JPH10216115A - Highly accurate reflection type degree of oxygen saturation measuring apparatus - Google Patents

Highly accurate reflection type degree of oxygen saturation measuring apparatus

Info

Publication number
JPH10216115A
JPH10216115A JP9023611A JP2361197A JPH10216115A JP H10216115 A JPH10216115 A JP H10216115A JP 9023611 A JP9023611 A JP 9023611A JP 2361197 A JP2361197 A JP 2361197A JP H10216115 A JPH10216115 A JP H10216115A
Authority
JP
Japan
Prior art keywords
light
optical signal
wavelength
oxygen saturation
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9023611A
Other languages
Japanese (ja)
Inventor
Setsuo Takatani
節雄 高谷
Masamichi Nogawa
雅道 野川
Hiroshi Sakai
寛 酒井
Hideo Nishibayashi
秀郎 西林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Colin Co Ltd
Original Assignee
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Colin Co Ltd filed Critical Nippon Colin Co Ltd
Priority to JP9023611A priority Critical patent/JPH10216115A/en
Publication of JPH10216115A publication Critical patent/JPH10216115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection type degree of oxygen saturation measuring apparatus with a higher measuring accuracy. SOLUTION: The interval between a first light emitting element 18 and a second light emitting element 20 and a photodetector 16, namely, the radius (r) is set 5-7mm. Hence, back scattered light detected by the photo-detector 16 is made larger in proportion at a part larger in depth from the surface of a body, namely, a part higher in the density of a blood capillary. A larger ratio (ACR/DCR) or (ACIR/DCIR) between an AC component ACIR or ACR and a DC component DCR or DCIR reduces effect of noises. Moreover, a proper intensity of the first signal SVR and the second signal SVIR obtained achieves a sufficient stability and accuracy in the measurement of the degree of oxygen saturation SaO2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体の動脈血の酸素飽
和度を測定する反射型酸素飽和度測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type oxygen saturation measuring device for measuring the oxygen saturation of arterial blood of a living body.

【0002】[0002]

【従来の技術】第1波長および第2波長の光を生体組織
へ向かって放射する光源と、その生体組織内で散乱され
た第1波長の後方散乱光および第2波長の後方散乱光を
それぞれ検出してその第1波長の後方散乱光および第2
波長の後方散乱光をそれぞれ表す第1光信号および第2
光信号を出力する光センサとを備え、それら第1光信号
および第2光信号における交流成分と直流成分との比に
基づいて生体の動脈血の酸素飽和度を決定する酸素飽和
度測定装置が提案されている。たとえば、特開昭63−
92335号公報に記載された反射型酸素飽和度測定装
置がそれである。これによれば、虚血操作を行うことな
く、連続的に酸素飽和度測定を行うことができる。
2. Description of the Related Art A light source for emitting light of a first wavelength and a second wavelength toward a living tissue, and a backscattered light of a first wavelength and a backscattered light of a second wavelength scattered in the living tissue, respectively. Detecting the backscattered light of the first wavelength and the second
A first optical signal and a second optical signal respectively representing backscattered light of a wavelength.
An oxygen saturation measuring device comprising an optical sensor that outputs an optical signal and determining the oxygen saturation of arterial blood of a living body based on the ratio between the AC component and the DC component in the first optical signal and the second optical signal is proposed. Have been. For example, JP-A-63-
This is the reflection type oxygen saturation measurement device described in Japanese Patent No. 92335. According to this, it is possible to continuously measure the oxygen saturation without performing the ischemic operation.

【0003】[0003]

【発明が解決すべき課題】ところで、上記従来の反射型
酸素飽和度測定では、生体の体表面に向かって光を放射
する光源と、体表面内で反射されてから後方へ向かって
体表面から出てくる後方散乱光を受ける光センサとの間
隔は、たとえば3mm程度に設定されているのが一般的で
あった。しかしながら、光源と光センサとの間隔が3mm
程度に設定されているところから、光センサにより検知
される後方散乱光のうち、体表面からの深さが浅い部位
すなわち毛細血管の密度が低い表皮に近い部位からの散
乱光の割合が多くなるので、光センサから出力される光
信号の交流成分と直流成分との比が小さくなってノイズ
の影響が大きくなり、酸素飽和度の測定精度が十分に得
られないという不都合があった。
In the conventional reflection-type oxygen saturation measurement, a light source that emits light toward the body surface of a living body and a light source that is reflected inside the body surface and then travels backward from the body surface. In general, the distance from the optical sensor that receives the backscattered light is set to, for example, about 3 mm. However, the distance between the light source and the optical sensor is 3mm
From the setting of the degree, in the backscattered light detected by the optical sensor, the ratio of the scattered light from the part close to the epidermis where the depth from the body surface is shallow, that is, the density of the capillaries is low, is increased. Therefore, the ratio between the AC component and the DC component of the optical signal output from the optical sensor is reduced, and the influence of noise is increased. Thus, there is an inconvenience that the measurement accuracy of the oxygen saturation cannot be sufficiently obtained.

【0004】上記に対して、光センサにより検知される
後方散乱光のうち、体表面からの深さが深い部位すなわ
ち毛細血管の密度が高い部位からの散乱光の割合を多く
するために、光源と光センサとの間隔を拡大すると、光
センサから出力される光信号の交流成分と直流成分との
比は大きくなるけれども、光信号の強度が指数関数的に
減少するので、酸素飽和度の測定が不安定となって精度
が十分に得られないという不都合があった。
On the other hand, in order to increase the proportion of scattered light from a part deep from the body surface, that is, a part having a high density of capillary blood vessels, of the backscattered light detected by the optical sensor, When the distance between the optical sensor and the optical sensor is increased, the ratio of the AC component to the DC component of the optical signal output from the optical sensor increases, but the intensity of the optical signal decreases exponentially. However, there is a disadvantage that the accuracy becomes unstable and sufficient accuracy cannot be obtained.

【0005】本発明は以上の事情を背景として為された
ものであり、その目的とするところは、測定精度の高い
反射型酸素飽和度測定装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reflection type oxygen saturation measuring device having high measurement accuracy.

【0006】本発明者等は、上記の事情を背景として種
々検討を重ねた結果、光源と光センサとの間隔が大きく
なるほど、光センサから出力される光信号の交流成分と
直流成分との比は大きくなるが、略7mmを超えると減少
する特性がある一方、上記の間隔が大きくなるほど光信
号が指数関数的に減少するため、5乃至7mmの範囲に設
定すると、光信号の交流成分と直流成分との比と、その
光信号の強度が十分に得られるという事実を見いだし
た。
The present inventors have conducted various studies on the background of the above circumstances, and as a result, as the distance between the light source and the optical sensor increases, the ratio of the AC component to the DC component of the optical signal output from the optical sensor increases. Is larger, but has a characteristic of decreasing when the distance exceeds about 7 mm. On the other hand, the optical signal decreases exponentially as the distance increases, so that when the distance is set in the range of 5 to 7 mm, the AC component and the DC We have found that the ratio between the components and the intensity of the optical signal can be sufficiently obtained.

【0007】[0007]

【課題を解決するための手段】本発明は以上の知見に基
づいて為されたものであり、その要旨とするところは、
第1波長および第2波長の光を生体組織へ向かって放射
する光源と、その生体組織内で散乱された第1波長の後
方散乱光および第2波長の後方散乱光をそれぞれ検出し
てそれら第1波長の後方散乱光および第2波長の後方散
乱光をそれぞれ表す第1光信号および第2光信号を出力
する光センサとを備え、それら第1光信号および第2光
信号における交流成分と直流成分との比に基づいて生体
の動脈血の酸素飽和度を決定する反射型酸素飽和度測定
装置において、上記光源と光センサとの間隔を5乃至7
mmとしたことにある。
The present invention has been made based on the above findings, and the gist of the invention is as follows.
A light source that emits light of the first wavelength and the second wavelength toward the living tissue; and a backscattered light of the first wavelength and a backscattered light of the second wavelength that are scattered in the living tissue. An optical sensor that outputs a first optical signal and a second optical signal that respectively represent the backscattered light of one wavelength and the backscattered light of the second wavelength; and an AC component and a DC in the first optical signal and the second optical signal. In a reflection type oxygen saturation measuring device for determining the oxygen saturation of arterial blood of a living body based on the ratio of the components, the distance between the light source and the optical sensor is set to 5 to 7
mm.

【0008】[0008]

【発明の効果】このようにすれば、光源と光センサとの
間隔が5乃至7mmとされていることから、光センサによ
り検知される後方散乱光のうち体表面からの深さが深い
部位すなわち毛細血管の密度が高い部位からの散乱光の
割合が多くされるので、光センサから出力される光信号
の交流成分と直流成分との比が大きくなってノイズの影
響が小さくされ、しかも光信号の強度も得られて、酸素
飽和度の測定の安定性および精度が十分に得られる。
As described above, since the distance between the light source and the optical sensor is set to 5 to 7 mm, a portion of the backscattered light detected by the optical sensor which has a deeper depth from the body surface, that is, Since the ratio of the scattered light from the portion where the density of the capillaries is high is increased, the ratio between the AC component and the DC component of the optical signal output from the optical sensor is increased, and the influence of noise is reduced. Is obtained, and the stability and accuracy of the oxygen saturation measurement are sufficiently obtained.

【0009】[0009]

【発明の好適な実施の態様】以下、本発明の一実施例を
図面に基づいて詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1は、反射型プローブを備えた反射型オ
キシメータすなわち酸素飽和度測定装置の構成を示して
いる。図1において、反射型プローブ10は、たとえば
生体の末梢血管の密度が比較的高い額、指等の体表面1
2に密着した状態で装着される。この反射型プローブ1
0は、比較的浅い有底円筒状のハウジング14と、体表
面12内で散乱を受けて光源側へ出てくる後方散乱光を
検知するためにそのハウジング14の底部内面の中央部
に設けられ、ホトダイオード或いはホトトランジスタ等
から成る受光素子16と、ハウジング14の底部内面の
受光素子16を中心とする同一の半径rの円周上におい
て所定間隔毎に交互に設けられ、LED等から成る複数
個(本実施例では8個)の第1発光素子18および第2
発光素子20と、ハウジング14内に一体的に設けら
れ、受光素子16および発光素子18,20を保護する
ためにそれを覆う透明樹脂22と、ハウジング14内に
おいて受光素子16と発光素子18,20との間に設け
られ、発光素子18,20から照射された光の体表面1
2内から受光素子16へ向かう反射光を遮光する円環状
の遮光壁24とを備えて構成されている。
FIG. 1 shows a configuration of a reflection type oximeter provided with a reflection type probe, that is, an oxygen saturation measuring device. In FIG. 1, a reflective probe 10 is a body surface 1 such as a forehead or a finger having a relatively high density of peripheral blood vessels of a living body.
2 is attached in a state of being in close contact. This reflection type probe 1
Reference numeral 0 denotes a relatively shallow bottomed cylindrical housing 14 and a central portion of the bottom inner surface of the housing 14 for detecting backscattered light that is scattered within the body surface 12 and emerges toward the light source. And a plurality of light-receiving elements 16 comprising LEDs and the like, which are alternately provided at predetermined intervals on a circumference of the same radius r centered on the light-receiving elements 16 on the bottom inner surface of the housing 14 and a light-receiving element 16 comprising a photodiode or a phototransistor. (Eight in this embodiment) of the first light emitting element 18 and the second light emitting element 18
A light-emitting element 20; a transparent resin 22 provided integrally with the housing 14 to cover the light-receiving element 16 and the light-emitting elements 18 and 20 to protect the light-emitting element 20; And the body surface 1 of light emitted from the light emitting elements 18 and 20
An annular light-shielding wall 24 that shields reflected light from inside 2 toward the light-receiving element 16 is provided.

【0011】上記第1発光素子18は第1波長λ1 たと
えば730nm程度の波長の赤色光を発光し、第2発光
素子20は第2波長λ2 たとえば880nm程度の波長
の赤外光を発光するものである。図2において、1点鎖
線は酸素化ヘモグロビン(oxy-hemoglobin)の吸光係数
を示し、実線は無酸素化ヘモグロビン(deoxy-hemoglob
in)の吸光係数を示している。上記第1波長λ1 は、酸
素化ヘモグロビンと無酸素化ヘモグロビンとの吸光係数
差が所定値よりも大きい領域すなわち800nmよりも
短波長側の領域内の値であって可及的に高い値に設定さ
れており、上記第2波長λ2 は、酸素化ヘモグロビンと
無酸素化ヘモグロビンとの吸光係数差が所定値よりも小
さい領域すなわち800nmよりも長波長側の領域内の
値であって可及的に低い値に設定されている。なお、上
記第1波長λ1 および第2波長λ 2 は、必ずしもこれら
の波長に限定されるものではなく、酸素化ヘモグロビン
の吸光係数と無酸素化ヘモグロビンの吸光係数とが大き
く異なる波長と、それら両吸光係数が略同じとなる波長
であればよい。
The first light emitting element 18 has a first wavelength λ.1And
For example, it emits red light having a wavelength of about 730 nm, and emits second light.
The element 20 has the second wavelength λTwoFor example, a wavelength of about 880 nm
Which emits infrared light. In FIG. 2, one-dot chain
Line is the extinction coefficient of oxygenated hemoglobin (oxy-hemoglobin)
And the solid line shows deoxy-hemoglob.
In) shows the extinction coefficient. The first wavelength λ1Is an acid
Extinction coefficient between oxyhemoglobin and anoxic hemoglobin
The region where the difference is larger than a predetermined value, that is,
The value within the short wavelength range and set as high as possible
The second wavelength λTwoIs oxygenated hemoglobin
Absorption coefficient difference from anoxic hemoglobin is smaller than the specified value
Area, that is, the area on the wavelength side longer than 800 nm
Value and set as low as possible. In addition, above
The first wavelength λ1And the second wavelength λ TwoAre not necessarily
Is not limited to the wavelength of oxygenated hemoglobin
Extinction coefficient of anoxic hemoglobin is large
Wavelengths that differ greatly from each other and wavelengths at which both extinction coefficients are approximately the same
Should be fine.

【0012】光源として機能する上記第1発光素子18
および第2発光素子20が駆動回路54により交互に駆
動されることにより、それら第1発光素子18および第
2発光素子20から体表面12直下の生体組織(血管
床)へ向かって第1波長λ1 の光および第2波長λ2
光が交互に放射されると、生体組織の毛細血管内血液に
含まれる血球などにより散乱を受けた後方散乱光が反射
光として体表面12から出てくるので、その後方散乱光
すなわち生体組織(血管床)内からの反射光が共通の光
センサとして機能する受光素子16によりそれぞれ受光
され、第1波長λ 1 の散乱光を示す第1光信号SVR
よび第2波長λ2 の散乱光を示す第2光信号SVIRが出
力されるようになっている。
The first light emitting element 18 functioning as a light source
And the second light emitting element 20 are alternately driven by the drive circuit 54.
The first light emitting element 18 and the second light emitting element 18
Biological tissue (blood vessel) just below the body surface 12 from the two light emitting elements 20
The first wavelength λ towards the floor)1Light and the second wavelength λTwoof
When light is emitted alternately, the blood in the blood capillaries of living tissue
Backscattered light scattered by the contained blood cells is reflected
As it comes out of the body surface 12 as light, its backscattered light
That is, the reflected light from the living tissue (the vascular bed)
Each light is received by the light receiving element 16 functioning as a sensor
And the first wavelength λ 1Optical signal SV indicating the scattered light ofRYou
And the second wavelength λTwoOptical signal SV indicating the scattered light ofIRComes out
It is being forced.

【0013】図3は、上記反射型プローブ10のハウジ
ング14を、その体表面12に対向する面を見た図であ
る。ハウジング14の中央部には受光素子16が配置さ
れており、前記円環状の遮光壁24が同心位置に固定さ
れているとともに、複数個の第1発光素子18および第
2発光素子20が、その遮光壁24の外側であって、1
点鎖線に示す半径rの同心円に沿って交互に配列されて
いる。
FIG. 3 is a view of the housing 14 of the reflective probe 10 as seen from the surface facing the body surface 12. A light receiving element 16 is disposed at the center of the housing 14, the annular light shielding wall 24 is fixed at a concentric position, and a plurality of first light emitting elements 18 and second light emitting elements 20 Outside the light-shielding wall 24,
They are alternately arranged along a concentric circle having a radius r shown by a dashed line.

【0014】上記半径rは、受光素子16と第1発光素
子18および第2発光素子20との中心間隔を示すもの
である。理論的に言えば、その受光素子16と第1発光
素子18および第2発光素子20との中心間隔を示す半
径rが大きいほど、後方散乱光の経路が長くなって散乱
を受ける割合が多くなるので、第1光信号SVR の交直
成分比(AC/DC)R および第2光信号SVIRの交直
成分比(AC/DC) IRが大きくなると考えられるが、
本発明者等の実験によれば、図4に示すように、半径r
が7mmを超えると、交直成分比(AC/DC)R および
(AC/DC) IRも減少し、ノイズの影響が大きくなっ
て測定精度を低下させる原因となる。また、上記半径r
が大きくなると、受光素子16により検知される後方散
乱光が指数関数的に減衰し、測定が不安定となる原因と
なる。このため、従来では3mm程度に設定されていた上
記半径rを、5乃至7mmの範囲に設定することにより、
交直成分比(AC/DC)R および(AC/DC)IR
対するノイズの影響が少なくなり、酸素飽和度測定の精
度が得られるとともに、受光素子16により検知される
後方散乱光のゲインが十分に得られて安定した測定が得
られる。なお、上記図4は、三次元光子拡散理論式(数
1)を用いて、光源からの距離ra の位置における散乱
光の強度Iref (ra )を求めることによっても証明さ
れる。
The radius r is defined by the light receiving element 16 and the first light emitting element.
Showing the center distance between the element 18 and the second light emitting element 20
It is. In theory, the light receiving element 16 and the first light emission
The half indicating the center distance between the element 18 and the second light emitting element 20
The larger the diameter r, the longer the backscattered light path becomes
Receiving the first optical signal SVRAlternation of
Component ratio (AC / DC)RAnd the second optical signal SVIRAlternation of
Component ratio (AC / DC) IRIs thought to be larger,
According to experiments performed by the present inventors, as shown in FIG.
Is more than 7mm, AC / DC component ratio (AC / DC)Rand
(AC / DC) IRAnd the effect of noise increases.
Measurement accuracy. Also, the radius r
Becomes larger, the backward scattering detected by the light receiving element 16 increases.
The cause of the instability of the measurement is that the scattered light attenuates exponentially.
Become. For this reason, in the past it was set to about 3 mm.
By setting the radius r in the range of 5 to 7 mm,
AC / DC component ratio (AC / DC)RAnd (AC / DC)IRTo
The effect of noise on the
Is obtained and detected by the light receiving element 16.
The gain of the backscattered light is sufficient to obtain a stable measurement.
Can be FIG. 4 shows the three-dimensional photon diffusion theoretical formula (number
Using 1), the distance r from the light sourceaScattering at the position
Light intensity Iref(RaAlso proved by asking
It is.

【0015】[0015]

【数1】Iref (ra )=(2/d)〔μs /(μs
μa )〕・ΣAn 〔1−e-d/d0 (−1)n 〕〔1−
(2ra )/b・k1 (γn b)I1 (γn a )〕 但し、Iref (ra )=半径ra 内の後方散乱光(反射
光)、dは媒体の厚み、μs は媒体の散乱係数、μa
媒体の吸収係数、An は係数、d0 は媒体内への入射光
の浸透距離、bは光源の半径、k1 およびI1はベッセ
ル関数、γn はアイゲン値、nは整数である。
## EQU1 ## I ref (r a ) = (2 / d) [μ s / (μ s +
μ a )] ΣΔA n [1-e -d / d0 (-1) n ] [1-
(2r a) / b · k 1 (γ n b) I 1 (γ n r a) ], however, I ref (r a) = backscattered light in the radius r a (reflected light), d is the thickness of the medium , Μ s is the scattering coefficient of the medium, μ a is the absorption coefficient of the medium, An is the coefficient, d 0 is the penetration distance of the incident light into the medium, b is the radius of the light source, k 1 and I 1 are Bessel functions, γ n is an eigenvalue, and n is an integer.

【0016】第1発光素子18および第2発光素子20
が数百Hz乃至数kHz程度の比較的高い周波数で一定
時間づつ交互に発光させられるので、上記受光素子16
は、第1波長λ1 の後方散乱光を示す第1光信号SVR
と第2波長λ2 の後方散乱光を示す第2光信号SVIR
を含む光信号SVを増幅器30を介してローパスフィル
タ32へ出力する。ローパスフィルタ32は入力された
光信号SVから脈波の周波数よりも高い周波数を有する
ノイズを除去し、そのノイズが除去された光信号SVを
デマルチプレクサ34へ出力する。上記の第1光信号S
R 、第2光信号SVIRは、たとえば図5に示すように
脈拍に同期して変化する。
First light emitting element 18 and second light emitting element 20
Are alternately emitted at a relatively high frequency of about several hundred Hz to several kHz for a certain period of time.
Is the first optical signal SV R indicating the backscattered light of the first wavelength λ 1
An optical signal SV including the second optical signal SV IR indicating the backscattered light having the second wavelength λ 2 is output to the low-pass filter 32 via the amplifier 30. The low-pass filter 32 removes noise having a frequency higher than the frequency of the pulse wave from the input optical signal SV, and outputs the optical signal SV from which the noise has been removed to the demultiplexer 34. The above first optical signal S
V R and the second optical signal SV IR change in synchronization with the pulse, for example, as shown in FIG.

【0017】デマルチプレクサ34は後述の切換信号S
Cにより第1発光素子18および第2発光素子20の発
光に同期して切り換えられることにより、第1波長λ1
の赤色光である第1光信号SVR をサンプルホールド回
路36およびA/D変換器38を介して演算制御回路3
9内のI/Oポート40へ逐次供給するとともに、第2
波長λ2 の赤外光である第2光信号SVIRをサンプルホ
ールド回路42およびA/D変換器44を介してI/O
ポート40へ逐次供給する。サンプルホールド回路3
6、42は、入力された光信号SVR 、SVIRをA/D
変換器38、44へ逐次出力する際に、前回出力した光
信号SVR 、SVIRについてのA/D変換器38、44
における変換作動が終了するまで次に出力する各光信号
SVR 、SVIRをそれぞれ保持するためのものである。
The demultiplexer 34 outputs a switching signal S to be described later.
C, the first light emitting element 18 and the second light emitting element 20 are switched in synchronization with the light emission, so that the first wavelength λ 1
First optical signal SV R sample and hold circuit 36 and A / D converter 38 via the arithmetic control circuit 3 is a red light
9 to the I / O port 40, and the second
The second optical signal SV IR , which is infrared light of wavelength λ 2 , is transmitted to the I / O via the sample and hold circuit 42 and the A / D converter 44.
Supply sequentially to port 40. Sample hold circuit 3
6, 42 convert the input optical signals SV R and SV IR into A / D
When sequentially outputting to the converters 38 and 44, the A / D converters 38 and 44 for the previously output optical signals SV R and SV IR
The optical signals SV R and SV IR to be outputted next are respectively held until the conversion operation in is completed.

【0018】上記第1光信号SVR および第2光信号S
IRは、脈拍に同期して周期的に変化するだけでなく、
図5に示すように、呼吸周期TREに同期した比較的長周
期のうねり変動を含んでいる。血圧値が呼吸周期TRE
同期して変化すると、生体組織内の毛細血管内の血液容
積がその呼吸周期TREに同期して変化することから、そ
の毛細血管内の血液の血球によって散乱を受ける第1光
信号SVR および第2光信号SVIRもその呼吸周期TRE
に同期した変化を受けると考えられる。上記呼吸周期T
REは、一般に、脈拍周期の3乃至5倍程度であり、4倍
程度が多い。
The first optical signal SV R and the second optical signal S
V IR not only changes periodically in synchronization with the pulse,
As shown in FIG. 5, a relatively long cycle swell fluctuation synchronized with the respiration cycle T RE is included. When the blood pressure value changes in synchronization with the respiratory cycle T RE , the blood volume in the capillary in the living tissue changes in synchronization with the respiratory cycle T RE , so that the blood cell in the capillary scatters blood. The received first optical signal SV R and second optical signal SV IR also have their respiratory cycle T RE.
It is thought that it will receive a change synchronized with. The respiratory cycle T
RE is generally about 3 to 5 times the pulse cycle and about 4 times as much.

【0019】上記I/Oポート40は、データバスライ
ンを介してCPU46,ROM48,RAM50,表示
器52とそれぞれ接続されている。CPU46は、RA
M50の記憶機能を利用しつつROM48に予め記憶さ
れたプログラムに従って測定動作を実行し、I/Oポー
ト40から駆動回路54へ指令信号SLDを出力して第
1発光素子18および第2発光素子20を数百Hz乃至
数kHz程度の比較的高い周波数で一定時間づつ交互に
発光させる一方、それら第1発光素子18および第2発
光素子20の発光に同期して切換信号SCを出力してデ
マルチプレクサ34を切り換えることにより、第1光信
号SVR をサンプルホールド回路36へ、第2光信号S
IRをサンプルホールド回路42へそれぞれ振り分け
る。また、CPU46は、予め記憶されたプログラムに
従って前記第1光信号SVR および第2光信号SVIR
それぞれ表す光電脈波形に基づいて末梢血管を流れる血
液中の酸素飽和度を決定し且つその決定した酸素飽和度
SaO2を表示器52に表示させる。
The I / O port 40 is connected to a CPU 46, a ROM 48, a RAM 50, and a display 52 via data bus lines. The CPU 46 sets the RA
Using the storage function of M50, the measuring operation is executed in accordance with a program stored in the ROM 48 in advance, and a command signal SLD is output from the I / O port 40 to the drive circuit 54 to output the first light emitting element 18 and the second light emitting element 20. Alternately emit light at a relatively high frequency of about several hundred Hz to several kHz for a certain period of time, and output a switching signal SC in synchronization with the light emission of the first light emitting element 18 and the second light emitting element 20 to perform demultiplexing. 34, the first optical signal SVR is sent to the sample-and-hold circuit 36 and the second optical signal SVR is
V IR is distributed to the sample and hold circuit 42. Further, the CPU 46 determines the oxygen saturation in the blood flowing through the peripheral blood vessels based on the photoplethysmographic waveforms represented by the first optical signal SV R and the second optical signal SV IR according to a program stored in advance, and the determination. The displayed oxygen saturation SaO2 is displayed on the display 52.

【0020】ここで、本実施例においては、更に、ハウ
ジング14にはそのハウジング14の外周面および底部
外面を覆うようにキャップ状のゴム部材56が一体的に
設けられている。このゴム部材56は、たとえばクロロ
プレンゴム等を原料ゴムとしてスポンジ状に構成されて
おり、好適な断熱性を備えている。そして、このゴム部
材56のハウジング14外周側に位置する部分が両面粘
着シート58を介して前記体表面12に固着されること
により、ハウジング14の開口端面および遮光部材24
の先端面が体表面12に密着する状態でプローブ10が
体表面12に装着されている。なお、図1において、両
面粘着シート58は便宜上実際より大幅に厚く描かれて
いる。
Here, in this embodiment, a cap-shaped rubber member 56 is further provided integrally with the housing 14 so as to cover the outer peripheral surface and the bottom outer surface of the housing 14. The rubber member 56 is formed in a sponge shape using, for example, chloroprene rubber or the like as a raw rubber, and has a suitable heat insulating property. Then, a portion of the rubber member 56 located on the outer peripheral side of the housing 14 is fixed to the body surface 12 via the double-sided adhesive sheet 58, so that the opening end surface of the housing 14 and the light shielding member 24
The probe 10 is mounted on the body surface 12 such that the distal end surface of the probe 10 is in close contact with the body surface 12. In FIG. 1, the double-sided pressure-sensitive adhesive sheet 58 is drawn much thicker than it is for convenience.

【0021】図6は、前記演算制御回路39の制御機能
の要部を説明する機能ブロック線図である。図6におい
て、周波数解析手段70は、高速フーリエ変換法を利用
した周波数解析を予め設定された所定の区間毎に施すこ
とにより、受光素子16から出力された第1光信号SV
R および第2光信号SVIRから、その所定区間毎の第1
光信号SVR の交流成分ACR および直流成分DCR
第2光信号SVIRの交流成分ACIRおよび直流成分DC
IRとをそれぞれ逐次決定する。上記第1光信号SVR
よび第2光信号SVIRは、生体組織の毛細血管内の血液
容積の心拍に同期した脈動に同期して変化させられるの
で、上記交流成分ACR およびACIRは、生体の脈拍数
PR(1/分)すなわち脈拍周波数PF(Hz)に相当す
る周波数成分の信号電力(ワット)として得られ、上記
直流成分DCR およびDCIRは、直流に相当する周波数
成分の信号電力(ワット)として得られる。図7には、
上記周波数解析によって得られた第1光信号SVR 或い
は第2光信号SVIRの周波数スペクトルの例が示されて
いる。
FIG. 6 is a functional block diagram for explaining a main part of the control function of the arithmetic control circuit 39. In FIG. 6, the frequency analysis means 70 performs a frequency analysis using the fast Fourier transform method for each predetermined section, so that the first optical signal SV output from the light receiving element 16 is obtained.
R and the second optical signal SV IR from the first
Optical signal SV R alternating current component AC R and DC component R and an AC component of the second optical signal SV IR AC IR and DC component of
IR and each are sequentially determined. Since the first optical signal SV R and the second optical signal SV IR are changed in synchronization with the pulsation synchronized with the heartbeat of the blood volume in the capillary of the living tissue, the AC components AC R and AC IR are It is obtained as a signal power (watt) of a frequency component corresponding to the pulse rate PR (1 / min) of the living body, that is, a pulse frequency PF (Hz), and the DC components DC R and DC IR are signals of a frequency component corresponding to DC. Obtained as power (watts). In FIG.
An example of the frequency spectrum of the first optical signal SV R or the second optical signal SV IR obtained by the above frequency analysis is shown.

【0022】上記周波数解析手段70により周波数解析
が行われる区間は、測定対象の生体の呼吸周期TREの半
周期或いは1周期の整数倍、たとえば脈拍周期の2或い
は4倍の時間の整数倍の時間に設定される。動脈内血圧
は呼吸周期に同期して変動することが知られており、こ
れにより生体組織の毛細血管内の血液容積も脈拍に同期
して脈動しつつ上記呼吸周期に同期してうねり変動を生
じることから、前記第1光信号SVR や第2光信号SV
IRもその呼吸周期に同期する変動を受けるので、上記の
ようにすれば、区間内の信号が平均化されて少なくとも
呼吸性変動の影響が好適に解消される。
The section in which the frequency analysis is performed by the frequency analysis means 70 is an integral multiple of a half cycle or one cycle of the respiratory cycle T RE of the living body to be measured, for example, an integral multiple of a time twice or four times the pulse cycle. Set to time. It is known that the arterial blood pressure fluctuates in synchronism with the respiratory cycle, whereby the blood volume in the capillaries of the living tissue pulsates in synchronism with the pulse and causes swelling in synchronism with the respiratory cycle. since, the first optical signal SV R and the second optical signal SV
Since the IR also undergoes fluctuation synchronized with the respiratory cycle, in the above-described manner, the signals in the section are averaged, and at least the effect of the respiratory fluctuation is suitably eliminated.

【0023】交直成分比算出手段72は、上記周波数解
析手段70により決定された第1光信号SVR の交流成
分ACR および直流成分DCR と第2光信号SVIRの交
流成分ACIRおよび直流成分DCIRとから、その第1光
信号SVR の交直成分比(ACR /DCR )と、第2光
信号SVIRの交直成分比(ACIR/DCIR)とをそれぞ
れ算出する。
[0023] AC to DC component ratio calculating means 72, the first optical signal SV R of the alternating current component AC R and the direct current component DC R and alternating current component AC IR and DC of the second optical signal SV IR determined by the frequency analyzing means 70 From the component DCIR , an AC / DC component ratio (AC R / DC R ) of the first optical signal SV R and an AC / DC component ratio (AC IR / DC IR ) of the second optical signal SV IR are calculated.

【0024】酸素飽和度算出手段74は、たとえば図8
の実線に示す予め設定された式(数2)に示す関係か
ら、前記第1光信号SVR の交直成分比(ACR /DC
R )と第2光信号SVIRの交直成分比(ACIR/D
IR)との比R〔=(ACR /DC R )/(ACIR/D
IR)〕に基づいて、前記生体の酸素飽和度SaO2を
算出する。なお、式(数2)において、Aは傾きを示す
負の定数であり、Bは切片を示す定数である。
The oxygen saturation calculating means 74 is, for example, as shown in FIG.
Is the relationship shown in the preset equation (Equation 2) shown by the solid line
The first optical signal SVRAC-DC component ratio (ACR/ DC
R) And the second optical signal SVIRAC-DC component ratio (ACIR/ D
CIR) And R [= (ACR/ DC R) / (ACIR/ D
CIR)], The oxygen saturation SaO2 of the living body is calculated
calculate. In the equation (Equation 2), A indicates a slope.
It is a negative constant, and B is a constant indicating the intercept.

【0025】[0025]

【数2】SaO2=A×R+B## EQU2 ## SaO2 = A × R + B

【0026】ここで、第1光信号SVR の波長λ1 が7
30nmに設定され、第2光信号SVIRの波長λ2 が8
80nmに設定されている理由を説明する。すなわち、
第1波長λ1 を665nm、第2波長λ2 を880n
m、910nm、或いは940nmとしたときに得られ
る第1光信号SVR および第2光信号SVIRの強度を、
前記の三次元光子拡散理論を示す式(数1)を用いて算
出し、それら第1光信号SVR および第2光信号SVIR
の交流成分および直流成分を算出したとき、第1光信号
SVR の交直成分比(ACR /DCR )と第2光信号S
IRの交直成分比(ACIR/DCIR)との比Rと酸素飽
和度SaO2との関係は、図9の破線に示すように比線
型となって実線に示す直線により近似をすることができ
ない。このため、酸素飽和度SaO2が80%以下の低
い領域においては、測定精度が極端に低下していた。し
かし、上記第1波長λ1 を730nm、第2波長λ2
880nm、910nm、或いは940nmとしたとき
は図8の破線に示すようになり、図8の実線に示す上記
式(数2)より、酸素飽和度SaO2が80%以下の低
い領域においても直線近似でき、高い測定精度が得られ
るようになった。第1波長λ1 および第2波長λ2 の浸
透深さが近接したためであると考えられる。
[0026] Here, the wavelength lambda 1 of the first optical signal SV R 7
30 nm, and the wavelength λ 2 of the second optical signal SV IR is 8
The reason why the wavelength is set to 80 nm will be described. That is,
The first wavelength λ 1 is 665 nm and the second wavelength λ 2 is 880 n
m, 910 nm, or a first optical signal SV R and the intensity of the second optical signal SV IR obtained when a 940 nm,
The first optical signal SV R and the second optical signal SV IR are calculated using the equation (Equation 1) showing the three-dimensional photon diffusion theory.
When calculating the AC component and a DC component, AC-DC component ratio of the first optical signal SV R and (AC R / DC R) second optical signal S
AC-DC component ratio of V IR relationship between the ratio R and the oxygen saturation SaO2 of the (AC IR / DC IR) may be approximated by a straight line shown by the solid line becomes the specific linear as indicated by a broken line in FIG. 9 Can not. For this reason, in the low region where the oxygen saturation SaO2 is 80% or less, the measurement accuracy is extremely reduced. However, when the first wavelength λ 1 is 730 nm and the second wavelength λ 2 is 880 nm, 910 nm, or 940 nm, the result is as shown by the broken line in FIG. 8, and from the above equation (Equation 2) shown by the solid line in FIG. Even in a low region where the oxygen saturation SaO2 is 80% or less, linear approximation can be performed, and high measurement accuracy can be obtained. This is probably because the penetration depths of the first wavelength λ 1 and the second wavelength λ 2 are close to each other.

【0027】図10は、前記演算制御回路39の制御作
動の要部を説明するフローチャート図である。図10の
ステップ(以下、ステップを省略する)S1では、第1
波長λ1 の後方散乱光を表す第1光信号SVR および第
2波長λ2 の後方散乱光を表す第2光信号SVIRが読み
込まれる。次いで、S2においてタイマカウンタCTの
内容に「1」が加算された後、S3において、タイマカ
ウンタCTの内容が予め設定された判断基準時間T0
上となったか否かが判断される。この判断基準時間T0
は、後述のS4の周波数解析の対象となる単位区間の時
間幅に対応するものであり、呼吸周期TREの半周期の整
数倍たとえば測定対象である生体の脈拍周期の2或いは
4倍の時間の整数倍の時間に設定されている。
FIG. 10 is a flowchart for explaining a main part of the control operation of the arithmetic control circuit 39. In step S1 in FIG.
Second optical signal SV IR representative of the first optical signal SV R and the second wavelength lambda 2 of the backscattered light representing the backscattered light having a wavelength lambda 1 is read. Then, "1" is added to the contents of the timer counter CT in S2, in S3, whether the contents of the timer counter CT reaches a preset determination reference time T 0 or more is determined. This judgment reference time T 0
Corresponds to a time width of a unit section to be subjected to frequency analysis in S4 described later, and is an integral multiple of a half cycle of the respiratory cycle T RE , for example, a time of 2 or 4 times the pulse cycle of the living body to be measured. Is set to an integral multiple of.

【0028】当初は上記S3の判断が否定されるので、
S1以下が繰り返し実行されることにより第1光信号S
R および第2光信号SVIRが連続的に読み込まれる。
そして、それら第1光信号SVR および第2光信号SV
IRが連続的に読み込まれるうちにS3の判断が肯定され
ると、前記周波数解析手段70に対応するS4におい
て、上記の単位区間内に第1光信号SVR および第2光
信号SVIRに対して周波数解析処理がそれぞれ実行され
ることにより、第1光信号SVR の交流成分AC R (信
号電力値)および直流成分DCR (信号電力値)と、第
2光信号SVIRの交流成分ACIR(信号電力値)および
直流成分DCIR(信号電力値)とが抽出される。
Initially, the judgment in S3 is denied, so
The first optical signal S is obtained by repeatedly executing S1 and subsequent steps.
VRAnd the second optical signal SVIRAre read continuously.
Then, the first optical signals SVRAnd the second optical signal SV
IRThe determination of S3 is affirmed while is continuously read.
Then, in S4 corresponding to the frequency analysis means 70,
And the first optical signal SVRAnd the second light
Signal SVIRThe frequency analysis process is executed for each
As a result, the first optical signal SVRAC component of R(Shin
Signal power value) and DC component DCR(Signal power value)
2 optical signal SVIRAC component ofIR(Signal power value) and
DC component DCIR(Signal power value).

【0029】次いで、前記交直成分比算出手段72に対
応するS5では、上記S4において抽出された第1光信
号SVR の交流成分ACR および直流成分DCR から、
その第1光信号SVR の交直成分比ACR /DCR が算
出されるとともに、S4において抽出された第2光信号
SVIRの交流成分ACIRおよび直流成分DCIRから、そ
の第2光信号SVIRの交直成分比ACIR/DCIRが算出
される。
[0029] Then, step S5 corresponding to the AC-DC component ratio calculating means 72, the alternating current component AC R and a DC component DC R of the first optical signal SV R extracted in the S4,
The ratio AC R / DC R of the first optical signal SV R is calculated, and the second optical signal is obtained from the AC component AC IR and the DC component DC IR of the second optical signal SV IR extracted in S4. AC-DC component ratio AC IR / DC IR of SV IR is calculated.

【0030】次いで、前記酸素飽和度算出手段74に対
応するS6では、たとえば図8の実線に示す予め設定さ
れた関係(SaO2=A×R+B)から、第1光信号S
Rの交直成分比ACR /DCR と第2光信号SVIR
交直成分比ACIR/DCIRとの比R〔=(ACR /DC
R )/(ACIR/DCIR)〕に基づいて、生体の酸素飽
和度SaO2が算出される。
Next, in S6 corresponding to the oxygen saturation calculating means 74, the first optical signal S is obtained from a preset relationship (SaO2 = A × R + B) shown by a solid line in FIG.
V R of the AC-DC component ratio AC R / DC R and the ratio R of the AC to DC component ratio AC IR / DC IR of the second optical signal SV IR [= (AC R / DC
R ) / (AC IR / DC IR )], the oxygen saturation SaO2 of the living body is calculated.

【0031】そして、S7では、S6において算出され
た生体の酸素飽和度SaO2が表示器52に表示される
とともに、S8においてタイマカウンタCTの内容が
「0」にクリアされた後、本ルーチンが終了させられ、
再びS1以下が実行される。
In S7, the oxygen saturation SaO2 of the living body calculated in S6 is displayed on the display 52, and in S8, the content of the timer counter CT is cleared to "0", and then the present routine ends. Let me
S1 and subsequent steps are executed again.

【0032】上述のように、本実施例によれば、第1発
光素子18および第2発光素子20と受光素子16との
間隔すなわち半径rが5乃至7mmとされていることか
ら、受光素子16により検知される後方散乱光のうち体
表面からの深さが深い部位すなわち毛細血管の密度が高
い部位からの散乱光の割合が多くされるので、光センサ
から出力される光信号の交流成分ACR 或いはACIR
直流成分DCR 或いはDCIRとの比(ACR /DCR
或いは(ACIR/DCIR)が大きくなってノイズの影響
が小さくされ、しかも第1光信号SVR および第2光信
号SVIRの強度も得られて、酸素飽和度SaO2の測定
の安定性および精度が十分に得られる。
As described above, according to this embodiment, the distance between the first light emitting element 18 and the second light emitting element 20 and the light receiving element 16, that is, the radius r is set to 5 to 7 mm. The ratio of the scattered light from the part deeper from the body surface, that is, the part with a higher density of capillaries in the backscattered light detected by the sensor is increased, so that the AC component AC of the optical signal output from the optical sensor is increased. Ratio of R or AC IR to DC component DC R or DC IR (AC R / DC R )
Or (AC IR / DC IR) and increases are less affected by noise, yet the strength of the first optical signal SV R and the second optical signal SV IR also obtained, the stability of the measurement of the oxygen saturation SaO2 and Accuracy is sufficiently obtained.

【0033】以上、本発明の一実施例を図面に基づいて
説明したが、本発明はその他の態様でも適用される。
While the embodiment of the present invention has been described with reference to the drawings, the present invention can be applied to other embodiments.

【0034】たとえば、前記実施例の反射型プローブ1
0では、発光素子18、20が半径rの円周に沿って交
互に配置されているために受光素子16と発光素子1
8、20との間隔は一定であったが、受光素子16を中
心とする偏心円或いは楕円にそって発光素子18、20
が交互に配置されることにより、少なくとも一対の受光
素子16と発光素子18、20との間隔が5乃至7mmで
あっても差し支えない。
For example, the reflection type probe 1 of the above embodiment
0, the light emitting elements 18 and 20 are alternately arranged along the circumference of the radius r, so that the light receiving element 16 and the light emitting element 1
The distance between the light-emitting elements 18 and 20 was constant along the eccentric circle or the ellipse centered on the light-receiving element 16 although the distance between the light-emitting elements 18 and 20 was constant.
Are arranged alternately so that the distance between at least the pair of light receiving elements 16 and the light emitting elements 18 and 20 may be 5 to 7 mm.

【0035】また、前述の実施例の反射型プローブ10
は、ハウジング14の中心位置に設けられた受光素子1
6と、その受光素子16を取り囲む遮光壁24の外周側
位置に設けられた発光素子18、20とを備えたもので
あったが、それら受光素子16と発光素子18、20と
の位置が相互に入れ替わった位置であっても差し支えな
い。
Further, the reflection type probe 10 of the above-described embodiment is used.
Is a light receiving element 1 provided at a center position of the housing 14.
6 and the light-emitting elements 18 and 20 provided on the outer peripheral side of the light-shielding wall 24 surrounding the light-receiving element 16, but the positions of the light-receiving elements 16 and the light-emitting elements 18 and 20 are The position may be replaced by

【0036】また、前記実施例では、複数づつ設けられ
た第1発光素子18および第2発光素子20から互いに
波長の異なる光が出力されるように構成されているが、
必ずしもその必要はなく、たとえば、それらの発光素子
18,20は1個づつであってもよいし、あるいは、波
長の異なる光を出力する単一の発光素子が用いられても
よい。
Further, in the above-described embodiment, the first light-emitting element 18 and the second light-emitting element 20 are provided so that light beams having different wavelengths are output from each other.
This is not always necessary. For example, the number of the light emitting elements 18 and 20 may be one by one, or a single light emitting element that outputs light having different wavelengths may be used.

【0037】その他、本発明はその趣旨を逸脱しない範
囲において種々変更が加えられ得るものである。
In addition, the present invention can be variously modified without departing from the spirit thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の酸素飽和度測定装置の構成
を示すブロック線図である。
FIG. 1 is a block diagram showing a configuration of an oxygen saturation measuring apparatus according to one embodiment of the present invention.

【図2】図1の実施例において利用される第1波長λR
および第2波長λIRと酸素化ヘモグロビンおよび無酸素
化ヘモグロビンの吸光係数との関係を示す図である。
FIG. 2 shows a first wavelength λ R used in the embodiment of FIG.
FIG. 5 is a diagram showing the relationship between the second wavelength λ IR and the extinction coefficients of oxygenated hemoglobin and oxygen-free hemoglobin.

【図3】図1の実施例に用いられる反射型プローブの体
表面に対向する面を示す図である。
FIG. 3 is a diagram showing a surface facing a body surface of a reflection type probe used in the embodiment of FIG. 1;

【図4】図3の反射型プローブの受光素子と発光素子と
の間隔rと、第1波長λR および第2波長λIRの交直成
分比(ACR /DCR )および(ACIR/DCIR)との
関係を示す図である。
A light receiving element of the reflection type probe of FIG. 3. FIG and spacing r between the light emitting element, AC-DC component ratio of the first wavelength lambda R, and the second wavelength λ IR (AC R / DC R ) and (AC IR / DC is a diagram showing the relationship between the IR).

【図5】図4の反射型プローブの受光素子により検知さ
れた後方散乱光を示す第1光信号SVR 或いは第2光信
号SVIRの波形を例示するタイムチャートである。
5 is a first optical signal SV R or a time chart illustrating the second optical signal SV IR waveform showing the back-scattered light detected by the light receiving element of the reflection type probe of FIG.

【図6】図1の演算制御回路の制御機能の要部を説明す
る機能ブロック線図である。
FIG. 6 is a functional block diagram for explaining a main part of a control function of the arithmetic control circuit in FIG. 1;

【図7】図6の周波数解析手段において解析された第1
光信号SVR 或いは第2光信号SVIRの交流成分ACR
或いはACIRおよび直流成分DCR 或いはDCIRを示す
図である。
FIG. 7 is a diagram showing a first example analyzed by the frequency analysis means of FIG. 6;
AC component AC R of optical signal SV R or second optical signal SV IR
Alternatively, it is a diagram showing AC IR and DC component DC R or DC IR .

【図8】第1波長λR を730nm、第2波長λ2 を8
80nm、910nm、或いは940nmとしたときの
比Rと酸素飽和度SaO2との関係(破線)と、図6の
酸素飽和度算出手段において用いられる予め設定された
関係(実線)すなわち上記破線の近似直線とを示す図で
ある。
FIG. 8 shows that the first wavelength λ R is 730 nm and the second wavelength λ 2 is 8
The relationship (dashed line) between the ratio R and the oxygen saturation SaO2 at 80 nm, 910 nm, or 940 nm, and the preset relationship (solid line) used in the oxygen saturation calculation means of FIG. FIG.

【図9】第1波長λR を665nm、第2波長λ2 を8
80nm、910nm、或いは940nmとしたときの
比Rと酸素飽和度SaO2との関係(破線)と、その破
線の近似直線とを示す図である。
FIG. 9 shows that the first wavelength λ R is 665 nm and the second wavelength λ 2 is 8
It is a figure which shows the relationship (dashed line) of the ratio R and oxygen saturation SaO2 at 80 nm, 910 nm, or 940 nm, and the approximate straight line of the broken line.

【図10】図1の演算制御回路の制御作動の要部を説明
するフローチャートである。
FIG. 10 is a flowchart illustrating a main part of a control operation of the arithmetic and control circuit in FIG. 1;

【符号の説明】[Explanation of symbols]

10:反射型プローブ 12:体表面 16:受光素子(光センサ) 18:第1発光素子,20:第2発光素子(光源) 10: Reflective probe 12: Body surface 16: Light receiving element (light sensor) 18: First light emitting element, 20: Second light emitting element (light source)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1波長および第2波長の光を生体組織
へ向かって放射する光源と、該生体組織内で散乱された
第1波長の後方散乱光および第2波長の後方散乱光をそ
れぞれ検出して該第1波長の後方散乱光および第2波長
の後方散乱光をそれぞれ表す第1光信号および第2光信
号を出力する光センサとを備え、該第1光信号および第
2光信号における交流成分と直流成分との比に基づいて
生体の動脈血の酸素飽和度を決定する反射型酸素飽和度
測定装置において、 前記光源と光センサとの間隔を5乃至7mmとしたことを
特徴とする反射型酸素飽和度測定装置。
1. A light source that emits light of a first wavelength and a second wavelength toward a living tissue, and a backscattered light of a first wavelength and a second wavelength that are scattered in the living tissue, respectively. An optical sensor for detecting and outputting a first optical signal and a second optical signal representing the backscattered light of the first wavelength and the backscattered light of the second wavelength, respectively, the first optical signal and the second optical signal In the reflection type oxygen saturation measuring device for determining the oxygen saturation of the arterial blood of a living body based on the ratio between the AC component and the DC component, the distance between the light source and the optical sensor is set to 5 to 7 mm. Reflective oxygen saturation measurement device.
JP9023611A 1997-02-06 1997-02-06 Highly accurate reflection type degree of oxygen saturation measuring apparatus Pending JPH10216115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9023611A JPH10216115A (en) 1997-02-06 1997-02-06 Highly accurate reflection type degree of oxygen saturation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9023611A JPH10216115A (en) 1997-02-06 1997-02-06 Highly accurate reflection type degree of oxygen saturation measuring apparatus

Publications (1)

Publication Number Publication Date
JPH10216115A true JPH10216115A (en) 1998-08-18

Family

ID=12115418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9023611A Pending JPH10216115A (en) 1997-02-06 1997-02-06 Highly accurate reflection type degree of oxygen saturation measuring apparatus

Country Status (1)

Country Link
JP (1) JPH10216115A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265446A (en) * 2002-03-16 2003-09-24 Samsung Electronics Co Ltd Diagnostic method and apparatus using light
JP2007089662A (en) * 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2007117342A (en) * 2005-10-27 2007-05-17 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus and its control method
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
JP2013094482A (en) * 2011-11-02 2013-05-20 Seiko Epson Corp Pulse wave signal processing device and pulse wave measuring device
US8483788B2 (en) 2010-02-28 2013-07-09 Covidien Lp Motion compensation in a sensor
WO2013166461A1 (en) * 2012-05-03 2013-11-07 Vioptix, Inc. Tissue oximetry probe geometry for robust calibration and self-correction
WO2014183522A1 (en) * 2013-05-17 2014-11-20 武汉远光瑞康科技有限公司 Reflection-type multi-sensor-array blood oxygen detection apparatus
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
JPWO2017018114A1 (en) * 2015-07-30 2018-05-31 アルプス電気株式会社 Sensor module and biological information display system
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
JP2019000723A (en) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus for acquiring biological information, and wrist watch terminal
JP2021073444A (en) * 2015-06-25 2021-05-13 プロフサ,インコーポレイテッド Percutaneous reader used together with implantable analyte sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111345A (en) * 1988-10-21 1990-04-24 Koorin Denshi Kk Reflecting oxymeter
JPH0549625A (en) * 1991-08-27 1993-03-02 Colleen Denshi Kk Sensor for bloodless reflection type oximeter which can control optical detection depth
JPH0524006U (en) * 1991-09-17 1993-03-30 コーリン電子株式会社 Reflective oximeter probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111345A (en) * 1988-10-21 1990-04-24 Koorin Denshi Kk Reflecting oxymeter
JPH0549625A (en) * 1991-08-27 1993-03-02 Colleen Denshi Kk Sensor for bloodless reflection type oximeter which can control optical detection depth
JPH0524006U (en) * 1991-09-17 1993-03-30 コーリン電子株式会社 Reflective oximeter probe

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990426B2 (en) 2002-03-16 2006-01-24 Samsung Electronics Co., Ltd. Diagnostic method and apparatus using light
JP2003265446A (en) * 2002-03-16 2003-09-24 Samsung Electronics Co Ltd Diagnostic method and apparatus using light
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
JP2007089662A (en) * 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
JP2007117342A (en) * 2005-10-27 2007-05-17 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus and its control method
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8483788B2 (en) 2010-02-28 2013-07-09 Covidien Lp Motion compensation in a sensor
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
JP2013094482A (en) * 2011-11-02 2013-05-20 Seiko Epson Corp Pulse wave signal processing device and pulse wave measuring device
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US10912503B2 (en) 2012-05-03 2021-02-09 Vioptix, Inc. Using Monte Carlo and iterative techniques to determine tissue oxygen saturation
US11771348B2 (en) 2012-05-03 2023-10-03 Vioptix, Inc. Wireless, handheld tissue oximetry device
US10682080B2 (en) 2012-05-03 2020-06-16 Vioptix, Inc. Determining tissue oxygen saturation using Monte Carlo and iterative techniques
US11786152B2 (en) 2012-05-03 2023-10-17 Vioptix, Inc. Tissue oximetry probe with tissue marking feature
US10213142B2 (en) 2012-05-03 2019-02-26 Vioptix, Inc. Using Monte Carlo and iterative techniques to determine tissue oxygen saturation
US10335069B2 (en) 2012-05-03 2019-07-02 Vioptix, Inc. Oximeter probe with light wavelengths to avoid surgical dyes
US10456066B2 (en) 2012-05-03 2019-10-29 Vioptix, Inc. Wireless, handheld tissue oximetry device
US10939853B2 (en) 2012-05-03 2021-03-09 Vioptix, Inc. Tissue oximetry probe geometry for robust calibration and self-correction
US11890095B2 (en) 2012-05-03 2024-02-06 Vioptix, Inc. Tissue oximetry probe geometry for robust calibration and self-correction
US11771349B2 (en) 2012-05-03 2023-10-03 Vioptix, Inc. Determining tissue oxygen saturation using monte carlo and iterative techniques
US10524705B2 (en) 2012-05-03 2020-01-07 Vioptix, Inc. Tissue oximetry probe with tissue marking feature
US11653861B2 (en) 2012-05-03 2023-05-23 Vioptix, Inc. Using monte carlo and iterative techniques to determine tissue oxygen saturation
US11058333B2 (en) 2012-05-03 2021-07-13 Vioptix, Inc. Wireless, handheld tissue oximetry device
WO2013166461A1 (en) * 2012-05-03 2013-11-07 Vioptix, Inc. Tissue oximetry probe geometry for robust calibration and self-correction
US11478170B2 (en) 2012-05-03 2022-10-25 Vioptix, Inc. Oximeter probe with light wavelengths to avoid surgical dyes
US20160081603A1 (en) * 2013-05-17 2016-03-24 Wei Peng Reflection-Type Multi-Sensor Array Blood Oxygen Detection Device
WO2014183522A1 (en) * 2013-05-17 2014-11-20 武汉远光瑞康科技有限公司 Reflection-type multi-sensor-array blood oxygen detection apparatus
JP2021073444A (en) * 2015-06-25 2021-05-13 プロフサ,インコーポレイテッド Percutaneous reader used together with implantable analyte sensor
JPWO2017018114A1 (en) * 2015-07-30 2018-05-31 アルプス電気株式会社 Sensor module and biological information display system
JP2019000723A (en) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus for acquiring biological information, and wrist watch terminal

Similar Documents

Publication Publication Date Title
JPH10216115A (en) Highly accurate reflection type degree of oxygen saturation measuring apparatus
Mendelson et al. Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography
EP0286142B1 (en) Reflection type oximeter
US5203329A (en) Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
JP3950173B2 (en) Non-intrusive motion adaptive sensor for blood analysis
US5485838A (en) Non-invasive blood pressure measurement device
JP4903980B2 (en) Pulse oximeter and operation method thereof
EP2194842B1 (en) Blood oximeter
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
EP0829227A2 (en) Blood pressure monitor apparatus
EP0821910A2 (en) Blood pressure monitor apparatus
US20050148835A1 (en) Optical device
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
JP2010521266A (en) Noninvasive continuous measurement of blood component concentration
JP3790030B2 (en) Reflective photoelectric pulse wave detector
JPH0323846A (en) Probe for pulse oximeter
JPH11318837A (en) Bloodless and consecutive blood pressure estimating device
KR20020081763A (en) Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
WO2005010568A2 (en) Optical vital signs monitor
US20030032887A1 (en) Heartbeat synchronous information acquiring apparatus and pulse wave propagation velocity related information acquiring apparatus, blood pressure monitoring apparatus and preejection period measuring apparatus utilizing heartbeat synchronous information
JPH10216114A (en) Degree of oxygen saturation measuring apparatus
JP3705667B2 (en) Heart failure monitoring device
US5203342A (en) Peripheral blood circulation state detecting apparatus
US7014611B1 (en) Oscillometric noninvasive blood pressure monitor
JP2958503B2 (en) Non-invasive blood pressure measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108