JP4901432B2 - Component concentration measuring device - Google Patents

Component concentration measuring device Download PDF

Info

Publication number
JP4901432B2
JP4901432B2 JP2006310242A JP2006310242A JP4901432B2 JP 4901432 B2 JP4901432 B2 JP 4901432B2 JP 2006310242 A JP2006310242 A JP 2006310242A JP 2006310242 A JP2006310242 A JP 2006310242A JP 4901432 B2 JP4901432 B2 JP 4901432B2
Authority
JP
Japan
Prior art keywords
light
measured
window
temperature
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006310242A
Other languages
Japanese (ja)
Other versions
JP2008125542A (en
Inventor
卓郎 田島
和則 長沼
勇一 岡部
純一 嶋田
恒之 芳賀
勝義 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006310242A priority Critical patent/JP4901432B2/en
Publication of JP2008125542A publication Critical patent/JP2008125542A/en
Application granted granted Critical
Publication of JP4901432B2 publication Critical patent/JP4901432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人間、動物又は果実等の被測定物の非侵襲な成分濃度測定装置及びその成分濃度測定装置の制御方法に関する。   The present invention relates to a non-invasive component concentration measuring apparatus for an object to be measured such as a human being, an animal, or a fruit, and a control method for the component concentration measuring apparatus.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。現在までに開発された非侵襲な成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音波を観測する、光音響法が注目されている。   With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level and other tests, blood collection is necessary, which places a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive component concentration measuring device that has been developed so far, the skin is irradiated with electromagnetic waves and absorbed by blood molecules to be measured, for example, glucose molecules in the case of blood glucose levels, and heated locally. A photoacoustic method that observes a sound wave generated from a living body due to thermal expansion has attracted attention.

しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至っていない。   However, the interaction between glucose and electromagnetic waves is small, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to a living body, so that a sufficient effect has not been achieved in measuring blood glucose levels in the living body.

図7および図8は、従来例として、光音響法による従来の血液成分濃度測定装置の構成例を示す図である。図7は光パルスを電磁波として用いた第1の従来例である(例えば、非特許文献1参照。)。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図7において、駆動回路604はパルス状の励起電流をパルス光源616に供給し、パルス光源616はサブマイクロ秒の持続時間を有する光パルスを発生し、発生した光パルスは被測定物610に照射される。光パルスは被測定物610の内部にパルス状の光音響信号と呼ばれる音波を発生させ、発生した音波は超音波検出器613により検出され、さらに音圧に比例した電気信号に変換される。   7 and 8 are diagrams showing a configuration example of a conventional blood component concentration measuring apparatus using a photoacoustic method as a conventional example. FIG. 7 shows a first conventional example using a light pulse as an electromagnetic wave (see, for example, Non-Patent Document 1). In this example, blood glucose, that is, glucose is the measurement target as the blood component. In FIG. 7, a driving circuit 604 supplies a pulsed excitation current to a pulse light source 616, the pulse light source 616 generates a light pulse having a sub-microsecond duration, and the generated light pulse irradiates the object 610 to be measured. Is done. The light pulse generates a sound wave called a pulsed photoacoustic signal inside the object to be measured 610, and the generated sound wave is detected by the ultrasonic detector 613 and further converted into an electric signal proportional to the sound pressure.

変換された電気信号の波形は波形観測器620により観測される。この波形観測器620は上記励起電流に同期した信号によりトリガされ、変換された電気信号は波形観測器620の管面上の一定位置に表示され、変換された電気信号は積算及び平均して測定することができる。このようにして得られた電気信号の振幅を解析して、被測定物610の内部の血糖値、すなわちグルコースの量が測定される。図7に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、1024個の光パルスを平均して、前記電気信号を測定しているが十分な精度が得られていない。   The waveform of the converted electric signal is observed by the waveform observer 620. This waveform observer 620 is triggered by a signal synchronized with the excitation current, the converted electric signal is displayed at a fixed position on the tube surface of the waveform observer 620, and the converted electric signal is measured by integrating and averaging. can do. By analyzing the amplitude of the electrical signal thus obtained, the blood sugar level inside the device under test 610, that is, the amount of glucose is measured. In the case of the example shown in FIG. 7, an optical pulse having a sub-microsecond pulse width is repeatedly generated at a maximum of 1 kHz, and 1024 optical pulses are averaged to measure the electrical signal. However, sufficient accuracy is obtained. It is not done.

そこで、より精度を高める目的で、連続的に強度変調した光源を用いる第2の従来例が開示されている。図8に第2の従来例の装置の構成を示す(例えば、特許文献1参照。)。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。説明の煩雑さを避けるために、図8により光源の数が2の場合の動作を説明する。図8において、異なる波長の光源、即ち、第1の光源601及び第2の光源605は、それぞれ駆動回路604及び駆動回路608により駆動され、連続光を出力する。   Therefore, a second conventional example using a light source that is continuously intensity-modulated has been disclosed for the purpose of improving accuracy. FIG. 8 shows the configuration of a second conventional apparatus (see, for example, Patent Document 1). In this example as well, blood sugar is the main measurement target, and high accuracy is attempted using a plurality of light sources having different wavelengths. In order to avoid complicated explanation, the operation when the number of light sources is 2 will be described with reference to FIG. In FIG. 8, light sources having different wavelengths, that is, a first light source 601 and a second light source 605 are driven by a drive circuit 604 and a drive circuit 608, respectively, and output continuous light.

第1の光源601及び第2の光源605が出力する光は、モータ618により駆動され一定回転数で回転するチョッパ板617により断続される。ここでチョッパ板617は不透明な材質により形成され、モータ618の軸を中心とする第1の光源601及び第2の光源605の光が通過する円周上に、互いに素な個数の開口部が形成されている。   Light output from the first light source 601 and the second light source 605 is intermittently driven by a chopper plate 617 that is driven by a motor 618 and rotates at a constant rotational speed. Here, the chopper plate 617 is formed of an opaque material, and a relatively small number of openings are formed on the circumference around which the light of the first light source 601 and the second light source 605 passes with the axis of the motor 618 as the center. Is formed.

上記の構成により、第1の光源601及び第2の光源605の各々が出力する光は互いに素な変調周波数f及び変調周波数fで強度変調された後、合波部609により合波され、1の光束として被測定物610に照射される。 With the above-described configuration, the light output from each of the first light source 601 and the second light source 605 is intensity-modulated with the disjoint modulation frequency f 1 and modulation frequency f 2 and then combined by the combining unit 609. The object to be measured 610 is irradiated as one light beam.

被測定物610の内部には第1の光源601の光により周波数fの光音響信号が発生し、第2の光源605の光により周波数fの光音響信号が発生し、これらの光音響信号は、音響センサ619により検出され、音圧に比例した電気信号に変換され、その周波数スペクトルが、周波数解析器621により観測される。本例においては、複数の光源の波長は全てグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。 Inside the object to be measured 610 photoacoustic signal having the frequency f 1 is generated by the light of the first light source 601, the photoacoustic signal having the frequency f 2 is generated by the light of the second light source 605, these photoacoustic The signal is detected by the acoustic sensor 619 and converted into an electric signal proportional to the sound pressure, and the frequency spectrum is observed by the frequency analyzer 621. In this example, the wavelengths of the plurality of light sources are all set to the absorption wavelength of glucose, and the intensity of the photoacoustic signal corresponding to each wavelength is measured as an electrical signal corresponding to the amount of glucose contained in the blood. The

ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの含有量を測定した値との関係を記憶しておいて、前記光音響信号の測定値からグルコースの量を測定している。
特開平10−189号公報 オウル大学(University of Oulu、Finland)学位論文「Pulsed photoacoustic techniques and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
Here, the relationship between the intensity of the measured value of the photoacoustic signal and the value obtained by measuring the glucose content by separately collected blood is stored in advance, and the amount of glucose is measured from the measured value of the photoacoustic signal. ing.
JP-A-10-189 University of Oulu (University of Oulu, Finland) thesis “Pulsed photoacoustic techniques and glouces determination in human blood and tissue” (IBS 951-42-6690-0, ftk / 95.

上述の従来例においては以下のような課題がある。光音響法による成分濃度の測定では、断続的な光の出射によって被測定物の被出射部位に局所的な温度変化が生じる。被測定物に含まれる測定対象となる成分には温度依存性があるため、被測定物が発生する光音響信号にも温度依存性が生じる。光音響信号の温度依存性によって成分濃度測定装置の測定精度が著しく低下する問題がある。   The conventional example described above has the following problems. In the measurement of the component concentration by the photoacoustic method, a local temperature change occurs in the portion to be measured of the object to be measured due to intermittent emission of light. Since the component to be measured included in the measurement object has temperature dependency, the photoacoustic signal generated by the measurement object also has temperature dependency. Due to the temperature dependence of the photoacoustic signal, there is a problem that the measurement accuracy of the component concentration measuring apparatus is significantly lowered.

本発明は、温度依存性による測定精度の低下を防止し、被測定物の成分濃度を高精度に測定可能な成分濃度測定装置及びその成分濃度測定装置の制御方法を提供することを目的とする。   It is an object of the present invention to provide a component concentration measuring apparatus capable of measuring a component concentration of an object to be measured with high accuracy, and a control method for the component concentration measuring apparatus, which prevent a decrease in measurement accuracy due to temperature dependence. .

(課題を解決するための手段)
上記の課題を解決するために、本発明に係る成分濃度測定装置は、被測定物の温度変化を求め、その温度変化に基づいて補正を行うことを特徴とする。
(Means for solving the problem)
In order to solve the above problems, a component concentration measuring apparatus according to the present invention is characterized in that a temperature change of an object to be measured is obtained and correction is performed based on the temperature change.

具体的には、本発明に係る成分濃度測定装置は、互いに異なる波長の2波の光を同一周波数で逆位相の信号によりそれぞれ電気的に強度変調する光変調手段と、前記光変調手段で変調された前記2波の光を合波する光合波手段と、前記光合波手段で合波された光を被測定物に出射する光出射手段と、前記被測定物の温度を測定する温度測定手段と、前記光出射手段からの光によって前記被測定物から発生する光音響信号を検出し、前記温度測定手段が測定する前記被測定物の温度から前記被測定物の温度変化を求め、前記温度変化に基づいて補正を行う音波検出手段と、を備え、前記温度測定手段は、前記光出射手段からの光を透過させかつ前記被測定物に接触しかつ熱伝導性を有することで前記被測定物の熱を伝達する窓、開口部で前記窓を保持しかつ内部に前記温度測定器及び前記光出射手段を保持しかつ熱伝導性を有することで前記窓に伝達した前記被測定物の熱を伝達する窓枠、並びに、前記窓枠の温度を測定することで前記被測定物の温度を測定する温度測定器を有し、前記被測定物で反射又は散乱された前記光出射手段からの光が前記窓を通過する光の光路に交わらないように前記窓の表面に形成され、前記被測定物で反射又は散乱された光を反射する光反射膜、或いは、前記被測定物で反射又は散乱された前記光出射手段からの光が前記窓を通過する光の光路に交わるように前記窓に装着され、前記光出射手段からの光を透過する直線偏光板又は光アイソレータ、或いは、前記窓枠の内表面に装着され、前記被測定物で反射又は散乱された光のうち、前記窓を透過した光を吸収する吸光体を備えることを特徴とする。 Specifically, the component concentration measuring apparatus according to the present invention includes an optical modulation unit that electrically modulates intensity of two light beams having different wavelengths with signals of the same frequency and opposite phase, and the optical modulation unit modulates the light. Optical combining means for combining the two light beams, light emitting means for emitting the light combined by the optical combining means to the object to be measured, and temperature measuring means for measuring the temperature of the object to be measured And detecting a photoacoustic signal generated from the measured object by light from the light emitting means, obtaining a temperature change of the measured object from the temperature of the measured object measured by the temperature measuring means, Sound wave detecting means for performing correction based on the change , wherein the temperature measuring means transmits the light from the light emitting means, contacts the object to be measured, and has thermal conductivity, thereby measuring the object to be measured. Window that transfers the heat of the object, the window at the opening A window frame that holds the temperature measuring device and the light emitting means inside and has heat conductivity and transmits heat of the object to be measured transmitted to the window; and a temperature of the window frame. A temperature measuring device for measuring the temperature of the object to be measured by measuring, so that the light from the light emitting means reflected or scattered by the object to be measured does not cross the optical path of the light passing through the window Formed on the surface of the window to reflect light reflected or scattered by the object to be measured, or light from the light emitting means reflected or scattered by the object to be measured passes through the window. A linear polarizing plate or optical isolator that is mounted on the window so as to cross the optical path of the light passing therethrough and transmits light from the light emitting means, or mounted on the inner surface of the window frame and reflected by the object to be measured Or out of the scattered light passing through the window Characterized in that it comprises a light absorbing material that absorbs light.

上記の成分濃度測定装置は、前記被測定物の局所的な前記温度変化を求め、前記温度変化に基づいて算術的な補正を行うことで、温度依存性による測定精度の低下を防止し、前記被測定物の成分濃度を高精度に測定することができる。
上記の成分濃度測定装置は、前記窓が前記被測定物への光の出射を妨げることなく、前記窓を前記被測定物に接触させることが可能となり、前記温度測定器が前記被測定物の温度をより正確に測定できる。
The component concentration measuring apparatus obtains the local temperature change of the object to be measured, and performs arithmetic correction based on the temperature change to prevent a decrease in measurement accuracy due to temperature dependence, The component concentration of the object to be measured can be measured with high accuracy.
The component concentration measuring apparatus can bring the window into contact with the object to be measured without preventing the window from emitting light to the object to be measured. The temperature can be measured more accurately.

本発明に係る成分濃度測定装置では、前記窓及び前記窓枠は、熱伝導率が230W/m・K以上の材料で形成されていることが好ましい。   In the component concentration measuring apparatus according to the present invention, the window and the window frame are preferably formed of a material having a thermal conductivity of 230 W / m · K or more.

上記の成分濃度測定装置は、前記窓及び前記窓枠が前記被測定物の熱を伝えやすく、前記温度測定器が前記被測定物の温度をより正確に測定できる。   In the component concentration measuring apparatus, the window and the window frame can easily transmit heat of the object to be measured, and the temperature measuring device can measure the temperature of the object to be measured more accurately.

上記の成分濃度測定装置は、光反射膜を備えるため、前記被測定物で反射又は散乱された光が前記窓を透過して前記窓枠に吸収されて発熱する事態を低減でき、前記温度測定器が前記被測定物の温度をより正確に測定できる。 Since the component concentration measuring apparatus includes a light reflecting film, it is possible to reduce the situation where light reflected or scattered by the object to be measured is transmitted through the window and absorbed by the window frame to generate heat, and the temperature measurement is performed. The instrument can measure the temperature of the object to be measured more accurately.

上記の成分濃度測定装置は、直線偏光板又は光アイソレータを備えるため、前記被測定物で反射又は散乱された光が前記窓を透過して前記窓枠に吸収されて発熱する事態を低減でき、前記温度測定器が前記被測定物の温度をより正確に測定できる。 Since the component concentration measuring apparatus includes a linearly polarizing plate or an optical isolator, it is possible to reduce the situation where light reflected or scattered by the object to be measured passes through the window and is absorbed by the window frame to generate heat, The temperature measuring device can measure the temperature of the object to be measured more accurately.

上記の成分濃度測定装置は、吸光体を備えるため、前記被測定物で反射又は散乱された光が前記窓枠に吸収されて発熱する事態を低減でき、前記温度測定器が前記被測定物の温度をより正確に測定できる。 Additional constituent concentration measuring apparatus, comprising a light absorbing material, wherein it is possible to reduce the situation in which light reflected or scattered by the object to be measured generates heat is absorbed by the window frame, wherein the temperature measuring device of the object to be measured The temperature can be measured more accurately.

本発明に係る成分濃度測定装置では、前記光出射手段からの光の光路に交わらないように前記窓の表面を覆い及び/又は前記窓枠の表面を覆う断熱材を備えることが好ましい。   In the component concentration measuring apparatus according to the present invention, it is preferable to include a heat insulating material that covers the surface of the window and / or covers the surface of the window frame so as not to cross the optical path of the light from the light emitting means.

上記の成分濃度測定装置は、前記断熱材が前記窓及び/又は前記窓枠を伝わる熱の影響を低下させ、前記温度測定器が前記被測定物の温度をより正確に測定できる。   In the component concentration measuring device, the heat insulating material reduces the influence of heat transmitted through the window and / or the window frame, and the temperature measuring device can measure the temperature of the object to be measured more accurately.

本発明は、温度依存性による測定精度の低下を防止し、被測定物の成分濃度を高精度に測定可能な成分濃度測定装置及びその成分濃度測定装置の制御方法を提供することができる。   The present invention can provide a component concentration measuring apparatus and a method for controlling the component concentration measuring apparatus that can prevent the measurement accuracy from being lowered due to temperature dependency and can measure the component concentration of the measurement object with high accuracy.

(発明を実施するための最良の形態)
添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、各実施形態に係る成分濃度測定装置において、電源、あるいは全体の動作を制御する制御部などの通常の技術により実現できる部分は図示せず、同一部材及び同一部位には同一符号を付した。
(Best Mode for Carrying Out the Invention)
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In addition, in the component concentration measuring apparatus according to each embodiment, a part that can be realized by a normal technique such as a power source or a control unit that controls the entire operation is not shown, and the same members and the same parts are denoted by the same reference numerals. .

図1に、本実施形態に係る成分濃度測定装置の概略図を示す。本実施形態に係る成分濃度測定装置100は、互いに異なる波長の2波の光を同一周波数で逆位相の信号によりそれぞれ電気的に強度変調する光変調手段110と、光変調手段110で変調された2波の光を合波する光合波手段120と、光合波手段120で合波された光を被測定物199に出射する光出射手段140と、被測定物199の温度を測定する温度測定手段200と、光出射手段140からの光によって被測定物199から発生する光音響信号を検出し、温度測定手段200が測定する被測定物199の温度から被測定物199の温度変化を求め、温度変化に基づいて補正を行う音波検出手段150と、を備えることを特徴とする。さらに、図1の光変調手段110は、2個の駆動回路111a,111b、2個の光源112a,112b、遅延調整器113及び発信器114を有する。図1の音波検出手段150は、音波検出器151、前置増幅器152、位相検波増幅器153、光音響信号出力端子154及び成分濃度算出部155を有する。図1の温度測定手段200は、窓210、温度測定器220及び温度信号出力端子230を有する。   FIG. 1 shows a schematic diagram of a component concentration measuring apparatus according to this embodiment. The component concentration measuring apparatus 100 according to the present embodiment is modulated by the light modulating unit 110 that electrically modulates the intensity of two waves of different wavelengths with signals of the same frequency and opposite phase, and the light modulating unit 110. Optical combining means 120 for combining two light beams, light emitting means 140 for emitting the light combined by the optical combining means 120 to the measurement object 199, and temperature measurement means for measuring the temperature of the measurement object 199 200 and a photoacoustic signal generated from the measured object 199 by the light from the light emitting means 140, the temperature change of the measured object 199 is obtained from the temperature of the measured object 199 measured by the temperature measuring means 200, and the temperature And a sound wave detection unit 150 that performs correction based on the change. Furthermore, the light modulation means 110 in FIG. 1 includes two drive circuits 111a and 111b, two light sources 112a and 112b, a delay adjuster 113, and a transmitter 114. 1 includes a sound wave detector 151, a preamplifier 152, a phase detection amplifier 153, a photoacoustic signal output terminal 154, and a component concentration calculation unit 155. 1 includes a window 210, a temperature measuring device 220, and a temperature signal output terminal 230.

光源112としては、例えば、分布帰還型半導体レーザ(DFB−LD)がある。ここでは、光源112a,112bは、互いに波長が異なり、かつ、被測定物199の吸収波長となる光を出力することが好ましい。図1の成分濃度測定装置100では、光源112aの発振波長が1.38μmであり、光源112bの発振波長が1.61μmである。また、光源112は、ヒーター又はペルチェ素子で加熱又は冷却することにより出力する光の波長を変化できることが好ましい。光源112は、例えば、波長安定度が0.1nmであり、0.1℃単位で光源112の温度を安定化できる。   An example of the light source 112 is a distributed feedback semiconductor laser (DFB-LD). Here, it is preferable that the light sources 112a and 112b have different wavelengths and output light having an absorption wavelength of the measurement object 199. In the component concentration measuring apparatus 100 of FIG. 1, the oscillation wavelength of the light source 112a is 1.38 μm, and the oscillation wavelength of the light source 112b is 1.61 μm. Moreover, it is preferable that the light source 112 can change the wavelength of the light output by heating or cooling with a heater or a Peltier element. For example, the light source 112 has a wavelength stability of 0.1 nm and can stabilize the temperature of the light source 112 in units of 0.1 ° C.

例えば、光源112aに電力を供給する駆動回路111aが光源112aに接続され、光源112bに電力を供給する駆動回路111bが光源112bに接続される。駆動回路111は、例えば、500kHzの周波数で光源112が出力する光を直接変調する。また、発信器114は、任意の周波数、例えば、周波数が1kHz〜1MHzのパルス列を発生させ、これを駆動回路111a,111bに出力する。遅延調整器113は、例えば、0.1n秒単位の精度で遅延を付与でき、光源112a,112bを逆位相で駆動するために、発信器114が発生させたパルス列に周期の半分の遅延を付与するように調整する。   For example, a drive circuit 111a that supplies power to the light source 112a is connected to the light source 112a, and a drive circuit 111b that supplies power to the light source 112b is connected to the light source 112b. For example, the drive circuit 111 directly modulates the light output from the light source 112 at a frequency of 500 kHz. The transmitter 114 generates a pulse train having an arbitrary frequency, for example, a frequency of 1 kHz to 1 MHz, and outputs this to the drive circuits 111a and 111b. The delay adjuster 113 can give a delay with an accuracy of, for example, 0.1 ns, and gives a delay of half the cycle to the pulse train generated by the transmitter 114 in order to drive the light sources 112a and 112b in opposite phases. Adjust to

光伝搬手段130aは、例えば、光源112aと光合波手段120の光入力端子(不図示)との間を接続する。また、光伝搬手段130bは、例えば、光源112bと光合波手段120の光入力端子との間を接続する。光合波手段120としては、例えば、光カプラがある。また、光伝搬手段130としては、例えば、光ファイバ又は光導波路がある。   The light propagation unit 130a connects, for example, between the light source 112a and an optical input terminal (not shown) of the optical multiplexing unit 120. Moreover, the light propagation means 130b connects between the light source 112b and the optical input terminal of the optical multiplexing means 120, for example. An example of the optical multiplexing means 120 is an optical coupler. The light propagation means 130 includes, for example, an optical fiber or an optical waveguide.

光出射手段140は、例えば、光合波手段120の光出力端子(不図示)に接続される。ここで、光出射手段140は、先端に出射口141が装着されることが好ましい。出射口141としては、例えば、光ファイバコリメータ、材料がBK7(登録商標)、SFL−11(登録商標)、石英又はサファイアの全反射プリズム、或いは、フェルールがある。   The light emitting means 140 is connected to, for example, a light output terminal (not shown) of the optical multiplexing means 120. Here, the light emitting means 140 is preferably provided with an emission port 141 at the tip. Examples of the exit 141 include an optical fiber collimator, a material made of BK7 (registered trademark), SFL-11 (registered trademark), a quartz or sapphire total reflection prism, or a ferrule.

被測定物199は、光出射手段140から光が光熱変換され、熱が発生する。被測定物199としては、人体又は人体の一部、例えば、指がある。被測定物199が指であれば、成分濃度測定装置100は、血液中のグルコースの濃度を測定できる。また、被測定物199としては、例えば、実験用ラット、みかん等の果実、或いは、人体又は実験用ラットから採取した採取物もある。被測定物199が果実であれば、成分濃度測定装置100は、果実の糖度、すなわち、果実の甘さを測定できる。   In the device under test 199, light is photothermally converted from the light emitting means 140, and heat is generated. The measurement object 199 includes a human body or a part of the human body, for example, a finger. If the measured object 199 is a finger, the component concentration measuring apparatus 100 can measure the concentration of glucose in blood. Examples of the measurement object 199 include, for example, experimental rats, fruits such as mandarin oranges, or a sample collected from a human body or an experimental rat. If the DUT 199 is a fruit, the component concentration measuring apparatus 100 can measure the sugar content of the fruit, that is, the sweetness of the fruit.

被測定物199で発生する熱は、例えば、窓210を通じて温度測定器220で測定される。温度測定器220は、例えば、測定した被測定物199の温度を温度信号出力端子230に出力する。また、温度信号出力端子230には、例えば、成分濃度算出部155が接続される。成分濃度算出部155は、例えば、温度信号出力端子230が出力する温度信号に基づいて被測定物199の温度変化を求め、温度変化に基づいて補正を行う。この補正値S’は、数1で示される。   The heat generated in the device under test 199 is measured by the temperature measuring device 220 through the window 210, for example. For example, the temperature measuring device 220 outputs the measured temperature of the measured object 199 to the temperature signal output terminal 230. In addition, for example, a component concentration calculation unit 155 is connected to the temperature signal output terminal 230. For example, the component concentration calculation unit 155 obtains a temperature change of the measurement object 199 based on the temperature signal output from the temperature signal output terminal 230 and corrects based on the temperature change. This correction value S ′ is expressed by Equation 1.

Figure 0004901432
ここで、sは光音響信号の強度、χは2波長の光の吸光度差温度係数、及び、ΔTは被測定物199の温度変化である。
Figure 0004901432
Here, s is the intensity of the photoacoustic signal, χ is an absorbance difference temperature coefficient of light of two wavelengths, and ΔT is a temperature change of the object 199 to be measured.

光出射手段140から光を出射された被測定物199は、光音響効果によって光音響信号を発生する。音波検出器151は、例えば、被測定物199が発生する光音響信号を検出して電気信号に変換する。ここで、音波検出器151は、検出感度が最高となる共振周波数を、光変調手段110の変調周波数に合せた周波数、例えば、500kHzに合せることが好ましい。音波検出器151としては、例えば、超音波センサがある。前置増幅器152は、例えば、音波検出器151からの電気信号を増幅して出力する。位相検波増幅器153は、例えば、光変調手段110の変調周波数と同一周波数成分となる電気信号を抽出し、光音響信号出力端子154に出力する。光音響信号出力端子154には、例えば、成分濃度算出部155が接続される。成分濃度算出部155は、例えば、光音響信号出力端子154が出力する電気信号に基づいて被測定物199の成分濃度を算出する。被測定物199の成分濃度Mは、数2で示される。   The device under test 199 from which light is emitted from the light emitting means 140 generates a photoacoustic signal by the photoacoustic effect. The sound wave detector 151 detects, for example, a photoacoustic signal generated by the measurement object 199 and converts it into an electrical signal. Here, it is preferable that the sound wave detector 151 adjusts the resonance frequency at which the detection sensitivity is highest to a frequency that matches the modulation frequency of the light modulator 110, for example, 500 kHz. An example of the sound wave detector 151 is an ultrasonic sensor. For example, the preamplifier 152 amplifies and outputs an electrical signal from the sound wave detector 151. For example, the phase detection amplifier 153 extracts an electrical signal having the same frequency component as the modulation frequency of the optical modulation unit 110 and outputs the electrical signal to the photoacoustic signal output terminal 154. For example, a component concentration calculation unit 155 is connected to the photoacoustic signal output terminal 154. The component concentration calculation unit 155 calculates the component concentration of the device under test 199 based on, for example, an electrical signal output from the photoacoustic signal output terminal 154. The component concentration M of the object 199 to be measured is expressed by Equation 2.

Figure 0004901432
ここで、α(W)は背景(主に水)の吸光度、α(g)は測定対象となる成分(例えば、血液)の吸光度、sは1波長の光音響信号の強度、及び、s’は数1の補正値である。
Figure 0004901432
Here, α (W) is the absorbance of the background (mainly water), α (g) is the absorbance of the component to be measured (for example, blood), s 1 is the intensity of the photoacoustic signal of one wavelength, and s 'Is the correction value of Equation 1.

成分濃度測定装置100は、以下のように制御することができる。本実施形態に係る成分濃度測定装置の制御方法は、光変調手段110が互いに異なる波長の2波の光を同一周波数で逆位相の信号によりそれぞれ電気的に強度変調し、光合波手段120が光変調手段110で変調された2波の光を合波し、光出射手段140が光合波手段120で合波された光を被測定物199に出射し、温度測定手段200が被測定物199の温度を測定し、音波検出手段150が、光出射手段140からの光によって被測定物199から発生する光音響信号を検出し、温度測定手段200で測定する被測定物199の温度から被測定物199の温度変化を求め、温度変化に基づいて補正を行う。以上のように、本実施形態に係る成分濃度測定装置及び成分濃度測定装置の制御方法は、被測定物199の局所的な温度変化を求め、温度変化に基づいて算術的な補正を行うことで、温度依存性による測定精度の低下を防止し、被測定物199の成分濃度を高精度に測定することができる。   The component concentration measuring apparatus 100 can be controlled as follows. In the control method of the component concentration measuring apparatus according to the present embodiment, the light modulation means 110 electrically modulates the intensity of two waves of different wavelengths with signals of the same frequency and opposite phase, and the light multiplexing means 120 The two light beams modulated by the modulating unit 110 are combined, the light emitting unit 140 emits the light combined by the optical combining unit 120 to the object to be measured 199, and the temperature measuring unit 200 detects the object to be measured 199. The temperature is measured, and the sound wave detection means 150 detects the photoacoustic signal generated from the measurement object 199 by the light from the light emitting means 140, and the measurement object from the temperature of the measurement object 199 measured by the temperature measurement means 200. A temperature change of 199 is obtained, and correction is performed based on the temperature change. As described above, the component concentration measurement device and the control method of the component concentration measurement device according to the present embodiment obtain the local temperature change of the object 199 to be measured, and perform arithmetic correction based on the temperature change. Therefore, it is possible to prevent a decrease in measurement accuracy due to temperature dependency and to measure the component concentration of the measurement object 199 with high accuracy.

ここで、本実施形態に係る成分濃度測定装置の制御方法では、温度測定手段200が被測定物199の温度を測定している間、温度測定手段200を被測定物199に接触させていることが好ましい。図1では、温度測定手段200の窓210を被測定物199に接触させている。成分濃度測定装置100は、温度測定手段200を被測定物199に接触させることで、被測定物199の温度が温度測定手段200に伝わりやすくなり、温度測定手段200が被測定物199の温度をより正確に測定できる。   Here, in the control method of the component concentration measurement apparatus according to the present embodiment, the temperature measurement unit 200 is in contact with the measurement object 199 while the temperature measurement unit 200 measures the temperature of the measurement object 199. Is preferred. In FIG. 1, the window 210 of the temperature measuring means 200 is in contact with the object to be measured 199. The component concentration measurement apparatus 100 makes the temperature measurement unit 200 contact the measurement object 199, whereby the temperature of the measurement object 199 is easily transmitted to the temperature measurement unit 200, and the temperature measurement unit 200 determines the temperature of the measurement object 199. It can be measured more accurately.

以下、本実施形態に係る成分濃度測定装置をより詳細に説明する。図2に、筐体を備える形態の成分濃度測定装置の縦断面図を示した。図2に示すように、本実施形態に係る成分濃度測定装置では、温度測定手段は、光出射手段140からの光を透過させる窓210、被測定物(不図示)の温度を測定する温度測定器220、及び、窓210を保持し、温度測定器220を搭載する窓枠240を有し、窓枠240が内部に固定され、窓210及び温度測定器220を収容する筐体300をさらに備えることが好ましい。筐体300は、例えば、ネジ310及びバネ320を有する挟み込み機構300c及び筐体本体300a,300bからなるプラスチック製のクリップ型筐体である。筐体300は、例えば、筐体本体300aの側に音波検出器151を収容し、筐体本体300bの側に光出射手段140、窓210及び温度測定器220を収容する。ネジ310を締めることで、筐体本体300a,300bで被測定物を挟み込むことができる。   Hereinafter, the component concentration measuring apparatus according to the present embodiment will be described in more detail. FIG. 2 shows a longitudinal sectional view of a component concentration measuring apparatus having a casing. As shown in FIG. 2, in the component concentration measuring apparatus according to the present embodiment, the temperature measuring means measures the temperature of the window 210 that transmits the light from the light emitting means 140 and the object to be measured (not shown). And a window frame 240 that holds the window 210 and mounts the temperature measuring device 220. The window frame 240 is fixed inside and further includes a housing 300 that houses the window 210 and the temperature measuring device 220. It is preferable. The housing 300 is, for example, a plastic clip-type housing including a pinching mechanism 300c having screws 310 and a spring 320 and housing bodies 300a and 300b. The housing 300 houses, for example, the sound wave detector 151 on the housing body 300a side, and houses the light emitting means 140, the window 210, and the temperature measuring device 220 on the housing body 300b side. By tightening the screw 310, the object to be measured can be sandwiched between the casing main bodies 300a and 300b.

温度測定器220は、窓210及び被測定物の近くに配置することが好ましい。温度測定器220としては、例えば、白金抵抗体、サーミスタ等の温度センサがある。また、コード220aは、例えば、温度測定器220に接続され、温度測定器220が測定する温度信号を伝える。光出射手段140は、例えば、先端に、出射口141としての直角プリズムが装着される。また、コード151aは、例えば、音波検出器151に接続され、音波検出器151が検出する光音響信号を伝える。   The temperature measuring device 220 is preferably disposed near the window 210 and the object to be measured. Examples of the temperature measuring device 220 include temperature sensors such as platinum resistors and thermistors. The cord 220a is connected to the temperature measuring device 220, for example, and transmits a temperature signal measured by the temperature measuring device 220. For example, the light emitting means 140 is mounted with a right-angle prism as the emission port 141 at the tip. The code 151a is connected to, for example, the sound wave detector 151 and transmits a photoacoustic signal detected by the sound wave detector 151.

成分濃度測定装置100は、窓210が被測定物への光の出射を妨げることなく、窓210を被測定物に接触させることが可能となり、温度測定器220が被測定物の温度をより正確に測定できる。このとき、筐体300から温度測定器220をわずかに隆起させることが好ましい。被測定物からの熱伝導を良くでき、被測定物を挟み込みやすく、被測定物を窓210により強く押し当てることができる。   In the component concentration measuring apparatus 100, the window 210 can be brought into contact with the object to be measured without preventing the window 210 from emitting light to the object to be measured, and the temperature measuring device 220 can more accurately set the temperature of the object to be measured. Can be measured. At this time, it is preferable that the temperature measuring device 220 is slightly raised from the housing 300. Heat conduction from the object to be measured can be improved, the object to be measured can be easily sandwiched, and the object to be measured can be strongly pressed against the window 210.

本実施形態に係る成分濃度測定装置では、窓210及び窓枠240は、熱伝導率が230W/m・K以上の材料で形成されていることが好ましい。このような窓210の材料としては、例えば、サファイアがある。また、窓枠240の材料としては、アルミ、銅、金又は銀がある。窓210及び窓枠240として用いる材料の中で熱伝導率が最も高いのは銀であり、銀の熱伝導率は420W/m・Kである。また、被測定物が接触してから窓210の温度が一定になるまでの時間を短縮するため、窓枠240は、体積を小さく、例えば、3cm以下にすることが好ましい。成分濃度測定装置100は、窓210及び窓枠240が被測定物の熱を伝えやすく、温度測定器220が被測定物の温度をより正確に測定できる。 In the component concentration measuring apparatus according to this embodiment, the window 210 and the window frame 240 are preferably formed of a material having a thermal conductivity of 230 W / m · K or more. An example of the material of the window 210 is sapphire. The material of the window frame 240 includes aluminum, copper, gold, or silver. Among the materials used for the window 210 and the window frame 240, silver has the highest thermal conductivity, and the thermal conductivity of silver is 420 W / m · K. Moreover, in order to shorten the time until the temperature of the window 210 becomes constant after the object to be measured contacts, it is preferable that the window frame 240 has a small volume, for example, 3 cm 3 or less. In the component concentration measuring apparatus 100, the window 210 and the window frame 240 can easily transmit the heat of the object to be measured, and the temperature measuring device 220 can measure the temperature of the object to be measured more accurately.

被測定物で反射又は散乱された光が窓210を透過すると、窓枠240に吸収されて発熱することがある。この熱によって、温度測定器220が被測定物の温度を正確に測定できなくなる場合がある。本実施形態に係る成分濃度測定装置では、窓210は、光出射手段140からの光を透過する直線偏光板250が、光出射手段140からの光の光路に交わるように装着されていることが好ましい。図2では、出射口141と窓210との間に位置するように直線偏光板250を装着している。また、直線偏光板250の代わりに光アイソレータ(不図示)を装着しても良く、消光比が最も優れるファラデー回転子を用いた光アイソレータを装着することが好ましい。直線偏光板250が被測定物で反射又は散乱された光を透過せず、成分濃度測定装置100は、被測定物で反射又は散乱された光が窓210を透過して窓枠240に吸収されて発熱する事態を低減でき、温度測定器220が被測定物の温度をより正確に測定できる。   When light reflected or scattered by the object to be measured passes through the window 210, the light may be absorbed by the window frame 240 and generate heat. Due to this heat, the temperature measuring device 220 may not be able to accurately measure the temperature of the object to be measured. In the component concentration measuring apparatus according to the present embodiment, the window 210 is mounted so that the linearly polarizing plate 250 that transmits the light from the light emitting means 140 intersects the optical path of the light from the light emitting means 140. preferable. In FIG. 2, the linear polarizing plate 250 is mounted so as to be positioned between the emission port 141 and the window 210. In addition, an optical isolator (not shown) may be mounted instead of the linear polarizing plate 250, and it is preferable to mount an optical isolator using a Faraday rotator having the best extinction ratio. The linearly polarizing plate 250 does not transmit the light reflected or scattered by the object to be measured, and the component concentration measuring apparatus 100 allows the light reflected or scattered by the object to be measured to pass through the window 210 and be absorbed by the window frame 240. Therefore, the temperature measuring device 220 can measure the temperature of the object to be measured more accurately.

本実施形態に係る成分濃度測定装置では、窓枠240の表面を覆う断熱材270を備えることが好ましい。断熱材270としては、例えば、筐体300及び外気からの熱を断熱する特性を有するゴム、繊維又は発泡スチロールがある。成分濃度測定装置100は、断熱材270が窓枠240伝わる熱の影響を低下、例えば、外気或いは被測定物で反射又は散乱された光が筺体300に吸収されて発生した熱を断熱でき、温度測定器220が被測定物の温度をより正確に測定できる。図2は、窓枠240の表面を断熱材で覆った場合であるが、光出射手段140からの光の光路に交わらないように窓210の表面を断熱材270で覆っても良い。また、窓枠240の表面を断熱材270で覆い、かつ、光出射手段140からの光の光路に交わらないように窓210の表面を断熱材270で覆っても良い(不図示)。 In the component concentration measuring apparatus according to the present embodiment, it is preferable to include a heat insulating material 270 that covers the surface of the window frame 240. As the heat insulating material 270, for example, there are rubber, fiber, or polystyrene foam having a characteristic of insulating heat from the casing 300 and the outside air. The component concentration measuring apparatus 100 can reduce the influence of heat transmitted to the window frame 240 by the heat insulating material 270, for example, can insulate the heat generated by the light reflected or scattered by the outside air or the measurement object being absorbed by the housing 300 , The temperature measuring device 220 can measure the temperature of the object to be measured more accurately. FIG. 2 shows a case where the surface of the window frame 240 is covered with a heat insulating material, but the surface of the window 210 may be covered with a heat insulating material 270 so as not to cross the optical path of light from the light emitting means 140. Further, the surface of the window frame 240 may be covered with the heat insulating material 270, and the surface of the window 210 may be covered with the heat insulating material 270 so as not to cross the optical path of light from the light emitting means 140 (not shown).

図3に、窓枠の縦断面図を示した。本実施形態に係る成分濃度測定装置では、窓210は、表面に、被測定物で反射又は散乱された光を反射する光反射膜280が、光出射手段140からの光の光路に交わらないように形成されていることが好ましい。図3では、窓210の下面に光反射膜280が形成されているが、窓210の上面に光反射膜280を形成しても良い。光反射膜280は、例えば、アルミ、銅、銀又は金等の金属を蒸着して形成できる。光反射膜280が被測定物で反射又は散乱された光をさらに反射するので、成分濃度測定装置100は、被測定物で反射又は散乱された光が窓210を透過して窓枠240に吸収されて発熱する事態を低減でき、温度測定器220が被測定物の温度をより正確に測定できる。   FIG. 3 shows a longitudinal sectional view of the window frame. In the component concentration measuring apparatus according to the present embodiment, the window 210 prevents the light reflecting film 280 that reflects the light reflected or scattered by the object to be measured from intersecting the optical path of the light from the light emitting means 140 on the surface. It is preferable to be formed. In FIG. 3, the light reflecting film 280 is formed on the lower surface of the window 210, but the light reflecting film 280 may be formed on the upper surface of the window 210. The light reflecting film 280 can be formed by evaporating a metal such as aluminum, copper, silver, or gold. Since the light reflection film 280 further reflects the light reflected or scattered by the object to be measured, the component concentration measurement apparatus 100 transmits the light reflected or scattered by the object to be measured through the window 210 and is absorbed by the window frame 240. Therefore, the temperature measuring device 220 can measure the temperature of the object to be measured more accurately.

図4に、窓枠の上面図を示した。例えば、溝241を窓枠240に設け、温度測定器220は、熱伝導性の高い接着剤で溝241に接着される。図4では窓210の形状が円盤状であるが、特に限定されない。   FIG. 4 shows a top view of the window frame. For example, the groove 241 is provided in the window frame 240, and the temperature measuring device 220 is bonded to the groove 241 with an adhesive having high thermal conductivity. In FIG. 4, the shape of the window 210 is a disk shape, but is not particularly limited.

図5に、吸光体を装着した形態の窓枠の縦断面図を示した。また、図6に、吸光体を装着した形態の窓枠の上面図を示した。本実施形態に係る成分濃度測定装置100では、窓枠240は、表面に、被測定物で反射又は散乱された光を吸収する吸光体290が装着されていることが好ましい。吸光体290は、例えば、光出射部141の下部に位置するように、窓枠240の表面に装着される。吸光体290としては、例えば、黒色ゴム又は黒色繊維がある。また、吸光体290が黒色ゴムの場合は、吸光による熱を窓枠240に伝えにくくするため、低熱伝導率を有する発泡ゴムを用いることが好ましい。さらに、窓枠240の表面と吸光体290との間に断熱材を挟んでも良い(不図示)。吸光体290が被測定物で反射又は散乱された光を吸収するので、成分濃度測定装置100は、被測定物で反射又は散乱された光が窓枠240に吸収されて発熱する事態を低減でき、温度測定器220が被測定物の温度をより正確に測定できる。   FIG. 5 shows a vertical cross-sectional view of a window frame with a light absorber attached. FIG. 6 shows a top view of a window frame in which a light absorber is mounted. In the component concentration measuring apparatus 100 according to the present embodiment, it is preferable that the window frame 240 has a light absorber 290 that absorbs light reflected or scattered by the measurement object on the surface thereof. For example, the light absorber 290 is mounted on the surface of the window frame 240 so as to be positioned below the light emitting unit 141. Examples of the light absorber 290 include black rubber or black fiber. Further, when the light absorber 290 is black rubber, it is preferable to use foamed rubber having low thermal conductivity in order to make it difficult to transfer heat due to light absorption to the window frame 240. Further, a heat insulating material may be sandwiched between the surface of the window frame 240 and the light absorber 290 (not shown). Since the light absorber 290 absorbs the light reflected or scattered by the measurement object, the component concentration measurement apparatus 100 can reduce the situation where the light reflected or scattered by the measurement object is absorbed by the window frame 240 and generates heat. The temperature measuring device 220 can measure the temperature of the object to be measured more accurately.

本発明に係る成分濃度測定装置は、日常の健康管理や美容上のチェックに利用することができる。また、人間ばかりでなく、動物についても健康管理に利用することができる。また、本発明に係る成分濃度測定装置は、人間や動物だけではなく、液体中の成分濃度を測定する分野、例えば果実の糖度測定にも適用することができる。   The component concentration measuring apparatus according to the present invention can be used for daily health management and cosmetic check. Moreover, not only humans but also animals can be used for health management. Moreover, the component concentration measuring apparatus according to the present invention can be applied not only to humans and animals but also to the field of measuring component concentrations in liquids, for example, sugar content measurement of fruits.

成分濃度測定装置の概略図である。It is the schematic of a component density | concentration measuring apparatus. 筐体を備える形態の成分濃度測定装置の縦断面図である。It is a longitudinal cross-sectional view of the component concentration measuring apparatus of a form provided with a housing | casing. 窓枠の縦断面図である。It is a longitudinal cross-sectional view of a window frame. 窓枠の上面図である。It is a top view of a window frame. 吸光体を装着した形態の窓枠の縦断面図である。It is a longitudinal cross-sectional view of the window frame of the form which mounted | wore the absorber. 吸光体を装着した形態の窓枠の上面図である。It is a top view of the window frame of the form which mounted | wore the absorber. 従来の光音響法による従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component concentration measuring apparatus by the conventional photoacoustic method. 従来の光音響法による従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component concentration measuring apparatus by the conventional photoacoustic method.

符号の説明Explanation of symbols

100:成分濃度測定装置
110:光変調手段
111,111a,111b:駆動回路
112,112a,112b:光源
113:遅延調整器
114:発振器
120:光合波手段
130,130a,130b:光伝搬手段
140:光出射手段
141:出射口
150:音波検出手段
151:音波検出器
151a、220a:コード
152:前置増幅器
153:位相検波増幅器
154:光音響信号出力端子
155:成分濃度算出部
199:被測定物
200:温度測定手段
210:窓
220:温度測定器
230:温度信号出力端子
240:窓枠
241:溝
250:直線偏光板
270:断熱材
280:光反射膜
290:吸光体
300:筐体
300a、300b:筐体本体
300c:挟み込み機構
310:ネジ
320:バネ
601:第1の光源
604:駆動回路
605:第2の光源
608:駆動回路
609:合波部
610:被測定物
613:超音波検出器
616:パルス光源
617:チョッパ板
618:モータ
619:音響センサ
620:波形観測器
621:周波数解析器
100: Component concentration measuring device 110: Light modulation means 111, 111a, 111b: Drive circuits 112, 112a, 112b: Light source 113: Delay adjuster 114: Oscillator 120: Optical multiplexing means 130, 130a, 130b: Light propagation means 140: Light emitting means 141: Emission port 150: Sound wave detecting means 151: Sound wave detectors 151a, 220a: Code 152: Preamplifier 153: Phase detection amplifier 154: Photoacoustic signal output terminal 155: Component concentration calculation unit 199: Object to be measured 200: temperature measuring means 210: window 220: temperature measuring device 230: temperature signal output terminal 240: window frame 241: groove 250: linearly polarizing plate 270: heat insulating material 280: light reflecting film 290: absorber 300: housing 300a, 300b: Housing body 300c: Pinching mechanism 310: Screw 320: Spring 601: First light source 604: Dynamic circuit 605: second light source 608: drive circuit 609: multiplexer 610: device under test 613: ultrasonic detector 616: pulse light source 617: chopper plate 618: motor 619: acoustic sensor 620: waveform observer 621: Frequency analyzer

Claims (3)

互いに異なる波長の2波の光を同一周波数で逆位相の信号によりそれぞれ電気的に強度変調する光変調手段と、
前記光変調手段で変調された前記2波の光を合波する光合波手段と、
前記光合波手段で合波された光を被測定物に出射する光出射手段と、
前記被測定物の温度を測定する温度測定手段と、
前記光出射手段からの光によって前記被測定物から発生する光音響信号を検出し、前記温度測定手段が測定する前記被測定物の温度から前記被測定物の温度変化を求め、前記温度変化に基づいて補正を行う音波検出手段と、
を備え
前記温度測定手段は、前記光出射手段からの光を透過させかつ前記被測定物に接触しかつ熱伝導性を有することで前記被測定物の熱を伝達する窓、開口部で前記窓を保持しかつ内部に前記温度測定器及び前記光出射手段を保持しかつ熱伝導性を有することで前記窓に伝達した前記被測定物の熱を伝達する窓枠、並びに、前記窓枠の温度を測定することで前記被測定物の温度を測定する温度測定器を有し、
前記被測定物で反射又は散乱された前記光出射手段からの光が前記窓を通過する光の光路に交わらないように前記窓の表面に形成され、前記被測定物で反射又は散乱された光を反射する光反射膜、或いは、
前記被測定物で反射又は散乱された前記光出射手段からの光が前記窓を通過する光の光路に交わるように前記窓に装着され、前記光出射手段からの光を透過する直線偏光板又は光アイソレータ、或いは、
前記窓枠の内表面に装着され、前記被測定物で反射又は散乱された光のうち、前記窓を透過した光を吸収する吸光体を備える成分濃度測定装置。
Light modulation means for electrically intensity-modulating two waves of light of different wavelengths with signals of the same frequency and opposite phase;
Optical multiplexing means for combining the two light beams modulated by the optical modulation means;
Light emitting means for emitting the light combined by the optical combining means to the object to be measured;
Temperature measuring means for measuring the temperature of the object to be measured;
A photoacoustic signal generated from the object to be measured is detected by light from the light emitting means, and a temperature change of the object to be measured is obtained from the temperature of the object to be measured which is measured by the temperature measuring means. A sound wave detecting means for performing correction based on;
Equipped with a,
The temperature measuring means transmits the light from the light emitting means, contacts the object to be measured, and has thermal conductivity so that the heat of the object to be measured is transmitted, and the window is held by an opening. In addition, a window frame that holds the temperature measuring device and the light emitting means inside and has heat conductivity to transmit the heat of the object to be measured transmitted to the window, and measures the temperature of the window frame Having a temperature measuring device for measuring the temperature of the object to be measured,
Light that is formed on the surface of the window so that the light from the light emitting means reflected or scattered by the object to be measured does not cross the optical path of the light passing through the window, and is reflected or scattered by the object to be measured A light reflecting film that reflects
A linearly polarizing plate that is attached to the window so that light from the light emitting means reflected or scattered by the object to be measured crosses an optical path of light passing through the window and transmits light from the light emitting means, or Optical isolator or
A component concentration measuring device comprising a light absorber that is attached to an inner surface of the window frame and absorbs light transmitted through the window among light reflected or scattered by the object to be measured .
前記窓及び前記窓枠は、熱伝導率が230W/m・K以上の材料で形成されていることを特徴とする請求項に記載の成分濃度測定装置。 2. The component concentration measuring apparatus according to claim 1 , wherein the window and the window frame are made of a material having a thermal conductivity of 230 W / m · K or more. 前記光出射手段からの光の光路に交わらないように前記窓の表面を覆い及び/又は前記窓枠の表面を覆う断熱材を備えることを特徴とする請求項1又は2に記載の成分濃度測定装置。 3. The component concentration measurement according to claim 1, further comprising a heat insulating material that covers the surface of the window and / or covers the surface of the window frame so as not to cross the optical path of the light from the light emitting means. apparatus.
JP2006310242A 2006-11-16 2006-11-16 Component concentration measuring device Expired - Fee Related JP4901432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310242A JP4901432B2 (en) 2006-11-16 2006-11-16 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310242A JP4901432B2 (en) 2006-11-16 2006-11-16 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2008125542A JP2008125542A (en) 2008-06-05
JP4901432B2 true JP4901432B2 (en) 2012-03-21

Family

ID=39552001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310242A Expired - Fee Related JP4901432B2 (en) 2006-11-16 2006-11-16 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP4901432B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647092B2 (en) * 2011-11-24 2014-12-24 日本電信電話株式会社 Component concentration measuring method and apparatus
DE102014108424B3 (en) * 2014-06-16 2015-06-11 Johann Wolfgang Goethe-Universität Non-invasive substance analysis
JP6429711B2 (en) * 2015-03-31 2018-11-28 キヤノン株式会社 Probe and subject information acquisition apparatus using the probe
CN115290569A (en) 2015-12-09 2022-11-04 迪亚蒙泰克股份有限公司 Device and method for analyzing materials
KR102634764B1 (en) 2015-12-09 2024-02-06 디아몬테크 아게 Apparatus and method for materials analysis
JP7238537B2 (en) * 2019-03-27 2023-03-14 Tdk株式会社 Concentration measuring device
CN111222455B (en) * 2020-01-03 2022-04-01 深圳数联天下智能科技有限公司 Wavelength selection method and device, computing equipment and computer storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033512A (en) * 1996-07-26 1998-02-10 Hitachi Ltd Non-invasive biochemical measuring instrument
JP2002082097A (en) * 2000-09-05 2002-03-22 Ricoh Co Ltd Optical acoustic measuring method
EP2336747B1 (en) * 2004-05-06 2017-08-30 Nippon Telegraph And Telephone Corporation Component concentration measuring device

Also Published As

Publication number Publication date
JP2008125542A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP3667321B2 (en) Noninvasive living body component measuring apparatus using photoacoustic spectroscopy and measuring method thereof
JP4901432B2 (en) Component concentration measuring device
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
JP3594534B2 (en) Equipment for detecting substances
US20100094561A1 (en) Apparatus and method for processing biological information
JP2007229320A (en) Component concentration measuring apparatus
JP4444227B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP4418447B2 (en) Calibration phantom and component concentration measuring device calibration method
JP4441479B2 (en) Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method
JP4412666B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP2007301154A (en) Component concentration measuring instrument
JP5358065B2 (en) Component concentration measuring device
JP2006326224A (en) Apparatus and method for measuring bio-component concentration
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JP4412667B2 (en) Component concentration measuring device
JP4773390B2 (en) Component concentration measuring device
JP2008125543A (en) Constituent concentration measuring apparatus
JP4790578B2 (en) Component concentration measuring device
JP6080004B2 (en) Parameter measuring apparatus, parameter measuring method, and program
Myllylä et al. Pulsed photoacoustic techniques and glucose determination in human blood and tissue
JP2011167257A (en) Chiral material detector and method of detecting chiral material
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method
JP7110972B2 (en) Component concentration measuring device
JP5313016B2 (en) Component concentration analyzer and component concentration analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees