JP4414682B2 - 超音波内視鏡装置 - Google Patents

超音波内視鏡装置 Download PDF

Info

Publication number
JP4414682B2
JP4414682B2 JP2003162845A JP2003162845A JP4414682B2 JP 4414682 B2 JP4414682 B2 JP 4414682B2 JP 2003162845 A JP2003162845 A JP 2003162845A JP 2003162845 A JP2003162845 A JP 2003162845A JP 4414682 B2 JP4414682 B2 JP 4414682B2
Authority
JP
Japan
Prior art keywords
ultrasonic
image
surface shape
optical
optical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162845A
Other languages
English (en)
Other versions
JP2004358096A (ja
Inventor
知直 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003162845A priority Critical patent/JP4414682B2/ja
Priority to EP04736120A priority patent/EP1632184B1/en
Priority to PCT/JP2004/008151 priority patent/WO2004107982A1/ja
Publication of JP2004358096A publication Critical patent/JP2004358096A/ja
Priority to US11/294,985 priority patent/US20060183992A1/en
Application granted granted Critical
Publication of JP4414682B2 publication Critical patent/JP4414682B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction

Description

【0001】
【発明の属する技術分野】
本発明は、被検体の光学像と超音波像を取得する超音波内視鏡装置に関する。
【0002】
【従来の技術】
従来、患者の開口部から挿入して体腔内より超音波を走査する超音波内視鏡が種々実用化されている。
【0003】
この超音波内視鏡の先端には、通常、超音波を走査してそのエコーを受信する超音波振動子と、食道、胃、十二指腸、大腸などの管腔表面の光学像を観察するための光学観察窓が設けられている。
【0004】
ところで、一般に、この超音波内視鏡による超音波像は、光学像との空間的な位置関係を把握しにくいという問題がある。このため、術者には超音波像として管腔のどの部位がモニタに表示されているのかわかりにくく、超音波像で正しく患部を診断することには熟練を要していた。
【0005】
超音波内視鏡で空間的な位置関係を把握しにくい理由は以下の通りである。
【0006】
第1に超音波の走査面は光学像では目に見えない。
【0007】
第2に超音波の走査面は常に光学像の視野内におさまる訳ではない。
【0008】
第3に超音波で走査する際、超音波を患部まで到達させるために超音波媒体である脱気水を管腔に充満させたり、バルーンを用いたりするが、これが光学像の視野を妨げるため、結局、超音波像による観察は光学像による観察とは時間を置いた別の観察となっていた。
【0009】
このことに対応して、近年では、別々に撮像された光学像と超音波像とを合成して表示することで、光学像と超音波像との空間的な位置関係を正確に把握できる超音波内視鏡装置が提案されている(例えば、特許文献1参照)。
【0010】
さらに、特許文献1の技術を用いることで、水平方向への病変の広がりの診断と、垂直方向への病変の深速度診断とを同時に行うことができ、超音波内視鏡検査の診断能を向上させることができる。
【0011】
光学像と超音波像とを合成する際には、あらかじめ双方の画像データの位置関係を対応づける必要がある。そこで、この特許文献1の技術では、1つの方法として、光学像から被検体病変部表面の3次元立体把握が可能な、立体3次元内視鏡計測システムと、3次元超音波像再構成システムとを組合せ、両者によって得られた病変部表面の3次元形態画像情報をパターンマッチングさせる方法を提案している。
【0012】
さらに、この中で、光学像から病変部表面の3次元形態画像情報を把握する方法として、次の2つの方法を提案している。
【0013】
第1に三角測量を基本原理とした、スリット光投影を用いた光切断法による立体計測方法である。これは次のような手法である。
【0014】
まず、レーザ−を光源とする投影装置を用いてスリット光を発生させ、物体面に照射すると、その物体面にその形状のまま投影され、この物体面での光強度分布をスコープで撮影すると、その物体形状に応じて変化する輝度パターンが得られる。この輝度パターンを解析することで、物体までの距離Z、そして、X、Y座標を加えた3次元位置を把握することができる。
【0015】
第2に内視鏡に装着される広角レンズによる歪曲収差を補正する仕組みをもつものを使う方法である。
【0016】
【特許文献1】
特開平2002−17729号公報(第9−16頁、図1−16)
【0017】
【発明が解決しようとする課題】
このような従来の光学像から病変部表面の3次元形態画像情報を把握する技術において、スリット光投影を用いた光切断法による立体計測方法では、レーザー光を導光するための特別な光学系を内視鏡に設ける必要があり、歪曲収差を補正する方法では、内視鏡に広角レンズを装着する必要がある。そのため、立体3次元内視鏡計測システムのための内視鏡には特別のものが必要になってしまい、3次元超音波像再構成システムのための内視鏡とは別体にならざるを得ない。
【0018】
さらに、立体計測方法は、物体面が無地の面であることが前提であり、管腔表面のように不均一な階調をもつ面への投影では、正確に物体面の3次元位置を把握できるとは言いがたい。
【0019】
従って、このような技術による超音波内視鏡装置を用いて光学像と超音波像とを合成して表示するためには、一方のシステムで患者を検査した後、内視鏡を抜去し、もう一度別の内視鏡を挿入して検査し直さなければならない。その結果、この超音波内視鏡装置による検査は検査時間を長引かせ、洗浄消毒等の検査前後の内視鏡メンテナンスの手間を倍加させるだけでなく、患者への負担を強いるというデメリットが生じてしまう。また、光学像と超音波像の位置関係を対応づける際の正確さに欠けていた。
【0020】
本発明は、前記事情に鑑みてなされたものであり、患者から内視鏡を差し替える必要なく、光学像と超音波像の互いの位置と方向とを正確に対応づけて表示することのできる超音波内視鏡装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
前記目的を達成するために本発明の第1の超音波内視鏡装置は、被検体の体腔内に挿入される超音波内視鏡の先端に配設された、被検体の光学像を取得する光学像取得手段と、前記超音波内視鏡の先端に配設された、前記被検体の超音波像を取得する超音波像取得手段と、前記超音波内視鏡の先端に配設された同一の素子を用いて、前記光学像取得時の前記被検体に対する前記光学像取得手段の位置情報を取得すると共に、前記超音波像取得時の前記被検体に対する前記超音波像取得手段の位置情報を取得する位置情報取得手段と、前記光学像取得手段の前記位置情報を基に一つの前記光学像取得手段を用いて異なる角度で撮像された複数の前記光学像と、これら複数の光学像各々に対応する前記位置情報と、に基づいて第1の表面形状を算出する第1の表面形状演算手段と、前記超音波像取得手段の前記位置情報を基に前記超音波像から第2の表面形状を算出する第2の表面形状演算手段と、前記第1および第2の表面形状を用いて前記光学像取得手段により得られた光学像と前記超音波像取得手段により得られた超音波像とをマッチングさせるマッチング手段と、を具備したことを特徴とする。
【0022】
本発明の第2の超音波内視鏡装置は、第1の超音波内視鏡装置において、前記光学像の輝度値を表面画像データに用い、前記超音波像の輝度値を断面画像データに用いて、前記表面画像データと前記断面画像データとを合成して3次元画像を構築する合成手段をさらに備えたことを特徴とする。
【0023】
本発明の第3の超音波内視鏡装置は、第1または2の超音波内視鏡装置において、前記光学像から得られた画像と前記超音波像から得られた画像を同時表示する表示手段と、一方の画像上の任意点に対する、他方への対応点を算出する対応付け制御手段と、をさらに備えたことを特徴とする。
【0024】
本発明の第4の超音波内視鏡装置は、第1−3のいずれかの超音波内視鏡装置において、前記マッチング手段は、相互相関処理を用いてマッチングすることを特徴とする。
【0025】
本発明の第5の超音波内視鏡装置は、第1−3のいずれかの超音波内視鏡装置において、前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段を設けたことを特徴とする。
本発明の第6の超音波内視鏡装置は、第1−3のいずれかの超音波内視鏡装置において、前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段を設けたことを特徴とする。
本発明の第7の超音波内視鏡装置は、第4の超音波内視鏡装置において、前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段、または、前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段を設け、前記相互相関処理の前に、前記重心または前記慣性主軸を算出することを特徴とする。
本発明の第8の超音波内視鏡装置は、第1−7のいずれかの超音波内視鏡装置において、前記超音波像取得手段は、自身でボリューム走査を行うことを特徴とする。
本発明の第9の超音波内視鏡装置は、第8の超音波内視鏡装置において、前記超音波像取得手段は、超音波振動子を2次元アレイ状に配した2次元アレイ超音波振動子であることを特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
(第1の実施の形態)
図1乃至図11は本発明の第1の実施の形態に係り、図1は超音波内視鏡装置の全体構成を示すブロック図、図2は内視鏡の挿入部の挿入側先端の拡大して示す断面図、図3は画像処理装置を示すブロック図、図4は形状マッチング回路を示すブロック図、図5は手引き走査の作用を示す説明図、図6は3次元画像データを示す概念図、図7は3次元画像データの切り直しを示す説明図、図8は表面形状データを示す説明図、図9は内視鏡による関心領域の撮像を示す説明図、図10は光学像と超音波像の合成を示す説明図、図11はモニタに表示される画像を示す説明図である。
【0027】
(構成)
図1に示すように、本実施の形態の超音波内視鏡装置1は、超音波内視鏡2と、超音波観測装置3と、光学観察装置4と、位置検出装置5と、画像処理装置6と、モニタ7と、キーボード8と、マウス9とを有している。
【0028】
超音波内視鏡2は、挿入部21と、操作部25とを連設したものである。
挿入部21は、可撓性のある材質で構成され、被検体の体腔内へ挿入可能になっている。操作部25は、挿入部21の先端部の超音波振動子22を駆動するモータ23を備えている。
【0029】
挿入部21の先端部には空間に磁場を励起する送信コイル24を設けている。
位置検出装置5は、コイル駆動回路11と、複数の受信コイル12と、位置算出回路13とを有している。
【0030】
コイル駆動回路11は、送信コイル24にコイル励振信号を出力する。複数の受信コイル12は、所定の配置方法で特定の位置に固定され、送信コイル24が張る磁場を逐次検知して電気的な受信信号を出力する。
【0031】
位置算出回路13は、受信コイル12が出力する受信信号から位置方向データを算出する。
【0032】
なお、複数の受信コイル12は直方体の筐体に一体的に固定されている。以下、この筐体と受信コイル12とを合わせて受信コイルユニット10と呼ぶ。
【0033】
図1の中では受信コイル12は紙面の都合上、受信コイルユニット10の中で直線上に並べて固定されて表されているが、実際には2次元平面上あるいは3次元空間上に並べて固定されているものとする。
【0034】
図2を用いて挿入部21の挿入側先端を詳細に説明する。
図2に示すように、挿入部21の先端部26にはポリメチルペンテン等の材質でできた音響的に半透明な先端キャップ27が設けられている。先端キャップ27の内部には超音波振動子22が設けられており、先端キャップ27内には超音波伝達媒体28が充填されている。超音波振動子22は可撓性のある材質で作られたフレキシブルシャフト29に接続されている。フレキシブルシャフト29は図1に示した内視鏡2の操作部25内のモータ23の回転軸へ接続されており、図2の矢印方向に回転するように設けられている。超音波振動子22はフレキシブルシャフト29内の信号線(図示せず)を介して内視鏡操作部25経由で超音波観測装置3へエコー信号を出力する。
【0035】
挿入部21の先端には空間に磁場を張るソレノイドコイルである2個の送信コイル24が設けられている。2個の送信コイル24は、信号線30を介して位置検出装置5内のコイル駆動回路11と接続している。この送信コイル24のうちの一つは図2の「12時方向」と書かれた方向を軸として、もう一方は「法線方向」と書かれた方向を軸として導線がコイル状に巻かれている。
【0036】
この「法線方向」は挿入部21の挿入軸方向、「12時方向」はこれに直交する方向である。「法線方向」は超音波振動子22がラジアル走査して得られる超音波像の法線方向と一致する。また、12時方向に巻かれた送信コイル24は、導線の巻かれている方向が、法線方向に直交する方向のうち超音波像の12時方向に一致するよう設けられているものとする。なお、超音波振動子22がラジアル走査を行う場合の作用は後述する。
【0037】
これらの他に、挿入部21の先端部26には、光学像をカラーで撮像するための電荷結合素子型固体撮像素子カメラ(以下、CCDカメラと呼ぶ)31と、CCDカメラ31での撮像に必要な光を体腔内に照射するための撮像光照射窓32とが設けられている。
【0038】
CCDカメラ31は光学観察装置4と接続しており、挿入部21内の信号線(図示せず)を介して内視鏡操作部25経由で光学観察装置4へ撮像信号を出力する。光学観察装置4はこの撮像信号を基に体腔内の光学像を作成する。また、撮像光照射窓32は挿入部21内に設けられた光ファイバ等の導光路(図示せず)を経由して光源装置(図示せず)からの撮像光が届くよう構成されており、CCDカメラ31での撮像に必要な撮像光を体腔内に照射することができる。
【0039】
そして、挿入部21の先端部には、上記した挿入部21の先端部の各部を一体的に保持するための硬性の硬性フレーム33が図2のように設けられている。
【0040】
図3を参照して図1に示した画像処理装置6の構成を詳細に説明する。
図3に示すように、画像処理装置6は、超音波像メモリ41と、3次元データ構築回路42と、大容量の第1の3次元画像メモリ(以下、単に3次元画像メモリ43)と、断面抽出回路44と、断面画像メモリ45と、表面抽出回路46と、光学像メモリ47と、表面形状推定回路48と、大容量の第2の3次元画像メモリ(以下、単に3次元画像メモリ49)と、形状マッチング回路50と、座標変換回路51と、表面画像メモリ52と、合成回路53と、表示回路54と、スイッチ55と、これらを制御するコントローラ56とを有している。
【0041】
スイッチ55は、位置検出装置5からのデータの出力先を超音波像メモリ41と光学像メモリ47のうち一方に切り替える。コントローラ56は、キーボード8やマウス9からの入力に応じてこれら各部および各回路を制御する。
【0042】
次に、図4を用いて図3に示した形状マッチング回路50の構成を詳細に説明する。
【0043】
図4に示すように、形状マッチング回路50は、第1の表面形状メモリ57と、第2の表面形状メモリ58と、相互相関回路59とを設けている。
【0044】
また、本実施形態の位置検出装置5は、前記超音波像取得時の前記被検体に対する前記超音波像取得手段の位置情報を取得するようになっている。
【0045】
(作用)
以下、第1の実施の形態の作用を説明する。
図1、図3及び図4において、実線は光学像に関連する信号またはデータの流れ、破線は超音波像に関連する信号またはデータの流れ、2点鎖線は挿入部21の先端部の位置方向に関連する信号またはデータの流れ、太線は3次元画像に関連する信号またはデータの流れ、点線はマッチング情報の流れ、曲線の矢印はその他の信号またはデータの流れを示している。
【0046】
超音波像を構築する作用について説明する。
超音波振動子22は、超音波観測装置3内からのパルス電圧状の励起信号を受け取って媒体の疎密波である超音波ビームに変換する。
【0047】
超音波ビームは超音波伝達媒体28と先端キャップ27とを伝わり超音波内視鏡2外部へと照射され、被検体内からの反射エコーが超音波ビームとは逆の経路を辿って超音波振動子22へ戻る。
【0048】
超音波振動子22は反射エコーを電気的なエコー信号に変換して励起信号とは逆の経路で超音波観測装置3へ伝達する。さらに、この作用を反復的に繰り返す一方で、操作部25内のモータ23が回転することによりフレキシブルシャフト29と超音波振動子22がそれぞれ図2のブロック矢印の方向へ回転する。このため超音波ビームが超音波内視鏡2の挿入部21に垂直な平面(以下、ラジアル走査面)内を順次放射状に照射され、いわゆるメカニカルラジアル走査が実現する。
【0049】
以下、メカニカルラジアル走査は単にラジアル走査と呼ぶ。
超音波観測装置3は、超音波振動子22からのエコー信号に包絡線検波・対数増幅・A/D変換・スキャンコンバート(ラジアル走査で生成された極座標系の画像データを直交座標系の画像データに変換する処理)等の公知の処理を施して超音波像の画像データ(以下、単に超音波像)を構築する。この超音波像は画像処理装置6内の超音波像メモリ41に出力される。
【0050】
次に、光学像を構築する作用について説明する。
CCDカメラ31は、体腔内表面の情報を基に撮像信号を生成する。具体的には光を電気的な撮像信号へ変換する。そして、撮像信号を光学観察装置4へ出力する。光学観察装置4はこの撮像信号を基に光学像の画像データ(以下、単に光学像)を構築する。この光学像は画像処理装置6内の光学像メモリ47に出力される。
【0051】
次に、挿入部21の先端部の位置方向データを算出する作用について説明する。
コイル駆動回路11は、送信コイル24にコイル励振信号を逐次出力する。送信コイル24は、空間に磁場を張る。
【0052】
受信コイル12は、磁場を逐次検知して位置算出回路13に電気的な受信信号を出力する。
【0053】
位置算出回路13は、受信信号を基に位置方向データを算出し、画像処理装置6へ出力する。この位置方向データは送信コイル24の受信コイルユニット10に対する位置と方向とを含んだデータとする。具体的には、位置方向データは送信コイル24の位置だけでなく、超音波内視鏡2の挿入軸方向(図2の「法線方向」と示された方向)と、超音波像に平行な特定の方向(図2の「12時方向」と書かれた方向)とを含んでいるものとする。ここで、超音波内視鏡2の挿入軸方向は超音波像の法線方向である。
【0054】
さらに、本実施の形態の超音波観測装置3は、図2の12時方向が、超音波像の12時方向になるよう超音波像を作成する。従って、結局、位置方向データは、超音波像の法線方向と12時方向を示すデータを含むことになる。
【0055】
次に、画像処理装置6の作用を説明する。
第1に、超音波像に関連する信号/データの流れについて説明する。
まず、術者はキーボード8やマウス9を介し、コントローラ56にスイッチ55を切り替えさせる。ここでは、位置方向データの出力先が超音波像メモリ41に設定される。
【0056】
この後、術者はラジアル走査をしながら超音波内視鏡2の挿入部21をゆっくり引き抜く。すると図5に示すように挿入部21の先端部がゆっくり移動する(以下、この走査方法を手引き走査と呼ぶことにする)。手引き走査に伴い、連続した複数の超音波像62が得られる。図5のように、挿入部21の先端部が常に関心領域61の近くにいるよう手引き走査を実行すれば、ほとんどの超音波像内に関心領域61が含まれる。
【0057】
超音波観測装置3はこのように生成される超音波像を次々と超音波像メモリ41に出力する。コントローラ56は各超音波像とそれが入力された瞬間の位置方向データとを関連付けて超音波像メモリ41に記憶させるようにする。例えば、コントローラ56は位置方向データを超音波像の画像データのヘッダーもしくはフッターとして記憶させるようにする。近年のデジタル技術の進歩により、超音波観測装置3はラジアル走査に対してほとんど遅延なく超音波像を構築でき、また近年の位置検出装置5は磁場の送信に対してほとんど遅延なく位置方向データを算出できるので、超音波像メモリ41には、事実上、各超音波像とそのエコー信号が取得された瞬間の位置方向データとが記憶されることになる。
【0058】
このようにして、超音波像メモリ41には連続した複数の超音波像が、おのおのの位置方向データと関連付けられて記憶される。
【0059】
3次元データ構築回路42は、超音波像メモリ41から連続する複数の超音波像を読み出し、各々が重複する部分を平均化したり、超音波像間に補間処理を施してアドレスが3次元の直交座標で表現される3次元画像データを作成し、3次元画像メモリ43に出力する。
【0060】
3次元画像データの概念を図6を参照して説明する。
図6に示すように、3次元画像データ63はアドレスが3次元の直交座標で表現されるセル64からなり、各々のセル64はエコー信号を基にして得た輝度値をデータに持つ。
【0061】
断面抽出回路44は、3次元画像データ63のうち、適当な複数の断面に相当する多数のセル64を抽出し、断面の画像データ(以下、断面画像データ)を作成する。
【0062】
断面画像データは断面画像メモリ45に出力され、記憶される。なお、断面の位置や方向はあらかじめキーボード8やマウス9を介して術者が設定するものとし、本実施の形態では説明の都合上、互いに垂直な複数の断面が設定されているものとする。
【0063】
表面抽出回路46は、図7に示すように、3次元画像データ63を平行な断面像(以下、平行スライス像データ65)に切り直す。そして、平行スライス像データ65の各々から管腔表面に相当するセルを抽出する。各平行スライス像データ65から表面を抽出する方法は本出願人による特開平10−192号公報に詳述されているような公知の処理方法を用いる。この後、表面抽出回路46は、3次元画像データ63とは別に、表面に相当するセルを1、表面以外に相当するセルを0にして2値化しだ表面形状データを作成し、形状マッチング回路50内の表面形状メモリ57に出力する。
【0064】
この表面形状データの概念を図8を用いて詳細に説明する。なお、図8では説明の都合上、表面形状データ66の各セル67はメッシュが粗く表現されているが、実際には抽出された表面68が図8に表現されている程度に滑らかに表現できるようメッシュが細かく切られている。
【0065】
次に、光学像に関連する信号及びデータの流れについて説明する。
まず、術者はキーボード8やマウス9を介し、コントローラ56にスイッチ55を切り替えさせる。ここでは、位置方向データの出力先が光学像メモリ47に設定される。この後、術者は光学像を撮像しながら超音波内視鏡2の挿入部21を移動させ、図9に示すように、関心領域61が様々な角度で撮像されるようにする。
【0066】
光学観察装置4はこのように生成される光学像を次々と光学像メモリ47に出力する。
【0067】
コントローラ56は各光学像とそれが入力された瞬間の位置方向データとを関連付けて光学像メモリ47に記憶させるようにする。例えば、コントローラ56は位置方向データを光学像の画像データのヘッダもしくはフッタとして記憶させるようにする。光学観察装置4はCCDカメラ31による撮像に対してほとんど遅延なく光学像を構築でき、位置検出装置5は磁場の送信に対してほとんど遅延なく位置方向データを算出できるので、光学像メモリ47には、事実上、各光学像とそれが撮像された瞬間の位置方向データとが記憶されることになる。
【0068】
このようにして、光学像メモリ47には、連続した複数の光学像が、おのおのの位置方向データと関連付けられて記憶される。
【0069】
表面形状推定回路48は、光学像メモリ47から連続する複数の光学像を読み出し、表面形状を推定する。この表面形状を推定する方法は本出願人による特開平11−295618号公報に詳述されているような公知の処理方法を用いる。ここに開示されている処理方法は本願と同様に位置検出装置5を使って挿入部21の先端部の位置及び方向を検出し、さらにCCDカメラ31からの光学像を用いて被検体の表面形状を精度良く推定する方法である。
【0070】
この後、表面形状推定回路48は、表面に相当するセルを1、表面以外に相当するセルを0にして2値化した表面形状データを作成し、形状マッチング回路50内の表面形状メモリ58に出力する。この表面形状データの概念図は先に述べた図8と同じである。
【0071】
さらに、表面形状推定回路48は、この表面形状にもともとの光学像のカラーの輝度値をマッピングすることで、表面形状データとは別に管腔表面の3次元画像データを作成し、3次元画像メモリ49に出力する。3次元画像データの概念図は先に述べた図6と同じである。3次元画像データはアドレスが3次元の直交座標で表現されるセルからなり、各々のセルは撮像信号から得た管腔表面の輝度値をR(赤)、G(緑)、B(青)をデータに持つ。
【0072】
次に、形状マッチング回路50の作用とマッチング情報の流れについて説明する。
【0073】
形状マッチング回路50は表面形状メモリ57内の、超音波像から得た表面形状データと、表面形状メモリ58内の、光学像から得た表面形状データとを比較し、光学像から得た表面形状データをどのように回転、並進、拡大/縮小させたら最も良く超音波像から得た表面形状データと一致するかを演算する。この様子を図10に示す。
【0074】
具体的には、図10に示すように、相互相関回路59が光学像から得た表面形状データ72に対し、回転、並進、拡大/縮小の変換を施して超音波像から得た表面形状データ71との相互相関値Fを算出し、回転、並進、拡大縮小の変換の程度を微小に変えながらこれを繰り返すことで相互相関値が最大となる時の回転のオイラー角(ψ,θ,φ)、並進の変位(δx,δy,δz)、拡大/縮小率αを算出する。そして相互相関値が最大となる時のこれらの値をマッチング情報として座標変換回路51に出力する。
【0075】
以下に、解析的なモデルを説明する。
f(x,y,z)を超音波像から得た表面形状データ71、g(x,y,z)を光学像から得た表面形状データ72とすると各々の関数は以下の値を取る。
【0076】
【数1】
Figure 0004414682
光学像から得た表面形状データ72に対し、回転、並進、拡大/縮小を施すと、表面形状データ72上の点(x,y,z)は以下の式で点(x’,y’,z’)に座標変換される。
【0077】
【数2】
Figure 0004414682
ここでTx(ψ),Ty(θ),Tz(φ)はそれぞれx軸、y軸、z軸のまわりの回転行列とする。
【0078】
式(3)から、x’、y’、z’はそれぞれ(x,y,z)、(ψ,θ,φ)、(δx,δy,δz)、αの関数として書かれることになる。
【0079】
すると、相互相関値Fは、(ψ,θ,φ)、(δx,δy,δz)、αの関数として以下の式で与えられる。
【0080】
【数3】
Figure 0004414682
求める値は以下を満足して、相互相関値Fを最大にするψo,θo,φo,(δx)o,(δy)o,(δz)o,αoであり、相互相関回路59はこれらを求めるために(ψ,θ,φ)、(δx,δy,δz)、αの値を微小に変えながら式(3)と式(4)の演算を繰り返す。
【0081】
F(ψo,θo,φo,(δx)o,(δy)o,(δz)o,αo)
=maxF … (5)
結局、相互相関回路59は座標変換回路51へマッチング情報としてψo,θo,φo,(δx)o,(δy)o,(δz)o,αoを出力することになる。
【0082】
これらの値が超音波像から得た表面形状データと光学像から得た表面形状データとの一致を与える座標変換パラメータである。
【0083】
次に、3次元画像の合成と表示について説明する。
【0084】
座標変換回路51は3次元画像メモリ49内の光学像から得た3次元画像データ63に座標変換を施す。
【0085】
この際、座標変換回路51は、形状マッチング回路50からのマッチング情報を基にして、光学像から得た表面形状データ72が超音波像から得た表面形状データ71と最も良く一致するよう、光学像から得た表面形状データ72を回転、並進、拡大/縮小させるのと同じ方法で、光学像から得た3次元画像データ63を回転、並進、拡大/縮小させる。
【0086】
具体的には、座標変換回路51は相互相関回路59からのψo,θo,φo,(δx)o,(δy)o,(δz)o,αoの各値を基に、式(3)で書かれる座標変換処理を3次元画像メモリ49内の光学像から得た3次元画像データ63に施す訳である。座標変換された3次元画像データ(以下、表面画像データ)は表面画像メモリ52へ出力され、記憶される。このように処理することで、断面画像メモリ45内の断面画像データの座標系と表面画像メモリ52内の表面画像データの座標系が一致するのである。
【0087】
合成回路53は断面画像データと表面画像データを合成し、陰面消去等の処理を施して、図11に示す表面73と断面74とを合成して、関心領域が表示された3次元画像を構築する。
【0088】
この3次元画像は表示回路54でモニタ7に出力できるよう、ビデオ信号等の信号に変換され、モニタ7に出力される。
【0089】
モニタ7はこの3次元画像を表示する。
(効果)
このような第1の実施の形態によれば、患者から内視鏡を差し替える必要なく、光学像と超音波像の互いの位置と方向とを正確に対応づけて表示することができるので、検査時間を短縮し、洗浄消毒等の検査前後の内視鏡メンテナンスの手間を減らし、患者への負担を低減できる。
【0090】
尚、第1の実施の形態では、表面抽出回路46が3次元画像バータを平行スライス像データ65に切り直して表面を抽出した後、表面形状データ66を作成するよう構成したが、各超音波像からそのまま表面を抽出してそれらを補間することで表面形状データ66を作成するよう構成しても良い。このように構成作用させても特開平10−192号公報に詳述されている表面抽出の方法を用いることができる。また、表面抽出の方法は他の公知のいかなる方法でも良い。
【0091】
また、第1の実施の形態では、表面形状推定回路48が特開平11−295618号公報に開示されている方法で表面形状を推定するよう構成したが、本方法のほかに、挿入部21の先端部の位置及び方向を検出し、さらにCCDカメラ31からの同一被検体に対する時刻の異なった光学像を用いて、いわば時差のあるステレオ視で被検体の表面形状を推定する他の方法であっても良い。
【0092】
図12は第1の実施の形態に適用可能な電子ラジアル走査型超音波内視鏡を示す斜視図、図13は第1の実施の形態に適用可能なコンベックス走査型超音波内視鏡を示す斜視図、図14は第1の実施の形態に適用可能な2次元アレイ型超音波内視鏡を示す斜視図である。
【0093】
第1の実施の形態では、用いられる超音波内視鏡として超音波振動子22を機械的に回転してラジアル走査するメカニカルラジアル走査型超音波内視鏡2を用いたが、本発明はこれに限定されるものではなく、図12に示す短冊状の超音波振動子82を挿入軸に対し環状にアレイ状に設けた電子ラジアル走査型超音波内視鏡81や、図13に示す挿入軸に沿って超音波振動子92をアレイ状に設けたコンベックス走査型超音波内視鏡91を用いてもよい。
【0094】
コンベックス走査型超音波内視鏡91を用いた場合には、手引き走査に代えて、図13に示すよう挿入部93を挿入軸を中心にねじる走査(ねじり走査)になる。
【0095】
さらに、図14に示すように、近年期待が高まっている超音波振動子を平面にアレイ状に配した2次元アレイ超音波振動子102を用いた2次元アレイ型超音波内視鏡101を本発明に適用してもよい。
【0096】
2次元アレイ型超音波内視鏡101を用いた場合には、手引き走査やねじり走査に代えて、超音波振動子102による走査のみで、平面状でなく3次元的な走査(ボリューム走査)ができ、一度に3次元の超音波像を取得することになる。つまり、このように構成することで、図2に示した送信コイル24を用いずとも超音波による走査のみから3次元画像データを構築できるので、超音波の走査の際には送信コイル24が不要になる。
【0097】
また、図2に示した第1の実施の形態では、送信コイル24を2個独立に設けたが、これは図12、図13、図14に示すよう、2軸に巻かれたコイル84が一体になったものであっても良く、送信コイルの形態は各種適用可能である。さらには図1に示す送信コイル24と受信コイル12が逆であっても、挿入部21の先端部の位置方向データは算出できるので、一向に差し支えない。なお、図12、図13及び図14ではCCDカメラ31と撮像光照射窓32とは省略されているが、実際にはこれらの超音波内視鏡81,91,101でも設けられている。
【0098】
(第2の実施の形態)
以下、図15を用いて、第2の実施の形態の超音波内視鏡装置の構成と作用とを説明する。
【0099】
図15は本発明の第2の実施の形態に係る形状マッチング回路を示すブロック図である。
【0100】
図15を用いた第2の実施の形態の説明において、図1乃至図11に示した第1の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0101】
(構成)
図15に示すように、第2の実施の形態は、形状マッチング回路110の構成と作用が第1の実施の形態と異なる。
【0102】
形状マッチング回路110は、表面形状メモリ57と、表面形状メモリ58と、重心算出回路111と、重心比較回路112と、並進回路113と、慣性主軸算出回路114と、慣性主軸比較回路115と、回転回路116と、相互相関回路117とを設けている。
【0103】
その他の構成は第1の実施の形態と同じである。
(作用)
図15の実線は光学像に関連する信号またはデータの流れ、破線は超音波像に関連する信号またはデータの流れ、点線はマッチング情報の流れを示している。
【0104】
第1の実施の形態では、相互相関回路で、光学像から得た表面形状データに対し、回転、並進、拡大/縮小の変換を施して超音波像から得た表面形状データとの相互相関値Fを算出し、回転、並進、拡大縮小の変換の程度を微小に変えながらこれを繰り返すことで相互相関値が最大となる時の回転のオイラー角(ψ,θ,φ)、並進の変位(δx,δy,δz)、拡大/縮小率αを算出した。
【0105】
一方、第2の実施の形態では、光学像から得た表面形状データと超音波像から得た表面形状データの形状はほとんど同じであることに着目し、並進は両表面形状データの重心の位置関係から、回転は両表面形状データの慣性主軸の位置関係から、そして、拡大/縮小のみ相互相関回路117を使い、(ψ,θ,φ)、(δx,δy,δz)、αを算出する。
【0106】
まず、重心算出回路111は、両表面形状メモリに記憶された表面形状データを読み出し、それぞれの重心の位置べクトルを算出する。重心の位置ベクトルGの演算は以下の式で与えられる。
【0107】
【数4】
Figure 0004414682
ここでiは表面形状メモリを構成するセルにつけられた番号で、riは各セルの位置ベクトル、Iiは各セルのデータ(表面は1、それ以外は0)である。
【0108】
重心比較回路112は、両表面形状データで算出された重心の位置ベクトルGの差ベクトルを算出することで、両表面形状データ間の位置ずれ、すなわち並進の変位(δx,δy,δz)を算出する。その後、重心比較回路112は、この値を座標変換回路51と並進回路113に出力する。
【0109】
並進回路113は、表面形状メモリ58内の光学像から得た表面形状データ72に対し、並進(平行移動)の処理を施し、超音波像から得た表面形状データ71と重心を合わせ、回転回路116と慣性主軸算出回路114に出力する。
【0110】
慣性主軸算出回路114は、表面形状メモリ57に記憶された超音波像からの表面形状データを読み出し、その慣性主軸の単位ベクトルを算出する。また、慣性主軸算出回路114は、並進回路113で重心を合わせられた光学像からの表面形状データの慣性主軸の単位ベクトルをも算出する。慣性主軸とは、通常古典力学で扱われる、どのような剛体にも固有に存在する1組の直交3軸である。
【0111】
そこで、慣性主軸算出回路114は、表面形状データを輝度値Ii、位置ベクトルriで表されるセルの集合と見なし、さらに輝度値を質量と読み替えることで表面形状データを剛体と見なして、表面形状データから剛体と同様に慣性主軸を算出する。
【0112】
ここで、慣性主軸算出回路114は、超音波像からの表面形状データと、光学像からの表面形状データのそれぞれについて慣性主軸の直交する3軸の右手系の単位ベクトルを算出する。慣性主軸の算出方法は古典力学及び線形代数で公知である。
【0113】
慣性主軸比較回路115は、両表面形状データで算出された慣性主軸の単位ベクトル間の関係を算出する。両者間の関係は3行3列の直交行列で表現され、ここから回転のオイラー角(ψ,θ,φ)が算出される。この値が両表面形状データ間の回転ずれである。その後、慣性主軸比較回路115は、この値を座標変換回路51と回転回路116に出力する。
【0114】
回転回路116は、並進回路113から出力された光学像から得た表面形状データに対し、回転の処理を施し、超音波像から得た表面形状データと方向を合わせ、相互相関回路117へ出力する。
【0115】
相互相関回路117は、表面形状メモリ57から超音波像から得た表面形状データ71を読み出す。そして、相互相関回路117は、回転回路116から出力された光学像から得た表面形状データを拡大または縮小し、両表面形状データの相互相関を取る。さらに拡大または縮小を倍率αを変えながら繰り返すことで、相互相関値が最大になるαを求め、座標変換回路51へ出力する。
【0116】
その他の作用は第1の実施の形態と同じである。
(効果)
第1の実施の形態では、マッチング情報として相互相関値が最大になる回転のオイラー角(ψ,θ,φ)、並進の変位(δx,δy,δz)、拡大/縮小率αを全て独立変数と見なして算出していたが、第2の実施の形態では、並進の変位(δx,δy,δz)は重心算出回路111と重心比較回路112とから、回転のオイラー角(ψ,θ,φ)は慣性主軸算出回路114と慣性主軸比較回路115とから算出され、相互相関回路117が算出するのは拡大/縮小率αのみである。相互相関は一般に処理が重いため、第2の実施の形態によれば、第1の実施の形態に比べて処理を高速に実施できる。
【0117】
第2の実施の形態のその他の効果は第1の実施の形態と同じである。
(第3の実施の形態)
以下、図16を用いて、第3の実施の形態の超音波内視鏡装置の構成と作用とを説明する。
【0118】
図16は本発明の第3の実施の形態に係る形状マッチング回路を示すブロック図である。
【0119】
図16を用いた第3の実施の形態の説明において、図15に示した第2の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0120】
(構成)
図16に示すように、第3の実施の形態は、第2の実施の形態と形状マッチング回路120の構成と作用とが異なる。第2の実施の形態とは異なる個所のみ説明する。
【0121】
形状マッチング回路120は、調整回路121を新たに設けている。
その他の第3の実施の形態の構成は第2の実施の形態と同じである。
(作用)
第2の実施の形態は、重心比較回路112の出力である並進の変位(δx,δy,δz)と、慣性主軸比較回路115の出力である回転のオイラー角(ψ,θ,φ)を直接座標変換回路51へ出力するよう構成していた。しかし、第3の実施の形態ではこれらの出力を粗調整値として調整回路121へ出力させる。
【0122】
相互相関回路117は、この粗調整値とは別に第1の実施の形態と同じく回転のオイラー角(ψ,θ,φ)、並進の変位(δx,δy,δz)、拡大/縮小率αを算出する。ただし、このとき相互相関回路117で算出される回転のオイラー角(ψ,θ,φ)と並進の変位(δx,δy,δz)に関しては、重心比較回路112、慣性主軸比較回路115での調整に加えた再度の調整値となり微調整値である。
【0123】
調整回路121は、回転のオイラー角(ψ,θ,φ)、並進の変位(δx,δy,δz)については粗調整値と微調整値とから、正確な値を算出し座標変換回路51へ出力する。また、調整回路121は、相互相関回路117からの拡大/縮小率αをそのまま出力する。
【0124】
(効果)
第2の実施の形態では、マッチング情報として粗調整値を座標変換回路51へ出力していたが、光学像から得られた表面形状データと超音波像から得られた表面形状データとでは、体腔内で撮像された範囲が微妙に異なる場合があり、これらの粗調整値が回転のオイラー角と並進の変位を正確に表していない可能性がある。
【0125】
第3の実施の形態では、相互相関回路117で微調整値を算出するよう構成したので、形状マッチング回路120は第2の実施の形態に比べて正確なマッチング情報を出力できる。さらに相互相関回路117が微調整値を算出する前に粗調整を実施することで、独立変数を変えながら行う相互相関処理を、独立変数の変化範囲を限定して行うことができ、第1の実施の形態に比べて処理を高速に実施できる。
【0126】
その他の効果は第1の実施の形態と同じである。
(第4の実施の形態)
以下、図17を用いて、第4の実施の形態の超音波内視鏡装置の構成と作用とを説明する。
【0127】
図17は本発明の第4の実施の形態に係る画像処理装置を示すブロック図である。
【0128】
図17を用いた第4の実施の形態の説明において、図1乃至図11に示した第1の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0129】
(構成)
図17に示すように、第4の実施の形態は、画像処理装置206において、第1の実施の形態の座標変換回路51の代わりにマッピング回路251を設けている。
【0130】
その他の構成は第1の実施の形態と同じである。
(作用)
第1の実施の形態では光学像から得た3次元画像データ63をそのまま用いて図11に示す3次元画像の表面を表現していたが、第4の実施の形態では超音波像から得た表面形状データに光学像から得た3次元画像データの輝度値をマッピングして表面を表現する。具体的には以下の通りである。
【0131】
マッピング回路251には、表面抽出回路46からの表面形状データ、形状マッチング回路50からのマッチング情報、3次元画像メモリ49からの3次元画像データ63が入力する。このうちの表面形状データは超音波像から得られており、3次元画像データは光学像から得た管腔表面のR(赤)、G(緑)、B(青)を輝度値のデータに持つ。
【0132】
マッピング回路251は、超音波像から得た表面形状データの各セルに対し、マッチング情報を基にして、光学像から得た3次元画像データのセルを対応づける。そして、光学像から得た3次元画像データの輝度値を超音波像から得た表面形状データにマッピングして、表面画像メモリ52へ出力する。
【0133】
その他の作用は第1の実施の形態と同じである。
(効果)
このような第4の実施の形態では、第1の実施の形態と同様の効果が得られる。
(第5の実施の形態)
以下、図18及び図19を用いて、第5の実施の形態の超音波内視鏡装置の構成と作用とを説明する。
【0134】
図18及び図19は本発明の第5の実施の形態に係り、図18は画像処理装置を示すブロック図、図19はモニタに表示される画像を示す説明図である。
【0135】
図18及び図19を用いた第5の実施の形態の説明において、図1乃至図11に示した第1の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0136】
(構成)
図18に示すように、第5の実施の形態は、画像処理装置306において、第1の実施の形態の合成回路53の代わりに対応付け回路353を設けている。
【0137】
対応付け回路353には、術者のマウス9操作により、モニタ7画面上のマウスカーソルの座標値が、マウスカーソル座標値データとして、逐次コントローラ56から入力する。
【0138】
また、第5の実施の形態は、画像処理装置306において、第1の実施の形態の断面画像メモリ45、3次元画像メモリ49、表面画像メモリ52、座標変換回路51の代わりに平行スライス像メモリ360を設けている。平行スライス像メモリ360は表面抽出回路46が作成する平行スライス像データを全て保存する。
【0139】
その他の構成は第1の実施の形態と同じである。
(作用)
第1の実施の形態では図11に示す3次元画像を合成して表示していたが、第5の実施の形態では光学像と超音波像の原画像をそのまま同時表示し、双方の対応点を表示する。この様子を図19に示す。
【0140】
具体的には以下の通りである。
図18に示す対応付け回路353は、図19に示すように、適当な光学像371をモニタ7の画面左側に表示させる。この光学像371に対して、術者がキーボード8やマウス9で所望のものを選んで、術者がマウス9でモニタ7の画面上のマウスカーソル372を動かすと、コントローラ56はマウスカーソル座標値データを対応付け回路353へ出力する。
【0141】
次に、術者は、マウスクリック等の操作により、光学像371上で1点を指定する。対応付け回路353はこの点にマーカ373を付す。
【0142】
次に対応付け回路353は形状マッチング回路50からのマッチング情報を基に、光学像371上のマーカ373への対応点を含んだ平行スライス像データを平行スライス像メモリ360の中から選択して読み出す。その後、対応付け回路353は平行スライス像データ上の対応点にマーカ375を付して、平行スライス像374をモニタ7の画面右側に表示する。
【0143】
その他の作用は第1の実施の形態と同じである。
(効果)
第1の実施の形態によれば、図11に示す光学像371から作成した表面を3次元画像に合成して表示していたが、この場合、解像度は光学像371の原画像よりも落ちる可能性がある。第5の実施の形態は、画像処理装置306により、光学像371を解像度の良い原画像のままで観察でき、なおかつ超音波の輝度値を持つ断面と対比することができる。
【0144】
(変形例)
第5の実施の形態では、表示する超音波のデータとして平行スライス像データを用いるよう構成したが、対応付け回路353が光学像371上のマーカ373への対応点に最も近い原画の超音波像を超音波像メモリ41から選び出すよう構成しても良い。このように構成することで、モニタ7の画面上に表示される画像はどちらも原画像になり、さらに同原画像の位置関係を対応づけながら全く劣化なく観察することができる。
【0145】
[付記]
以上詳述したような本発明の前記実施の形態によれば、以下の如き構成を得ることができる。
【0146】
(付記項1) 被検体の光学像を取得する光学像取得手段と、
前記被検体の超音波像を取得する超音波像取得手段と、
前記光学像取得時の前記被検体に対する前記光学像取得手段の位置情報を取得する位置情報取得手段と、
を設けた超音波内視鏡装置であって、
前記位置情報取得手段により得られた位置情報を基に、前記光学像取得手段により得られた前記光学像の位置と前記超音波像取得手段により得られた前記超音波像の位置とをマッチングさせるマッチング手段と、
を設けたことを特徴とする超音波内視鏡装置。
【0147】
(付記項2) 前記位置情報を基に前記光学像から第1の表面形状を算出する第1の表面形状算出手段と、
前記超音波像から第2の表面形状を算出する第2の表面形状演算手段と、
を設け、
前記マッチング手段は、第1と第2の前記表面形状を用いてマッチングすることを特徴とする付記項1に記載の超音波内視鏡装置。
【0148】
(付記項3) 前記位置情報取得手段は、前記超音波像取得時の前記被検体に対する前記超音波像取得手段の位置情報を取得し、
前記第2の表面形状演算手段は、前記位置情報を基に第2の表面形状を算出することを特徴とする付記項2に記載の超音波内視鏡装置。
【0149】
(付記項4) 前記マッチング手段は、相互相関処理を用いてマッチングすることを特徴とする付記項2に記載の超音波内視鏡装置。
【0150】
(付記項5) 前記マッチング手段には、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段が設けられていることを特徴とする付記項2に記載の超音波内視鏡装置。
【0151】
(付記項6) 前記マッチング手段には、前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段が設けられていることを特徴とする付記項2に記載の超音波内視鏡装置。
【0152】
(付記項7) 前記マッチング手段には、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段、もしくは前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段を設け、
前記相互相関処理の前に、前記重心もしくは前記慣性主軸を算出したことを特徴とする付記項4に記載の超音波内視鏡装置。
【0153】
(付記項8) 前記光学像の輝度値を表面画像データに用い、前記超音波像の輝度値を断面画像データに用いて、前記表面画像データと前記断面画像データとを合成して3次元画像を構築する合成手段が設けられていることを特徴とする付記項1に記載の超音波内視鏡装置。
【0154】
(付記項9) 前記光学像から得られた画像と前記超音波像から得られた画像を同時表示する表示手段と、
一方の画像上の任意点に対する、他方への対応点を算出する対応付け制御手段と、
が設けられていることを特徴とする付記項1に記載の超音波内視鏡装置。
【0155】
(付記項10) 前記超音波像取得手段は、それ自身でボリューム走査を行うことを特徴とする付記項1ないし9のいずれか1つに記載の超音波内視鏡装置。
【0156】
(付記項11) 前記超音波像取得手段は、超音波振動子を2次元アレイ状に配した2次元アレイ超音波振動子であることを特徴とする付記項10に記載の超音波内視鏡装置。
【0157】
【発明の効果】
以上述べた様に本発明によれば、患者から内視鏡を差し替えることなく、光学像と超音波像の互いの位置と方向とを正確に対応づけて表示することができるので、検査時間を短縮し、洗浄消毒等の検査前後の内視鏡メンテナンスの手間を減らし、患者への負担を低減できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る超音波内視鏡装置の全体構成を示すブロック図。
【図2】本発明の第1の実施の形態に係る内視鏡の挿入部の挿入側先端の拡大して示す断面図。
【図3】本発明の第1の実施の形態に係る画像処理装置を示すブロック図。
【図4】本発明の第1の実施の形態に係るは形状マッチング回路を示すブロック図。
【図5】本発明の第1の実施の形態に係る手引き走査の作用を示す説明図。
【図6】本発明の第1の実施の形態に係る3次元画像データを示す概念図。
【図7】本発明の第1の実施の形態に係る3次元画像データの切り直しを示す説明図。
【図8】本発明の第1の実施の形態に係る表面形状データを示す説明図。
【図9】本発明の第1の実施の形態に係る内視鏡による関心領域の撮像を示す説明図。
【図10】本発明の第1の実施の形態に係る光学像と超音波像の合成を示す説明図。
【図11】本発明の第1の実施の形態に係るモニタに表示される画像を示す説明図。
【図12】本発明の第1の実施の形態第1の実施の形態に適用可能な電子ラジアル走査型超音波内視鏡を示す斜視図。
【図13】本発明の第1の実施の形態に適用可能なコンベックス走査型超音波内視鏡を示す斜視図。
【図14】本発明の第1の実施の形態第1の実施の形態に適用可能な2次元アレイ型超音波内視鏡を示す斜視図。
【図15】本発明の第2の実施の形態に係る形状マッチング回路を示すブロック図。
【図16】本発明の第3の実施の形態に係る形状マッチング回路を示すブロック図。
【図17】本発明の第4の実施の形態に係る画像処理装置を示すブロック図。
【図18】本発明の第5の実施の形態に係る画像処理装置を示すブロック図。
【図19】本発明の第5の実施の形態に係るモニタに表示される画像を示す説明図。
【符号の説明】
1 …超音波内視鏡装置
2 …超音波内視鏡
3 …超音波観測装置
4 …光学観察装置
5 …位置検出装置
6 …画像処理装置
7 …モニタ
8 …キーボード
9 …マウス

Claims (9)

  1. 被検体の体腔内に挿入される超音波内視鏡の先端に配設された、被検体の光学像を取得する光学像取得手段と、
    前記超音波内視鏡の先端に配設された、前記被検体の超音波像を取得する超音波像取得手段と、
    前記超音波内視鏡の先端に配設された同一の素子を用いて、前記光学像取得時の前記被検体に対する前記光学像取得手段の位置情報を取得すると共に、前記超音波像取得時の前記被検体に対する前記超音波像取得手段の位置情報を取得する位置情報取得手段と、
    前記光学像取得手段の前記位置情報を基に一つの前記光学像取得手段を用いて異なる角度で撮像された複数の前記光学像と、これら複数の光学像各々に対応する前記位置情報と、に基づいて第1の表面形状を算出する第1の表面形状演算手段と、
    前記超音波像取得手段の前記位置情報を基に前記超音波像から第2の表面形状を算出する第2の表面形状演算手段と、
    前記第1および第2の表面形状を用いて前記光学像取得手段により得られた光学像と前記超音波像取得手段により得られた超音波像とをマッチングさせるマッチング手段と、
    を具備したことを特徴とする超音波内視鏡装置。
  2. 前記光学像の輝度値を表面画像データに用い、前記超音波像の輝度値を断面画像データに用いて、前記表面画像データと前記断面画像データとを合成して3次元画像を構築する合成手段
    をさらに備えたことを特徴とする請求項1に記載の超音波内視鏡装置。
  3. 前記光学像から得られた画像と前記超音波像から得られた画像を同時表示する表示手段と、
    一方の画像上の任意点に対する、他方への対応点を算出する対応付け制御手段と、
    をさらに備えたことを特徴とする請求項1または2に記載の超音波内視鏡装置。
  4. 前記マッチング手段は、相互相関処理を用いてマッチングすることを特徴とする請求項1−3のいずれか一項に記載の超音波内視鏡装置。
  5. 前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段を設けたことを特徴とする請求項1−3のいずれか一項に記載の超音波内視鏡装置。
  6. 前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段を設けたことを特徴とする請求項1−3のいずれか一項に記載の超音波内視鏡装置。
  7. 前記マッチング手段は、前記第1の表面形状と前記第2の表面形状の重心を算出する重心算出手段、または、前記第1の表面形状と前記第2の表面形状の慣性主軸を算出する慣性主軸算出手段を設け、
    前記相互相関処理の前に、前記重心または前記慣性主軸を算出することを特徴とする請求項4に記載の超音波内視鏡装置。
  8. 前記超音波像取得手段は、自身でボリューム走査を行うことを特徴とする請求項1−7のいずれか一項に記載の超音波内視鏡装置。
  9. 前記超音波像取得手段は、超音波振動子を2次元アレイ状に配した2次元アレイ超音波振動子であることを特徴とする請求項8に記載の超音波内視鏡装置。
JP2003162845A 2003-06-06 2003-06-06 超音波内視鏡装置 Expired - Fee Related JP4414682B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003162845A JP4414682B2 (ja) 2003-06-06 2003-06-06 超音波内視鏡装置
EP04736120A EP1632184B1 (en) 2003-06-06 2004-06-04 Ultrasonic endoscope
PCT/JP2004/008151 WO2004107982A1 (ja) 2003-06-06 2004-06-04 超音波内視鏡装置
US11/294,985 US20060183992A1 (en) 2003-06-06 2005-12-06 Ultrasonic endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162845A JP4414682B2 (ja) 2003-06-06 2003-06-06 超音波内視鏡装置

Publications (2)

Publication Number Publication Date
JP2004358096A JP2004358096A (ja) 2004-12-24
JP4414682B2 true JP4414682B2 (ja) 2010-02-10

Family

ID=33508679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162845A Expired - Fee Related JP4414682B2 (ja) 2003-06-06 2003-06-06 超音波内視鏡装置

Country Status (4)

Country Link
US (1) US20060183992A1 (ja)
EP (1) EP1632184B1 (ja)
JP (1) JP4414682B2 (ja)
WO (1) WO2004107982A1 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137333B2 (en) 2005-10-25 2012-03-20 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
US20080015569A1 (en) 2005-02-02 2008-01-17 Voyage Medical, Inc. Methods and apparatus for treatment of atrial fibrillation
US8078266B2 (en) * 2005-10-25 2011-12-13 Voyage Medical, Inc. Flow reduction hood systems
US9510732B2 (en) 2005-10-25 2016-12-06 Intuitive Surgical Operations, Inc. Methods and apparatus for efficient purging
US11478152B2 (en) 2005-02-02 2022-10-25 Intuitive Surgical Operations, Inc. Electrophysiology mapping and visualization system
US8934962B2 (en) 2005-02-02 2015-01-13 Intuitive Surgical Operations, Inc. Electrophysiology mapping and visualization system
US8050746B2 (en) 2005-02-02 2011-11-01 Voyage Medical, Inc. Tissue visualization device and method variations
US10064540B2 (en) 2005-02-02 2018-09-04 Intuitive Surgical Operations, Inc. Visualization apparatus for transseptal access
SI1889198T1 (sl) 2005-04-28 2015-02-27 Proteus Digital Health, Inc. Farma-informacijski sistem
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
US8221310B2 (en) 2005-10-25 2012-07-17 Voyage Medical, Inc. Tissue visualization device and method variations
CN101496042A (zh) 2006-05-02 2009-07-29 普罗秋斯生物医学公司 患者定制的治疗方案
US8446410B2 (en) * 2006-05-11 2013-05-21 Anatomage Inc. Apparatus for generating volumetric image and matching color textured external surface
US9055906B2 (en) 2006-06-14 2015-06-16 Intuitive Surgical Operations, Inc. In-vivo visualization systems
US10004388B2 (en) 2006-09-01 2018-06-26 Intuitive Surgical Operations, Inc. Coronary sinus cannulation
US20080097476A1 (en) 2006-09-01 2008-04-24 Voyage Medical, Inc. Precision control systems for tissue visualization and manipulation assemblies
US10335131B2 (en) 2006-10-23 2019-07-02 Intuitive Surgical Operations, Inc. Methods for preventing tissue migration
EP2083680B1 (en) 2006-10-25 2016-08-10 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US20080183036A1 (en) 2006-12-18 2008-07-31 Voyage Medical, Inc. Systems and methods for unobstructed visualization and ablation
US8131350B2 (en) 2006-12-21 2012-03-06 Voyage Medical, Inc. Stabilization of visualization catheters
US9226648B2 (en) 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
JP2010516304A (ja) * 2007-01-19 2010-05-20 サニーブルック・ヘルス・サイエンシズ・センター 超音波と光学を複合した画像手段を有する撮像プローブ
ES2930588T3 (es) 2007-02-01 2022-12-19 Otsuka Pharma Co Ltd Sistemas de marcador de eventos ingeribles
KR101528748B1 (ko) 2007-02-14 2015-06-15 프로테우스 디지털 헬스, 인코포레이티드 고 표면적 전극을 갖는 체내 전원
EP2124725A1 (en) 2007-03-09 2009-12-02 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
WO2008134457A1 (en) 2007-04-27 2008-11-06 Voyage Medical, Inc. Complex shape steerable tissue visualization and manipulation catheter
US8657805B2 (en) 2007-05-08 2014-02-25 Intuitive Surgical Operations, Inc. Complex shape steerable tissue visualization and manipulation catheter
WO2008141238A1 (en) 2007-05-11 2008-11-20 Voyage Medical, Inc. Visual electrode ablation systems
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8235985B2 (en) 2007-08-31 2012-08-07 Voyage Medical, Inc. Visualization and ablation system variations
DK2192946T3 (da) 2007-09-25 2022-11-21 Otsuka Pharma Co Ltd Kropsintern anordning med virtuel dipol signalforstærkning
SG190590A1 (en) 2007-11-27 2013-06-28 Proteus Digital Health Inc Transbody communication systems employing communication channels
JP2009180607A (ja) * 2008-01-30 2009-08-13 Olympus Corp 自動分析装置
US8858609B2 (en) 2008-02-07 2014-10-14 Intuitive Surgical Operations, Inc. Stent delivery under direct visualization
ES2840773T3 (es) 2008-03-05 2021-07-07 Otsuka Pharma Co Ltd Sistemas y marcadores de eventos ingeribles de comunicación multimodo
US9101735B2 (en) 2008-07-07 2015-08-11 Intuitive Surgical Operations, Inc. Catheter control systems
SG195535A1 (en) 2008-07-08 2013-12-30 Proteus Digital Health Inc Ingestible event marker data framework
US8894643B2 (en) 2008-10-10 2014-11-25 Intuitive Surgical Operations, Inc. Integral electrode placement and connection systems
US8333012B2 (en) 2008-10-10 2012-12-18 Voyage Medical, Inc. Method of forming electrode placement and connection systems
US9468364B2 (en) 2008-11-14 2016-10-18 Intuitive Surgical Operations, Inc. Intravascular catheter with hood and image processing systems
CN102271578B (zh) 2008-12-11 2013-12-04 普罗秋斯数字健康公司 使用便携式电子内脏造影系统的胃肠功能的评估及其使用方法
JP2012514799A (ja) 2009-01-06 2012-06-28 プロテウス バイオメディカル インコーポレイテッド 摂取に関連するバイオフィードバックおよび個別薬物療法の方法およびシステム
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
US20110144576A1 (en) * 2009-12-14 2011-06-16 Voyage Medical, Inc. Catheter orientation control system mechanisms
US8694071B2 (en) 2010-02-12 2014-04-08 Intuitive Surgical Operations, Inc. Image stabilization techniques and methods
US9814522B2 (en) 2010-04-06 2017-11-14 Intuitive Surgical Operations, Inc. Apparatus and methods for ablation efficacy
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
JP5414637B2 (ja) * 2010-08-24 2014-02-12 富士フイルム株式会社 撮像装置および内視鏡システム
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
MX340001B (es) 2011-07-21 2016-06-20 Proteus Digital Health Inc Dispositivo, sistema y método de comunicación móvil.
KR20130015146A (ko) * 2011-08-02 2013-02-13 삼성전자주식회사 의료 영상 처리 방법 및 장치, 영상 유도를 이용한 로봇 수술 시스템
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
JP6220868B2 (ja) 2012-05-25 2017-10-25 ヴァスキュラー イメージング コーポレイションVascular Imaging Corporation 光ファイバ圧力センサ
EP3005281A4 (en) 2013-06-04 2017-06-28 Proteus Digital Health, Inc. System, apparatus and methods for data collection and assessing outcomes
JP6236909B2 (ja) * 2013-06-24 2017-11-29 株式会社リコー 浸透過程計測装置及び浸透過程計測方法
CN105324082B (zh) * 2013-10-01 2017-12-12 奥林巴斯株式会社 超声波内窥镜系统及其通信方法
US10327645B2 (en) 2013-10-04 2019-06-25 Vascular Imaging Corporation Imaging techniques using an imaging guidewire
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10537255B2 (en) 2013-11-21 2020-01-21 Phyzhon Health Inc. Optical fiber pressure sensor
JP2017513662A (ja) * 2014-03-28 2017-06-01 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Q3d画像の3d画像とのアライメント
JP6609616B2 (ja) 2014-03-28 2019-11-20 インテュイティブ サージカル オペレーションズ, インコーポレイテッド マルチポートの視点からの手術シーンの定量的な3次元イメージング
KR102405687B1 (ko) 2014-03-28 2022-06-07 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술용 임플란트의 정량적 3차원 영상화 및 프린팅
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
CN106456252B (zh) 2014-03-28 2020-05-08 直观外科手术操作公司 手术场景的定量三维成像
JP6854237B2 (ja) * 2014-03-28 2021-04-07 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 視野内の器具の定量的三次元視覚化
US11564660B2 (en) * 2016-03-04 2023-01-31 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus and method for generating ultrasonic image
BR112019000861B1 (pt) 2016-07-22 2020-10-27 Proteus Digital Health, Inc dispositivo eletrônico
JP6832165B2 (ja) * 2017-01-16 2021-02-24 オリンパス株式会社 観察システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054491A (en) * 1988-10-17 1991-10-08 Olympus Optical Co., Ltd. Ultrasonic endoscope apparatus
JPH05324835A (ja) * 1992-05-18 1993-12-10 Kobe Steel Ltd 二次元図形のパターンマッチング方法及びその装置
JPH08299260A (ja) * 1995-04-28 1996-11-19 Fuji Photo Optical Co Ltd 超音波内視鏡
JPH10192A (ja) * 1996-04-15 1998-01-06 Olympus Optical Co Ltd 超音波画像診断装置
JPH10262973A (ja) * 1997-03-25 1998-10-06 Olympus Optical Co Ltd 超音波画像診断装置
US6248074B1 (en) * 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
JP4248615B2 (ja) * 1997-10-23 2009-04-02 オリンパス株式会社 超音波画像診断装置
JP4054104B2 (ja) * 1998-04-10 2008-02-27 オリンパス株式会社 内視鏡画像処理装置
US6625316B1 (en) * 1998-06-01 2003-09-23 Canon Kabushiki Kaisha Image processing apparatus and method, and image processing system
JP2000116655A (ja) 1998-10-14 2000-04-25 Olympus Optical Co Ltd 診断装置
US6306091B1 (en) * 1999-08-06 2001-10-23 Acuson Corporation Diagnostic medical ultrasound systems and methods utilizing estimation of 3-dimensional rigid body transformation
US6443894B1 (en) * 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US7027650B2 (en) * 1999-12-10 2006-04-11 Christian Williame Dynamic computing imagery, especially for visceral osteopathy and for articular kinetics
DE10015826A1 (de) * 2000-03-30 2001-10-11 Siemens Ag System und Verfahren zur Erzeugung eines Bildes
JP2002017729A (ja) * 2000-07-11 2002-01-22 Toshiba Corp 超音波内視鏡診断装置
JP2003038492A (ja) * 2001-07-30 2003-02-12 Pentax Corp 超音波内視鏡装置

Also Published As

Publication number Publication date
EP1632184A1 (en) 2006-03-08
EP1632184A4 (en) 2007-11-14
US20060183992A1 (en) 2006-08-17
WO2004107982A1 (ja) 2004-12-16
JP2004358096A (ja) 2004-12-24
EP1632184B1 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4414682B2 (ja) 超音波内視鏡装置
JP5433240B2 (ja) 超音波診断装置及び画像表示装置
JP5400466B2 (ja) 画像診断装置、画像診断方法
JP5395538B2 (ja) 超音波診断装置及び画像データ表示用制御プログラム
JP4309956B2 (ja) 超音波診断装置
US6416476B1 (en) Three-dimensional ultrasonic diagnosis apparatus
JP4868959B2 (ja) 体腔内プローブ装置
JP4681857B2 (ja) 超音波診断装置
JP4875416B2 (ja) 医用ガイドシステム
JP4551051B2 (ja) 超音波診断装置
WO2007114375A1 (ja) 超音波診断装置及び超音波診断装置制御方法
WO2004028375A1 (ja) 超音波診断装置
JP5253893B2 (ja) 医用画像処理装置、超音波診断装置、及び超音波画像取得プログラム
JP2009089736A (ja) 超音波診断装置
JP2006288471A (ja) 3次元超音波診断装置及びボリュームデータ表示領域設定方法
JP2007125179A (ja) 超音波診断装置
JP2010017537A (ja) 超音波診断装置
JP2004113630A (ja) 超音波診断装置
JP2005095278A (ja) 超音波診断装置
JP2002017729A (ja) 超音波内視鏡診断装置
KR20140137037A (ko) 초음파 영상 처리 장치 및 방법
KR101562569B1 (ko) 3차원 초음파 스캔 이미지의 합성을 포함한 3차원 초음파 진단 장치 및 방법
JP2004121488A (ja) 超音波診断装置
JP4869197B2 (ja) 医用ガイド装置
JP4869189B2 (ja) 医用ガイドシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees