が音波強度に与える影響を少なくして成分濃度を正確に測定することができる。   Thus, in the present invention, the first and second pulse wave sound wave detection procedures are used to detect a pulse wave by using a predetermined value of the pulse wave as a trigger, and the first light and / or the second light is emitted. By detecting the sound wave, it is possible to detect the pulse wave and the sound wave when the blood volume due to the pulsation is relatively the same. Therefore, normalization of the sound wave intensity described later can be performed from the detected pulse wave and sound wave, and the influence of the change in blood flow due to pulsation on the sound wave intensity can be reduced and the component concentration can be accurately measured.

本発明の成分濃度測定装置制御方法において、前記脈波検出手段の検出する脈波を積算して脈波積算値として取得する脈波積算手段が前記第1脈波音波検出手順において前記一定時間内に検出される脈波を逐次積算して脈波積算値として取得し、及び前記音波検出手段の検出する音波の大きさを積算して音波強度として取得する音波強度積算手段が前記第1脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して混合音波強度として取得する第1脈波音波強度積算手順と、前記脈波積算手段が前記第2脈波音波検出手順において前記一定時間内に検出される脈波を逐次積算して他の脈波積算値として取得し、及び前記音波強度積算手段が前記第2脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して単一音波強度として取得する第2脈波音波強度積算手順と、をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, the pulse wave integrating means for integrating the pulse waves detected by the pulse wave detecting means to obtain the pulse wave integrated value within the predetermined time in the first pulse wave sound wave detecting procedure. The first pulse wave is obtained by sequentially integrating the pulse waves detected to obtain a pulse wave integrated value and integrating the magnitude of the sound wave detected by the sound wave detecting means to obtain the sound wave intensity. A first pulse wave sound wave intensity integrating procedure for sequentially integrating the sound waves detected within the predetermined time in the sound wave detecting procedure to obtain mixed sound wave intensity; and the pulse wave integrating means in the second pulse wave sound wave detecting procedure The pulse waves detected within a certain time are sequentially accumulated to obtain other pulse wave accumulated values, and the sound wave intensity integrating means detects the sound waves detected within the certain time in the second pulse wave sound wave detection procedure. It accumulates sequentially It is desirable to further include a second pulse wave intensity integrated procedure for acquiring as a wave intensity, a.

上記の第1、第2脈波音波強度積算手順は、後述する音波強度の規格化に至るまでの具体的な1手順である。ここで、脈波及び音波を積算するためには、例えば、脈波信号と音波信号を、積算回路によって積算し、除算回路で信号の平均化処理を行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。   The above-described first and second pulse wave sound wave intensity integration procedures are one specific procedure up to the standardization of sound wave intensity which will be described later. Here, in order to integrate the pulse wave and the sound wave, for example, the pulse wave signal and the sound wave signal are integrated by the integrating circuit, and the signal is averaged by the dividing circuit. The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also

このように、本発明では、第1、第2脈波音波強度積算手順により脈波積算値及び音波強度を得ることで、音波強度の規格化に必要な具体的な情報を得て音波強度の規格化が可能となる。   As described above, in the present invention, by obtaining the pulse wave integrated value and the sound wave intensity by the first and second pulse wave sound wave intensity integrating procedures, specific information necessary for normalization of the sound wave intensity is obtained and the sound wave intensity is obtained. Standardization is possible.

本発明の成分濃度測定装置制御方法において、測定対象とする成分濃度を算出する成分濃度算出手段が、前記第1脈波音波強度積算手順及び前記第2脈波音波強度積算手順において取得される脈波積算値、他の脈波積算値、混合音波強度及び単一音波強度から成分濃度を算出する成分濃度算出手順をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, the component concentration calculating means for calculating the component concentration to be measured is a pulse acquired in the first pulse wave sound wave intensity integrating procedure and the second pulse wave sound wave intensity integrating procedure. It is desirable to further have a component concentration calculation procedure for calculating the component concentration from the wave integrated value, other pulse wave integrated value, mixed sound wave intensity, and single sound wave intensity.

本発明では、成分濃度算出手順により、後述する規格化した音波強度により成分濃度を算出することができる。   In the present invention, the component concentration can be calculated from the normalized sound wave intensity described later by the component concentration calculation procedure.

本発明の成分濃度測定装置制御方法において、前記成分濃度算出手順において前記成分濃度算出手段は、前記混合音波強度を前記脈波積算値で除算した混合音波強度規格値、及び前記単一音波強度を前記他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することが望ましい。   In the component concentration measurement apparatus control method of the present invention, in the component concentration calculation procedure, the component concentration calculation means calculates the mixed sound wave intensity standard value obtained by dividing the mixed sound wave intensity by the pulse wave integrated value, and the single sound wave intensity. It is desirable to calculate the component concentration from the ratio of the single sound wave intensity standard value divided by the other pulse wave integrated value.

本発明では、混合音波強度を脈波積算値で除算することにより混合音波強度の規格化を行う。また、単一音波強度を脈波積算値で除算することにより単一音波強度の規格化を行う。ここで、混合音波強度を除算する脈波積算値は、混合光により発生する音波と同時刻に検出された音波及び脈波の積算値であり、単一音波強度を除算する脈波積算値は、単一光により発生する音波と同時刻に検出された脈波の積算値である。本発明では、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出するため、音波強度を脈波積算値で除算することにより、規格値を得て脈動による音波強度への影響を少なくすることができる。従って、本発明では、音波強度を規格化して成分濃度を算出するため、精度良い算出結果を得ることができる。   In the present invention, the mixed sound wave intensity is normalized by dividing the mixed sound wave intensity by the pulse wave integrated value. Further, the single sound wave intensity is normalized by dividing the single sound wave intensity by the pulse wave integrated value. Here, the pulse wave integrated value that divides the mixed sound wave intensity is the integrated value of the sound wave and pulse wave detected at the same time as the sound wave generated by the mixed light, and the pulse wave integrated value that divides the single sound wave intensity is The integrated value of the pulse wave detected at the same time as the sound wave generated by the single light. In the present invention, in order to detect a pulse wave and a sound wave when the blood volume due to pulsation is relatively the same, by dividing the sound wave intensity by the pulse wave integrated value, a standard value is obtained and the sound wave intensity due to the pulsation is obtained. The influence of can be reduced. Therefore, in the present invention, since the component concentration is calculated by normalizing the sound wave intensity, a highly accurate calculation result can be obtained.

ここで、脈波のトリガとなる所定の値は、脈波のいずれの値の時点としてもよいが、脈波の極値(極大値又は極小値のいずれか一方)とすることが望ましい。1拍以内の積算時間で拍間をまたぐことなく積算できるので、数拍でも(2拍以上で)精度よく、成分濃度の算出が可能であり、測定間隔を短くすることが可能である。また、時間が短いため、脈拍間隔の変動も小さくでき、成分濃度の算出精度を向上させることができる。   Here, the predetermined value serving as the trigger for the pulse wave may be the time point of any value of the pulse wave, but is preferably the extreme value of the pulse wave (either the maximum value or the minimum value). Accumulation can be performed within an integration time within one beat without straddling the beat, so that the component concentration can be calculated accurately even with several beats (two or more beats), and the measurement interval can be shortened. Further, since the time is short, the fluctuation of the pulse interval can be reduced, and the calculation accuracy of the component concentration can be improved.

本発明の成分濃度測定装置制御方法において、前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、前記脈波検出手段は、前記被検体の脈波のうち連続した2拍分を前記第1脈波音波検出手順及び前記第2脈波音波検出手順において1拍ずつ検出し、前記混合光出射手段は、前記第1脈波音波検出手順において前記2拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、前記第1単一光出射手段は、前記第2脈波音波検出手順において前記2拍分に対応して所定の1波長の光を電気的に強度変調して出射し、前記音波検出手段は、前記第1脈波音波検出手順及び前記第2脈波音波検出手順において前記2拍分に対応してそれぞれの音波を検出することが望ましい。   In the component concentration measuring apparatus control method of the present invention, the predetermined time is set to be within one cycle of the pulse wave detected by the pulse wave detecting means, and the pulse wave detecting means detects two consecutive beats of the pulse wave of the subject. Minute is detected for each beat in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure, and the mixed light emitting means corresponds to the two beats in the first pulse wave sound wave detection procedure. Two different wavelengths of light are emitted after being intensity-modulated electrically with the same frequency and opposite phase signals, and the first single light emitting means corresponds to the two beats in the second pulse wave sound wave detection procedure. The light of a predetermined wavelength is electrically modulated and emitted, and the sound wave detecting means corresponds to the two beats in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure. It is desirable to detect each sound wave.

本発明では、脈波及び音波の検出時間差を短くすることができるため、成分濃度の測定誤差を小さくすることができる。また、検出時間差を短くすることで成分濃度の測定時間を短くすることができ、被検体への負担を軽減させることができる。   In the present invention, since the detection time difference between the pulse wave and the sound wave can be shortened, the measurement error of the component concentration can be reduced. Further, by shortening the detection time difference, the component concentration measurement time can be shortened, and the burden on the subject can be reduced.

本発明の成分濃度測定装置制御方法において、前記脈波検出手段により検出される連続した2拍分の脈波の極大値の比率を算出する第1極値比率算出手段が、前記第1脈波音波検出手順及び前記第2脈波音波検出手順において検出される前記連続した2拍分の脈波の極大値の比率を算出し、算出した比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第1脈波確認手順をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, a first extreme value ratio calculating means for calculating a ratio of maximum values of pulse waves for two consecutive beats detected by the pulse wave detecting means is the first pulse wave. The ratio of the maximum value of the pulse waves for two consecutive beats detected in the sound wave detection procedure and the second pulse wave sound wave detection procedure is calculated, and when the calculated ratio is greater than 1.1 or less than 0.9 Sometimes, the pulse wave detecting means and the mixed light emitting means return to the first pulse wave sound wave detecting procedure, and the pulse wave detecting means and the first single light emitting means are changed to the second pulse wave sound wave detecting procedure. It is desirable to further include a first pulse wave confirmation procedure that returns and repeatedly measures the component concentration.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本発明では、連続2拍間での極大値−極大値(または極小値−極小値)での信号差がある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]と[第2の光により発生する音波]の両信号を血液量変動差が小さい条件で検出することができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. In the present invention, the difference in blood volume is within a certain range, i.e., both of them are smaller than a certain reference value where the signal difference between the maximum value and the maximum value (or the minimum value-the minimum value) between two consecutive beats is smaller. It is possible to determine a state in which the blood volume can be regarded as substantially equal. Therefore, it is possible to detect both signals of [the differential sound wave generated by the first light and the second light] and [the sound wave generated by the second light] under the condition that the blood volume fluctuation difference is small.

本発明の成分濃度測定装置制御方法において、前記第1脈波音波検出手順の前記時点からの前記一定時間内及び前記第2脈波音波検出手順の前記他の時点からの前記一定時間内を除き前記被検体の脈波の所定の値となる他の時点からの前記一定時間内に、前記脈波検出手段が前記一定時間内の脈波を検出し、前記異なる2波長の光のうち他の所定の1波長の光を電気的に強度変調して出射する第2単一光出射手段が前記一定時間内に1波長の光を出射し、及び前記音波検出手段が前記一定時間内に音波を検出する第3脈波音波検出手順をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, except within the certain time from the time point of the first pulse wave sound wave detection procedure and within the certain time period from the other time point of the second pulse wave sound wave detection procedure. The pulse wave detection means detects the pulse wave within the predetermined time within the predetermined time from another time point at which the pulse wave of the subject has a predetermined value, and the other two of the different two wavelengths of light are detected. A second single light emitting means that emits light having a predetermined wavelength that is electrically intensity-modulated emits light of one wavelength within the predetermined time, and the sound wave detecting means emits a sound wave within the predetermined time. It is desirable to further have a third pulse wave sound wave detection procedure to detect.

本発明では、第3脈波音波検出手順により音波強度を取得することにより、第1、第2脈波音波強度積算手順において取得した音波強度の妥当性を検証するための情報を得ることが可能となる。   In the present invention, it is possible to obtain information for verifying the validity of the sound wave intensity acquired in the first and second pulse wave sound wave intensity integrating procedures by acquiring the sound wave intensity by the third pulse wave sound wave detecting procedure. It becomes.

本発明の成分濃度測定装置制御方法において、前記音波強度積算手段が、前記第3脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して他の単一音波強度として取得する音波強度積算手順をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, the sound wave intensity integrating means sequentially integrates the sound waves detected within the predetermined time in the third pulse wave sound wave detection procedure to obtain other single sound wave intensity. It is desirable to further have a sound intensity integration procedure.

上記の音波強度積算手順は、例えば、音波信号を、積算回路によって積算し、除算回路で信号の平均化処理を行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。   In the sound wave intensity integration procedure, for example, the sound wave signals are integrated by an integration circuit, and the signal is averaged by a division circuit. The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also

このように、本発明では、音波強度積算手順により音波強度を取得することで、音波強度の妥当性の検証に必要な具体的な情報を得て音波強度の妥当性の検証が可能となる。   As described above, in the present invention, by acquiring the sound wave intensity by the sound wave intensity integration procedure, it is possible to obtain the specific information necessary for verifying the validity of the sound wave intensity and verify the validity of the sound wave intensity.

本発明の成分濃度測定装置制御方法において、前記第2脈波音波強度積算手順において取得される単一音波強度と前記音波強度積算手順において取得される他の単一音波強度との差の絶対値を算出し且つ算出した前記絶対値と前記第1脈波音波強度積算手順において取得される混合音波強度との比率を算出する音波強度比率算出手段の算出する比率が1.05より大きいとき又は0.95より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する音波強度確認手順をさらに有することが望ましい。   In the component concentration measuring apparatus control method of the present invention, the absolute value of the difference between the single sound wave intensity acquired in the second pulse wave sound wave intensity integrating procedure and the other single sound wave intensity acquired in the sound wave intensity integrating procedure And when the ratio calculated by the sound wave intensity ratio calculating means for calculating the ratio between the calculated absolute value and the mixed sound wave intensity acquired in the first pulse wave sound wave intensity integrating procedure is greater than 1.05 or 0 ..95, the pulse wave detecting means and the mixed light emitting means return to the first pulse wave sound wave detecting procedure, and the pulse wave detecting means and the first single light emitting means are the second pulse wave. It is desirable to further have a sound wave intensity confirmation procedure for returning to the sound wave detection procedure and repeatedly measuring the component concentration.

本発明では、[第1の光により発生する音波と第2の光により発生する音波の差分音波信号]と[第1の光により発生する音波信号]−[第2の光により発生する音波信号]の差が大きい場合に、再度測定をやり直す。従って、本発明では、第1、第2脈波音波強度積算手順において取得した混合音波強度及び単一音波強度の妥当性を検証して、成分濃度の測定精度を向上させることができる。   In the present invention, [the differential sound wave signal between the sound wave generated by the first light and the sound wave generated by the second light] and [the sound wave signal generated by the first light]-[the sound wave signal generated by the second light] ] If the difference is large, repeat the measurement. Therefore, in the present invention, the validity of the mixed sound wave intensity and the single sound wave intensity acquired in the first and second pulse wave sound wave intensity integration procedures can be verified, and the measurement accuracy of the component concentration can be improved.

本発明の成分濃度測定装置制御方法において、前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、前記脈波検出手段は、前記被検体の脈波のうち連続した3拍分を前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において1拍ずつ検出し、前記混合光出射手段は、前記第1脈波音波検出手順において前記3拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、前記第1単一光出射手段は、前記第2脈波音波検出手順において前記3拍分に対応して所定の1波長の光を電気的に強度変調して出射し、前記第2単一光出射手段は、前記第3脈波音波検出手順において前記3拍分に対応して他の所定の1波長の光を電気的に強度変調して出射し、前記音波検出手段は、前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において前記3拍分に対応してそれぞれの音波を検出することが望ましい。   In the component concentration measurement apparatus control method of the present invention, the predetermined time is set to be within one cycle of the pulse wave detected by the pulse wave detection unit, and the pulse wave detection unit detects three consecutive beats of the pulse wave of the subject. Minute is detected for each beat in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure, and the mixed light emitting means is configured to detect the first pulse wave sound wave detection procedure. The two single-wavelength light corresponding to the three beats is electrically intensity-modulated by a signal having the same frequency and opposite phase, and the first single light emitting means detects the second pulse wave sound wave. Corresponding to the three beats in the procedure, the light of a predetermined wavelength is electrically intensity-modulated and emitted, and the second single light emitting means outputs the three beats in the third pulse wave sound wave detection procedure. In response to the above, light of another predetermined wavelength is electrically modulated and emitted, It is desirable that the sound wave detecting means detects each sound wave corresponding to the three beats in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure. .

本発明では、音波の検出時間差が小さくなるため、第1、第2脈波音波強度積算手順において取得した混合音波強度及び単一音波強度の妥当性の検証結果の精度を向上させることができる。   In the present invention, since the difference in sound wave detection time is reduced, the accuracy of the verification result of the validity of the mixed sound wave intensity and the single sound wave intensity acquired in the first and second pulse wave sound wave intensity integrating procedures can be improved.

本発明の成分濃度測定装置制御方法において、前記脈波検出手段により検出される連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出する第2極値比率算出手段が、前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において検出される前記連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出し、算出した前記比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第2脈波確認手順をさらに有することが望ましい。   In the component concentration measuring device control method of the present invention, a second extreme value ratio calculating means for calculating a ratio of the maximum value of any two beats of the pulse waves for three consecutive beats detected by the pulse wave detecting means. , The maximum value of any two beats among the three consecutive pulse waves detected in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure. When the ratio is calculated and the calculated ratio is greater than 1.1 or less than 0.9, the pulse wave detection means and the mixed light emission means return to the first pulse wave sound wave detection procedure and the pulse It is desirable that the wave detecting means and the first single light emitting means further include a second pulse wave confirmation procedure for returning to the second pulse wave sound wave detecting procedure and repeatedly measuring the component concentration.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本発明では、連続2拍間での極大値−極大値(または極小値−極小値)での信号差がある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]、[第2の光により発生する音波]又は[第1の光により発生する音波]のいずれか2つの信号を血液量変動差が小さい条件で検出することができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. In the present invention, the difference in blood volume is within a certain range, i.e., both of them are smaller than a certain reference value where the signal difference between the maximum value and the maximum value (or the minimum value-the minimum value) between two consecutive beats is smaller. It is possible to determine a state in which the blood volume can be regarded as substantially equal. Therefore, any two signals of [differential sound wave generated by the first light and second light], [sound wave generated by the second light] or [sound wave generated by the first light] It can be detected under conditions where the variation difference is small.

本発明の成分濃度測定装置制御方法において、前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において前記脈波検出手段は、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光により前記被検体から発生する音波から脈波を検出し、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光の前記被検体での反射光から脈波を検出し、又は心電計若しくはプレスチモグラフにより脈波を検出することが望ましい。   In the component concentration measurement apparatus control method of the present invention, in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure, the pulse wave detection means is the mixed light emitting means. A pulse wave is detected from a sound wave generated from the subject by light emitted from the first single light emitting means or the second single light emitting means, and the mixed light emitting means and the first single light emitting are detected. It is desirable to detect a pulse wave from the reflected light from the subject of the light emitted from the means or the second single light emitting means, or to detect the pulse wave by an electrocardiograph or a plethysmograph.

本発明では、被検体の脈波を心電計又はプレスチモグラフにより検出することができる。また、被検体での反射光により脈波を検出することにより、電気的ノイズの影響を少なくして、脈波の検出精度を向上させることができる。また、波長800nm帯のヘモグロビン吸収帯で、血液の吸収のみならず、血液の散乱の影響が生じる場合、血液量の変化を混合光出射手段、第1単一光出射手段又は第2単一光出射手段の出射する光により被検体から発生する音波により脈波を検出すれば、血液の吸収のみを検出することができるため、精度がよい。   In the present invention, the pulse wave of the subject can be detected by an electrocardiograph or a plethysmograph. Further, by detecting the pulse wave by the reflected light from the subject, the influence of electrical noise can be reduced and the detection accuracy of the pulse wave can be improved. Further, in the hemoglobin absorption band having a wavelength of 800 nm, when not only the absorption of blood but also the influence of blood scattering occurs, the change in blood volume is changed to the mixed light emitting means, the first single light emitting means, or the second single light. If the pulse wave is detected by the sound wave generated from the subject by the light emitted from the emitting means, only the absorption of blood can be detected, so that the accuracy is high.

本発明の成分濃度測定装置制御方法において、前記2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることが望ましい。   In the component concentration measuring device control method of the present invention, it is desirable that the wavelength of the two wavelengths is the wavelength of the two wavelengths of light, wherein the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by water. .

本発明では、2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることにより、水の吸収による影響を少なくして成分濃度測定の測定精度を良くすることができる。   In the present invention, the influence of the absorption of water is reduced by setting the wavelength of the two wavelengths to a wavelength of the two wavelengths of light that is larger than the difference of the absorption exhibited by the water. Thus, the measurement accuracy of the component concentration measurement can be improved.

本発明の成分濃度測定装置制御方法において、前記2波長の光のうち前記所定の1波長の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることが望ましい。   In the component concentration measurement apparatus control method of the present invention, the wavelength of the predetermined one wavelength among the two wavelengths of light is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the other one wavelength is selected. It is desirable that the wavelength of light be a wavelength at which water exhibits absorption equivalent to that at the wavelength of the one light.

本発明では、2波長の光のうち所定の1波の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることにより、水の吸収による影響を少なくして成分濃度測定の測定精度を良くすることができる。   In the present invention, a predetermined one wavelength of the two wavelengths of light is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the other one wavelength of light is the water of the one light. By setting the wavelength to the same absorption as that at the wavelength, the influence of water absorption can be reduced and the measurement accuracy of the component concentration measurement can be improved.

本発明の成分濃度測定装置制御方法において、前記2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることが望ましい。   In the component concentration measuring apparatus control method of the present invention, the wavelength of the two wavelengths is set to the wavelength of the two wavelengths of light, wherein the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by the other components. It is desirable.

本発明では、2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることにより、さらにそれ以外の成分の吸収による影響を少なくして成分濃度測定の測定精度を向上させることができる。   In the present invention, by setting the wavelength of two wavelengths of light to a wavelength of two wavelengths, the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by the other components. It is possible to improve the measurement accuracy of the component concentration measurement by reducing the influence of absorption.

本発明に係る成分濃度測定装置は、被検体の脈波の所定の値となる時点からの一定時間内、及び前記被検体の脈波の所定の値となり前記時点からの前記一定時間内を除く他の時点からの前記一定時間内のそれぞれに前記被検体の脈波を検出する脈波検出手段と、前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射する混合光出射手段と、前記他の時点からの前記一定時間内に前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する第1単一光出射手段と、前記混合光出射手段から前記一定時間内に出射される光により前記被検体で発生する音波を前記時点からの前記一定時間内に検出し、及び前記第1単一光出射手段から前記一定時間内に出射される光により前記被検体で発生する音波を前記他の時点からの前記一定時間内に検出する音波検出手段と、を備えることを特徴とする。   The component concentration measurement apparatus according to the present invention excludes a predetermined time from a time point when the pulse wave of the subject becomes a predetermined value and a predetermined value of the pulse wave of the subject and the predetermined time from the time point. Pulse wave detection means for detecting the pulse wave of the subject in each of the fixed time from another time point, and two different wavelengths of light in the fixed time from the time point by signals of the same frequency and opposite phase A mixed light emitting means that emits light after being intensity-modulated, and emits light having a predetermined wavelength of the two different wavelengths within the predetermined time from the other time point. A first single light emitting means, and a sound wave generated in the subject by light emitted from the mixed light emitting means within the predetermined time is detected within the predetermined time from the time point; and The light emitted from the single light emitting means within the predetermined time Ri wherein characterized in that it comprises a sound wave detecting means for detecting the waves generated by the object within the predetermined time from the other times, the.

本発明では、混合光出射手段は、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体の測定対象の成分及び水の吸光度特性から選定された波長λ及び波長λに設定する。さらに、混合光出射手段は第1の光及び第2の光の各々を同一周波数で逆位相の信号により電気的に強度変調して出射する。このように出射した第1の光及び第2の光が被検体に照射されると被検体から音波が発生し、音波検出手段は、被検体から発生する音波を検出する。ここで、音波検出手段により測定される音波は前述の第1の光により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light emitting means converts the light of two different wavelengths, that is, the wavelength of the first light and the wavelength of the second light into the absorbance characteristics of the component to be measured and the water according to the measurement principle described above. The wavelength λ 1 and the wavelength λ 2 selected from the above are set. Further, the mixed light emitting means emits each of the first light and the second light by electrically modulating the intensity with a signal having the same frequency and opposite phase. When the subject is irradiated with the first light and the second light emitted in this way, a sound wave is generated from the subject, and the sound wave detecting means detects the sound wave generated from the subject. Here, the sound wave measured by the sound wave detecting means is a difference sound wave between the first sound wave generated by the first light and the second sound wave generated by the second light.

さらに、第1単一光出射手段は、第2の光と同様の波長の光を、第2の光と同様に強度変調して、第2の光と同様の強度で出射する。このように出射した第2の光が被検体に照射されると被検体から音波が発生し、音波検出手段は、被検体から発生する音波を検出する。   Further, the first single light emitting means modulates the intensity of the light having the same wavelength as that of the second light in the same manner as the second light and emits the light with the same intensity as that of the second light. When the subject is irradiated with the second light emitted in this manner, a sound wave is generated from the subject, and the sound wave detecting means detects the sound wave generated from the subject.

ここで、混合光出射手段が第1の光及び第2の光を出射する際、及び第1単一光出射手段が第2の光を出射する際に、脈波検出手段は、被検体の脈波を検出する。また、混合光出射手段が第1の光及び第2の光を出射する時間、第1単一光出射手段が第2の光を出射する時間及び脈波検出手段が脈波を検出する時間は、共に被検体の脈波の所定の値となる時点からの一定時間内であり、被検体の脈波の所定の値をトリガにした一定時間とする。   Here, when the mixed light emitting means emits the first light and the second light, and when the first single light emitting means emits the second light, the pulse wave detecting means Detect pulse waves. The time for the mixed light emitting means to emit the first light and the second light, the time for the first single light emitting means to emit the second light, and the time for the pulse wave detecting means to detect the pulse wave are as follows: Both are within a certain time from the time when the pulse wave of the subject becomes a predetermined value, and are set to a certain time triggered by the predetermined value of the pulse wave of the subject.

ここで、脈波のトリガとなる所定の値は、脈波のいずれの値を採ることとしてもよいが、脈波の極値(極大値又は極小値のいずれか一方)とすることが望ましい。1拍以内の積算時間で拍間をまたぐことなく積算できるので、数拍でも(2拍以上で)精度よく、成分濃度の算出が可能である。また、脈波の数拍の時間で成分濃度の測定をするため、測定間隔を短くすることが可能である。さらに、時間が短いため、脈拍間隔の変動も小さくでき、成分濃度の算出精度を向上させることができる。   Here, the predetermined value serving as a trigger for the pulse wave may be any value of the pulse wave, but is preferably an extreme value (either a maximum value or a minimum value) of the pulse wave. Since integration can be performed without straddling within an integration time within one beat, the component concentration can be calculated accurately even with several beats (two or more beats). Further, since the component concentration is measured in the time of several beats of the pulse wave, the measurement interval can be shortened. Furthermore, since the time is short, the fluctuation of the pulse interval can be reduced, and the calculation accuracy of the component concentration can be improved.

このように、本発明では、脈波検出手段により脈波の所定の値をトリガにして脈波を検出し、並びに混合光出射手段及び単一光出射手段により第1の光又は/及び第2の光を出射し音波検出手段により音波を検出することで、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出することが可能である。そのため、検出した脈波及び音波から後述する音波強度の規格化が可能となり、脈動による血流量の変化が音波強度に与える影響を少なくして成分濃度を正確に測定することができる。   As described above, in the present invention, the pulse wave is detected by the pulse wave detection means using the predetermined value of the pulse wave as a trigger, and the first light and / or the second light is output by the mixed light emission means and the single light emission means. The pulse wave and the sound wave when the blood volume due to the pulsation is relatively the same can be detected by emitting the above light and detecting the sound wave by the sound wave detecting means. Therefore, normalization of the sound wave intensity described later can be performed from the detected pulse wave and sound wave, and the influence of the change in blood flow due to pulsation on the sound wave intensity can be reduced and the component concentration can be accurately measured.

本発明の成分濃度測定装置において、前記時点からの前記一定時間内に前記脈波検出手段により検出される脈波をそれぞれ逐次積算して脈波積算値として取得し且つ前記他の時点からの前記一定時間内に前記脈波検出手段により検出される脈波を逐次積算して他の脈波積算値として取得する脈波積算手段と、前記時点からの前記一定時間内に前記混合光出射手段からの2波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して混合音波強度として取得し且つ前記他の時点からの前記一定時間内に前記第1単一光出射手段からの1波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して単一音波強度として取得する音波強度積算手段と、をさらに備えることが望ましい。   In the component concentration measuring apparatus of the present invention, the pulse waves detected by the pulse wave detecting means are sequentially integrated within the predetermined time from the time point to obtain a pulse wave integrated value, and the pulse wave values from the other time points are acquired. Pulse wave integration means for sequentially integrating pulse waves detected by the pulse wave detection means within a predetermined time to obtain other pulse wave integrated values, and from the mixed light emitting means within the predetermined time from the time point The sound waves generated by the two wavelengths of light and detected by the sound wave detecting means are sequentially integrated to obtain a mixed sound wave intensity, and the first single light is emitted within the predetermined time from the other time point. It is desirable to further include sound intensity integrating means for sequentially accumulating the magnitudes of sound waves generated by light of one wavelength from the means and detected by the sound wave detecting means to obtain a single sound intensity.

上記の脈波積算手段及び音波強度積算手段は、後述する音波強度の規格化の具体的な1手段である。ここで、脈波及び音波を積算するためには、例えば、脈波信号と音波信号を、積算回路によって積算し、除算回路で信号の平均化処理を行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。   The pulse wave integrating means and the sound wave intensity integrating means are one specific means for normalizing the sound wave intensity described later. Here, in order to integrate the pulse wave and the sound wave, for example, the pulse wave signal and the sound wave signal are integrated by the integrating circuit, and the signal is averaged by the dividing circuit. The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also

このように、本発明では、脈波積算手段により脈波積算値を、及び音波強度積算手段により音波強度を得ることで、音波強度の規格化に必要な具体的な情報を得て音波強度の規格化が可能となる。   As described above, in the present invention, by obtaining the pulse wave integrated value by the pulse wave integrating unit and the sound wave intensity by the sound wave intensity integrating unit, specific information necessary for normalization of the sound wave intensity is obtained and the sound wave intensity is obtained. Standardization is possible.

本発明の成分濃度測定装置において、前記脈波積算手段により取得され前記時点からの前記一定時間内の脈波積算値、前記脈波積算手段により取得され前記他の時点からの前記一定時間内の他の脈波積算値、前記音波強度積算手段により取得され前記時点からの前記一定時間内の混合音波強度、及び前記音波強度積算手段により取得され前記他の時点からの前記一定時間内の単一音波強度から、測定対象とする成分濃度を算出する成分濃度算出手段をさらに備えることが望ましい。   In the component concentration measuring apparatus of the present invention, the pulse wave integrated value obtained by the pulse wave integrating means within the predetermined time from the time point, and the pulse wave integrating means acquired by the pulse wave integrating means within the fixed time from the other time point. Another pulse wave integrated value, a mixed sound wave intensity obtained by the sound wave intensity integrating means within the predetermined time from the time point, and a single wave within the fixed time from the other time point obtained by the sound wave intensity integrating means It is desirable to further include a component concentration calculation means for calculating the component concentration to be measured from the sound wave intensity.

本発明では、成分濃度算出手段により、後述する規格化した音波強度により成分濃度を算出することができる。   In the present invention, the component concentration can be calculated by the normalized concentration of sound wave described later by the component concentration calculating means.

本発明の成分濃度測定装置において、前記成分濃度算出手段は、前記混合音波強度を前記脈波積算値で除算した混合音波強度規格値、及び前記単一音波強度を前記他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することが望ましい。   In the component concentration measuring apparatus of the present invention, the component concentration calculating means includes a mixed sound wave intensity standard value obtained by dividing the mixed sound wave intensity by the pulse wave integrated value, and the single sound wave intensity as the other pulse wave integrated value. It is desirable to calculate the component concentration from the ratio of the divided single sound intensity standard values.

本発明では、混合音波強度を脈波積算値で除算することにより混合音波強度の規格化を行う。また、単一音波強度を脈波積算値で除算することにより単一音波強度の規格化を行う。ここで、混合音波強度を除算する脈波積算値は、混合光により発生する音波と同時刻に検出された音波及び脈波の積算値であり、単一音波強度を除算する脈波積算値は、単一光により発生する音波と同時刻に検出された脈波の積算値である。本発明では、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出するため、音波強度を脈波積算値で除算することにより、規格値を得て脈動による音波強度への影響を少なくすることができる。従って、本発明では、音波強度を規格化して成分濃度を算出するため、精度良い算出結果を得ることができる。   In the present invention, the mixed sound wave intensity is normalized by dividing the mixed sound wave intensity by the pulse wave integrated value. Further, the single sound wave intensity is normalized by dividing the single sound wave intensity by the pulse wave integrated value. Here, the pulse wave integrated value that divides the mixed sound wave intensity is the integrated value of the sound wave and pulse wave detected at the same time as the sound wave generated by the mixed light, and the pulse wave integrated value that divides the single sound wave intensity is The integrated value of the pulse wave detected at the same time as the sound wave generated by the single light. In the present invention, in order to detect a pulse wave and a sound wave when the blood volume due to pulsation is relatively the same, by dividing the sound wave intensity by the pulse wave integrated value, a standard value is obtained and the sound wave intensity due to the pulsation is obtained. The influence of can be reduced. Therefore, in the present invention, since the component concentration is calculated by normalizing the sound wave intensity, a highly accurate calculation result can be obtained.

本発明の成分濃度測定装置において、前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、前記脈波検出手段は、前記被検体の脈波のうち連続した2拍分を前記時点及び前記他の時点からの前記一定時間内に1拍ずつ検出し、前記混合光出射手段は、前記2拍分に対応して前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、前記第1単一光出射手段は、前記2拍分に対応して前記他の時点からの前記一定時間内に所定の1波長の光を電気的に強度変調して出射し、前記音波検出手段は、前記2拍分に対応してそれぞれの音波を検出することが望ましい。   In the component concentration measuring apparatus of the present invention, the predetermined time is set to be within one cycle of the pulse wave detected by the pulse wave detecting means, and the pulse wave detecting means calculates two consecutive beats of the pulse wave of the subject. One beat is detected within the predetermined time from the time point and the other time point, and the mixed light emitting means outputs light of two different wavelengths within the predetermined time from the time point corresponding to the two beats. The first single light emitting means emits a predetermined one within the predetermined time from the other time corresponding to the two beats, and the intensity is modulated with an electric signal having an opposite phase at the same frequency. It is desirable that the light of the wavelength is electrically intensity-modulated and emitted, and the sound wave detection unit detects each sound wave corresponding to the two beats.

本発明では、脈波及び音波の検出時間差を短くすることができるため、成分濃度の測定誤差を小さくすることができる。また、検出時間差を短くすることで成分濃度の測定時間を短くすることができ、被検体への負担を軽減させることができる。   In the present invention, since the detection time difference between the pulse wave and the sound wave can be shortened, the measurement error of the component concentration can be reduced. Further, by shortening the detection time difference, the component concentration measurement time can be shortened, and the burden on the subject can be reduced.

本発明の成分濃度測定装置において、前記脈波検出手段により検出される前記連続した2拍分の脈波の極大値の比率を算出する第1極値比率算出手段をさらに有し、前記第1極値比率算出手段の算出する比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することが望ましい。   The component concentration measuring apparatus of the present invention further includes first extreme value ratio calculating means for calculating a ratio of maximum values of the pulse waves for two consecutive beats detected by the pulse wave detecting means. When the ratio calculated by the extreme value ratio calculating means is larger than 1.1 or smaller than 0.9, the pulse wave detecting means, the mixed light emitting means and the first single light emitting means have component concentrations. It is desirable to measure repeatedly.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本発明では、連続2拍間での極大値−極大値(または極小値−極小値)での信号差が、ある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]と[第2の光により発生する音波]の両信号を血液量変動差が小さい条件で検出することができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. In the present invention, since the signal difference between the maximum value and the maximum value (or the minimum value and the minimum value) between two consecutive beats is smaller than a certain reference, the blood volume difference is within a certain range, that is, It is possible to determine a state in which both blood volumes can be regarded as substantially equal. Therefore, it is possible to detect both signals of [the differential sound wave generated by the first light and the second light] and [the sound wave generated by the second light] under the condition that the blood volume fluctuation difference is small.

本発明の成分濃度測定装置において、前記被検体の脈波の所定の値となり前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く他の時点からの前記一定時間内に、前記異なる2波長の光のうち他の所定の1波長の光を電気的に強度変調して出射する第2単一光出射手段をさらに備え、前記脈波検出手段は、前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内の脈波を検出し、前記音波検出手段は、前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内に、前記第2単一光出射手段からの1波長の光による音波を検出することが望ましい。   In the component concentration measuring apparatus of the present invention, the pulse wave of the subject becomes a predetermined value, and within the predetermined time from the other time except for the predetermined time from the time and the fixed time from the other time And further comprising a second single light emitting means for electrically modulating the intensity of another predetermined one of the two different wavelengths of light, and emitting the pulse wave from the time point. Detecting a pulse wave within the certain time from the other time except the certain time and within the certain time from the other time, and the sound wave detecting means It is desirable to detect a sound wave by light of one wavelength from the second single light emitting means within the certain time from the other time except for the certain time from another time.

本発明では、第2単一光出射手段をさらに有し、音波検出手段により音波を検出することにより前記時点からの一定時間内及び前記他の時点からの一定時間内に取得した音波強度の妥当性を検証するための情報を取得することが可能となる。   In the present invention, there is further provided a second single light emitting means, and by detecting the sound wave by the sound wave detecting means, the validity of the sound wave intensity acquired within a certain time from the time point and within a certain time from the other time point is determined. It becomes possible to acquire information for verifying the performance.

本発明の成分濃度測定装置において、前記音波強度積算手段は、前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内に前記第2単一光出射手段からの1波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して他の単一音波強度として取得することが望ましい。   In the component concentration measuring apparatus according to the present invention, the sound wave intensity integrating means includes the sound wave intensity integrating means within the certain time from the other time except the certain time from the time and the certain time from the other time. It is desirable that the intensity of the sound wave generated by light of one wavelength from the two single light emitting means and detected by the sound wave detecting means is sequentially integrated to obtain another single sound intensity.

上記の音波強度積算手段は、例えば、音波信号を、積算回路によって積算し、除算回路で信号の平均化処理を行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。   The sound wave intensity integrating means, for example, integrates sound wave signals by an integrating circuit and performs signal averaging processing by a dividing circuit. The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also

このように、本発明では、音波強度積算手段により他の単一音波強度を取得することにより、音波強度の妥当性の検証に必要な具体的な情報を得て音波強度の妥当性の検証が可能となる。   As described above, in the present invention, by acquiring another single sound wave intensity by the sound wave intensity integrating means, specific information necessary for verifying the validity of the sound wave intensity is obtained and the validity of the sound wave intensity is verified. It becomes possible.

本発明の成分濃度測定装置において、前記音波強度積算手段により取得される前記単一音波強度と前記他の単一音波強度との差の絶対値を算出し且つ算出した前記絶対値と前記音波強度積算手段により取得される前記混合音波強度との比率を算出する音波強度比率算出手段をさらに有し、前記音波強度比率算出手段の算出する比率が1.05より大きいとき又は0.95より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することが望ましい。   In the component concentration measuring apparatus of the present invention, the absolute value of the difference between the single sound wave intensity acquired by the sound wave intensity integrating means and the other single sound wave intensity is calculated, and the calculated absolute value and the sound wave intensity When the ratio calculated by the sound wave intensity ratio calculating unit is greater than 1.05 or less than 0.95, the sound wave intensity ratio calculating unit further calculates a ratio with the mixed sound wave intensity acquired by the integrating unit. In addition, it is desirable that the pulse wave detecting means, the mixed light emitting means, and the first single light emitting means repeatedly measure the component concentration.

本発明では、[第1の光により発生する音波と第2の光により発生する音波の差分音波信号]と[第1の光により発生する音波信号]−[第2の光により発生する音波信号]の差が大きい場合に、再度測定をやり直す。従って、本発明では、前記時点からの一定時間内に取得した混合音波強度及び前記他の時点からの一定時間内に取得した単一音波強度の妥当性を検証して、成分濃度の測定精度を向上させることができる。   In the present invention, [the differential sound wave signal between the sound wave generated by the first light and the sound wave generated by the second light] and [the sound wave signal generated by the first light]-[the sound wave signal generated by the second light] ] If the difference is large, repeat the measurement. Therefore, in the present invention, the validity of the mixed sound wave intensity acquired within a certain time from the above time point and the single sound wave intensity obtained within the certain time period from the other time point is verified to increase the measurement accuracy of the component concentration. Can be improved.

本発明の成分濃度測定装置において、前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、前記脈波検出手段は、前記被検体の脈波のうち連続した3拍分を前記時点からの前記一定時間内、前記他の時点からの前記一定時間内、並びに前記時点及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内において1拍ずつ検出し、前記混合光出射手段は、前記3拍分に対応して前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、前記第1単一光出射手段は、前記3拍分に対応して前記他の時点からの前記一定時間内に所定の1波長の光を電気的に強度変調して出射し、前記第2単一光出射手段は、前記3拍分に対応して前記時点及び前記他の時点からの前記一定時間内を除く前記他の時点からの一定時間内に他の所定の1波長の光を電気的に強度変調して出射し、前記音波検出手段は、前記3拍分に対応してそれぞれの音波を検出することが望ましい。   In the component concentration measuring apparatus of the present invention, the predetermined time is set to be within one cycle of the pulse wave detected by the pulse wave detecting means, and the pulse wave detecting means takes three consecutive beats of the pulse wave of the subject. One beat at a time from the time point, within the time period from the other time point, and within the time period from the other time point except the time point from the time point and the other time point The mixed light emitting means detects and emits light of two different wavelengths corresponding to the three beats within the predetermined time from the time point by electrically modulating the intensity with signals of the same frequency and opposite phase. The first single light emitting means emits light having a predetermined wavelength that is electrically intensity-modulated and emitted within the predetermined time from the other time corresponding to the three beats, and the second The single light emitting means corresponds to the three beats and the time point and the The predetermined one wavelength of light other than the predetermined time from the point in time is excluded from the other predetermined point in time, and the predetermined one wavelength of light is intensity-modulated and emitted. Correspondingly, it is desirable to detect each sound wave.

本発明では、音波の検出時間差が小さくなるため、前記時点からの一定時間内に取得した混合音波強度及び前記他の時点からの一定時間内に取得した単一音波強度の妥当性の検証結果の精度を向上させることができる。   In the present invention, since the difference in sound wave detection time is small, the verification result of the validity of the mixed sound wave intensity acquired within a certain time from the time point and the single sound wave intensity obtained within a certain time period from the other time point Accuracy can be improved.

本発明の成分濃度測定装置において、前記脈波検出手段により検出される前記連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出する第2極値比率算出手段をさらに有し、前記第2極値比率算出手段の算出する前記比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することが望ましい。   In the component concentration measuring apparatus of the present invention, the second extreme value ratio calculating means for calculating the ratio of the maximum value of any two beats of the pulse waves for three consecutive beats detected by the pulse wave detecting means is further provided. And when the ratio calculated by the second extreme value ratio calculating means is larger than 1.1 or smaller than 0.9, the pulse wave detecting means, the mixed light emitting means, and the first single light The emitting means desirably measures the component concentration repeatedly.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本発明では、連続2拍間での極大値−極大値(または極小値−極小値)での信号差がある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]、[第2の光により発生する音波]又は[第1の光により発生する音波]のいずれか2つの信号を血液量変動差が小さい条件で検出することができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. In the present invention, the difference in blood volume is within a certain range, i.e., both of them are smaller than a certain reference value where the signal difference between the maximum value and the maximum value (or the minimum value-the minimum value) between two consecutive beats is smaller. It is possible to determine a state in which the blood volume can be regarded as substantially equal. Therefore, any two signals of [differential sound wave generated by the first light and second light], [sound wave generated by the second light] or [sound wave generated by the first light] It can be detected under conditions where the variation difference is small.

本発明の成分濃度測定装置において、前記脈波検出手段は、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光により前記被検体から発生する音波から脈波を検出し、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光の前記被検体での反射光から脈波を検出し、又は心電計若しくはプレスチモグラフにより脈波を検出することが望ましい。   In the component concentration measuring apparatus of the present invention, the pulse wave detecting means is generated from the subject by light emitted from the mixed light emitting means, the first single light emitting means, or the second single light emitting means. A pulse wave is detected from a sound wave, and a pulse wave is detected from reflected light at the subject of light emitted from the mixed light emitting means, the first single light emitting means or the second single light emitting means, Or it is desirable to detect a pulse wave with an electrocardiograph or a plethysmograph.

本発明では、被検体の脈波を心電計又はプレスチモグラフにより検出することができる。また、被検体での反射光により脈波を検出することにより、電気的ノイズの影響を少なくして、脈波の検出精度を向上させることができる。また、波長800nm帯のヘモグロビン吸収帯で、血液の吸収のみならず、血液の散乱の影響が生じる場合、血液量の変化を混合光出射手段、第1単一光出射手段又は第2単一光出射手段の出射する光により被検体から発生する音波により脈波を検出すれば、血液の吸収のみを検出することができるため、精度がよい。   In the present invention, the pulse wave of the subject can be detected by an electrocardiograph or a plethysmograph. Further, by detecting the pulse wave by the reflected light from the subject, the influence of electrical noise can be reduced and the detection accuracy of the pulse wave can be improved. Further, in the hemoglobin absorption band having a wavelength of 800 nm, when not only the absorption of blood but also the influence of blood scattering occurs, the change in blood volume is changed to the mixed light emitting means, the first single light emitting means, or the second single light. If the pulse wave is detected by the sound wave generated from the subject by the light emitted from the emitting means, only the absorption of blood can be detected, so that the accuracy is high.

本発明の成分濃度測定装置において、前記2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることが望ましい。   In the component concentration measuring apparatus of the present invention, it is desirable that the wavelength of the two wavelengths is the wavelength of the two wavelengths of light, wherein the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by water.

本発明では、2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることにより、水の吸収による影響を少なくして成分濃度測定の測定精度を良くすることができる。   In the present invention, the influence of the absorption of water is reduced by setting the wavelength of the two wavelengths to a wavelength of the two wavelengths of light that is larger than the difference of the absorption exhibited by the water. Thus, the measurement accuracy of the component concentration measurement can be improved.

本発明の成分濃度測定装置において、前記2波長の光のうち前記所定の1波長の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることが望ましい。   In the component concentration measuring apparatus of the present invention, the wavelength of the predetermined one wavelength of the two wavelengths of light is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the other one wavelength of light is measured. It is desirable that the wavelength be a wavelength at which water exhibits absorption equal to that of the one light.

本発明では、2波長の光のうち所定の1波の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることにより、水の吸収による影響を少なくして成分濃度測定の測定精度を良くすることができる。   In the present invention, a predetermined one wavelength of the two wavelengths of light is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the other one wavelength of light is the water of the one light. By setting the wavelength to the same absorption as that at the wavelength, the influence of water absorption can be reduced and the measurement accuracy of the component concentration measurement can be improved.

本発明の成分濃度測定装置において、前記2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることが望ましい。   In the component concentration measuring apparatus of the present invention, the wavelength of the two wavelengths of light may be a wavelength of two wavelengths of light that is larger in the difference in absorption exhibited by the component to be measured than the difference in absorption exhibited by the other components. desirable.

本発明では、2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることにより、さらにそれ以外の成分の吸収による影響を少なくして成分濃度測定の測定精度を向上させることができる。   In the present invention, by setting the wavelength of two wavelengths of light to a wavelength of two wavelengths, the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by the other components. It is possible to improve the measurement accuracy of the component concentration measurement by reducing the influence of absorption.

本発明の非侵襲な成分濃度測定装置および成分濃度測定装置制御方法は、被検体で発生する音波への被検体の脈動の影響を少なくすることが可能で成分濃度の測定精度を向上させることができる。   The non-invasive component concentration measuring apparatus and component concentration measuring apparatus control method of the present invention can reduce the influence of the pulsation of the subject on the sound wave generated in the subject and improve the measurement accuracy of the component concentration. it can.

添付の図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

以下の実施形態は、本発明の構成の例であり、被検体としての人体の指により成分濃度を測定する場合の実施の形態であるが、本発明は以下の実施の形態に制限されるものではない。また、以下の実施形態に係る成分濃度測定装置の構成を示す図3において、電源などの周知技術により実現できる部分は図示していない。   The following embodiment is an example of the configuration of the present invention, and is an embodiment in the case where a component concentration is measured by a finger of a human body as a subject, but the present invention is limited to the following embodiment is not. Further, in FIG. 3 showing the configuration of the component concentration measuring apparatus according to the following embodiment, a part that can be realized by a known technique such as a power source is not shown.

本実施形態に係る成分濃度測定装置について説明する。   A component concentration measuring apparatus according to this embodiment will be described.

図3に、本実施形態に係る成分濃度測定装置の概略構成図を示す。   FIG. 3 shows a schematic configuration diagram of a component concentration measuring apparatus according to the present embodiment.

図3において、成分濃度測定装置10は、脈波検出手段の一部としての脈波センサ115、混合光出射手段及び第1、第2単一光出射手段の一部としての発振器101、駆動回路102、180°移相回路104、駆動回路105、第1の光源103及び第2の光源106、音波検出手段の一部としての音波検出部111、フィルタ112及び位相検波増幅部113、成分濃度算出手段としての成分濃度算出部114を備える。また、本実施形態では、第1の光源103からの第1の光及び第2の光源106からの第2の光を被検体2の同一の場所に照射するため第1の光源103からの第1の光及び第2の光源106からの第2の光を合波する合波部107と、被検体2と音波検出部111との間に被検体2で発生する音波の伝達効率を高めるための音響整合物質110と、を設けることとした。   In FIG. 3, the component concentration measuring apparatus 10 includes a pulse wave sensor 115 as a part of the pulse wave detecting means, an oscillator 101 as a part of the mixed light emitting means and the first and second single light emitting means, and a drive circuit. 102, 180 ° phase shift circuit 104, drive circuit 105, first light source 103 and second light source 106, sound wave detection unit 111 as part of sound wave detection means, filter 112 and phase detection amplification unit 113, component concentration calculation A component concentration calculation unit 114 is provided as a means. Further, in the present embodiment, the first light from the first light source 103 and the second light from the second light source 106 are irradiated to the same location of the subject 2 in order to irradiate the first light from the first light source 103. In order to increase the transmission efficiency of sound waves generated in the subject 2 between the light combining unit 107 for combining the first light and the second light from the second light source 106 and the subject 2 and the sound wave detecting unit 111 The acoustic matching material 110 is provided.

発振器101は、第1の光源103及び第2の光源106から出力される2波長の光を強度変調するための変調信号を出力する。180°移相回路104は発振器101からの変調信号のうち一方を反転して出力する。   The oscillator 101 outputs a modulation signal for intensity-modulating light of two wavelengths output from the first light source 103 and the second light source 106. The 180 ° phase shift circuit 104 inverts one of the modulation signals from the oscillator 101 and outputs it.

駆動回路102は、発振器101からの変調信号を基に第1の光源103を駆動させる。また、駆動回路105は、180°移相回路104で反転された変調信号を基に第2の光源106を駆動させる。第1の光源103は、異なる2波長の光のいずれか一方を駆動回路102からの信号により強度変調して出力し、第2の光源106は、他方の光を駆動回路105からの信号により強度変調して出力する。これにより、第1の光源103及び第2の光源106は、異なる2波長の光のそれぞれを同一周波数で逆位相の信号により電気的に強度変調して出力することができる。また、第1の光源103又は第2の光源106のいずれか一方の光の出射を停止させれば、第1の光源103又は第2の光源106は、異なる2波長の光のうち所定の1波長の光のみを出射することができる。   The drive circuit 102 drives the first light source 103 based on the modulation signal from the oscillator 101. The drive circuit 105 drives the second light source 106 based on the modulation signal inverted by the 180 ° phase shift circuit 104. The first light source 103 modulates the intensity of one of the two different wavelengths of light with a signal from the drive circuit 102 and outputs the intensity of the other light by the signal from the drive circuit 105. Modulate and output. As a result, the first light source 103 and the second light source 106 can output the light of two different wavelengths that are electrically intensity-modulated with signals of the same frequency and opposite phase. In addition, if the emission of light from either the first light source 103 or the second light source 106 is stopped, the first light source 103 or the second light source 106 has a predetermined one of two different wavelengths of light. Only light having a wavelength can be emitted.

ここで、第1の光源103及び第2の光源106は、例えば半導体レーザを適用することができ、各々の波長を2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることが望ましい。また、第1の光源103および第2の光源106の各々の波長は、一方の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の光の波長を水が一方の光の波長におけるのと相等しい吸収を呈する波長に設定することもできる。さらに、2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることもできる。これにより、水や測定対象とする成分以外の成分による吸収の影響を少なくして成分濃度測定の測定精度を良くすることができる。ここで、測定対象とする成分をグルコース又はコレステロールとした場合には、グルコース又はコレステロールの特徴的な吸収を示す波長を照射することによって、グルコース又はコレステロールの濃度を精度よく測定することができる。第1の光源103及び第2の光源106としての半導体レーザは、ヒーター又はペルチェ素子により加熱又は冷却することにより発生する光の波長を変化させることができる。   Here, for example, a semiconductor laser can be applied to the first light source 103 and the second light source 106, and the difference in absorption exhibited by the components whose measurement targets are two wavelengths of light is water. It is desirable that the wavelength of the two wavelengths be larger than the difference in absorption exhibited. In addition, the wavelength of each of the first light source 103 and the second light source 106 is set such that the wavelength of one light exhibits a characteristic absorption by the component to be measured, and the wavelength of the other light is set by water. It can also be set to a wavelength that exhibits absorption equal to that of one of the wavelengths of light. Furthermore, the wavelength of the two wavelengths of light can be set to the wavelength of the two wavelengths of light, where the difference in absorption exhibited by the component to be measured is greater than the difference in absorption exhibited by the other components. As a result, it is possible to improve the measurement accuracy of the component concentration measurement by reducing the influence of absorption by components other than water and components to be measured. Here, when the component to be measured is glucose or cholesterol, the concentration of glucose or cholesterol can be measured with high accuracy by irradiating with a wavelength indicating characteristic absorption of glucose or cholesterol. The semiconductor lasers as the first light source 103 and the second light source 106 can change the wavelength of light generated by heating or cooling with a heater or a Peltier element.

また、駆動回路102、105は、第1の光源103及び第2の光源106からの2波長の光を1の光束に合波し水に照射して発生する音波の圧力が零になるように2波長の光の各々の相対的な強度を調整することが望ましい。異なる2波長の光を被検体に照射して発生する音波の圧力は、前述のように前記1波の光が被検体内に発生する測定対象の成分と水の混在した状態の全吸収に対応する音波の圧力と、他の1波の光が被検体内の大部分を占める水のみが発生する音波の圧力の差となって検出される。そのため、この差の値が零となるように異なる2波長の光の相対的な強度を校正すると成分濃度の測定精度を向上させることができる。   In addition, the drive circuits 102 and 105 combine the two-wavelength light from the first light source 103 and the second light source 106 into one light beam and irradiate the water with water so that the pressure of the sound wave generated becomes zero. It is desirable to adjust the relative intensity of each of the two wavelengths of light. The pressure of the sound wave generated by irradiating the subject with light of two different wavelengths corresponds to the total absorption in the state where the component of the measurement target generated in the subject and water are mixed as described above. The difference between the pressure of the sound wave to be generated and the pressure of the sound wave generated by only the water in which the other one wave of light occupies most of the subject is detected. Therefore, if the relative intensities of two different wavelengths of light are calibrated so that the difference value becomes zero, the component concentration measurement accuracy can be improved.

また、駆動回路102、105は、第1の光源103及び第2の光源106からの2波長の光により発生する音波の検出に関わる共鳴周波数と同一の周波数で変調することが望ましい。異なる2波長の光の各々を電気的に強度変調する変調周波数を、被検体内に発生する音波の検出に関わる共鳴周波数と同一の周波数で変調することにより、音波検出部111は、音波の測定値における吸収係数に関わる非線形性に配慮して選択された異なる2波長の光に対する音波を測定し、これらの測定値から、一定に保ち難い多数のパラメータの影響を排除して、高精度に被検体内に発生する音波を検出することができる。   In addition, it is desirable that the drive circuits 102 and 105 perform modulation at the same frequency as the resonance frequency related to detection of sound waves generated by light of two wavelengths from the first light source 103 and the second light source 106. The sound wave detection unit 111 measures the sound wave by modulating the modulation frequency for electrically modulating the intensity of each of the two different wavelengths of light at the same frequency as the resonance frequency related to the detection of the sound wave generated in the subject. Measure sound waves for light of two different wavelengths selected in consideration of the nonlinearity related to the absorption coefficient, and eliminate the influence of many parameters that are difficult to keep constant from these measured values. Sound waves generated in the specimen can be detected.

また、本実施形態では、発振器101から矩形波信号を出力することとし、2の半導体レーザ光源である第1の光源103及び第2の光源106の各々を同一周波数で互いに逆位相の矩形波信号により直接変調する。このように、2の半導体レーザ光源の各々を同一周波数で互いに逆位相の矩形波信号により直接変調することにより、異なる2波長の光を発生し同時に変調することが可能であり、装置構成を簡略化できる。   In the present embodiment, a rectangular wave signal is output from the oscillator 101, and the first light source 103 and the second light source 106, which are the two semiconductor laser light sources, are connected to each other at the same frequency and in opposite phases. To modulate directly. In this way, by directly modulating each of the two semiconductor laser light sources with rectangular wave signals having the same frequency and opposite phases, it is possible to generate light of two different wavelengths and simultaneously modulate them, thereby simplifying the device configuration. Can be

合波部107は、第1の光源103からの光と第2の光源106からの光とを例えばハーフミラーにより合波して変調光120として被検体2に向けて出射する。   The multiplexing unit 107 combines the light from the first light source 103 and the light from the second light source 106 by, for example, a half mirror, and emits the modulated light 120 toward the subject 2.

音波検出部111は、第1の光源103又は/及び第2の光源106から合波部107を介して出射された光により被検体2で発生する音波を音響整合物質110を介して検出し、音波の振幅に比例した電気信号を出力する。フィルタ112は、音波検出部111からの電気信号から高周波ノイズを除去して出力する。位相検波増幅部113は、フィルタからの電気信号を発振器101からの変調信号により同期検波し、音圧に比例する電気信号を出力する。このようにして、音波検出部111及び位相検波増幅部113は、音波の大きさを測定する。このように、音波を変調周波数に同期した同期検波により検出することにより、音波を高精度に検出することができる。   The sound wave detection unit 111 detects the sound wave generated in the subject 2 by the light emitted from the first light source 103 and / or the second light source 106 via the multiplexing unit 107 via the acoustic matching material 110, An electrical signal proportional to the amplitude of the sound wave is output. The filter 112 removes high frequency noise from the electrical signal from the sound wave detection unit 111 and outputs the result. The phase detection amplification unit 113 synchronously detects the electrical signal from the filter using the modulation signal from the oscillator 101, and outputs an electrical signal proportional to the sound pressure. In this manner, the sound wave detection unit 111 and the phase detection amplification unit 113 measure the magnitude of the sound wave. Thus, by detecting the sound wave by synchronous detection synchronized with the modulation frequency, the sound wave can be detected with high accuracy.

脈波センサ115は、被検体2の脈波を検出する。この脈波センサ115は、第1の光源103又は/及び第2の光源106の出射する光により被検体2で発生する音波から脈波を検出し、第1の光源103又は/及び第2の光源106の出射する光の被検体2での反射光から脈波を検出し、又は心電計(不図示)若しくはプレスチモグラフ(不図示)により脈波を検出することが望ましい。なお、上記反射光から脈波を検出すること、心電計により脈波を検出すること及びプレスチモグラフにより脈波を検出することは、それぞれ周知技術により実現することができる。   The pulse wave sensor 115 detects the pulse wave of the subject 2. The pulse wave sensor 115 detects a pulse wave from a sound wave generated in the subject 2 by light emitted from the first light source 103 and / or the second light source 106, and detects the first light source 103 and / or the second light source 103. It is desirable to detect a pulse wave from light reflected from the subject 2 emitted from the light source 106, or to detect a pulse wave by an electrocardiograph (not shown) or a plethysmograph (not shown). The detection of the pulse wave from the reflected light, the detection of the pulse wave by the electrocardiograph, and the detection of the pulse wave by the plethysmograph can be realized by well-known techniques.

このように、成分濃度測定装置10は、被検体2の脈波を心電計(不図示)又はプレスチモグラフ(不図示)により検出することができる。また、第1の光源103又は/及び第2の光源106の出射する光の被検体2での反射光により脈波を検出することにより、電気的ノイズの影響を少なくして、脈波の検出精度を向上させることができる。   As described above, the component concentration measuring apparatus 10 can detect the pulse wave of the subject 2 with an electrocardiograph (not shown) or a plethysmograph (not shown). Further, the pulse wave is detected by detecting the pulse wave by the reflected light from the subject 2 of the light emitted from the first light source 103 and / or the second light source 106, thereby reducing the influence of electrical noise. Accuracy can be improved.

また、図2で説明したように、第1の光源103又は/及び第2の光源106の出射する光により被検体2で発生する音波の大きさは、脈拍に同期して増減する。そのため、脈拍に同期する音波を音波検出部111において検出すれば、被検体2の脈波を検出することができる。波長800nm帯のヘモグロビン吸収帯で、血液の吸収のみならず、血液の散乱の影響が生じる場合、血液量の変化を第1の光源103又は/及び第2の光源106の出射する光により被検体2から発生する音波により脈波を検出すれば、血液の吸収のみを検出することができるため、精度がよい。なお、波長帯は、測定に用いる2波長のうち、1波長の音波を検出すれば、血液量に対応した水の増減を検出することでよい。   In addition, as described with reference to FIG. 2, the magnitude of the sound wave generated in the subject 2 by the light emitted from the first light source 103 and / or the second light source 106 increases or decreases in synchronization with the pulse. Therefore, if the sound wave detection unit 111 detects a sound wave synchronized with the pulse, the pulse wave of the subject 2 can be detected. In the hemoglobin absorption band having a wavelength of 800 nm, when not only blood absorption but also blood scattering occurs, a change in blood volume is detected by light emitted from the first light source 103 and / or the second light source 106. If the pulse wave is detected by the sound wave generated from 2, only the absorption of blood can be detected, so that the accuracy is good. As for the wavelength band, if a sound wave of one wavelength is detected among the two wavelengths used for measurement, the increase or decrease of water corresponding to the blood volume may be detected.

成分濃度算出部114は、脈波並びに異なる時間に出射された2波長の光及び1波長の光による音波の大きさをそれぞれ記憶しておき、予め用意した前述の数式(1)から成分濃度を算出する。このように、成分濃度算出部114を有することにより、前述の測定原理に従って(s−s)÷sの演算を実行して、測定対象の成分濃度を算出することができる。 The component concentration calculation unit 114 stores the pulse wave, the two-wavelength light emitted at different times, and the sound wave size of the one-wavelength light, respectively, and calculates the component concentration from the previously prepared equation (1). calculate. Thus, by having the component concentration calculation unit 114, it is possible to calculate the component concentration of the measurement target by executing the calculation of (s 1 −s 2 ) ÷ s 2 in accordance with the measurement principle described above.

ここで、本実施形態の成分濃度測定装置10の動作による各部の具体的な機能について説明する。   Here, a specific function of each part by the operation of the component concentration measuring apparatus 10 of the present embodiment will be described.

図4に、脈波及び脈波に同期して発生する音波の大きさの概略図を示す。   FIG. 4 shows a schematic diagram of a pulse wave and a magnitude of a sound wave generated in synchronization with the pulse wave.

図4では、図3の第1の光源103及び第2の光源106からの異なる2波長の光(波長λ、λ)により被検体2で発生する音波の大きさ50が、時点t1から時点t2の一定時間τ1に示すように、脈波21に同期して増減することを示している。また、図4では、図3の第2の光源106からの所定の1波長の光(波長λ)により被検体2で発生する音波の大きさ51が、時点t3から時点t4の一定時間τ1に示すように、脈波21に同期して増減することを示している。 In FIG. 4, the magnitude 50 of the sound wave generated in the subject 2 by light of two different wavelengths (wavelengths λ 1 and λ 2 ) from the first light source 103 and the second light source 106 in FIG. As shown at a fixed time τ1 at time t2, it indicates that the pulse wave 21 increases or decreases in synchronization. In FIG. 4, the magnitude 51 of the sound wave generated in the subject 2 by the light having a predetermined wavelength (wavelength λ 2 ) from the second light source 106 in FIG. 3 is a certain time τ 1 from time t 3 to time t 4. As shown in FIG. 4, the increase / decrease is synchronized with the pulse wave 21.

本実施形態では、図3の脈波検出手段としての脈波センサ115は、図4に示す被検体の脈波21の所定の値となる時点t1からの一定時間τ1内、及び被検体の脈波21の所定の値となり時点t1からの一定時間τ1内を除く他の時点t3からの一定時間τ1内のそれぞれに被検体の脈波21を検出する。つまり、図3の脈波センサ115は、図4の異なる2つの時刻(時点t1から時点t2の一定時間τ1及び時点t3から時点t4の一定時間τ1)の脈波21を検出する。   In the present embodiment, the pulse wave sensor 115 as the pulse wave detecting means in FIG. 3 is within a certain time τ1 from the time point t1 when the pulse wave 21 of the subject shown in FIG. The pulse wave 21 of the subject is detected at a predetermined value of the wave 21 and within a certain time τ1 from the other time t3 except for the certain time τ1 from the time t1. That is, the pulse wave sensor 115 in FIG. 3 detects the pulse waves 21 at two different times in FIG. 4 (a constant time τ1 from time t1 to time t2 and a constant time τ1 from time t3 to time t4).

また、図3の混合光出射手段としての第1の光源103及び第2の光源106は、時点t1からの一定時間τ1内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射する。つまり、図3の第1の光源103及び第2の光源106は、図4の異なる2つの時刻のうち時点t1から時点t2の一定時間τ1に異なる2波長の光を出射する。   Further, the first light source 103 and the second light source 106 as the mixed light emitting means in FIG. 3 are configured to electrically output two different wavelengths of light with the same frequency and opposite phase signals within a predetermined time τ1 from the time point t1. Emitted after intensity modulation. That is, the first light source 103 and the second light source 106 in FIG. 3 emit light of two different wavelengths from the time t1 to the time t2 for a certain time τ1 among the two different times in FIG.

また、図3の第1単一光出射手段としての第2の光源106は、時点t2からの一定時間τ1内に異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する。つまり、図3の第2の光源106は、図4の異なる2つの時刻のうち時点t3から時点t4の一定時間τ1に所定の1波長の光を出射する。   Further, the second light source 106 as the first single light emitting means in FIG. 3 electrically modulates the intensity of a predetermined one wavelength of two different wavelengths within a certain time τ1 from the time point t2. And exit. That is, the second light source 106 in FIG. 3 emits light of a predetermined wavelength at a certain time τ1 from time t3 to time t4 among two different times in FIG.

なお、本実施形態では、混合光出射手段及び第1単一光出射手段の機能としての光の出射について、第1の光源103及び第2の光源106からの異なる2波長の光の出射を先で第2の光源106からの所定の1波長の光の出射を後としたが、第2の光源106からの所定の1波長の光の出射を先で第1の光源103及び第2の光源106からの異なる2波長の光の出射を後としてもよい。   In the present embodiment, regarding the emission of light as a function of the mixed light emission means and the first single light emission means, the emission of light of two different wavelengths from the first light source 103 and the second light source 106 is first performed. The light of the predetermined one wavelength from the second light source 106 is later emitted, but the light of the predetermined one wavelength from the second light source 106 is first emitted before the first light source 103 and the second light source. The two different wavelengths of light from 106 may be emitted later.

また、図3の音波検出手段としての音波検出部111は、第1の光源103及び第2の光源106から一定時間τ1内に出射される異なる2波長の光により被検体2で発生する音波を時点t1からの一定時間τ1内に検出し位相検波増幅部113は、音波の大きさ50として測定し、及び第2の光源106から一定時間τ1内に出射される所定の1波長の光により被検体2で発生する音波を他の時点t3からの一定時間τ1内に検出し位相検波増幅部113は、音波の大きさ51として測定する。つまり、図3の音波検出部111は、図4の異なる2つの時刻(時点t1から時点t2の一定時間τ1及び時点t3から時点t4の一定時間τ1)の音波を検出する。   In addition, the sound wave detection unit 111 as the sound wave detection unit in FIG. 3 generates sound waves generated in the subject 2 by light of two different wavelengths emitted from the first light source 103 and the second light source 106 within a predetermined time τ1. The phase detection and amplification unit 113, which detects within a predetermined time τ1 from the time t1, measures the amplitude of the sound wave 50, and receives light of a predetermined wavelength emitted from the second light source 106 within the predetermined time τ1. The sound wave generated in the sample 2 is detected within a certain time τ1 from another time point t3, and the phase detection amplification unit 113 measures the sound wave as a magnitude 51. That is, the sound wave detection unit 111 in FIG. 3 detects sound waves at two different times in FIG. 4 (a certain time τ1 from time t1 to time t2 and a certain time τ1 from time t3 to time t4).

ここで、時点t1及びt3の時の脈波の所定の値、つまり脈波21のトリガとなる所定の値は、脈波21のいずれの値を採ることとしてもよいが、脈波21の極値(極大値又は極小値のいずれか一方)とすることが望ましい。図4では、脈波21の極大値を所定の値とした。このように脈波21の極大値を所定の値とすることで、1拍以内の積算時間で拍間をまたぐことなく積算できるので、数拍でも(2拍以上で)精度よく、成分濃度の算出が可能である。また、脈波21の数拍の時間で成分濃度の測定をするため、測定間隔を短くすることが可能である。さらに、時間が短いため、脈拍間隔の変動も小さくでき、成分濃度の算出精度を向上させることができる。   Here, the predetermined value of the pulse wave at the time points t1 and t3, that is, the predetermined value that triggers the pulse wave 21, may take any value of the pulse wave 21, but the pole of the pulse wave 21 may be taken. It is desirable to set a value (either one of a maximum value or a minimum value). In FIG. 4, the maximum value of the pulse wave 21 is set to a predetermined value. In this way, by setting the maximum value of the pulse wave 21 to a predetermined value, it is possible to integrate without crossing the beat within the integration time within one beat, so even a few beats (with two or more beats) can be accurately performed. Calculation is possible. Moreover, since the component concentration is measured in the time of several beats of the pulse wave 21, the measurement interval can be shortened. Furthermore, since the time is short, the fluctuation of the pulse interval can be reduced, and the calculation accuracy of the component concentration can be improved.

このように、本実施形態に係る成分濃度測定装置10は、脈波センサ115により図4の被検体の脈波21の所定の値をトリガにして脈波21を検出し、並びに第1の光源103及び/又は第2の光源106により第1の光又は/及び第2の光を出射し音波検出部111により音波を検出することで、血液量が相対的に同一の状態の時の脈波21及び音波を検出し音波の大きさ50、51として測定することが可能である。そのため、本実施形態に係る成分濃度測定装置10は、検出した脈波21及び音波の大きさ50、51から後述する音波強度の規格化が可能となり、脈動による血流量の変化が音波強度に与える影響を少なくして成分濃度を正確に測定することができる。   As described above, the component concentration measuring apparatus 10 according to the present embodiment detects the pulse wave 21 using the pulse wave sensor 115 as a trigger for the predetermined value of the pulse wave 21 of the subject in FIG. 103 and / or the second light source 106 emits the first light and / or the second light, and the sound wave detection unit 111 detects the sound wave, whereby the pulse wave when the blood volume is relatively the same. 21 and sound waves can be detected and measured as sound wave sizes 50 and 51. Therefore, the component concentration measurement apparatus 10 according to the present embodiment can normalize the sound wave intensity, which will be described later, from the detected pulse wave 21 and sound wave magnitudes 50 and 51, and a change in blood flow due to pulsation gives the sound wave intensity. The component concentration can be accurately measured with less influence.

図3の成分濃度算出手段としての成分濃度算出部114は、脈波積算手段及び音波強度積算手段としての機能を有することとする。そして、成分濃度算出部114は、図4に示す時点t1からの一定時間τ1内に脈波センサ115により検出される脈波21をそれぞれ逐次積算して脈波積算値として取得し且つ他の時点t3からの一定時間τ1内に脈波センサ115により検出される脈波21を逐次積算して他の脈波積算値として取得する。また、成分濃度算出部114は、時点t1からの一定時間τ1内に第1の光源103及び第2の光源106からの2波長の光により発生し音波検出部111により検出される音波の大きさ50を逐次積算して混合音波強度として取得し且つ他の時点t3からの一定時間τ1内に第2の光源106からの1波長の光により発生し音波検出部111により検出される音波の大きさ51を逐次積算して単一音波強度として取得する。   The component concentration calculation unit 114 as the component concentration calculation unit in FIG. 3 has functions as a pulse wave integration unit and a sound wave intensity integration unit. Then, the component concentration calculation unit 114 sequentially accumulates the pulse waves 21 detected by the pulse wave sensor 115 within a certain time τ1 from the time point t1 shown in FIG. The pulse waves 21 detected by the pulse wave sensor 115 are sequentially integrated within a certain time τ1 from t3 to obtain another integrated pulse wave value. In addition, the component concentration calculation unit 114 is a magnitude of the sound wave generated by the two-wavelength light from the first light source 103 and the second light source 106 and detected by the sound wave detection unit 111 within a certain time τ1 from the time point t1. 50 is sequentially accumulated to obtain a mixed sound wave intensity, and the magnitude of the sound wave generated by one wavelength of light from the second light source 106 and detected by the sound wave detection unit 111 within a predetermined time τ1 from another time point t3. 51 are sequentially integrated to obtain a single sound wave intensity.

上記の積算は、例えば、脈波信号と音波信号を、積算回路(不図示)によって積算し、除算回路(不図示)で信号の平均化処理により行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。ここで、積算回路及び除算回路での平均化処理は、リアルタイムで行ってもよいが、別途記憶した脈波及び音波の大きさ脈波及び音波の検出と異なる時間に行うこととしてもよい。   The above integration is performed, for example, by integrating a pulse wave signal and a sound wave signal by an integration circuit (not shown) and averaging the signals by a division circuit (not shown). The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also Here, the averaging process in the integrating circuit and the dividing circuit may be performed in real time, but may be performed at a time different from the separately stored pulse wave and magnitude of the sound wave and detection of the sound wave.

このように、本実施形態に係る成分濃度測定装置10は、成分濃度算出部114により脈波積算値及び音波強度を得ることで、音波強度の規格化に必要な具体的な情報を得て音波強度の規格化が可能となる。   As described above, the component concentration measuring apparatus 10 according to the present embodiment obtains specific information necessary for normalization of the sound wave intensity by obtaining the pulse wave integrated value and the sound wave intensity by the component concentration calculating unit 114, thereby obtaining the sound wave. Strength standardization is possible.

また、成分濃度算出部114は、図4の時点t1からの一定時間τ1内の脈波積算値、他の時点t3からの一定時間τ1内の他の脈波積算値、時点t1からの一定時間τ1内の混合音波強度、及び他の時点t3からの一定時間τ1内の単一音波強度から、測定対象とする成分濃度を算出する機能を有し、混合音波強度を脈波積算値で除算した混合音波強度規格値、及び単一音波強度を他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することが望ましい。   Further, the component concentration calculation unit 114 calculates the pulse wave integrated value within a certain time τ1 from the time point t1 in FIG. 4, the other pulse wave integrated value within the certain time τ1 from another time point t3, and the certain time from the time point t1. It has a function to calculate the component concentration to be measured from the mixed sound wave intensity within τ1 and the single sound wave intensity within a certain time τ1 from another time point t3, and the mixed sound wave intensity is divided by the integrated pulse wave value. It is desirable to calculate the component concentration from the ratio of the mixed sound wave intensity standard value and the single sound wave intensity standard value obtained by dividing the single sound wave intensity by another pulse wave integrated value.

成分濃度算出部114は、混合音波強度を脈波積算値で除算することにより混合音波強度の規格化を行う。また、単一音波強度を脈波積算値で除算することにより単一音波強度の規格化を行う。ここで、混合音波強度を除算する脈波積算値は、混合光により発生する音波と同時刻に検出された音波及び脈波の積算値であり、単一音波強度を除算する脈波積算値は、単一光により発生する音波と同時刻に検出された脈波の積算値である。そして、成分濃度算出部114は、規格化した混合音波強度規格値を前述の数式(3)の(s−s)に代入し、単一音波強度規格値を前述の数式(3)のsに代入して成分濃度を算出することができる。 The component concentration calculation unit 114 normalizes the mixed sound wave intensity by dividing the mixed sound wave intensity by the pulse wave integrated value. Further, the single sound wave intensity is normalized by dividing the single sound wave intensity by the pulse wave integrated value. Here, the pulse wave integrated value that divides the mixed sound wave intensity is the integrated value of the sound wave and pulse wave detected at the same time as the sound wave generated by the mixed light, and the pulse wave integrated value that divides the single sound wave intensity is The integrated value of the pulse wave detected at the same time as the sound wave generated by the single light. Then, the component concentration calculation unit 114 substitutes the normalized mixed sound wave intensity standard value into (s 1 -s 2 ) of the above-described equation (3), and sets the single sound wave intensity standard value of the above-described equation (3). The component concentration can be calculated by substituting for s 1 .

このようにして、本実施形態に係る成分濃度測定装置10は、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出するため、音波強度を脈波積算値で除算することにより、規格値を得て脈動による音波強度への影響を少なくすることができる。従って、本実施形態に係る成分濃度測定装置10は、音波強度を規格化して成分濃度を算出するため、精度良い算出結果を得ることができる。   Thus, the component concentration measuring apparatus 10 according to the present embodiment divides the sound wave intensity by the pulse wave integrated value in order to detect the pulse wave and the sound wave when the blood volume due to pulsation is relatively the same. As a result, the standard value can be obtained and the influence of the pulsation on the sound wave intensity can be reduced. Therefore, since the component concentration measuring apparatus 10 according to the present embodiment calculates the component concentration by normalizing the sound wave intensity, it is possible to obtain an accurate calculation result.

また、図5に、脈波及び脈波に同期して発生する音波の大きさの他の例を示した概略図を示す。   FIG. 5 is a schematic view showing another example of a pulse wave and the magnitude of a sound wave generated in synchronization with the pulse wave.

図5では、図3の第1の光源103及び第2の光源106からの異なる2波長の光(波長λ、λ)により被検体2で発生する音波の大きさ60が、時点t5から時点t6の一定時間τ2に示すように、脈波22に同期して増減することを示している。また、図5では、図3の第2の光源106からの所定の1波長の光(波長λ)により被検体2で発生する音波の大きさ61が、時点t7から時点t8の一定時間τ2に示すように、脈波22に同期して増減することを示している。また、図5では、図3の第1の光源103からの他の所定の1波長の光(波長λ)により被検体2で発生する音波の大きさ62が、時点t9から時点t10の一定時間τ2に示すように、脈波22に同期して増減することを示している。 In FIG. 5, the magnitude 60 of the sound wave generated in the subject 2 by the light of two different wavelengths (wavelengths λ 1 and λ 2 ) from the first light source 103 and the second light source 106 in FIG. As shown at a constant time τ2 at time t6, the frequency increases or decreases in synchronization with the pulse wave 22. Further, in FIG. 5, the magnitude 61 of the sound wave generated in the subject 2 by the light having a predetermined wavelength (wavelength λ 2 ) from the second light source 106 in FIG. 3 is a certain time τ 2 from time t 7 to time t 8. As shown in the figure, the increase / decrease in synchronization with the pulse wave 22 is shown. Further, in FIG. 5, the magnitude 62 of the sound wave generated in the subject 2 by another predetermined wavelength of light (wavelength λ 1 ) from the first light source 103 in FIG. 3 is constant from time t9 to time t10. As shown at time τ2, it indicates that the pulse wave 22 increases or decreases in synchronization.

本実施形態では、一定時間τ2を図3の脈波センサ115の検出する脈波22の1周期以内(図5の脈波でいう極大値(極小値)から次の極大値(極小値)までの間の時間)とし、脈波センサ115は、被検体2の脈波22のうち連続した2拍分を時点t5及び他の時点t7からの一定時間τ2内に1拍ずつ検出することが望ましい。つまり、図3の脈波センサ115は、図5の異なる3つの時刻のうち時点t5から時点t6の一定時間τ2及び時点t7から時点t8の一定時間τ2に脈波22を検出する。   In the present embodiment, the certain time τ2 is within one cycle of the pulse wave 22 detected by the pulse wave sensor 115 in FIG. 3 (from the maximum value (minimum value) in the pulse wave in FIG. 5 to the next maximum value (minimum value)). The pulse wave sensor 115 preferably detects two consecutive beats of the pulse wave 22 of the subject 2 one beat at a time τ2 from the time point t5 and another time point t7. . That is, the pulse wave sensor 115 in FIG. 3 detects the pulse wave 22 at a certain time τ2 from time t5 to time t6 and from a time t7 to time t8 among the three different times in FIG.

また、図3の第1の光源103及び第2の光源106は、図5の脈波22の2拍分に対応して時点t5からの一定時間τ2内に異なる2波長の光(波長λ、λ)を同一周波数で逆位相の信号により電気的に強度変調して出射する。つまり、図3の第1の光源103及び第2の光源106は、図5の異なる3つの時刻のうち時点t5から時点t6の一定時間τ2に異なる2波長の光を出射する。 Also, the first light source 103 and the second light source 106 in FIG. 3 correspond to two different wavelengths of light (wavelength λ 1) within a certain time τ 2 from time t 5 corresponding to two beats of the pulse wave 22 in FIG. , Λ 2 ) is electrically intensity-modulated with a signal having the same frequency and opposite phase, and then emitted. That is, the first light source 103 and the second light source 106 in FIG. 3 emit light of two different wavelengths from time t5 to time t6 among the three different times in FIG.

また、図3の第2の光源106は、図5の脈波22の2拍分に対応して時点t7からの一定時間τ2内に異なる2波長の光のうち所定の1波長の光(波長λ)を電気的に強度変調して出射する。つまり、図3の第2の光源106は、図5の異なる3つの時刻のうち時点t7から時点t8の一定時間τ2に所定の1波長の光を出射する。 3 corresponds to two beats of the pulse wave 22 of FIG. 5 and has a predetermined wavelength (wavelength) of two different wavelengths within a certain time τ2 from the time t7. λ 2 ) is electrically intensity-modulated and emitted. That is, the second light source 106 in FIG. 3 emits light of a predetermined wavelength at a certain time τ2 from time t7 to time t8 among the three different times in FIG.

なお、本実施形態では、混合光出射手段及び第1単一光出射手段の機能としての光の出射について、第1の光源103及び第2の光源106からの異なる2波長の光の出射を先で第2の光源106からの所定の1波長の光の出射を後としたが、第2の光源106からの所定の1波長の光の出射を先で第1の光源103及び第2の光源106からの異なる2波長の光の出射を後としてもよい。   In the present embodiment, regarding the emission of light as a function of the mixed light emission means and the first single light emission means, the emission of light of two different wavelengths from the first light source 103 and the second light source 106 is first performed. The light of the predetermined one wavelength from the second light source 106 is later emitted, but the light of the predetermined one wavelength from the second light source 106 is first emitted before the first light source 103 and the second light source. The two different wavelengths of light from 106 may be emitted later.

また、図3の音波検出手段としての音波検出部111は、第1の光源103及び第2の光源106から時点t5からの一定時間τ2内に出射される異なる2波長の光により被検体2で発生する音波を時点t5からの一定時間τ2内に検出し、位相検波増幅部113は、音波の大きさ60として測定する。また、音波検出部111は、第2の光源106から一定時間τ2内に出射される所定の1波長の光により被検体2で発生する音波を他の時点t7からの一定時間τ2内に検出し、位相検波増幅部113は、音波の大きさ61として測定する。つまり、図3の音波検出部111は、図5の異なる2つの時刻(時点t5から時点t6の一定時間τ2及び時点t7から時点t8の一定時間τ2)の音波を検出する。   Also, the sound wave detection unit 111 as the sound wave detection unit in FIG. 3 is detected by the subject 2 using light of two different wavelengths emitted from the first light source 103 and the second light source 106 within a predetermined time τ2 from the time point t5. The generated sound wave is detected within a certain time τ2 from time t5, and the phase detection amplification unit 113 measures the sound wave magnitude 60. The sound wave detection unit 111 detects a sound wave generated in the subject 2 by light having a predetermined wavelength emitted from the second light source 106 within a certain time τ2 within a certain time τ2 from another time point t7. The phase detection amplification unit 113 measures the sound wave magnitude 61. That is, the sound wave detection unit 111 in FIG. 3 detects sound waves at two different times in FIG. 5 (a certain time τ2 from time t5 to time t6 and a certain time τ2 from time t7 to time t8).

このように脈波22及び音波を検出することにより、本実施形態に係る成分濃度測定装置10は、脈波22及び音波の検出時間差を短くすることができるため、成分濃度の測定誤差を小さくすることができる。また、検出時間差を短くすることで成分濃度の測定時間を短くすることができ、被検体2への負担を軽減させることができる。   By detecting the pulse wave 22 and the sound wave in this way, the component concentration measuring apparatus 10 according to the present embodiment can shorten the detection time difference between the pulse wave 22 and the sound wave, thereby reducing the measurement error of the component concentration. be able to. Further, by shortening the detection time difference, the component concentration measurement time can be shortened, and the burden on the subject 2 can be reduced.

また、本実施形態では、成分濃度算出部114は脈波センサ115により検出される図5の2拍分の脈波22の極大値の比率を算出する第1極値比率算出手段としての機能を有することとし、成分濃度測定装置10は、成分濃度算出部114の算出する比率が1.1より大きいとき又は0.9より小さいときに成分濃度を繰り返し測定することが望ましい。   Further, in the present embodiment, the component concentration calculation unit 114 functions as a first extreme value ratio calculation unit that calculates the maximum value ratio of the pulse wave 22 for two beats of FIG. 5 detected by the pulse wave sensor 115. It is desirable that the component concentration measuring apparatus 10 repeatedly measures the component concentration when the ratio calculated by the component concentration calculating unit 114 is larger than 1.1 or smaller than 0.9.

安静時は連続する脈波22の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本実施形態に係る成分濃度測定装置10は、図5の連続2拍間での極大値−極大値(または極小値−極小値)での信号差が、ある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]と[第2の光により発生する音波]の両信号を血液量変動差が小さい条件で検出することができる。ここで、脈波22の極値の判断は、例えば、波形の微分値を信号処理する等の周知技術により実現可能である。   Although it is considered that the fluctuation of the continuous pulse wave 22 is small at rest, the pulsation may fluctuate rapidly due to body movements or external factors. The component concentration measuring apparatus 10 according to the present embodiment is configured so that the signal difference between the maximum value and the maximum value (or the minimum value and the minimum value) between two consecutive beats in FIG. It is possible to determine a state in which the volume difference is within a certain range, that is, a state in which the blood volumes of the two can be regarded as substantially equal. Therefore, it is possible to detect both signals of [the differential sound wave generated by the first light and the second light] and [the sound wave generated by the second light] under the condition that the blood volume fluctuation difference is small. Here, the determination of the extreme value of the pulse wave 22 can be realized by a known technique such as signal processing of the differential value of the waveform.

また、図3の第2単一光出射手段としての第1の光源103は、図5の被検体の脈波22の所定の値となり時点t5からの一定時間τ2内及び他の時点t7からの一定時間τ2内を除く他の時点t9からの一定時間τ2内に、異なる2波長の光のうち他の所定の1波長の光(波長λ)を電気的に強度変調して出射し、脈波センサ115は、時点t5からの一定時間τ2内及び他の時点t7からの一定時間τ2内を除く他の時点t9からの一定時間τ2内の脈波22を検出し、音波検出部111は、時点t5からの一定時間τ2内及び他の時点t7からの一定時間τ2内を除く他の時点t9からの一定時間τ2内に、第1の光源103からの1波長の光による音波を検出し位相検波増幅部113は、音波の大きさ62として測定することが望ましい。ここで、図5では、連続した3拍分の脈波22を検出し、それに対応して発生する音波の大きさ60、61、62を示しているが、脈波センサ115及び音波検出部111は、異なる3つの時刻で脈波22及び音波を検出することでよい。 Further, the first light source 103 as the second single light emitting means in FIG. 3 has a predetermined value of the pulse wave 22 of the subject in FIG. 5 within a predetermined time τ2 from the time t5 and from another time t7. Within a certain time τ2 from another time t9 except within the certain time τ2, another predetermined wavelength of light (wavelength λ 1 ) out of two different wavelengths is emitted after being electrically modulated, and pulsed. The wave sensor 115 detects the pulse wave 22 within a certain time τ2 from the time t9 other than the certain time τ2 from the time t5 and other than the certain time τ2 from the other time t7, and the sound wave detection unit 111 Within a certain time τ2 from the time t5 and within a certain time τ2 from the other time t9 except for the certain time τ2 from the other time t7, the sound wave by the light of one wavelength from the first light source 103 is detected and phased. The detection amplification unit 113 desirably measures the sound wave magnitude 62. . Here, in FIG. 5, pulse waves 22 for three consecutive beats are detected and the magnitudes 60, 61, and 62 of the sound waves generated corresponding thereto are shown, but the pulse wave sensor 115 and the sound wave detection unit 111 are shown. The pulse wave 22 and the sound wave may be detected at three different times.

本実施形態に係る成分濃度測定装置10は、第1の光源103から他の所定の1波長の光を出射し、音波検出部111により音波を検出することにより時点t5からの一定時間τ2内及び他の時点t7からの一定時間τ2内に取得した音波強度の妥当性を検証するための情報を取得することが可能となる。   The component concentration measuring apparatus 10 according to the present embodiment emits light of another predetermined wavelength from the first light source 103, and detects the sound wave by the sound wave detection unit 111, and within a certain time τ2 from the time point t5 and It becomes possible to acquire information for verifying the validity of the sound wave intensity acquired within a certain time τ2 from another time point t7.

ここで、上記音波強度の妥当性の検証を行う場合、音波強度積算手段としての成分濃度算出部114は、時点t5からの一定時間τ2内及び他の時点t7からの一定時間τ2内を除く他の時点t9からの一定時間τ2内に第1の光源103からの1波長の光により発生し音波検出部111により検出される音波の大きさ62を逐次積算して他の単一音波強度として取得することが望ましい。   Here, when the validity of the sound wave intensity is verified, the component concentration calculation unit 114 as the sound wave intensity integrating means excludes the fixed time period τ2 from the time point t5 and the fixed time period τ2 from another time point t7. The sound wave magnitude 62 generated by one wavelength light from the first light source 103 and detected by the sound wave detection unit 111 within a certain time τ2 from the time point t9 is sequentially accumulated and obtained as another single sound wave intensity. It is desirable to do.

成分濃度算出部114は、例えば、音波信号を、積算回路(不図示)によって積算し、除算回路(不図示)で信号の平均化処理を行う。積算時間が長い程、ランダム雑音の影響が小さくなるので、100msec〜数secの時間で積算することが望ましいが、ランダム雑音の影響が無視できるほどに小さい場合には、1msecと短い積算時間で計測することもできる。ここで、積算回路及び除算回路での平均化処理は、リアルタイムで行ってもよいが、別途記憶した音波強度を音波の検出と異なる時間に行うこととしてもよい。   For example, the component concentration calculation unit 114 integrates the sound wave signal by an integration circuit (not shown), and performs an averaging process of the signal by a division circuit (not shown). The longer the integration time, the smaller the effect of random noise, so it is desirable to integrate over a period of 100 msec to several seconds, but when the influence of random noise is so small that it can be ignored, the measurement takes a short integration time of 1 msec. You can also Here, the averaging process in the integrating circuit and the dividing circuit may be performed in real time, but the separately stored sound wave intensity may be performed at a time different from the detection of the sound wave.

このように、本実施形態に係る成分濃度測定装置10は、成分濃度算出部114により他の単一音波強度を取得することにより、音波強度の妥当性の検証に必要な具体的な情報を得て音波強度の妥当性の検証が可能となる。   Thus, the component concentration measurement apparatus 10 according to the present embodiment obtains specific information necessary for verification of the validity of the sound wave intensity by acquiring another single sound wave intensity by the component concentration calculating unit 114. Therefore, the validity of the sound wave intensity can be verified.

また、上記音波強度の妥当性の検証を行う場合、成分濃度算出部114は、成分濃度算出部114において取得される単一音波強度(図5の時点t7から時点t8の一定時間τ2内の音波の大きさ61の積算値)と他の単一音波強度との差(図5の時点t9から時点t10の一定時間τ2内の音波の大きさ62の積算値)の絶対値を算出し且つ算出した絶対値と成分濃度算出部114において取得される混合音波強度(図5の時点t5から時点t6の一定時間τ2内の音波の大きさ60の積算値)との比率を算出する音波強度比率算出手段としての機能を有することとする。そして、成分濃度測定装置10は、成分濃度算出部114の算出する比率が1.05より大きいとき又は0.95より小さいときに成分濃度を繰り返し測定することが望ましい。   When the validity of the sound wave intensity is verified, the component concentration calculation unit 114 receives the single sound wave intensity acquired by the component concentration calculation unit 114 (the sound wave within a certain time τ2 from time t7 to time t8 in FIG. 5). And the absolute value of the difference between the intensity of the single sound wave) and the other single sound wave intensity (the integrated value of the sound wave magnitude 62 within a predetermined time τ2 from time t9 to time t10 in FIG. 5). The sound wave intensity ratio calculation that calculates the ratio between the absolute value and the mixed sound wave intensity acquired by the component concentration calculation unit 114 (the integrated value of the sound wave size 60 within the fixed time τ2 from the time point t5 to the time point t6 in FIG. 5). It has a function as a means. The component concentration measuring apparatus 10 desirably repeatedly measures the component concentration when the ratio calculated by the component concentration calculation unit 114 is greater than 1.05 or less than 0.95.

図3の成分濃度測定装置10は、[第1の光により発生する音波と第2の光により発生する音波の差分音波信号]と[第1の光により発生する音波信号]−[第2の光により発生する音波信号]の差が大きい場合に、再度測定をやり直す。従って、本実施形態に係る成分濃度測定装置10は、図5の時点t5からの一定時間τ2内に取得した混合音波強度及び他の時点t7からの一定時間τ2内に取得した単一音波強度の妥当性を検証して、成分濃度の測定精度を向上させることができる。   The component concentration measuring apparatus 10 in FIG. 3 includes [a differential sound wave signal between a sound wave generated by the first light and a sound wave generated by the second light] and [a sound wave signal generated by the first light]-[second When the difference between the sound wave signals generated by light is large, the measurement is performed again. Therefore, the component concentration measuring apparatus 10 according to the present embodiment has the mixed sound wave intensity acquired within the constant time τ2 from the time point t5 in FIG. 5 and the single sound wave intensity acquired within the constant time τ2 from the other time point t7. The validity can be verified and the measurement accuracy of the component concentration can be improved.

また、本実施形態のように、図5の3拍分の脈波22を検出し、3拍分に対応して異なる2波長の光、所定の1波長の光及び他の所定の1波長の光を出射し、並びに3拍分に対応して音波を検出することにより、本実施形態に係る成分濃度測定装置10は、脈波22及び音波の検出時間差が小さくなるため、図5の時点t5からの一定時間τ2内に取得した混合音波強度及び他の時点t7からの一定時間τ2に取得した単一音波強度の妥当性の検証結果の精度を向上させることができる。   Further, as in the present embodiment, the pulse wave 22 for three beats in FIG. 5 is detected, and light of two different wavelengths, light of a predetermined one wavelength, and other predetermined one wavelength corresponding to the three beats. Since the component concentration measuring apparatus 10 according to the present embodiment decreases the detection time difference between the pulse wave 22 and the sound wave by emitting the light and detecting the sound wave corresponding to three beats, the time t5 in FIG. It is possible to improve the accuracy of the verification result of the validity of the mixed sound wave intensity acquired within the predetermined time τ2 from the time point and the single sound wave intensity acquired at the constant time τ2 from the other time point t7.

また、本実施形態では、成分濃度算出部114は脈波センサ115により検出される図5の連続した3拍分の脈波22のうちいずれか2拍の極大値の比率を算出する第2極値比率算出手段をさらに有することとし、成分濃度測定装置10は、成分濃度算出部114の算出する比率が1.1より大きいとき又は0.9より小さいときに成分濃度を繰り返し測定することが望ましい。   Further, in the present embodiment, the component concentration calculation unit 114 calculates the ratio of the maximum value of any two beats of the pulse waves 22 for three consecutive beats in FIG. 5 detected by the pulse wave sensor 115. It is desirable to further include a value ratio calculation means, and the component concentration measurement apparatus 10 desirably repeatedly measures the component concentration when the ratio calculated by the component concentration calculation unit 114 is greater than 1.1 or less than 0.9. .

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本実施形態に係る成分濃度測定装置10は、図5の脈波の連続3拍のうちいずれか2拍間での極大値−極大値(または極小値−極小値)での信号差が、ある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]、[第2の光により発生する音波]又は[第1の光により発生する音波]のいずれか2つの信号を血液量変動差が小さい条件で検出することができる。ここで、脈波22の極値の判断は、例えば、波形の微分値を信号処理する等の周知技術により実現可能である。また、「いずれか2拍の極大値の比率を算出する」は必ずしも脈波の3拍分のうちいずれか2拍の3通りの組み合わせの総てを含むことを意味しないが、成分濃度測定装置10は、3拍分の脈波のうちいずれか2拍の3通りの総ての組み合わせについて極値の比率を算出して判断すると「血液量変動差が小さい条件」を確実なものとして成分濃度算出精度を向上させることができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. The component concentration measuring apparatus 10 according to the present embodiment has a signal difference between a maximum value and a maximum value (or a minimum value and a minimum value) between any two beats among the three consecutive beats of the pulse wave of FIG. It is possible to determine a state in which the blood volume difference is within a certain range, that is, the blood volume of both can be regarded as substantially equal, from a position smaller than a certain standard. Therefore, any two signals of [differential sound wave generated by the first light and second light], [sound wave generated by the second light] or [sound wave generated by the first light] It can be detected under conditions where the variation difference is small. Here, the determination of the extreme value of the pulse wave 22 can be realized by a known technique such as signal processing of the differential value of the waveform. Further, “calculating the ratio of the maximum value of any two beats” does not necessarily mean that all three combinations of any two beats out of the three beats of the pulse wave are included. 10 is calculated by calculating the ratio of extreme values for all three combinations of two beats of the pulse wave for three beats, and the concentration of the component is assured that “the condition that the blood volume fluctuation difference is small” is assured. Calculation accuracy can be improved.

次に、本実施形態に係る成分濃度測定装置10の制御方法について図3、図4、図5を参照して説明する。   Next, a control method of the component concentration measuring apparatus 10 according to the present embodiment will be described with reference to FIGS. 3, 4, and 5.

本実施形態に係る成分濃度測定装置10の制御方法では、成分濃度測定装置10の第1の光源103及び第2の光源106が、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体2の測定対象の成分及び水の吸光度特性から選定された波長λ及び波長λに設定する。そして、成分濃度測定装置10は、第1脈波音波検出手順として次の動作を行う。つまり、図4の被検体2の脈波の所定の値となる時点t1からの一定時間τ1内に、成分濃度測定装置10の脈波センサ115は、被検体2の脈波21を検出し、第1の光源103及び第2の光源106は、異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、音波検出部111は、被検体2で発生する音波を検出し位相検波増幅部113は、音波の大きさ50として測定する。また、第2脈波音波検出手順として次の動作を行う。つまり、図4の被検体の脈波21の所定の値となる他の時点t3からの一定時間τ1内に、成分濃度測定装置10の脈波センサ115は、被検体2の脈波22を検出し、第2の光源106は、所定の1波長の光を電気的に強度変調して出射し、音波検出部111は、被検体2で発生する音波を検出し位相検波増幅部113は、音波の大きさ51として測定する。ここで、第1脈波音波検出手順及び第2脈波音波検出手順は、手順の前後を問わない。 In the control method of the component concentration measuring apparatus 10 according to the present embodiment, the first light source 103 and the second light source 106 of the component concentration measuring apparatus 10 have different two wavelengths of light, that is, the first light wavelength and the first light. The wavelength of the light 2 is set to a wavelength λ 1 and a wavelength λ 2 selected from the components to be measured of the subject 2 and the absorbance characteristics of water in accordance with the measurement principle described above. Then, the component concentration measuring apparatus 10 performs the following operation as the first pulse wave sound wave detection procedure. That is, the pulse wave sensor 115 of the component concentration measuring apparatus 10 detects the pulse wave 21 of the subject 2 within a certain time τ1 from the time point t1 when the pulse wave of the subject 2 becomes a predetermined value in FIG. The first light source 103 and the second light source 106 emit light of two different wavelengths that are electrically intensity-modulated with signals having the same frequency and opposite phase, and the sound wave detection unit 111 generates sound waves generated by the subject 2. And the phase detection amplification unit 113 measures the acoustic wave size as 50. Moreover, the following operation | movement is performed as a 2nd pulse wave sound wave detection procedure. That is, the pulse wave sensor 115 of the component concentration measuring apparatus 10 detects the pulse wave 22 of the subject 2 within a certain time τ1 from another time point t3 at which the pulse wave 21 of the subject in FIG. The second light source 106 electrically modulates and emits light having a predetermined wavelength, the sound wave detection unit 111 detects a sound wave generated in the subject 2, and the phase detection amplification unit 113 Measured as the size 51. Here, the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure may be performed before or after the procedure.

このように、本実施形態に係る成分濃度測定装置10の制御方法では、第1、第2脈波音波検出手順により図4の脈波21の所定の値をトリガにして脈波21を検出し、並びに第1の光又は/及び第2の光を出射し音波を検出することで、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出することが可能である。そのため、検出した脈波21及び音波から後述する音波強度の規格化が可能となり、脈動による血流量の変化が音波強度に与える影響を少なくして成分濃度を正確に測定することができる。   Thus, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the pulse wave 21 is detected by using the predetermined value of the pulse wave 21 of FIG. 4 as a trigger by the first and second pulse wave sound wave detection procedures. In addition, by emitting the first light and / or the second light and detecting the sound wave, it is possible to detect the pulse wave and the sound wave when the blood volume due to the pulsation is relatively the same. Therefore, it is possible to normalize the sound wave intensity, which will be described later, from the detected pulse wave 21 and the sound wave, and the component concentration can be accurately measured with less influence on the sound wave intensity due to the change in blood flow due to pulsation.

なお、第1の光源103及び第2の光源106が各々の波長を2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とし、一方の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の光の波長を水が一方の光の波長におけるのと相等しい吸収を呈する波長に設定し、又は2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることもできることは、前述の通りである。また、これによる前述の効果は、本実施形態に係る成分濃度測定装置10の制御方法において当然に具備する。   Note that the first light source 103 and the second light source 106 have two wavelengths of light having a difference in absorption between components whose measurement target is the wavelength of light having two wavelengths is larger than the difference in absorption exhibited by water. The wavelength of one light is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the wavelength of the other light is set to a wavelength at which water exhibits absorption equal to that at the wavelength of one light Alternatively, as described above, the difference in absorption exhibited by the component to be measured can be set to two wavelengths of light that are larger than the difference in absorption exhibited by the other components. is there. Moreover, the above-mentioned effect by this is naturally provided in the control method of the component concentration measuring apparatus 10 according to the present embodiment.

また、本実施形態に係る成分濃度測定装置10は、第1脈波音波強度積算手順として次の動作を行う。つまり、図3の成分濃度算出部114は、第1脈波音波検出手順において図4の時点t1からの一定時間τ1内に脈波センサ115の検出する脈波21を逐次積算して脈波積算値として取得し、及び時点t1からの一定時間τ1内に音波検出部111の検出する、異なる2波長の光により被検体2で発生する音波の大きさ50を逐次積算して混合音波強度として取得する。また、第2脈波音波強度積算手順として次の動作を行う。つまり、図3の成分濃度算出部114は、第2脈波音波検出手順において図4の時点t3からの一定時間τ1内に脈波センサ115の検出する脈波21を逐次積算して脈波積算値として取得し、及び時点t3からの一定時間τ1内に音波検出部111の検出する所定の1波長の光により被検体2で発生する音波の大きさ51を逐次積算して単一音波強度として取得する。ここで、第1脈波音波検出手順において成分濃度算出部114は、脈波センサ115からの脈波信号の入力と同時につまり第1脈波音波検出手順にリアルタイムに脈波の積算を行ってもよいし、脈波信号をメモリに記憶しておき、第1脈波音波検出手順の後に行ってもよい。また、成分濃度算出部114は、音波検出部111からのフィルタ112及び位相検波増幅部113を介した音波信号の入力と同時にリアルタイムに音波の大きさの積算を行ってもよいし、音波信号をメモリに記憶しておき、第1脈波音波検出手順の後に行ってもよい。このことは、第2脈波音波検出手順における成分濃度算出部114の積算処理についても同様である。   In addition, the component concentration measuring apparatus 10 according to the present embodiment performs the following operation as the first pulse wave sound wave intensity integration procedure. That is, the component concentration calculation unit 114 in FIG. 3 sequentially accumulates the pulse wave 21 detected by the pulse wave sensor 115 within a certain time τ1 from the time point t1 in FIG. 4 in the first pulse wave sound wave detection procedure. Acquired as a value and detected by the sound wave detection unit 111 within a predetermined time τ1 from the time point t1, and sequentially obtained by mixing the intensity 50 of the sound wave generated in the subject 2 with light of two different wavelengths, and obtaining the mixed sound wave intensity. To do. Moreover, the following operation | movement is performed as a 2nd pulse wave sound wave intensity integration procedure. That is, the component concentration calculation unit 114 in FIG. 3 sequentially accumulates the pulse wave 21 detected by the pulse wave sensor 115 within a certain time τ1 from the time point t3 in FIG. 4 in the second pulse wave sound wave detection procedure. Obtained as a value and sequentially integrating the magnitude 51 of the sound wave generated in the subject 2 by light of a predetermined wavelength detected by the sound wave detection unit 111 within a predetermined time τ1 from the time point t3 to obtain a single sound wave intensity. get. Here, in the first pulse wave sound wave detection procedure, the component concentration calculation unit 114 may perform pulse wave integration in real time in the first pulse wave sound wave detection procedure simultaneously with the input of the pulse wave signal from the pulse wave sensor 115. Alternatively, the pulse wave signal may be stored in a memory and performed after the first pulse wave sound wave detection procedure. In addition, the component concentration calculation unit 114 may perform integration of the sound wave size in real time simultaneously with the input of the sound wave signal via the filter 112 and the phase detection amplification unit 113 from the sound wave detection unit 111, You may memorize | store in memory and may perform after a 1st pulse wave sound wave detection procedure. The same applies to the integration process of the component concentration calculation unit 114 in the second pulse wave sound wave detection procedure.

上記の第1、第2脈波音波強度積算手順は、後述する音波強度の規格化に至るまでの具体的な1手順である。このように、本実施形態に係る成分濃度測定装置10の制御方法では、第1、第2脈波音波強度積算手順により脈波積算値及び音波強度を得ることで、音波強度の規格化に必要な具体的な情報を得て音波強度の規格化が可能となる。   The above-described first and second pulse wave sound wave intensity integration procedures are one specific procedure up to the standardization of sound wave intensity which will be described later. Thus, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the pulse wave integrated value and the sound wave intensity are obtained by the first and second pulse wave sound wave intensity integrating procedures, which is necessary for the standardization of the sound wave intensity. It is possible to standardize the sound intensity by obtaining specific information.

また、図3の成分濃度算出部114は、第1脈波音波強度積算手順及び第2脈波音波強度積算手順において取得される脈波積算値、他の脈波積算値、混合音波強度及び単一音波強度から成分濃度を算出する成分濃度算出手順をさらに有することが望ましく、当該手順において、成分濃度算出部114は、図4の時点t1から時点t2の一定時間τ1内の音波の大きさ50の積算値である混合音波強度を時点t1から時点t2の一定時間τ1内の脈波21の積算値である脈波積算値で除算した混合音波強度規格値、及び時点t3から時点t4の一定時間τ1内の音波の大きさ51の積算値である単一音波強度を時点t3から時点t4の一定時間τ1内の脈波21の積算値である他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することが望ましい。成分濃度算出部114は、規格化した混合音波強度規格値を前述の数式(3)の(s−s)に代入し、単一音波強度規格値を前述の数式(3)のsに代入して成分濃度を算出することができる。 Further, the component concentration calculation unit 114 in FIG. 3 includes a pulse wave integrated value acquired in the first pulse wave sound wave intensity integrating procedure and a second pulse wave sound wave intensity integrating procedure, another pulse wave integrated value, a mixed sound wave intensity, and a single unit. It is desirable to further have a component concentration calculation procedure for calculating the component concentration from the single sound wave intensity. In this procedure, the component concentration calculation unit 114 has a sound wave size 50 within a certain time τ1 from time t1 to time t2 in FIG. The mixed sound wave intensity standard value obtained by dividing the mixed sound wave intensity that is the integrated value of the pulse wave by the pulse wave integrated value that is the integrated value of the pulse wave 21 within the constant time τ1 from the time point t1 to the time point t2, and the constant time period from the time point t3 to the time point t4. The single sound wave intensity obtained by dividing the single sound wave intensity, which is the integrated value of the sound wave magnitude 51 within τ1, by the other pulse wave integrated value, which is the integrated value of the pulse wave 21 within the predetermined time τ1 from time t3 to time t4. Calculate the component concentration from the ratio of the standard values It is desirable to. The component concentration calculation unit 114 substitutes the standardized mixed sound wave intensity standard value into (s 1 −s 2 ) of the above-described equation (3), and sets the single sound wave intensity standard value to s 1 of the above-described equation (3). The component concentration can be calculated by substituting for.

このようにして、本実施形態に係る成分濃度測定装置10の制御方法では、成分濃度算出手順により、規格化した音波強度により成分濃度を算出することができる。つまり、脈動による血液量が相対的に同一の状態の時の脈波及び音波を検出するため、音波強度を脈波積算値で除算することにより、規格値を得て脈動による音波強度への影響を少なくすることができる。従って、本発明では、音波強度を規格化して成分濃度を算出するため、精度良い算出結果を得ることができる。   Thus, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the component concentration can be calculated from the normalized sound wave intensity by the component concentration calculation procedure. In other words, in order to detect the pulse wave and sound wave when the blood volume due to pulsation is relatively the same, the standard value is obtained by dividing the sound wave intensity by the pulse wave integrated value, and the effect on the sound wave intensity due to pulsation Can be reduced. Therefore, in the present invention, since the component concentration is calculated by normalizing the sound wave intensity, a highly accurate calculation result can be obtained.

ここで、脈波のトリガとなる所定の値は、図4の脈波21のいずれの値の時点としてもよいが、脈波21の極値(極大値又は極小値のいずれか一方)とすることが望ましい。図4では、前述したように脈波21の極大値を所定の値とした。このように、脈波21の極大値を所定の値とすることで、1拍以内の積算時間で拍間をまたぐことなく積算できるので、数拍でも(2拍以上で)精度よく、成分濃度の算出が可能であり、測定間隔を短くすることが可能である。また、時間が短いため、脈拍間隔の変動も小さくでき、成分濃度の算出精度を向上させることができる。   Here, the predetermined value serving as the trigger of the pulse wave may be the time of any value of the pulse wave 21 in FIG. 4, but is the extreme value (either the maximum value or the minimum value) of the pulse wave 21. It is desirable. In FIG. 4, as described above, the maximum value of the pulse wave 21 is set to a predetermined value. In this way, by setting the maximum value of the pulse wave 21 to a predetermined value, it is possible to integrate without inter-beating within an integration time within one beat, so even a few beats (with two or more beats) can be accurately obtained. Can be calculated, and the measurement interval can be shortened. Further, since the time is short, the fluctuation of the pulse interval can be reduced, and the calculation accuracy of the component concentration can be improved.

また、図4に示すように、一定時間τ1を図3の脈波センサ115の検出する脈波21の1周期以内とし、脈波センサ115は、被検体2の脈波21のうち連続した2拍分を第1脈波音波検出手順及び第2脈波音波検出手順において1拍ずつ検出し、第1の光源103及び第2の光源106は、第1脈波音波検出手順において図4の脈波の2拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、第2の光源106は、第2脈波音波検出手順において図4の脈波の2拍分に対応して所定の1波長の光を電気的に強度変調して出射し、音波検出部111は、第1脈波音波検出手順及び第2脈波音波検出手順において図4の脈波の2拍分に対応してそれぞれの音波を検出することが望ましい。   Further, as shown in FIG. 4, the predetermined time τ1 is set to be within one cycle of the pulse wave 21 detected by the pulse wave sensor 115 of FIG. 3, and the pulse wave sensor 115 is the continuous 2 of the pulse waves 21 of the subject 2. The beat is detected one beat at a time in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure, and the first light source 103 and the second light source 106 detect the pulse of FIG. The light of two different wavelengths corresponding to two beats of the wave is electrically intensity-modulated with a signal of the same phase and opposite phase and emitted, and the second light source 106 performs the second pulse wave sound wave detection procedure in FIG. Corresponding to two beats of the pulse wave, a predetermined wavelength of light is electrically intensity-modulated and emitted, and the sound wave detection unit 111 performs the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure. It is desirable to detect each sound wave corresponding to two beats of the pulse wave of FIG.

本実施形態に係る成分濃度測定装置10の制御方法では、連続した2拍分の脈波21及びそれに対応する音波を検出するため、脈波21及び音波の検出時間差を短くすることができる。そのため、成分濃度の測定誤差を小さくすることができる。また、検出時間差を短くすることで成分濃度の測定時間を短くすることができ、被検体2への負担を軽減させることができる。   In the control method of the component concentration measuring apparatus 10 according to the present embodiment, the pulse wave 21 for two consecutive beats and the sound wave corresponding thereto are detected, so that the difference in detection time between the pulse wave 21 and the sound wave can be shortened. Therefore, the measurement error of the component concentration can be reduced. Further, by shortening the detection time difference, the component concentration measurement time can be shortened, and the burden on the subject 2 can be reduced.

また、本実施形態に係る成分濃度測定装置10の制御方法では、第1脈波音波検出手順及び第2脈波音波検出手順において脈波センサ115の検出する図4の連続した2拍分の脈波21の極大値の比率を算出し、算出した比率が1.1より大きいとき又は0.9より小さいときに第1脈波音波検出手順及び第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第1脈波確認手順をさらに有することが望ましい。ここで、第1脈波確認手順は、第1脈波音波検出手順及び第2脈波音波検出手順と成分濃度算出手順との間のいずれで行うことができ、成分濃度算出手順の後に行ってもよい。   Moreover, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the pulses for two consecutive beats of FIG. 4 detected by the pulse wave sensor 115 in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure. The ratio of the maximum value of the wave 21 is calculated, and when the calculated ratio is larger than 1.1 or smaller than 0.9, the component concentration is returned to the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure. It is desirable to further have a first pulse wave confirmation procedure for repeated measurement. Here, the first pulse wave confirmation procedure can be performed between the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the component concentration calculation procedure, and is performed after the component concentration calculation procedure. Also good.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本実施形態に係る成分濃度測定装置10の制御方法は、図5の連続2拍間での極大値−極大値(または極小値−極小値)での信号差が、ある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]と[第2の光により発生する音波]の両信号を血液量変動差が小さい条件で検出することができる。ここで、脈波21の極値の判断は、例えば、波形の微分値を信号処理する等の周知技術により実現可能である。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. In the control method of the component concentration measuring apparatus 10 according to the present embodiment, the signal difference between the maximum value and the maximum value (or the minimum value and the minimum value) between two consecutive beats in FIG. 5 is smaller than a certain reference. Thus, it is possible to determine a state in which the blood volume difference is within a certain range, that is, the blood volume of both can be regarded as substantially equal. Therefore, it is possible to detect both signals of [the differential sound wave generated by the first light and the second light] and [the sound wave generated by the second light] under the condition that the blood volume fluctuation difference is small. Here, the determination of the extreme value of the pulse wave 21 can be realized by a known technique such as signal processing of a differential value of the waveform.

また、本実施形態に係る成分濃度測定装置10の制御方法では、第3脈波音波検出手順として次の動作を行ことが望ましい。つまり、成分濃度測定装置10の脈波センサ115は、第1脈波音波検出手順における図5の時点t5からの一定時間τ2内及び第2脈波音波検出手順における他の時点t7からの一定時間τ2内を除き被検体2の脈波22の所定の値となる他の時点t9からの一定時間τ2内に脈波を検出し、第1の光源103は、時点t9からの一定時間τ2内に他の所定の1波長の光を電気的に強度変調して出射する。また、音波検出部111は、時点t9からの一定時間τ2内に音波を検出し、位相検波増幅部113は、音波の大きさ62として測定する。ここで、第3脈波音波検出手順は、第1脈波音波検出手順、第2脈波音波検出手順、第1脈波音波積算手順、第2脈波音波積算手順、成分濃度算出手順及び第1脈波確認手順との前後を問わない。   Moreover, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, it is desirable to perform the following operation as the third pulse wave sound wave detection procedure. That is, the pulse wave sensor 115 of the component concentration measuring apparatus 10 has a constant time τ2 from the time t5 in FIG. 5 in the first pulse wave sound wave detection procedure and a fixed time from another time point t7 in the second pulse wave sound wave detection procedure. A pulse wave is detected within a certain time τ2 from another time point t9 where the pulse wave 22 of the subject 2 becomes a predetermined value except within τ2, and the first light source 103 falls within a certain time time τ2 from the time point t9. The light of another predetermined one wavelength is electrically modulated and emitted. The sound wave detection unit 111 detects a sound wave within a certain time τ2 from the time point t9, and the phase detection amplification unit 113 measures the sound wave magnitude 62. Here, the third pulse wave sound wave detection procedure includes a first pulse wave sound wave detection procedure, a second pulse wave sound wave detection procedure, a first pulse wave sound wave integration procedure, a second pulse wave sound wave integration procedure, a component concentration calculation procedure, and a first pulse wave sound wave detection procedure. It does not matter before and after the 1 pulse wave confirmation procedure.

本実施形態に係る成分濃度測定装置10の制御方法では、第3脈波音波検出手順により音波強度を取得することにより、第1、第2脈波音波強度積算手順において取得した音波強度の妥当性を検証するための情報を得ることが可能となる。   In the control method of the component concentration measuring apparatus 10 according to the present embodiment, the validity of the sound wave intensity acquired in the first and second pulse wave sound wave intensity integrating procedures is obtained by acquiring the sound wave intensity by the third pulse wave sound wave detecting procedure. It is possible to obtain information for verifying.

また、上記音波強度の妥当性の検証を行う場合、成分濃度算出部114は、第3脈波音波検出手順において図5の時点t9からの一定時間τ2内に検出される音波の大きさ62を逐次積算して他の単一音波強度として取得する音波強度積算手順をさらに有することが望ましい。ここで、音波強度積算手順において成分濃度算出部114は、脈波センサ115からの脈波信号の入力と同時につまり第3脈波音波検出手順にリアルタイムに脈波の積算を行ってもよいし、脈波信号をメモリに記憶しておき、第3脈波音波検出手順の後に行ってもよい。また、成分濃度算出部114は、音波検出部111からのフィルタ112及び位相検波増幅部113を介した音波信号の入力と同時にリアルタイムに音波の大きさの積算を行ってもよいし、音波信号をメモリに記憶しておき、第3脈波音波検出手順の後に行ってもよい。音波強度積算手順を第3脈波音波検出手順の後に行う場合、音波強度積算手順は、第3脈波音波検出手順の後であればいずれのときに行ってもよい。   Further, when the validity of the sound wave intensity is verified, the component concentration calculation unit 114 calculates the magnitude 62 of the sound wave detected within a predetermined time τ2 from the time t9 in FIG. 5 in the third pulse wave sound wave detection procedure. It is desirable to further have a sound wave intensity integrating procedure for sequentially accumulating and obtaining another single sound wave intensity. Here, in the sound wave intensity integration procedure, the component concentration calculation unit 114 may perform pulse wave integration in real time in the third pulse wave sound wave detection procedure simultaneously with the input of the pulse wave signal from the pulse wave sensor 115, that is, The pulse wave signal may be stored in a memory and performed after the third pulse wave sound wave detection procedure. In addition, the component concentration calculation unit 114 may perform integration of the sound wave size in real time simultaneously with the input of the sound wave signal via the filter 112 and the phase detection amplification unit 113 from the sound wave detection unit 111, You may memorize | store in memory and may perform after a 3rd pulse wave sound wave detection procedure. When the sound wave intensity integrating procedure is performed after the third pulse wave sound wave detecting procedure, the sound wave intensity integrating procedure may be performed at any time after the third pulse wave sound wave detecting procedure.

本実施形態に係る成分濃度測定装置10の制御方法では、音波強度積算手順により音波強度を取得することで、音波強度の妥当性の検証に必要な具体的な情報を得て音波強度の妥当性の検証が可能となる。   In the control method of the component concentration measuring apparatus 10 according to the present embodiment, the sound intensity is acquired by the sound intensity integration procedure, thereby obtaining specific information necessary for verifying the validity of the sound intensity, and the validity of the sound intensity. Can be verified.

また、本実施形態に係る成分濃度測定装置10の制御方法では、第2脈波音波強度積算手順である図5の時点t7から時点t8の一定時間τ2内の音波の大きさ61の積算値である単一音波強度と音波強度積算手順である時点t9から時点t10の一定時間τ2内の音波の大きさ62の積算値である他の単一音波強度との差の絶対値を算出し且つ算出した絶対値と第1脈波音波強度積算手順である時点t5から時点t6の一定時間τ2内の音波の大きさ60の積算値である混合音波強度との比率を算出する音波強度比率算出手段の算出する比率が1.05より大きいとき又は0.95より小さいときに、第1脈波音波検出手順及び第2脈波音波検出手順に戻って成分濃度を繰り返し測定する音波強度確認手順をさらに有することが望ましい。ここで、音波強度確認手順は、第1脈波音波積算手順、第2脈波音波積算手順及び第3音波強度積算手順の後であればいずれのときに行ってもよい。   Further, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the integrated value of the sound wave magnitude 61 within the predetermined time τ2 from the time t7 to the time t8 in FIG. Calculate and calculate the absolute value of the difference between a single sound wave intensity and another single sound wave intensity that is an integrated value of the sound wave magnitude 62 within a certain time τ2 from time t9 to time t10, which is the sound wave intensity integration procedure. A sound wave intensity ratio calculating unit that calculates a ratio between the absolute value obtained and the mixed sound wave intensity that is the integrated value of the sound wave magnitude 60 within a predetermined time τ2 from time point t5 to time point t6 as the first pulse wave sound wave intensity integrating procedure. When the ratio to be calculated is greater than 1.05 or less than 0.95, the method further includes a sound intensity confirmation procedure for returning to the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure and repeatedly measuring the component concentration. It is desirable. Here, the sound wave intensity confirmation procedure may be performed at any time after the first pulse wave sound wave integration procedure, the second pulse wave sound wave integration procedure, and the third sound wave intensity integration procedure.

本実施形態に係る成分濃度測定装置10の制御方法では、[第1の光により発生する音波と第2の光により発生する音波の差分音波信号]と[第1の光により発生する音波信号]−[第2の光により発生する音波信号]の差が大きい場合に、再度測定をやり直す。従って、本実施形態に係る成分濃度測定装置10の制御方法では、第1、第2脈波音波強度積算手順において取得した混合音波強度及び単一音波強度の妥当性を検証して、成分濃度の測定精度を向上させることができる。   In the control method of the component concentration measuring apparatus 10 according to the present embodiment, [the differential sound wave signal between the sound wave generated by the first light and the sound wave generated by the second light] and [the sound wave signal generated by the first light] -If the difference between [the sound wave signal generated by the second light] is large, repeat the measurement. Therefore, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the validity of the mixed sound wave intensity and the single sound wave intensity acquired in the first and second pulse wave sound wave intensity integrating procedures is verified, and the component concentration Measurement accuracy can be improved.

また、図5に示すように、一定時間τ2を脈波センサ115の検出する脈波の1周期以内とし、脈波センサ115は、図5の被検体2の脈波22のうち連続した3拍分を第1脈波音波検出手順、第2脈波音波検出手順及び第3脈波音波検出手順において1拍ずつ検出し、第1の光源103及び第2の光源106は、第1脈波音波検出手順において脈波22の3拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、第2の光源106は、第2脈波音波検出手順において脈波の3拍分に対応して所定の1波長の光を電気的に強度変調して出射し、第1の光源103は、第3脈波音波検出手順において脈波の3拍分に対応して他の所定の1波長の光を電気的に強度変調して出射し、音波検出部111は、第1脈波音波検出手順、第2脈波音波検出手順及び第3脈波音波検出手順において脈波の3拍分に対応してそれぞれの音波を検出することが望ましい。なお、図5では、第1脈波音波検出手順、第2脈波音波検出手順及び第3脈波音波検出手順に行った場合の音波の大きさ60、61、62を示しているが、前述したように第1脈波音波検出手順、第2脈波音波検出手順及び第3脈波音波検出手順は、手順の前後を問わない。   Further, as shown in FIG. 5, the fixed time τ2 is set within one cycle of the pulse wave detected by the pulse wave sensor 115, and the pulse wave sensor 115 detects three consecutive beats of the pulse wave 22 of the subject 2 in FIG. Are detected one beat at a time in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure, and the first light source 103 and the second light source 106 detect the first pulse wave sound wave. In the detection procedure, light of two different wavelengths corresponding to three beats of the pulse wave 22 is emitted after being intensity-modulated electrically with a signal having the same frequency and opposite phase, and the second light source 106 emits the second pulse wave sound wave. In the detection procedure, light of a predetermined wavelength corresponding to three beats of the pulse wave is electrically intensity-modulated and emitted, and the first light source 103 outputs three beats of the pulse wave in the third pulse wave sound wave detection procedure. The other predetermined one wavelength of light corresponding to the minute is electrically modulated and emitted, and the sound wave detection unit 111 First pulse wave acoustic wave detection procedure, it is desirable to detect each of the sound waves in response to 3 beats of the pulse wave at the second pulse wave detection procedure, and the third pulse wave detection procedure. Note that FIG. 5 shows the magnitudes 60, 61, and 62 of sound waves when the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure are performed. As described above, the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure may be performed before or after the procedure.

本実施形態に係る成分濃度測定装置10の制御方法では、音波の検出時間差が小さくなるため、第1、第2脈波音波強度積算手順において取得した混合音波強度及び単一音波強度の妥当性の検証結果の精度を向上させることができる。   In the control method of the component concentration measuring apparatus 10 according to the present embodiment, since the difference in sound wave detection time is small, the validity of the mixed sound wave intensity and single sound wave intensity acquired in the first and second pulse wave sound wave intensity integrating procedures is confirmed. The accuracy of the verification result can be improved.

また、本実施形態に係る成分濃度測定装置10の制御方法では、第1脈波音波検出手順、第2脈波音波検出手順及び前記第3脈波音波検出手順において脈波センサ115の検出する図5の連続した3拍分の脈波22のうちいずれか2拍の極大値の比率を算出し、算出した比率が1.1より大きいとき又は0.9より小さいときに、第1脈波音波検出手順及び第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第2脈波確認手順をさらに有することが望ましい。ここで、第2脈波確認手順は、第1脈波音波検出手順、第2脈波音波検出手順及び第3脈波音波検出手順の後であればいずれのときに行ってもよい。   Further, in the control method of the component concentration measuring apparatus 10 according to the present embodiment, the detection by the pulse wave sensor 115 in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure. The ratio of the maximum value of any two beats among the pulse waves 22 for five consecutive three beats is calculated, and when the calculated ratio is greater than 1.1 or less than 0.9, the first pulse wave sound wave It is desirable to further include a second pulse wave confirmation procedure for returning to the detection procedure and the second pulse wave sound wave detection procedure and repeatedly measuring the component concentration. Here, the second pulse wave confirmation procedure may be performed at any time after the first pulse wave acoustic wave detection procedure, the second pulse wave acoustic wave detection procedure, and the third pulse wave acoustic wave detection procedure.

安静時は連続する脈波の変動は小さいと考えられるが、体動や外的要因によって、脈動は、急激に変動することが考えられる。本実施形態に係る成分濃度測定装置10の制御方法は、図5の脈波22の連続3拍のうちいずれか2拍間での極大値−極大値(または極小値−極小値)での信号差が、ある一定の基準より小さいところより、血液量差が、ある一定の範囲内、つまり両者の血液量が略同等とみなせる状態を判断することが可能である。そのため、[第1の光及び第2の光により発生する差分の音波]、[第2の光により発生する音波]又は[第1の光により発生する音波]のいずれか2つの信号を血液量変動差が小さい条件で検出することができる。ここで、脈波の極値の判断は、例えば、波形の微分値を信号処理する等の周知技術により実現可能である。また、「いずれか2拍の極大値の比率を算出する」は必ずしも脈波の3拍分のうちいずれか2拍の3通りの組み合わせの総てを含むことを意味しないが、成分濃度測定装置10の制御方法では、3拍分の脈波のうちいずれか2拍の3通りの総ての組み合わせについて極値の比率を算出して判断すると「血液量変動差が小さい条件」を確実なものとして成分濃度算出精度を向上させることができる。   Although the fluctuation of the continuous pulse wave is considered to be small at rest, the pulsation may fluctuate rapidly due to body movements and external factors. The control method of the component concentration measuring apparatus 10 according to the present embodiment is a signal with a maximum value-maximum value (or a minimum value-minimum value) between any two beats among the three consecutive beats of the pulse wave 22 of FIG. Since the difference is smaller than a certain standard, it is possible to determine the blood volume difference within a certain range, that is, a state in which both blood volumes can be regarded as substantially equal. Therefore, any two signals of [differential sound wave generated by the first light and second light], [sound wave generated by the second light] or [sound wave generated by the first light] It can be detected under conditions where the variation difference is small. Here, the determination of the extreme value of the pulse wave can be realized by a known technique such as signal processing of the differential value of the waveform. Further, “calculating the ratio of the maximum value of any two beats” does not necessarily mean that all three combinations of any two beats out of the three beats of the pulse wave are included. In the control method of 10, when the ratio of extreme values is calculated and judged for all three combinations of any two beats out of the pulse waves for three beats, the “condition for small blood volume fluctuation difference” is assured As a result, the component concentration calculation accuracy can be improved.

また、図3の脈波センサ115は、第1の光源103又は/及び第2の光源106の出射する光の被検体2で発生する音波から脈波を検出し、第1の光源103又は/及び第2の光源106の出射する光の被検体2での反射光から脈波を検出し、又は心電計(不図示)若しくはプレスチモグラフ(不図示)により脈波を検出することが望ましい。なお、上記反射光から脈波を検出すること、心電計により脈波を検出すること及びプレスチモグラフにより脈波を検出することは、それぞれ周知技術により実現することができることは、前述の通りである。また、音波から脈波を検出することについては、前述した通りである。また、音波から脈波を検出すること、反射光から脈波を検出すること、心電計により脈波を検出すること、及びプレスチモグラフにより脈波を検出することによる前述の効果は、本実施形態に係る成分濃度測定装置10の制御方法において当然に具備する。   3 detects a pulse wave from the sound wave generated in the subject 2 of the light emitted from the first light source 103 and / or the second light source 106, and detects the first light source 103 or / It is desirable to detect a pulse wave from the reflected light of the subject 2 of the light emitted from the second light source 106 or to detect the pulse wave by an electrocardiograph (not shown) or a plethysmograph (not shown). . As described above, the detection of the pulse wave from the reflected light, the detection of the pulse wave by the electrocardiograph, and the detection of the pulse wave by the plethysmograph can be realized by well-known techniques. It is. The detection of the pulse wave from the sound wave is as described above. In addition, the effects described above by detecting a pulse wave from a sound wave, detecting a pulse wave from reflected light, detecting a pulse wave by an electrocardiograph, and detecting a pulse wave by a plethysmograph are as follows. Naturally, it is provided in the control method of the component concentration measuring apparatus 10 according to the embodiment.

本発明の成分濃度測定装置および成分濃度測定装置制御方法は、日常の健康管理や美容上のチェックに利用することができる。また、人間の生体ばかりでなく、動物の生体についても健康管理に利用することができる。   The component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention can be used for daily health care and cosmetic checks. Moreover, not only a human living body but also an animal living body can be used for health management.

常温における水とグルコース水溶液の吸光度特性を示した図である。It is the figure which showed the light absorbency characteristic of the water and glucose aqueous solution in normal temperature. 音波の大きさの脈動による変動のグラフの1例を示した図である。It is the figure which showed an example of the graph of the fluctuation | variation by the pulsation of the magnitude | size of a sound wave. 1実施形態に係る成分濃度測定装置の概略構成図である。It is a schematic block diagram of the component concentration measuring apparatus which concerns on 1 embodiment. 脈波及び脈波に同期して発生する音波の大きさの1例を示した概略図である。It is the schematic which showed one example of the magnitude | size of the sound wave generated synchronizing with a pulse wave and a pulse wave. 脈波及び脈波に同期して発生する音波の大きさの1例を示した概略図である。It is the schematic which showed one example of the magnitude | size of the sound wave generated synchronizing with a pulse wave and a pulse wave. 光音響法による従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component density | concentration measuring apparatus by a photoacoustic method. 光音響法による従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component density | concentration measuring apparatus by a photoacoustic method.

符号の説明Explanation of symbols

2:被検体
10:成分濃度測定装置
20:脈波
21:脈波
22:脈波
30:音波の大きさ
31:音波の大きさ
32:音波の大きさ
40:動脈血の音波
41:静脈血の音波
42:組織の音波
50:音波の大きさ
51:音波の大きさ
60:音波の大きさ
61:音波の大きさ
62:音波の大きさ
101:発振器
102:駆動回路
103:第1の光源
104:180°移相回路
105:駆動回路
106:第2の光源
107:合波部
110:音響整合物質
111:音波検出部
112:フィルタ
113:位相検波増幅部
114:成分濃度算出部
115:脈波センサ
120:変調光
601: 第1の光源
604:駆動回路
605:第2の光源
608:駆動回路
609:合波部
610:被検体
613:超音波検出器
616:パルス光源
617:チョッパ板
618:モータ
619:音響センサ
620: 波形観測器
621:周波数解析器
2: Subject 10: Component concentration measuring device 20: Pulse wave 21: Pulse wave 22: Pulse wave 30: Sound wave size 31: Sound wave size 32: Sound wave size 40: Sound wave of arterial blood 41: Venous blood Sound wave 42: Tissue sound wave 50: Sound wave magnitude 51: Sound wave magnitude 60: Sound wave magnitude 61: Sound wave magnitude 62: Sound wave magnitude 101: Oscillator 102: Drive circuit 103: First light source 104 : 180 ° phase shift circuit 105: drive circuit 106: second light source 107: multiplexing unit 110: acoustic matching substance 111: sound wave detection unit 112: filter 113: phase detection amplification unit 114: component concentration calculation unit 115: pulse wave Sensor 120: modulated light 601: first light source 604: drive circuit 605: second light source 608: drive circuit 609: multiplexing unit 610: subject 613: ultrasonic detector 616: pulse light source 617: chopper plate 618 Motor 619: acoustic sensor 620: waveform observer 621: Frequency analyzer

Claims (30)

被検体の脈波の所定の値となる時点からの一定時間内に、前記被検体の脈波を検出する脈波検出手段が前記一定時間内の脈波を検出し、異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射する混合光出射手段が前記一定時間内に2波長の光を出射し、及び前記被検体で発生する音波を検出する音波検出手段が前記一定時間内に音波を検出する第1脈波音波検出手順と、
前記第1脈波音波検出手順の前記時点からの前記一定時間内を除き前記被検体の脈波の所定の値となる他の時点からの前記一定時間内に、前記脈波検出手段が前記一定時間内の脈波を検出し、前記異なる2波長の光のうち所定の1波長を電気的に強度変調して出射する第1単一光出射手段が前記一定時間内に1波長の光を出射し、及び前記音波検出手段が前記一定時間内に音波を検出する第2脈波音波検出手順と、
を有することを特徴とする成分濃度測定装置制御方法。
The pulse wave detecting means for detecting the pulse wave of the subject detects the pulse wave within the predetermined time within a certain time from the time when the pulse wave of the subject becomes a predetermined value, and outputs light of two different wavelengths. A sound wave detection means for detecting a sound wave generated by the mixed light emitting means that emits light having two wavelengths within the predetermined time, and that emits light having the same frequency and is electrically modulated with an opposite phase signal at the same frequency. A first pulse wave sound wave detection procedure for detecting sound waves within the predetermined time;
The pulse wave detecting means is within the predetermined time period from another time point at which the pulse wave of the subject has a predetermined value except for the predetermined time period from the time point of the first pulse wave sound wave detection procedure. A first single light emitting means that detects a pulse wave in time and emits a predetermined one wavelength of the two different wavelengths of light with an intensity modulated, and emits the light of one wavelength within the predetermined time. And a second pulse wave sound wave detection procedure in which the sound wave detection means detects a sound wave within the predetermined time period;
A method for controlling a component concentration measuring apparatus, comprising:
前記脈波検出手段の検出する脈波を積算して脈波積算値として取得する脈波積算手段が前記第1脈波音波検出手順において前記一定時間内に検出される脈波を逐次積算して脈波積算値として取得し、及び前記音波検出手段の検出する音波の大きさを積算して音波強度として取得する音波強度積算手段が前記第1脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して混合音波強度として取得する第1脈波音波強度積算手順と、
前記脈波積算手段が前記第2脈波音波検出手順において前記一定時間内に検出される脈波を逐次積算して他の脈波積算値として取得し、及び前記音波強度積算手段が前記第2脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して単一音波強度として取得する第2脈波音波強度積算手順と、
をさらに有することを特徴とする請求項1に記載の成分濃度測定装置制御方法。
The pulse wave integrating means for integrating the pulse waves detected by the pulse wave detecting means to obtain a pulse wave integrated value sequentially integrates the pulse waves detected within the predetermined time in the first pulse wave sound wave detection procedure. A sound wave intensity integrating unit that acquires the pulse wave integrated value and acquires the sound wave intensity by integrating the magnitude of the sound wave detected by the sound wave detecting unit is detected within the predetermined time in the first pulse wave sound wave detecting procedure. A first pulse wave sound wave intensity integrating procedure for sequentially accumulating sound waves to obtain a mixed sound wave intensity;
The pulse wave integrating means sequentially integrates pulse waves detected within the predetermined time in the second pulse wave sound wave detection procedure to obtain other pulse wave integrated values, and the sound wave intensity integrating means is the second pulse wave integrating means. A second pulse wave sound intensity integration procedure for sequentially integrating the sound waves detected within the predetermined time in the pulse wave sound wave detection procedure to obtain a single sound wave intensity;
The component concentration measuring device control method according to claim 1, further comprising:
測定対象とする成分濃度を算出する成分濃度算出手段が、前記第1脈波音波強度積算手順及び前記第2脈波音波強度積算手順において取得される脈波積算値、他の脈波積算値、混合音波強度及び単一音波強度から成分濃度を算出する成分濃度算出手順をさらに有することを特徴とする請求項2に記載の成分濃度測定装置制御方法。   A component concentration calculation means for calculating a component concentration to be measured includes a pulse wave integrated value acquired in the first pulse wave sound wave intensity integrating procedure and the second pulse wave sound wave intensity integrating procedure, another pulse wave integrated value, The component concentration measuring device control method according to claim 2, further comprising a component concentration calculating procedure for calculating a component concentration from the mixed sound wave intensity and the single sound wave intensity. 前記成分濃度算出手順において前記成分濃度算出手段は、前記混合音波強度を前記脈波積算値で除算した混合音波強度規格値、及び前記単一音波強度を前記他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することを特徴とする請求項3に記載の成分濃度測定装置制御方法。   In the component concentration calculation procedure, the component concentration calculation means includes a mixed sound wave intensity standard value obtained by dividing the mixed sound wave intensity by the pulse wave integrated value, and a single sound wave intensity obtained by dividing the single sound wave intensity by the other pulse wave integrated value. 4. The component concentration measuring device control method according to claim 3, wherein the component concentration is calculated from the ratio of the single sound wave intensity standard values. 前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、
前記脈波検出手段は、前記被検体の脈波のうち連続した2拍分を前記第1脈波音波検出手順及び前記第2脈波音波検出手順において1拍ずつ検出し、
前記混合光出射手段は、前記第1脈波音波検出手順において前記2拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、
前記第1単一光出射手段は、前記第2脈波音波検出手順において前記2拍分に対応して所定の1波長の光を電気的に強度変調して出射し、
前記音波検出手段は、前記第1脈波音波検出手順及び前記第2脈波音波検出手順において前記2拍分に対応してそれぞれの音波を検出することを特徴とする請求項1から4のいずれかに記載の成分濃度測定装置制御方法。
The fixed time is within one cycle of the pulse wave detected by the pulse wave detection means,
The pulse wave detection means detects two consecutive beats of the pulse wave of the subject one beat at a time in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure,
The mixed light emitting means emits light of two different wavelengths corresponding to the two beats in the first pulse wave sound wave detection procedure by electrically modulating the intensity with signals of the same frequency and opposite phase,
The first single light emitting means electrically emits light having a predetermined wavelength corresponding to the two beats in the second pulse wave sound wave detection procedure, and emits light with a predetermined intensity.
The sound wave detection means detects each sound wave corresponding to the two beats in the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection procedure. The component concentration measuring device control method according to claim 1.
前記脈波検出手段により検出される連続した2拍分の脈波の極大値の比率を算出する第1極値比率算出手段が、前記第1脈波音波検出手順及び前記第2脈波音波検出手順において検出される前記連続した2拍分の脈波の極大値の比率を算出し、算出した比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第1脈波確認手順をさらに有することを特徴とする請求項5に記載の成分濃度測定装置制御方法。   First extreme value ratio calculating means for calculating a ratio of maximum values of pulse waves for two consecutive beats detected by the pulse wave detecting means includes the first pulse wave sound wave detection procedure and the second pulse wave sound wave detection. The ratio of the maximum value of the pulse waves for two consecutive beats detected in the procedure is calculated, and when the calculated ratio is larger than 1.1 or smaller than 0.9, the pulse wave detecting means and the mixture The first pulse in which the light emission means returns to the first pulse wave sound wave detection procedure and the pulse wave detection means and the first single light emission means return to the second pulse wave sound wave detection procedure to repeatedly measure the component concentration. 6. The component concentration measuring device control method according to claim 5, further comprising a wave confirmation procedure. 前記第1脈波音波検出手順の前記時点からの前記一定時間内及び前記第2脈波音波検出手順の前記他の時点からの前記一定時間内を除き前記被検体の脈波の所定の値となる他の時点からの前記一定時間内に、前記脈波検出手段が前記一定時間内の脈波を検出し、前記異なる2波長の光のうち他の所定の1波長の光を電気的に強度変調して出射する第2単一光出射手段が前記一定時間内に1波長の光を出射し、及び前記音波検出手段が前記一定時間内に音波を検出する第3脈波音波検出手順をさらに有することを特徴とする請求項1から6のいずれかに記載の成分濃度測定装置制御方法。   Except for the predetermined time from the time point of the first pulse wave sound wave detection procedure and the predetermined time from the other time point of the second pulse wave sound wave detection procedure, a predetermined value of the pulse wave of the subject The pulse wave detecting means detects the pulse wave within the predetermined time within the predetermined time from another time point, and the other predetermined one wavelength of the two different wavelengths of light is electrically intensified. A third pulse wave sound wave detecting procedure in which the second single light emitting means that emits light after being modulated emits light of one wavelength within the predetermined time period, and the sound wave detecting means detects the sound wave within the predetermined time period; The component concentration measuring device control method according to any one of claims 1 to 6, further comprising: 前記音波強度積算手段が、前記第3脈波音波検出手順において前記一定時間内に検出される音波を逐次積算して他の単一音波強度として取得する音波強度積算手順をさらに有することを特徴とする請求項7に記載の成分濃度測定装置制御方法。   The sound wave intensity integrating means further comprises a sound wave intensity integrating procedure for sequentially integrating the sound waves detected within the predetermined time in the third pulse wave sound wave detecting procedure to obtain another single sound wave intensity. The component concentration measuring device control method according to claim 7. 前記第2脈波音波強度積算手順において取得される単一音波強度と前記音波強度積算手順において取得される他の単一音波強度との差の絶対値を算出し且つ算出した前記絶対値と前記第1脈波音波強度積算手順において取得される混合音波強度との比率を算出する音波強度比率算出手段の算出する比率が1.05より大きいとき又は0.95より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する音波強度確認手順をさらに有することを特徴とする請求項8に記載の成分濃度測定装置制御方法。   The absolute value of the difference between the single sound wave intensity acquired in the second pulse wave sound wave intensity integrating procedure and the other single sound wave intensity acquired in the sound wave intensity integrating procedure is calculated, and the calculated absolute value and the When the ratio calculated by the sound intensity ratio calculating means for calculating the ratio with the mixed sound intensity acquired in the first pulse wave intensity integration procedure is greater than 1.05 or less than 0.95, the pulse wave detection And the mixed light emission means return to the first pulse wave sound wave detection procedure, and the pulse wave detection means and the first single light emission means return to the second pulse wave sound wave detection procedure to repeatedly measure the component concentration. The component concentration measuring device control method according to claim 8, further comprising a sound wave intensity confirmation procedure. 前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、
前記脈波検出手段は、前記被検体の脈波のうち連続した3拍分を前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において1拍ずつ検出し、
前記混合光出射手段は、前記第1脈波音波検出手順において前記3拍分に対応して異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、
前記第1単一光出射手段は、前記第2脈波音波検出手順において前記3拍分に対応して所定の1波長の光を電気的に強度変調して出射し、
前記第2単一光出射手段は、前記第3脈波音波検出手順において前記3拍分に対応して他の所定の1波長の光を電気的に強度変調して出射し、
前記音波検出手段は、前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において前記3拍分に対応してそれぞれの音波を検出することを特徴とする請求項7から9のいずれかに記載の成分濃度測定装置制御方法。
The fixed time is within one cycle of the pulse wave detected by the pulse wave detection means,
The pulse wave detecting means outputs one continuous beat of the pulse wave of the subject in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure. Detect one by one,
The mixed light emitting means emits light having two different wavelengths corresponding to the three beats in the first pulse wave sound wave detection procedure by electrically modulating the intensity with signals having the same frequency and opposite phase,
The first single light emitting means electrically emits light having a predetermined wavelength corresponding to the three beats in the second pulse wave sound wave detection procedure, and emits the light with a predetermined intensity.
The second single light emitting means electrically emits light of another predetermined wavelength corresponding to the three beats in the third pulse wave sound wave detection procedure, and emits the light.
The sound wave detecting means detects sound waves corresponding to the three beats in the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure. A method for controlling a component concentration measuring apparatus according to any one of claims 7 to 9.
前記脈波検出手段により検出される連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出する第2極値比率算出手段が、前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において検出される前記連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出し、算出した前記比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段及び前記混合光出射手段が前記第1脈波音波検出手順に戻り且つ前記脈波検出手段及び前記第1単一光出射手段が前記第2脈波音波検出手順に戻って成分濃度を繰り返し測定する第2脈波確認手順をさらに有することを特徴とする請求項10に記載の成分濃度測定装置制御方法。   Second extreme value ratio calculating means for calculating the ratio of the maximum value of any two beats among the pulse waves for three consecutive beats detected by the pulse wave detecting means comprises the first pulse wave sound wave detection procedure, The ratio of the maximum value of any two beats of the pulse waves for three consecutive beats detected in the second pulse wave sound wave detection procedure and the third pulse wave sound wave detection procedure is calculated, and the calculated ratio is 1 .. When greater than 1 or less than 0.9, the pulse wave detecting means and the mixed light emitting means return to the first pulse wave sound wave detection procedure and the pulse wave detecting means and the first single light emission 11. The component concentration measuring apparatus control method according to claim 10, further comprising a second pulse wave confirmation procedure in which the means returns to the second pulse wave sound wave detection procedure and repeatedly measures the component concentration. 前記第1脈波音波検出手順、前記第2脈波音波検出手順及び前記第3脈波音波検出手順において前記脈波検出手段は、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光により前記被検体から発生する音波から脈波を検出し、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光の前記被検体での反射光から脈波を検出し、又は心電計若しくはプレスチモグラフにより脈波を検出することを特徴とする請求項7から11のいずれかに記載の成分濃度測定装置制御方法。   In the first pulse wave sound wave detection procedure, the second pulse wave sound wave detection procedure, and the third pulse wave sound wave detection procedure, the pulse wave detection means is the mixed light emission means, the first single light emission means, or the A pulse wave is detected from the sound wave generated from the subject by the light emitted from the second single light emitting means, and the mixed light emitting means, the first single light emitting means, or the second single light emitting means The component concentration according to claim 7, wherein a pulse wave is detected from reflected light of the emitted light from the subject, or a pulse wave is detected by an electrocardiograph or a plethysmograph. Measuring device control method. 前記2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることを特徴とする請求項1から12のいずれかに記載の成分濃度測定装置制御方法。   The wavelength of the two wavelengths is a wavelength of two wavelengths of light that is larger in the difference in absorption exhibited by the component to be measured than the difference in absorption exhibited by water. The component concentration measuring device control method as described. 前記2波長の光のうち前記所定の1波長の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることを特徴とする請求項1から12のいずれかに記載の成分濃度測定装置制御方法。   Among the two wavelengths of light, the wavelength of the predetermined one wavelength is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the wavelength of the other one wavelength of water is that of the one light. The component concentration measuring device control method according to claim 1, wherein the wavelength exhibits absorption equal to that at the wavelength. 前記2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることを特徴とする請求項13又は14に記載の成分濃度測定装置制御方法。   15. The wavelength of the two wavelengths is a wavelength of two wavelengths of light that is larger in the difference in absorption exhibited by the component to be measured than the difference in absorption exhibited by the other components. The component concentration measuring device control method as described. 被検体の脈波の所定の値となる時点からの一定時間内、及び前記被検体の脈波の所定の値となり前記時点からの前記一定時間内を除く他の時点からの前記一定時間内のそれぞれに前記被検体の脈波を検出する脈波検出手段と、
前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射する混合光出射手段と、
前記他の時点からの前記一定時間内に前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する第1単一光出射手段と、
前記混合光出射手段から前記一定時間内に出射される光により前記被検体で発生する音波を前記時点からの前記一定時間内に検出し、及び前記第1単一光出射手段から前記一定時間内に出射される光により前記被検体で発生する音波を前記他の時点からの前記一定時間内に検出する音波検出手段と、
を備えることを特徴とする成分濃度測定装置。
Within a certain time from the time when the pulse wave of the subject becomes a predetermined value, and within the certain time from other time points that become the predetermined value of the pulse wave of the subject and within the certain time from the time Pulse wave detection means for detecting the pulse wave of the subject,
Mixed light emitting means for emitting light of two different wavelengths electrically modulated with opposite phase signals at the same frequency within the predetermined time from the time point; and
First single light emitting means for electrically intensity-modulating and emitting light of a predetermined one of the two different wavelengths of light within the predetermined time from the other time point;
A sound wave generated in the subject by light emitted from the mixed light emitting means within the fixed time is detected within the fixed time from the time point, and within the fixed time from the first single light emitting means. A sound wave detecting means for detecting a sound wave generated in the subject by the light emitted to the subject within the predetermined time from the other time point;
A component concentration measuring apparatus comprising:
前記時点からの前記一定時間内に前記脈波検出手段により検出される脈波をそれぞれ逐次積算して脈波積算値として取得し且つ前記他の時点からの前記一定時間内に前記脈波検出手段により検出される脈波を逐次積算して他の脈波積算値として取得する脈波積算手段と、
前記時点からの前記一定時間内に前記混合光出射手段からの2波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して混合音波強度として取得し且つ前記他の時点からの前記一定時間内に前記第1単一光出射手段からの1波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して単一音波強度として取得する音波強度積算手段と、
をさらに備えることを特徴とする請求項16に記載の成分濃度測定装置。
The pulse waves detected by the pulse wave detection means within the fixed time from the time point are sequentially integrated to obtain a pulse wave integrated value, and the pulse wave detection means within the fixed time from the other time point Pulse wave integrating means for sequentially integrating the pulse waves detected by the pulse wave to obtain other pulse wave integrated values;
The magnitude of the sound wave generated by the two-wavelength light from the mixed light emitting means within the predetermined time from the time point and detected by the sound wave detecting means is sequentially integrated to obtain the mixed sound wave intensity, and the other A sound wave that is generated by light of one wavelength from the first single light emitting means within a certain time from the time point and is acquired by sequentially integrating the magnitudes of sound waves detected by the sound wave detecting means. Intensity integrating means;
The component concentration measuring apparatus according to claim 16, further comprising:
前記脈波積算手段により取得され前記時点からの前記一定時間内の脈波積算値、前記脈波積算手段により取得され前記他の時点からの前記一定時間内の他の脈波積算値、前記音波強度積算手段により取得され前記時点からの前記一定時間内の混合音波強度、及び前記音波強度積算手段により取得され前記他の時点からの前記一定時間内の単一音波強度から、測定対象とする成分濃度を算出する成分濃度算出手段をさらに備えることを特徴とする請求項17に記載の成分濃度測定装置。   The pulse wave integrated value obtained by the pulse wave integrating means within the fixed time from the time point, the other pulse wave integrated value acquired by the pulse wave integrating means within the fixed time from the other time point, the sound wave Components to be measured from the intensity of the mixed sound wave within a certain time from the time point acquired by the intensity integrating means and the single sound wave intensity within the certain time period from the other time point acquired by the sound wave intensity integrating means The component concentration measuring device according to claim 17, further comprising a component concentration calculating means for calculating a concentration. 前記成分濃度算出手段は、前記混合音波強度を前記脈波積算値で除算した混合音波強度規格値、及び前記単一音波強度を前記他の脈波積算値で除算した単一音波強度規格値の比から成分濃度を算出することを特徴とする請求項18に記載の成分濃度測定装置。   The component concentration calculation means includes a mixed sound wave intensity standard value obtained by dividing the mixed sound wave intensity by the pulse wave integrated value, and a single sound wave intensity standard value obtained by dividing the single sound wave intensity by the other pulse wave integrated value. The component concentration measuring apparatus according to claim 18, wherein the component concentration is calculated from the ratio. 前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、
前記脈波検出手段は、前記被検体の脈波のうち連続した2拍分を前記時点及び前記他の時点からの前記一定時間内に1拍ずつ検出し、
前記混合光出射手段は、前記2拍分に対応して前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、
前記第1単一光出射手段は、前記2拍分に対応して前記他の時点からの前記一定時間内に所定の1波長の光を電気的に強度変調して出射し、
前記音波検出手段は、前記2拍分に対応してそれぞれの音波を検出することを特徴とする請求項16から19のいずれかに記載の成分濃度測定装置。
The fixed time is within one cycle of the pulse wave detected by the pulse wave detection means,
The pulse wave detecting means detects two consecutive beats in the pulse wave of the subject, one beat at a time from the time point and the other time point,
The mixed light emitting means emits light of two different wavelengths corresponding to the two beats within the predetermined time from the time point by electrically modulating the intensity with signals of the same frequency and opposite phase,
The first single light emitting means emits light having a predetermined wavelength that is electrically intensity-modulated within the predetermined time from the other time corresponding to the two beats,
The component concentration measuring apparatus according to claim 16, wherein the sound wave detecting unit detects each sound wave corresponding to the two beats.
前記脈波検出手段により検出される前記連続した2拍分の脈波の極大値の比率を算出する第1極値比率算出手段をさらに有し、
前記第1極値比率算出手段の算出する比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することを特徴とする請求項20に記載の成分濃度測定装置。
A first extreme value ratio calculating means for calculating a ratio of maximum values of the pulse waves for two consecutive beats detected by the pulse wave detecting means;
When the ratio calculated by the first extreme value ratio calculating means is larger than 1.1 or smaller than 0.9, the pulse wave detecting means, the mixed light emitting means and the first single light emitting means are: 21. The component concentration measuring apparatus according to claim 20, wherein the component concentration is repeatedly measured.
前記被検体の脈波の所定の値となり前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く他の時点からの前記一定時間内に、前記異なる2波長の光のうち他の所定の1波長の光を電気的に強度変調して出射する第2単一光出射手段をさらに備え、
前記脈波検出手段は、
前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内の脈波を検出し、
前記音波検出手段は、前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内に、前記第2単一光出射手段からの1波長の光による音波を検出することを特徴とする請求項16から21のいずれかに記載の成分濃度測定装置。
The pulse wave of the subject becomes a predetermined value, and the light of the two different wavelengths is transmitted within the predetermined time from the time point and within the predetermined time period from other time points excluding the predetermined time period from the other time point. A second single light emitting means for electrically modulating the intensity of the other predetermined one of the wavelengths and emitting it;
The pulse wave detecting means includes
Detecting a pulse wave within the certain time from the other time except the certain time from the time and the certain time from the other time;
The sound wave detecting means is configured to output 1 from the second single light emitting means within the certain time from the time and within the certain time from the other time excluding the certain time from the other time. The component concentration measuring device according to any one of claims 16 to 21, wherein a sound wave due to light having a wavelength is detected.
前記音波強度積算手段は、
前記時点からの前記一定時間内及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内に前記第2単一光出射手段からの1波長の光により発生し前記音波検出手段により検出される音波の大きさを逐次積算して他の単一音波強度として取得することを特徴とする請求項22に記載の成分濃度測定装置。
The sound wave intensity integrating means is
Generated by the light of one wavelength from the second single light emitting means within the certain time from the other time except for the certain time from the time and within the certain time from the other time. 23. The component concentration measuring apparatus according to claim 22, wherein the intensity of the sound wave detected by the sound wave detecting means is sequentially integrated to obtain another single sound wave intensity.
前記音波強度積算手段により取得される前記単一音波強度と前記他の単一音波強度との差の絶対値を算出し且つ算出した前記絶対値と前記音波強度積算手段により取得される前記混合音波強度との比率を算出する音波強度比率算出手段をさらに有し、
前記音波強度比率算出手段の算出する比率が1.05より大きいとき又は0.95より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することを特徴とする請求項23に記載の成分濃度測定装置。
The absolute value of the difference between the single sound wave intensity acquired by the sound wave intensity integrating means and the other single sound wave intensity is calculated, and the mixed sound wave acquired by the calculated absolute value and the sound wave intensity integrating means A sound wave intensity ratio calculating means for calculating a ratio with the intensity;
When the ratio calculated by the sound wave intensity ratio calculating means is larger than 1.05 or smaller than 0.95, the pulse wave detecting means, the mixed light emitting means, and the first single light emitting means have component concentrations. The component concentration measuring device according to claim 23, wherein the component concentration is repeatedly measured.
前記一定時間を前記脈波検出手段の検出する脈波の1周期以内とし、
前記脈波検出手段は、前記被検体の脈波のうち連続した3拍分を前記時点からの前記一定時間内、前記他の時点からの前記一定時間内、並びに前記時点及び前記他の時点からの前記一定時間内を除く前記他の時点からの前記一定時間内において1拍ずつ検出し、
前記混合光出射手段は、前記3拍分に対応して前記時点からの前記一定時間内に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し、
前記第1単一光出射手段は、前記3拍分に対応して前記他の時点からの前記一定時間内に所定の1波長の光を電気的に強度変調して出射し、
前記第2単一光出射手段は、前記3拍分に対応して前記時点及び前記他の時点からの前記一定時間内を除く前記他の時点からの一定時間内に他の所定の1波長の光を電気的に強度変調して出射し、
前記音波検出手段は、前記3拍分に対応してそれぞれの音波を検出することを特徴とする請求項22から24のいずれかに記載の成分濃度測定装置。
The fixed time is within one cycle of the pulse wave detected by the pulse wave detection means,
The pulse wave detection means includes three consecutive beats of the pulse wave of the subject within the certain time from the time point, within the certain time from the other time point, and from the time point and the other time point. Detecting one beat at a time from the other time except for the fixed time,
The mixed light emitting means emits light of two different wavelengths within the predetermined time from the time point corresponding to the three beats by electrically modulating the intensity with signals having the same frequency and opposite phase,
The first single light emitting means emits light having a predetermined wavelength that is electrically intensity-modulated within the predetermined time from the other time point corresponding to the three beats,
The second single light emitting means corresponds to the three beats and has another predetermined one wavelength within a certain time from the other time except for the certain time from the time and the other time. The light is intensity-modulated and emitted,
25. The component concentration measuring apparatus according to claim 22, wherein the sound wave detecting means detects each sound wave corresponding to the three beats.
前記脈波検出手段により検出される前記連続した3拍分の脈波のうちいずれか2拍の極大値の比率を算出する第2極値比率算出手段をさらに有し、
前記第2極値比率算出手段の算出する前記比率が1.1より大きいとき又は0.9より小さいときに、前記脈波検出手段、前記混合光出射手段及び前記第1単一光出射手段は、成分濃度を繰り返し測定することを特徴とする請求項25に記載の成分濃度測定装置。
A second extreme value ratio calculating means for calculating a ratio of the maximum value of any two beats of the pulse waves for three consecutive beats detected by the pulse wave detecting means;
When the ratio calculated by the second extreme value ratio calculating means is larger than 1.1 or smaller than 0.9, the pulse wave detecting means, the mixed light emitting means and the first single light emitting means are 26. The component concentration measuring apparatus according to claim 25, wherein the component concentration is repeatedly measured.
前記脈波検出手段は、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光により前記被検体から発生する音波から脈波を検出し、前記混合光出射手段、前記第1単一光出射手段若しくは前記第2単一光出射手段の出射する光の前記被検体での反射光から脈波を検出し、又は心電計若しくはプレスチモグラフにより脈波を検出することを特徴とする請求項22から26のいずれかに記載の成分濃度測定装置。   The pulse wave detecting means detects a pulse wave from a sound wave generated from the subject by light emitted from the mixed light emitting means, the first single light emitting means or the second single light emitting means, and A pulse wave is detected from the reflected light from the subject of the light emitted from the mixed light emitting means, the first single light emitting means, or the second single light emitting means, or by an electrocardiograph or a plethysmograph 27. The component concentration measuring apparatus according to claim 22, wherein a pulse wave is detected. 前記2波長の光の波長を測定対象とする成分の呈する吸収の差が水の呈する吸収の差よりも大きい2波長の光の波長とすることを特徴とする請求項16から27のいずれかに記載の成分濃度測定装置。   28. The wavelength of the two wavelengths is a wavelength of two wavelengths of light having a difference in absorption exhibited by a component to be measured larger than a difference in absorption exhibited by water. The component concentration measuring apparatus as described. 前記2波長の光のうち前記所定の1波長の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の1波長の光の波長を水が前記一方の光の波長におけるのと相等しい吸収を呈する波長とすることを特徴とする請求項16から27のいずれかに記載の成分濃度測定装置。   Among the two wavelengths of light, the wavelength of the predetermined one wavelength is set to a wavelength at which the component to be measured exhibits characteristic absorption, and the wavelength of the other one wavelength of water is that of the one light. 28. The component concentration measuring device according to claim 16, wherein the wavelength of the component exhibits absorption equal to that at the wavelength. 前記2波長の光の波長を測定対象とする成分の呈する吸収の差がそれ以外の成分の呈する吸収の差よりも大きい2波長の光の波長とすることを特徴とする請求項28又は29に記載の成分濃度測定装置。

30. The wavelength of the two wavelengths is a wavelength of two wavelengths of light having a difference in absorption exhibited by a component to be measured larger than a difference in absorption exhibited by other components. The component concentration measuring apparatus as described.

JP2005312538A 2005-10-27 2005-10-27 Component concentration measuring apparatus and component concentration measuring apparatus control method Expired - Fee Related JP4477568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312538A JP4477568B2 (en) 2005-10-27 2005-10-27 Component concentration measuring apparatus and component concentration measuring apparatus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312538A JP4477568B2 (en) 2005-10-27 2005-10-27 Component concentration measuring apparatus and component concentration measuring apparatus control method

Publications (2)

Publication Number Publication Date
JP2007117342A JP2007117342A (en) 2007-05-17
JP4477568B2 true JP4477568B2 (en) 2010-06-09

Family

ID=38141838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312538A Expired - Fee Related JP4477568B2 (en) 2005-10-27 2005-10-27 Component concentration measuring apparatus and component concentration measuring apparatus control method

Country Status (1)

Country Link
JP (1) JP4477568B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966837B2 (en) * 2007-12-03 2012-07-04 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4828512B2 (en) * 2007-12-03 2011-11-30 日本電信電話株式会社 Component concentration measuring device
JP4902508B2 (en) * 2007-12-03 2012-03-21 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4963482B2 (en) * 2008-03-18 2012-06-27 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring method
JP7067460B2 (en) * 2018-12-25 2022-05-16 日本電信電話株式会社 Component concentration measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317566A (en) * 1993-05-06 1994-11-15 Hitachi Ltd Method and apparatus for optoacoustic analysis as well as blood component measuring apparatus utilizing them
JPH07136150A (en) * 1993-11-16 1995-05-30 Nippon Koden Corp Optoacoustic pulse oxymeter
JPH10189A (en) * 1996-06-14 1998-01-06 Hitachi Ltd Multiple wavelength simultaneous non-invasive biochemical measuring device
JPH10216115A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Highly accurate reflection type degree of oxygen saturation measuring apparatus
JP2005224536A (en) * 2004-02-16 2005-08-25 Olympus Corp Glucose concentration measuring device

Also Published As

Publication number Publication date
JP2007117342A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4104456B2 (en) Photoacoustic investigation and imaging system
US6484044B1 (en) Apparatus and method for detecting a substance
EP2162064B1 (en) System for noninvasively monitoring conditions of a subject
JP3667321B2 (en) Noninvasive living body component measuring apparatus using photoacoustic spectroscopy and measuring method thereof
CA2704789C (en) Optical sensor for determining the concentration of an analyte
JP4963482B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP4914388B2 (en) Component concentration measuring device
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JPH06317566A (en) Method and apparatus for optoacoustic analysis as well as blood component measuring apparatus utilizing them
JP4444227B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP4441479B2 (en) Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method
JP4901432B2 (en) Component concentration measuring device
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JPH11188007A (en) Method and device for determing glucose concentration
JP2018013417A (en) Component concentration measuring device and method
JP4412667B2 (en) Component concentration measuring device
JP2007037871A (en) Component concentration measuring device and method of controlling the same
JP6080004B2 (en) Parameter measuring apparatus, parameter measuring method, and program
JP6730963B2 (en) Component concentration measuring device and analysis method
JP2004249025A (en) Biological photoacoustic resonance noninvasive biochemical component analyzer and method of measuring blood component
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method
JP2008125543A (en) Constituent concentration measuring apparatus
JP2007127516A (en) Component concentration measuring device, and component concentration measuring device control method
JP2007127515A (en) Component concentration measuring device, and component concentration measuring device control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Ref document number: 4477568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees