JP4193489B2 - Glass substrate for magnetic disk and magnetic disk using the same - Google Patents

Glass substrate for magnetic disk and magnetic disk using the same Download PDF

Info

Publication number
JP4193489B2
JP4193489B2 JP2002371271A JP2002371271A JP4193489B2 JP 4193489 B2 JP4193489 B2 JP 4193489B2 JP 2002371271 A JP2002371271 A JP 2002371271A JP 2002371271 A JP2002371271 A JP 2002371271A JP 4193489 B2 JP4193489 B2 JP 4193489B2
Authority
JP
Japan
Prior art keywords
magnetic disk
glass substrate
glass
magnetic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371271A
Other languages
Japanese (ja)
Other versions
JP2004206741A (en
Inventor
素之 宮田
孝 内藤
浩貴 山本
広幸 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002371271A priority Critical patent/JP4193489B2/en
Publication of JP2004206741A publication Critical patent/JP2004206741A/en
Application granted granted Critical
Publication of JP4193489B2 publication Critical patent/JP4193489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク用ガラス基板に係わり、特に熱膨脹係数及び機械的特性が適正で、さらに、量産性が良好な高密度記録に適した磁気ディスク用ガラス基板及びそれを用いた磁気ディスクに関する。
【0002】
【従来の技術】
現在、汎用大型コンピューターやパーソナルコンピューター用の記録媒体として、さらにはデジタル信号で配信される映像を一時的に保管する家庭用のサーバーとして、磁気ディスク装置が用いられている。従来はこの磁気ディスク用の基板として汎用向けやデスクトップ型のパーソナルコンピューター用途には3.5″ サイズのアルミニウム基板が、また持ち運び可能なノート型のパーソナルコンピューター用には主に2.5″ のガラス基板が用いられてきた。
【0003】
このガラス基板はアルミニウム基板に比べ硬くて変形し難く、かつ、表面平滑度が優れているため、前記汎用型の3.5″ あるいは3″サイズの基板にも適用されるようになってきている。さらには1.8″ ,1″といった小型携帯端末用の記録装置にもこのガラス基板が適用されようとしている。
【0004】
こうした小型化の他、磁気ディスク装置に対する大容量化の要請が強まっており、近年では年率100%の割合でその記憶容量が増大している。これに対応するには記録部の磁気ヘッドの浮上量をより低減させる必要があるため、より平滑な記録面を持つ磁気ディスクの開発が必要である。
【0005】
現在では、化学強化ガラス基板や、結晶化ガラス基板を用いることにより、ガラス本来の持つ割れの問題を克服している。しかしながら、化学強化された非晶質のガラス基板では、化学強化の工程の際、アルカリイオンの置換によって強化するために表面が荒れ、将来のヘッド低浮上化に対応することが難しい。さらに上記のような使用環境下では、化学強化ガラスの表面は、置換されたイオン半径の大きいアルカリイオンが化学的に不安定であるため、生産工程中の洗浄工程や成膜工程における加熱過程の際、あるいは長期間の使用や高温多湿といった環境のもとでこのアルカリイオンが基板表面に移動,析出し、磁性膜の磁気特性の劣化,膜の剥がれや粘着などの不良を生ずることが懸念される。
【0006】
一方、結晶化ガラス基板は、非晶質なガラスの中に結晶質の微粒子が生成しているが、この非晶質部分と結晶部分の硬度差により研磨速度が異なり、磁気ディスクに求められている更なる高密度化に対応できる十分な平滑性を持った記録面が作り難いという問題があった。
【0007】
上記のような問題を克服するため、発明者らは、特開平10−083531号公報に記載のように、ガラス基板に希土類イオンを含有させることにより機械的強度を高め、この問題を解決している。
【0008】
【特許文献1】
特開平10−083531号公報
【0009】
【発明が解決しようとする課題】
上記特開平10−083531号公報では、基板の機械的強度は高いガラス基板は得られるものの、磁気ディスク用ガラス基板として必要な特性である熱膨張係数の適正化や量産性が十分に考慮されているとは言いがたかった。そのため、熱衝撃などの熱的環境試験においてガラス基板とそれを支持する磁気ディスクドライブ装置部材との熱膨張特性の不整合によるクラックの発生による上記ドライブ装置の高速回転時に生じるトラックずれが発生することが考えられる。これは、今後の大容量化に伴い、より厳しい課題となるものと思われる。
【0010】
そこで本発明では、特に熱膨張係数および機械的特性が適正で、さらに、量産性が良好な高密度記録に適した磁気ディスク用ガラス基板及びそれを用いた磁気ディスクを得ることを目的とした。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明の磁気ディスク用ガラス基板は、重量百分率で
SiO2:55%〜70%、
Al2310%〜17%
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5%〜9%、またはEu23を2.5%〜8%を含有し、前記R2O(Rはアルカリ金属元素を表す)が、Li2O,Na2O,K2Oからなり、かつLi2OとNa2Oの割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下である。
【0012】
さらに本発明の磁気ディスク用ガラス基板は、厚さ0.635mm において、波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつ1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下である。
【0013】
また本発明の磁気ディスクは、磁気ディスク用ガラス基板と、この基板上に直接又は他の層を介して形成された磁性層を有する磁気ディスクであって、上記ガラス基板は重量百分率で
SiO2:55%〜70%、
Al2310%〜17%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5% 〜9%、またはEu23を2.5% 〜8%を含有し、前記R2O(Rはアルカリ金属元素を表す)が、Li2O,Na2O,K2Oからなり、かつLi2OとNa2O の割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下である。
【0014】
また本発明の磁気ディスクは、少なくともガラス基板と、その表面上に直接または他の層を介して形成される磁性膜とを有する磁気ディスクであって、厚さ0.635mm のガラス基板の波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつこのガラス基板に1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下である。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を詳細に説明する。
【0016】
【実施例1】
図1に、本発明による磁気ディスク基板の平面図を示す。本発明では磁気ディスク用ガラス基板1として直径65mmφ,厚さ0.635mmの2.5″型ガラス基板を作製した。なお、この基板は内周チャックのための直径20mmφの丸穴2が形成されている。また、この内周,外周部は、チャンファー部3が形成されている。このチャンファーは、基板エッジ部に両面45°の面取りがなされている。
【0017】
この磁気ディスク用ガラス基板の作製は、以下のようにして行った。まず、目的のガラス組成になるように定められた量の原料粉末を秤量して混合し、白金製の坩堝に入れて、電気炉中で1600℃で溶解した。原料が十分に溶解した後、攪拌羽をガラス融液に挿入し、約4時間攪拌した。その後、攪拌羽を取り出し、30分間静置した後、鋳型に融液を流し込むことによって直径約70mmφ,厚さ約1mmのガラスブロックを得た。その後、このガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪み取りを行った。
【0018】
次いで、歪み取りされたガラスブロックを内周,外周を同心円としてコアドリルを用いて切り出した。さらに、内外周をダイヤモンド砥石を用いてチャンファー部の面取り加工を行った。その後、両面を粗研磨し、次いでポリッシングを行い、さらに洗浄剤,純水で基板を洗浄し、磁気ディスク用ガラス基板とした。以上のように本発明の磁気ディスク用ガラス基板では、化学強化処理のような特別な強化処理を施していない。
【0019】
本基板上に磁性膜を成膜し、磁気ディスクを作製した。図2に、本発明で作製した磁気記録媒体の断面構造の概略図を示す。図2において1は本発明で作製したガラス基板、4は磁性膜の粒径を制御するための粒径制御層、5は磁性膜の配向を制御するための配向制御層、6は磁性膜、7は保護膜、8は潤滑膜である。本発明では4の粒径制御層としてNiAl系の合金膜を20nm成膜した。また5の配向制御層としてCrMo系合金薄膜を10nm、さらに6の磁性膜としてCoCrPrB系磁性膜を20nm成膜した。また保護膜にはCを4nm成膜した。これらの薄膜はすべてスパッタリング法を用いて成膜した。また潤滑膜はスパッタ終了後、塗布法によって形成した。
【0020】
以上のようにして作製した磁気ディスク用ガラス基板、及びそれに磁性膜を形成した磁気ディスクの特性,量産性を評価し、ガラス組成の検討を行った。
【0021】
まず、添加する希土類元素の種類に着目し、色々な組成のガラスを作製した。表1に、本発明で作製したガラスの組成、及びそれらのガラス基板及び磁気ディスクの特性を示す。
【0022】
【表1】

Figure 0004193489
【0023】
表1において、希土類元素以外の母ガラス組成は、同一組成のアルミノホウケイ酸ガラスとした。含有させる希土類酸化物の量はいずれも3重量%と一定にした。ガラス基板の特性として、マイクロビッカース硬さ,可視光の透過率、及び着色性及びガラス基板の歩留まりを評価した。マイクロビッカース硬さは荷重500g,荷重印加時間15秒の条件で荷重を印加し、10点の平均値として求めた。可視光の透過率は、分光光度計を用いて300nmから700nmまでの波長の分光透過率曲線より透過率スペクトルを測定し、この波長範囲の光の全透過率の積分値として求めた。着色性は目視により着色の程度を評価し、無色のものは×、着色しているものは○とした。歩留まりの評価は、ガラス基板をレーザー光照射による散乱光により異物数を検査する装置により評価し、気泡,研磨傷,かけ,表面異物等の不良がディスク片面当たり20個以上のものを不良としてカウントし、不良でないものの割合を評価した。
【0024】
また磁気ディスクの特性として磁化、及び磁化の標準偏差,記録再生特性及び磁気ディスクの歩留まりを評価した。また基板加工前のブロック作製から磁気ディスク作製にいたるまでの総合歩留まりを評価した。磁化及び磁化の標準偏差は、B−H曲線を振動試料型磁力計(VSM)によって測定し、磁性膜のヒステリシスループのバックグラウンド成分を基板からの磁性とし、そのバックグラウンド成分の大きさを評価した。表には磁界として1kOe印加したときのバックグラウンドの磁化の大きさを掲載した。
【0025】
またこの磁気ディスクの記録再生特性を評価した。図3に、本発明で作製した記録再生特性評価用の磁気ディスクドライブを示す。図3において、9は磁気ディスク、10はスピンドル、11は磁気ヘッド、12は磁気ヘッドのアーム、13はヘッドを駆動するためのボイスコイルモーター、14は全体を支える筐体である。なお、この図では記されていないが、磁気ディスク9の下部にはスピンドルモーターが設置されており、ディスク全体を回転させる。図3の磁気ディスクドライブに各磁気ディスクを搭載し、20Gb/in2 に相当する磁気信号を記録し、磁気記録再生特性を評価した。この評価を150枚のディスクに対して行い、十分な記録再生特性が得られたものの割合を磁気ディスク歩留まりとして表記した。
【0026】
さらに上記のガラス基板歩留まりと磁気ディスク歩留まりより総合歩留まりを評価した。総合での歩留まりが80%未満のものを×、80%以上90%未満のものを○、90%以上のものを◎とした。
【0027】
表1の基板特性のマイクロビッカース硬さはいずれの基板でも640以上が得られており、良好であることが分かった。また可視光の透過率は、いずれの基板でも80%以上であった。これらのうちNd,Pr,Sm,Eu,Ho,Erは可視光域に希土類のf−f遷移に起因するシャープな吸収が見られた。このため、他の元素に比べて透過率は若干低下しており、85%以下であった。しかしながらこの鋭い吸収のため、ガラス基板に明確な着色が見られた。白熱灯下での目視観察による評価では、Prは黄緑、Ndは紫色、Sm,Euは非常に淡いがそれぞれ黄色と桃色に着色しているのが見られた。また、Er,Hoも桃色に着色していた。
【0028】
そのほかの希土類元素を含有させた基板は無色であり、透過率はいずれも85%を超え、着色は見られなかった。
【0029】
これらの基板に対するガラス基板の歩留まりを評価すると、明瞭な着色の見られたPr,Nd,Sm,Eu,Ho,Erでは加工による不良、特に傷不良が着色していないものに比べて少なく、歩留まりが95%以上となった。これは、基板加工工程,洗浄工程において基板が可視であるため、取扱いが容易なことから歩留まりが向上したと考えられる。
【0030】
また比較例として酸化ニッケル(NiO)を含有する着色性の高いガラス基板について評価した。この基板は透過率が47%と低く、ガラス中に存在する気泡、あるいは熔融時のるつぼを構成する成分のガラス中への溶損を発見することが難しく、基板表面にこれらが残存することから歩留まりが低下していた。また若干NiO含有量を低下させ、透過率を50%以下としたガラス基板では、基板を光が透過して、基板内部を観察可能であることが分かった。このため、気泡などによる不良が減少し、歩留まりが向上した。
【0031】
以上のことから、透過率と磁気ディスクの歩留まりとの間に明瞭な相関関係が見られた。ガラス基板の透過率が50%以上90%以下のとき着色性が良好で、歩留まりが良好なガラス基板が得られた。透過率が50%未満となると基板中に残存する気泡,炉材混入が発見し難く、歩留まり低下の要因となった。また基板の透過率が90%をこえると、基板取扱いが難しくなり、傷などの加工不良が増加していたため、好ましいといえなかった。
【0032】
また上記の光学的な特性を達成するため、添加する元素はPr,Nd,Sm,Eu,Er又はHoが良好であることが分かった。このうち、Pr,Nd,Er又はHoであれば着色が顕著であり、より好ましかった。
【0033】
次に、磁気ディスクの磁気特性について評価した。Sc,Y,Laを含有した磁気ディスクでは、基板の磁化の大きさが10-4emu/ccのオーダーであり、きわめて小さい磁化量であった。Smを用いたときは、磁化は反磁性的な挙動を示しており、−4×10-4emu/ccとなった。またPr,Nd,Euでは1〜3×10-3emu/ccのオーダーであったが、Gd,Tb,Dy,Ho,Er,Tm,Ybでは5×10-3〜2×10-2emu/ccと、磁化の値が大きくなっていた。
【0034】
磁化の固体差を示す磁化の標準偏差を評価したところ、磁化の大きさの大きいものほど大きくなっており、基板によるばらつきが大きくなっていた。特に磁化の大きさが3×10-3を超えるGd,Tb,Dy,Ho,Er,Tm,Ybでは、磁化の標準偏差が1×10-3emu/cc以上となり、基板による磁気特性のばらつきが大きくなった。
【0035】
磁気記録再生特性による磁気ディスク歩留まりを見ると、磁化が3×10-3emu/cc以下で、磁化の標準偏差が1×10-3emu/cc未満の試料では、良好な磁気特性の得られる磁気ディスクが90%以上と良好であったが、磁化が3×10-3emu/ccを超え、かつ磁化の標準偏差が1×10-3emu/cc以上となる試料では、歩留まりが80%以下と急激に低下していることが分かった。これは、基板に含有される希土類元素の若干の固体差により基板の磁気特性が変化し、そのために標準偏差が大きくなるため、記録する際の磁界を一定にした場合の記録にばらつきが生じたためと考えられる。
【0036】
以上より、基板の磁化に与える影響が小さい希土類元素としてSc,Y,La,Pr,Nd,Sm,Euが良好であった。また、磁化の大きさが3×10-3emu/cc以下であれば磁気記録再生のばらつきが小さい磁気記録媒体が得られた。磁化の大きさが3×10-3emu/ccを超えると磁気記録再生特性に基板ごとのばらつきが大きくなるため、好ましいとはいえなかった。
【0037】
上記の光学的な特性が及ぼすガラス基板の歩留まりに与える影響、及び磁気的な特性が記録再生特性に及ぼす影響を考慮して総合歩留まりを評価した。その結果、両者とも良好なPr,Nd,Sm,Euを用いたガラス基板の場合、総合歩留まりが80%以上となり、良好であった。これに対してその他の希土類を添加した場合には、総合歩留まりが80%以下となるため、良好といえなかった。
【0038】
また、特に希土類元素としてPrを用いると、総合歩留まりが90%となり、さらに良好な結果が得られた。
【0039】
次に、希土類酸化物の種類と添加量の関係について詳細に調べた。着色については、表1で透明であったものについては含有量を増減させても透過率に変化は見られなかった。このため、着色した元素のうち、Pr,Er,Smについて、その含有量を変化させたガラス基板を作製し、表1と同様の検討を行った。表2に、検討した結果を示す。
【0040】
【表2】
Figure 0004193489
【0041】
Prの含有量を変化させていったところ、試料No.17のPr23を0.7 重量%含有するガラス基板では、マイクロビッカース硬さが低く、そのためガラスの機械的強度が低いためにガラス基板歩留まりが82%と低かった。1%の試料No.16、及び1.5% 〜7%の実施例18〜21では、マイクロビッカース硬さも高い値を示しており、着色,磁気特性とも良好であった。この事から総合歩留まりも80%を超えており、良好な結果となった。
【0042】
一方、試料No.22のようにPr23含有量が7%を超えるものでは着色に関しては問題無かったものの、磁気ディスクの磁化が3×10-3emu/ccを超える値となった。このため、磁化のばらつきが大きくなり、磁気ディスク歩留まりが80%を下回り、好ましい結果とは言えなかった。さらに実施例23のガラス基板ではガラス中の希土類元素が均一にガラス中に溶解せず、不良品数が多く、歩留まりが15%と低かった。このため、ガラス基板材料としては好ましくなかった。
【0043】
さらに希土類元素をErに変えた場合の実施例をみると、Er含有量が0.5%の試料No.25では含有量が少なく、マイクロビッカース硬さが小さいため、歩留まりが悪かった。またこのとき磁気ディスクの磁化の値が3.1 ×10-3emu/ccと高く、磁気ディスクとしての歩留まりも低下していた。またEr含有量が1%からEr含有量を増加させていくと、マイクロビッカース硬さも高くなり、透過率は低くなって基板歩留まりは上昇するものの、磁化が依然として3×10-3emu/ccを超えるため、基板としての歩留まりが低下していた。以上より、希土類元素としてErを用いた場合では、基板の硬さ,光学特性,磁気特性の両者を同時に満たす組成範囲が存在しないことが分かった。
【0044】
Smについてみると、光学的特性については2.5 重量%以上であると透過率が85%以下で適正な範囲となった。磁気特性は10重量%含有させても適正であったが、10重量%を超えるとPrの時と同様にガラス中に残存原料が残り、好ましくなかった。
【0045】
同様にNd,Eu,Hoについて検討を行ったところ、Nd,Euについては、8重量%を超える場合に磁気特性が良好でなかったものの、Smと同様の結果が得られた。HoについてはErと同じく、光学的特性と磁気特性の両者を同時に満たす組成範囲が存在しなかったたため、好ましい結果が得られなかった。
【0046】
以上より、光学的特性,磁気特性の双方で好ましい組成範囲をとる希土類元素としてPr,Nd,Sm,Euが良好であると判断できた。その中でもPr,Ndを用いれば1重量%〜7重量%の組成範囲で良好な組成範囲をとることができた。またSmの場合では2.5 〜9重量%、Euの場合では2.5 〜8重量%で良好な特性を得ることができた。またPrを1.5重量%〜5.2重量%含有させた場合については、総合歩留まりが90%以上となり、非常に良好な結果が得られた。
【0047】
これらの希土類の含有量が少ないと、マイクロビッカース硬さなどの機械的強度が低かったり、透過率が高かったりし、ガラス基板の歩留まりが低下するため好ましくなかった。また希土類含有量が多いと、基板の磁化の値が大きくなるため、磁気特性が良好でなくなった。また、さらに多量に添加するとガラス中に原料が残存するため、好ましくなかった。
【0048】
【実施例2】
次に、磁気ディスク用ガラス基板として適切なガラス組成範囲について検討した。表3に、本発明で作製したガラス基板の実施例を示す。添加する希土類としては実施例1で良好な結果が得られたPrを用いた。表のガラス組成の中で、R2O とはLi2O ,Na2O ,K2O のトータルのアルカリ金属酸化物含有量を示す。
【0049】
【表3】
Figure 0004193489
【0050】
各試料について、磁気ディスク用ガラス基板作製の際のガラスの安定性,ガラス材の熱膨張係数,ガラス基板表面のマイクロビッカース硬さ,円環強度を示した。
【0051】
ここで、熱膨張係数は各ガラスのブロックを作製し、15mm×4mm×4mmの熱膨張測定用試験片を切り出し、熱膨張測定装置を用いて測定した。測定温度範囲は、30℃〜100℃とした。
【0052】
マイクロビッカース硬さは、ダイヤモンド圧子をガラス基板の表面に荷重500g,荷重印加時間15秒の条件で印加し、10点の平均値として求めた。
【0053】
また得られた基板より実施例1と同様に磁気ディスクを作製し、これを図3に示した磁気ディスクドライブに搭載してドライブの熱衝撃試験を実施した。熱衝撃試験によりガラスにクラックや割れ,トラックずれによる読み取りエラーなどの問題が生じなかった場合は○を、生じた場合を×とした。熱衝撃試験は−40℃で2時間保持後、80℃まで急速加熱させ、80℃で2時間保持後、−40℃まで急冷する。これを5回繰り返し、その間で上記した問題が生じるか否かを判定した。
【0054】
ガラスの安定性では、ガラス溶解後ガラス基板中に見られる気泡,脈理,異物などが顕著に見られたものは×とし、そのような物が見られず、清澄なガラスが得られた場合は○とした。
【0055】
また、円環強度は以下のようにして求めた。2.5″ 基板の内周部の上部に、外径22mmφの円環を載せ、また内径63mmφ,外径65mmφの円環の基板の下部に設置した後、円環に荷重をかけて破壊強度を測定した。
【0056】
まず、Li2O ,Na2O ,K2O のトータルのアルカリ酸化物量(表中のR2O )を変化させた試料を表3のNo.42〜49に示す。
【0057】
No.43,No.44のようにアルカリ金属酸化物含有量が13%未満のガラスを用いた場合、熱衝撃試験でガラスにクラックが生じた。また、逆にNo.49のようにアルカリ金属酸化物の含有量が17重量%を超えるような場合には、熱衝撃試験ではトラックずれによるエラーが生じ、また高速回転試験では回転歪が生じやすくなるため、トラックずれによるエラーが生じるため好ましくなかった。No.42,45〜48のガラスのようにアルカリ金属酸化物の合計の含有量が13重量%〜17重量%の場合、熱衝撃試験で良好な結果が得られ、好ましい結果となった。
【0058】
これらのガラスの熱膨張係数に着目すると、表3よりNo.43,No.44のガラスはそれぞれ59×10-7/℃,61×10-7/℃とドライブ装置部材の熱膨張係数である70×10-7/℃〜80×10-7/℃よりもかなり小さくなっていた。これらのガラスでは、他の装置部材との熱膨張の差異により熱衝撃試験においてクラックが発生したりトラックずれが生じたりしたため、好ましいとは言えなかった。
【0059】
No.42,45〜48のガラスに示すように、熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であれば熱衝撃試験で良好な結果が得られた。以上より、適正な熱膨張係数は65×10-7/℃以上,90×10-7/℃以下であった。
【0060】
つぎに、No.50〜55においてSiO2 含有量について検討した。SiO2 含有量が54重量%のNo.52のガラスでは、円環強度が十分でなく、磁気ディスク用ガラス基板として適切ではなかった。またNo.55のようにSiO2 量が70重量%を超えると、ガラス溶解時に気泡などの発生が顕著になり、好ましくなかった。以上より、SiO2 含有量は55重量%以上70重量%以下であると磁気ディスク用ガラス基板として良好な結果が得られた。
【0061】
次にAl23含有量について検討した。 o. 57のAl 2 3 含有量が18重量%であるガラスでは、ガラスの熔融温度が高くなりすぎ、1600℃の熔融ではガラスの原料が残存したため、好ましくなかった。Al23含有量が10重量%のNo.58に記載のガラスでは、安定したガラスが得られ、磁気ディスク用ガラス基板としても良好な結果が得られたが、Al23含有量が9.5重量%のNo.59ガラスでは、ガラス中に脈理等の不均一が生じた。以上より、Al23の含有量が10重量%以上,17重量%以下のとき良好なガラスが得られた。
【0062】
さらにB23含有量について検討した。B23含有量が増加するに伴い、円環強度は向上したが、No.60に示すように、9重量%であるガラスでは熱衝撃試験でガラスにクラックが生じた。以上より、B23含有量が8重量%以下であれば良好なガラスが得られた。
【0063】
ZnOに関しては、No.72に示すように、添加量が10重量%を超えるとガラス中に結晶の析出が著しくなり、安定なガラスを得ることが難しかった。10重量%ではこのような結晶の析出は認められなかった。従って、ZnO含有量は、10重量%以下であることが好ましかった。
【0064】
次に、アルカリ金属酸化物のうち、Li2O含有量とNa2O 含有量に着目して、組成比について検討した。Li2O/Na2O比が0.60 のNo.65のガラスおよび6.15 のNo.67のガラスでは熱衝撃試験においてガラスにクラックが発生し、また円環強度も低下しており、Li2O/Na2O 比としては、0.61以上,6.00以下であることが好ましかった。
【0065】
【発明の効果】
本発明の磁気ディスク用ガラス基板は、基板が着色しており、磁界印加時の磁化が小さいため、量産性に優れた磁気ディスク用ガラス基板、及びそれを用いた磁気ディスクが作製できる。さらに本発明の磁気ディスク用ガラス基板は熱膨張係数が65〜90×10-7/℃であるため磁気ディスクドライブ装置部材の熱膨張係数と整合性が良好なため、熱衝撃試験等によるガラスのクラック発生やトラックずれなどの問題が少ないため、高記録密度,高信頼性が要求される磁気ディスクの基板材料として最適である。
【図面の簡単な説明】
【図1】本発明の磁気ディスク用ガラス基板の平面図。
【図2】本発明の磁気ディスク用ガラス基板を用いた磁気ディスクの断面図。
【図3】本発明で作製した磁気ディスク装置の概略図。
【符号の説明】
1…磁気ディスク用ガラス基板、2…内周チャック用穴、3…チャンファー部、4…粒径制御層、5…配向制御層、6…磁性膜、7…保護膜、8…潤滑膜、9…磁気ディスク、10…スピンドル、11…磁気ヘッド、12…磁気ヘッドのアーム、13…ボイスコイルモーター、14…筐体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass substrate for a magnetic disk, and more particularly to a glass substrate for a magnetic disk suitable for high-density recording, which has a suitable thermal expansion coefficient and mechanical characteristics, and has good mass productivity, and a magnetic disk using the same.
[0002]
[Prior art]
Currently, a magnetic disk device is used as a recording medium for general-purpose large-sized computers and personal computers, and also as a home server for temporarily storing images distributed as digital signals. Conventionally, as a substrate for this magnetic disk, a 3.5 ″ size aluminum substrate is used for general purpose or desktop personal computers, and a 2.5 ″ glass substrate is mainly used for portable notebook personal computers. Has been used.
[0003]
Since this glass substrate is harder and less deformable than an aluminum substrate and has excellent surface smoothness, it is also applied to the general-purpose 3.5 "or 3" size substrate. . Further, this glass substrate is also being applied to a recording device for small portable terminals such as 1.8 ″ and 1 ″.
[0004]
In addition to such miniaturization, there is an increasing demand for a large capacity for magnetic disk devices, and in recent years its storage capacity is increasing at an annual rate of 100%. In order to cope with this, since it is necessary to further reduce the flying height of the magnetic head of the recording unit, it is necessary to develop a magnetic disk having a smoother recording surface.
[0005]
Currently, the use of a chemically tempered glass substrate or a crystallized glass substrate overcomes the inherent cracking problem of glass. However, in the chemically strengthened amorphous glass substrate, the surface is roughened by the replacement of alkali ions during the chemical strengthening process, and it is difficult to cope with the future low head flying. Furthermore, in the use environment as described above, the surface of the chemically strengthened glass is chemically unstable because the substituted alkali ions having a large ion radius are chemically unstable. There is a concern that the alkali ions may move and precipitate on the substrate surface under the environment of long-term use or high temperature and humidity, resulting in deterioration of the magnetic properties of the magnetic film, peeling of the film, and defects such as adhesion. The
[0006]
Crystallized glass substrates, on the other hand, produce crystalline fine particles in amorphous glass, but the polishing rate differs depending on the hardness difference between the amorphous part and the crystalline part. However, there is a problem that it is difficult to produce a recording surface having sufficient smoothness that can cope with further higher density.
[0007]
In order to overcome the above problems, the inventors have improved the mechanical strength by adding rare earth ions to the glass substrate as described in JP-A-10-083531, and solved this problem. Yes.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-083531
[0009]
[Problems to be solved by the invention]
In the above-mentioned Japanese Patent Application Laid-Open No. 10-083531, a glass substrate having a high mechanical strength can be obtained, but the optimization of the thermal expansion coefficient and the mass productivity, which are characteristics necessary for a glass substrate for a magnetic disk, are sufficiently taken into consideration. It was hard to say. Therefore, in the thermal environment test such as thermal shock, there is a track shift that occurs at the time of high-speed rotation of the drive device due to the generation of cracks due to mismatch of thermal expansion characteristics between the glass substrate and the magnetic disk drive device member that supports the glass substrate. Can be considered. This is likely to become a more severe issue as capacity increases in the future.
[0010]
Accordingly, an object of the present invention is to obtain a glass substrate for a magnetic disk suitable for high-density recording, which has a particularly suitable thermal expansion coefficient and mechanical characteristics, and has good mass productivity, and a magnetic disk using the same.
[0011]
[Means for Solving the Problems]
  In order to solve the above problems, the glass substrate for a magnetic disk of the present invention is in percentage by weight.
  SiO2: 55% to 70%
  Al2OThree:10% to 17%,
  B2OThree: 0% to 8%
  R2O: 13% to 17% (R represents an alkali metal element),
  ZnO: 0% to 10%,
In addition, the following oxide-based weight percentage of Pr is contained.2OThreeOr Nd2OThree1% to 7%, or Sm2OThree2.5% to 9%, or Eu2OThree2.5% to 8%, R2O (R represents an alkali metal element) but Li2O, Na2O, K2O and Li2O and Na2The proportion of O is Li2O / Na2The ratio of O is 0.61 or more and 6.00 or less, and the thermal expansion coefficient in the temperature range of 30 ° C. to 100 ° C. is 65 × 10 6.-7/ ℃, 90 × 10-7/ ° C or less.
[0012]
Further, the glass substrate for magnetic disk of the present invention has a transmittance of 50% to 90% in visible light having a wavelength of 300 nm to 700 nm at a thickness of 0.635 mm, and has a magnetization of 3 when a magnetic field of 1 kOe is applied. × 10-3emu / cc or less.
[0013]
  The magnetic disk of the present invention is a magnetic disk having a glass substrate for magnetic disk and a magnetic layer formed on the substrate directly or via another layer, the glass substrate being in weight percentage.
  SiO2: 55% to 70%
  Al2OThree:10% to 17%,
  B2OThree: 0% to 8%
  R2O: 13% to 17% (R represents an alkali metal element),
  ZnO: 0% to 10%
In addition, the following oxide-based weight percentage of Pr is contained.2OThreeOr Nd2OThree1% to 7%, or Sm2OThree2.5% to 9%, or Eu2OThree2.5% to 8%, R2O (R represents an alkali metal element) but Li2O, Na2O, K2O and Li2O and Na2The proportion of O 2 is Li2O / Na2The ratio of O is 0.61 or more and 6.00 or less, and the thermal expansion coefficient in the temperature range of 30 ° C. to 100 ° C. is 65 × 10 6.-7/ ℃, 90 × 10-7/ ° C or less.
[0014]
The magnetic disk of the present invention is a magnetic disk having at least a glass substrate and a magnetic film formed on the surface thereof directly or via another layer, and a wavelength of 300 nm of a glass substrate having a thickness of 0.635 mm. The transmittance when visible light of ˜700 nm is 50% or more and 90% or less, and the magnetization when a magnetic field of 1 kOe is applied to this glass substrate is 3 × 10-3emu / cc or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0016]
[Example 1]
FIG. 1 is a plan view of a magnetic disk substrate according to the present invention. In the present invention, a 2.5 "type glass substrate having a diameter of 65 mmφ and a thickness of 0.635 mm was prepared as the glass substrate 1 for the magnetic disk. This substrate is formed with a round hole 2 having a diameter of 20 mmφ for the inner chuck. Further, the inner periphery and the outer periphery are formed with a chamfer portion 3. The chamfer is chamfered at 45 ° on both sides at the substrate edge portion.
[0017]
The magnetic disk glass substrate was produced as follows. First, the raw material powder of the quantity defined so that it might become the target glass composition was measured and mixed, it put into the crucible made from platinum, and it melt | dissolved at 1600 degreeC in the electric furnace. After the raw materials were sufficiently dissolved, a stirring blade was inserted into the glass melt and stirred for about 4 hours. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then the melt was poured into a mold to obtain a glass block having a diameter of about 70 mmφ and a thickness of about 1 mm. Thereafter, the glass block was reheated to the vicinity of the glass transition point of the glass and slowly cooled to remove strain.
[0018]
Next, the distorted glass block was cut out using a core drill with the inner periphery and the outer periphery being concentric. Further, the chamfer portion was chamfered on the inner and outer circumferences using a diamond grindstone. Thereafter, both surfaces were roughly polished, followed by polishing, and the substrate was further washed with a cleaning agent and pure water to obtain a magnetic disk glass substrate. As described above, the glass substrate for magnetic disk of the present invention is not subjected to a special strengthening process such as a chemical strengthening process.
[0019]
A magnetic film was formed on this substrate to produce a magnetic disk. FIG. 2 shows a schematic diagram of a cross-sectional structure of a magnetic recording medium manufactured according to the present invention. In FIG. 2, 1 is a glass substrate produced by the present invention, 4 is a particle size control layer for controlling the particle size of the magnetic film, 5 is an orientation control layer for controlling the orientation of the magnetic film, 6 is a magnetic film, 7 is a protective film and 8 is a lubricating film. In the present invention, a NiAl alloy film of 20 nm was formed as the grain size control layer 4. Further, a CrMo alloy thin film of 10 nm was formed as the orientation control layer 5 and a CoCrPrB magnetic film 20 nm was formed as the magnetic film 6. Further, 4 nm of C was deposited on the protective film. All these thin films were formed by sputtering. The lubricating film was formed by a coating method after the completion of sputtering.
[0020]
The characteristics and mass productivity of the magnetic disk glass substrate produced as described above and the magnetic disk on which the magnetic film was formed were evaluated, and the glass composition was examined.
[0021]
First, focusing on the kind of rare earth element to be added, glasses having various compositions were produced. Table 1 shows the composition of the glass produced in the present invention and the characteristics of the glass substrate and magnetic disk.
[0022]
[Table 1]
Figure 0004193489
[0023]
In Table 1, the aluminoborosilicate glass having the same composition was used as the mother glass composition other than the rare earth elements. The amount of rare earth oxide to be contained was constant at 3% by weight. As the characteristics of the glass substrate, the micro Vickers hardness, the visible light transmittance, the colorability, and the yield of the glass substrate were evaluated. The micro Vickers hardness was obtained as an average value of 10 points by applying a load under conditions of a load of 500 g and a load application time of 15 seconds. The transmittance of visible light was obtained as an integral value of the total transmittance of light in this wavelength range by measuring a transmittance spectrum from a spectral transmittance curve of wavelengths from 300 nm to 700 nm using a spectrophotometer. As for the colorability, the degree of coloration was visually evaluated. Yield evaluation is performed using a device that inspects the number of foreign objects on the glass substrate using scattered light from laser light irradiation, and counts 20 or more defects per side of the disk as defects, such as bubbles, polishing scratches, scratches, and surface foreign substances. Then, the proportion of non-defective products was evaluated.
[0024]
Further, as the characteristics of the magnetic disk, the magnetization, the standard deviation of the magnetization, the recording / reproducing characteristics, and the yield of the magnetic disk were evaluated. We also evaluated the overall yield from block fabrication before substrate processing to magnetic disk fabrication. Magnetization and standard deviation of magnetization are measured by measuring the BH curve with a vibrating sample magnetometer (VSM), and the background component of the hysteresis loop of the magnetic film is defined as the magnetism from the substrate, and the size of the background component is evaluated. did. The table shows the magnitude of the background magnetization when 1 kOe is applied as the magnetic field.
[0025]
In addition, the recording / reproducing characteristics of the magnetic disk were evaluated. FIG. 3 shows a magnetic disk drive for recording / reproduction characteristics evaluation manufactured according to the present invention. In FIG. 3, 9 is a magnetic disk, 10 is a spindle, 11 is a magnetic head, 12 is an arm of the magnetic head, 13 is a voice coil motor for driving the head, and 14 is a housing that supports the whole. Although not shown in this figure, a spindle motor is installed below the magnetic disk 9 and rotates the entire disk. Each magnetic disk is mounted on the magnetic disk drive of FIG. 3, and 20 Gb / in2 Was recorded, and magnetic recording / reproducing characteristics were evaluated. This evaluation was performed on 150 disks, and the ratio of those with sufficient recording / reproduction characteristics was expressed as magnetic disk yield.
[0026]
Furthermore, the overall yield was evaluated from the glass substrate yield and the magnetic disk yield. An overall yield of less than 80% was rated as x, an yield of 80% or more and less than 90% was rated as ◯, and a yield of 90% or more was rated as ◎.
[0027]
As for the micro Vickers hardness of the board | substrate characteristic of Table 1, 640 or more was obtained with any board | substrate, and it turned out that it is favorable. Further, the visible light transmittance was 80% or more for any of the substrates. Among these, Nd, Pr, Sm, Eu, Ho, and Er showed sharp absorption due to rare earth ff transitions in the visible light region. For this reason, the transmittance was slightly lower than that of other elements, and was 85% or less. However, due to this sharp absorption, the glass substrate was clearly colored. Evaluation by visual observation under an incandescent lamp showed that Pr was yellowish green, Nd was purple, and Sm and Eu were very pale but colored yellow and pink, respectively. Er and Ho were also colored pink.
[0028]
The other substrates containing rare earth elements were colorless, the transmittance exceeded 85%, and no coloration was observed.
[0029]
When the yield of the glass substrate relative to these substrates is evaluated, Pr, Nd, Sm, Eu, Ho, and Er, in which clear coloring is seen, have fewer defects due to processing, especially scratch defects compared to those that are not colored, and the yield. Was over 95%. This is probably because the substrate is visible in the substrate processing step and the cleaning step, and the yield is improved because it is easy to handle.
[0030]
As a comparative example, a highly colored glass substrate containing nickel oxide (NiO) was evaluated. Since this substrate has a low transmittance of 47%, it is difficult to find bubbles present in the glass or melting damage of the components constituting the crucible during melting into the glass, and these remain on the substrate surface. Yield was decreasing. In addition, it was found that in a glass substrate in which the NiO content is slightly reduced and the transmittance is 50% or less, light can pass through the substrate and the inside of the substrate can be observed. For this reason, defects due to bubbles and the like are reduced, and the yield is improved.
[0031]
From the above, a clear correlation was observed between the transmittance and the yield of the magnetic disk. When the transmittance of the glass substrate was 50% or more and 90% or less, a glass substrate having good colorability and good yield was obtained. When the transmittance was less than 50%, it was difficult to find bubbles remaining in the substrate and mixing of furnace materials, which caused a decrease in yield. Further, if the transmittance of the substrate exceeded 90%, it was difficult to handle the substrate and processing defects such as scratches increased, which was not preferable.
[0032]
Moreover, in order to achieve said optical characteristic, it turned out that the element to add has favorable Pr, Nd, Sm, Eu, Er, or Ho. Of these, Pr, Nd, Er, or Ho is more preferable because it is markedly colored.
[0033]
Next, the magnetic characteristics of the magnetic disk were evaluated. In the magnetic disk containing Sc, Y, and La, the magnitude of the magnetization of the substrate is 10-FourThe order of emu / cc was very small. When Sm is used, the magnetization exhibits a diamagnetic behavior and is −4 × 10-Fouremu / cc. For Pr, Nd, and Eu, 1 to 3 × 10-3emu / cc order, but 5 × 10 for Gd, Tb, Dy, Ho, Er, Tm, Yb-3~ 2x10-2The value of magnetization was large, emu / cc.
[0034]
When the standard deviation of the magnetization showing the solid difference of the magnetization was evaluated, the larger the magnitude of the magnetization, the larger the value, and the greater the variation among the substrates. Especially the magnitude of magnetization is 3 × 10-3For Gd, Tb, Dy, Ho, Er, Tm, and Yb exceeding 1, the standard deviation of magnetization is 1 × 10-3It became emu / cc or more, and the variation of the magnetic characteristic by a board | substrate became large.
[0035]
Looking at the magnetic disk yield due to the magnetic recording / reproducing characteristics, the magnetization is 3 × 10-3The standard deviation of magnetization is 1 × 10 at emu / cc or less-3In the sample of less than emu / cc, the magnetic disk capable of obtaining good magnetic properties was as good as 90% or more, but the magnetization was 3 × 10.-3emu / cc and the standard deviation of magnetization is 1 × 10-3It was found that the yield of the sample with emu / cc or more was drastically decreased to 80% or less. This is because the magnetic characteristics of the substrate change due to slight solid differences in the rare earth elements contained in the substrate, and therefore the standard deviation increases, resulting in variations in recording when the magnetic field during recording is constant. it is conceivable that.
[0036]
From the above, Sc, Y, La, Pr, Nd, Sm, and Eu were good as rare earth elements having a small effect on the magnetization of the substrate. Also, the magnitude of magnetization is 3 × 10-3If it was below emu / cc, a magnetic recording medium with small variations in magnetic recording and reproduction was obtained. Magnetization size is 3 × 10-3If it exceeds emu / cc, the magnetic recording / reproducing characteristics vary greatly from substrate to substrate, which is not preferable.
[0037]
The overall yield was evaluated in consideration of the influence of the above optical characteristics on the glass substrate yield and the influence of the magnetic characteristics on the recording / reproducing characteristics. As a result, in the case of glass substrates using good Pr, Nd, Sm, and Eu in both cases, the overall yield was 80% or more, which was good. On the other hand, when other rare earths were added, the overall yield was 80% or less, so that it was not good.
[0038]
In particular, when Pr was used as the rare earth element, the overall yield was 90%, and even better results were obtained.
[0039]
Next, the relationship between the type of rare earth oxide and the amount added was examined in detail. As for coloring, no change was seen in the transmittance even when the content was increased or decreased for those that were transparent in Table 1. For this reason, among the colored elements, glass substrates in which the contents of Pr, Er, and Sm were changed were prepared, and the same examination as in Table 1 was performed. Table 2 shows the results of the study.
[0040]
[Table 2]
Figure 0004193489
[0041]
When the Pr content was changed, the Pr of sample No. 17 was changed.2OThreeIn the glass substrate containing 0.7% by weight, the micro Vickers hardness is low, and therefore the mechanical strength of the glass is low, so that the glass substrate yield is as low as 82%. In the samples No. 16 of 1% and Examples 18 to 21 of 1.5% to 7%, the micro Vickers hardness was also high, and both coloring and magnetic properties were good. As a result, the overall yield exceeded 80%, which was a good result.
[0042]
On the other hand, Pr as in sample No. 222OThreeWhen the content exceeds 7%, there is no problem with coloring, but the magnetization of the magnetic disk is 3 × 10.-3The value exceeded emu / cc. For this reason, the variation in magnetization becomes large, and the magnetic disk yield falls below 80%, which is not a preferable result. Furthermore, in the glass substrate of Example 23, the rare earth elements in the glass were not uniformly dissolved in the glass, the number of defective products was large, and the yield was as low as 15%. For this reason, it was not preferable as a glass substrate material.
[0043]
Further, in the example in which the rare earth element was changed to Er, the sample No. 25 having an Er content of 0.5% had a low yield because the content was small and the micro Vickers hardness was small. At this time, the magnetization value of the magnetic disk is 3.1 × 10-3emu / cc was high, and the yield as a magnetic disk was also lowered. When the Er content is increased from 1%, the micro Vickers hardness increases and the transmittance decreases and the substrate yield increases, but the magnetization is still 3 × 10.-3Since it exceeded emu / cc, the yield as a board | substrate fell. From the above, it was found that when Er is used as the rare earth element, there is no composition range that satisfies both the hardness, optical characteristics, and magnetic characteristics of the substrate at the same time.
[0044]
As for Sm, the optical characteristics were 2.5% by weight or more, and the transmittance was 85% or less, which was an appropriate range. The magnetic properties were appropriate even if contained in 10% by weight. However, if the content exceeded 10% by weight, the remaining raw material remained in the glass as in the case of Pr, which was not preferable.
[0045]
Similarly, when Nd, Eu, and Ho were examined, the magnetic characteristics of Nd and Eu exceeding 8% by weight were not good, but the same results as Sm were obtained. As with Er, there was no composition range that satisfies both the optical characteristics and the magnetic characteristics at the same time, and therefore, favorable results could not be obtained.
[0046]
From the above, it has been determined that Pr, Nd, Sm, and Eu are good as rare earth elements that have a preferable composition range in both optical characteristics and magnetic characteristics. Among these, when Pr and Nd were used, a favorable composition range could be obtained with a composition range of 1 wt% to 7 wt%. In the case of Sm, good characteristics could be obtained at 2.5 to 9% by weight, and in the case of Eu 2.5 to 8% by weight. When Pr was contained in an amount of 1.5% to 5.2% by weight, the overall yield was 90% or more, and a very good result was obtained.
[0047]
If the content of these rare earths is small, the mechanical strength such as micro Vickers hardness is low, the transmittance is high, and the yield of the glass substrate is lowered, which is not preferable. In addition, when the rare earth content is large, the value of magnetization of the substrate increases, so that the magnetic properties are not good. Moreover, since the raw material remains in the glass when added in a larger amount, it was not preferable.
[0048]
[Example 2]
Next, the glass composition range suitable as a glass substrate for magnetic disks was examined. Table 3 shows examples of glass substrates produced in the present invention. As the rare earth to be added, Pr obtained with good results in Example 1 was used. Among the glass compositions in the table, R2O is Li2O 2, Na2O, K2The total alkali metal oxide content of O 2 is shown.
[0049]
[Table 3]
Figure 0004193489
[0050]
For each sample, the stability of the glass, the thermal expansion coefficient of the glass material, the micro Vickers hardness of the surface of the glass substrate, and the ring strength were shown.
[0051]
Here, the thermal expansion coefficient was measured using a thermal expansion measuring device by preparing a block of each glass, cutting out a 15 mm × 4 mm × 4 mm test piece for thermal expansion measurement. The measurement temperature range was 30 ° C to 100 ° C.
[0052]
The micro Vickers hardness was obtained as an average value of 10 points by applying a diamond indenter to the surface of the glass substrate under the conditions of a load of 500 g and a load application time of 15 seconds.
[0053]
Further, a magnetic disk was produced from the obtained substrate in the same manner as in Example 1, and this was mounted on the magnetic disk drive shown in FIG. 3, and a thermal shock test of the drive was performed. In the case where no problems such as cracks, cracks, or reading errors due to track deviation occurred in the glass by the thermal shock test, a circle was given. In the thermal shock test, after being held at −40 ° C. for 2 hours, rapidly heated to 80 ° C., held at 80 ° C. for 2 hours, and then rapidly cooled to −40 ° C. This was repeated 5 times, and it was determined whether or not the above-described problems occurred during that time.
[0054]
In the stability of the glass, if the bubbles, striae, foreign matter, etc. that are noticeable in the glass substrate after melting the glass are marked as x, such a thing is not seen and a clear glass is obtained. Was marked with ○.
[0055]
Further, the ring strength was determined as follows. An annular ring with an outer diameter of 22 mmφ is placed on the upper part of the inner periphery of a 2.5 ″ substrate, and is placed under the annular substrate with an inner diameter of 63 mmφ and an outer diameter of 65 mmφ. Was measured.
[0056]
First, Li2O 2, Na2O, K2Total alkali oxide amount of O 2 (R in the table2Samples with different O 2) are shown in Nos. 42 to 49 in Table 3.
[0057]
When glass having an alkali metal oxide content of less than 13% was used, such as No. 43 and No. 44, cracks occurred in the glass in the thermal shock test. On the other hand, when the content of alkali metal oxide exceeds 17% by weight as in No. 49, errors due to track deviation occur in the thermal shock test, and rotational distortion easily occurs in the high-speed rotation test. Therefore, an error due to a track deviation occurs, which is not preferable. When the total content of alkali metal oxides was 13% by weight to 17% by weight as in the case of glass No. 42, 45 to 48, good results were obtained in the thermal shock test, and favorable results were obtained.
[0058]
Focusing on the thermal expansion coefficient of these glasses, the glass of No. 43 and No. 44 is 59 × 10 0 from Table 3, respectively.-7/ ℃, 61 × 10-7/ ° C and the thermal expansion coefficient of the drive device member is 70 × 10-7/ ° C to 80 × 10-7It was considerably smaller than / ° C. These glasses were not preferred because cracks and track deviations occurred in the thermal shock test due to differences in thermal expansion from other apparatus members.
[0059]
As shown in No. 42, 45-48 glass, the coefficient of thermal expansion is 65 × 10 6.-7/ ℃, 90 × 10-7When the temperature was not higher than / ° C, good results were obtained in the thermal shock test. From the above, the appropriate thermal expansion coefficient is 65 × 10-7/ ℃, 90 × 10-7/ ° C. or less.
[0060]
Next, in No. 50-55, SiO2 The content was examined. SiO2 The glass having a No. 52 content of 54% by weight was not suitable as a glass substrate for a magnetic disk because of insufficient ring strength. Also, like No.55, SiO2 When the amount exceeds 70% by weight, the generation of bubbles and the like becomes remarkable when the glass is melted, which is not preferable. From the above, SiO2 When the content was 55% by weight or more and 70% by weight or less, good results were obtained as a glass substrate for a magnetic disk.
[0061]
  Next, Al2OThreeThe content was examined.N o. 57 Al 2 O Three Content is 18% by weightIn the case of glass, the glass melting temperature was too high, and melting at 1600 ° C. was not preferable because the glass raw material remained. Al2OThreeWith the glass described in No. 58 having a content of 10% by weight, a stable glass was obtained, and good results were obtained as a glass substrate for a magnetic disk.2OThreeIn the No. 59 glass having a content of 9.5% by weight, unevenness such as striae occurred in the glass. From the above, Al2OThreeContent of 10% by weight or more,17% by weight or lessIn this case, a good glass was obtained.
[0062]
B2OThreeThe content was examined. B2OThreeAs the content increased, the ring strength improved, but as shown in No. 60, the glass with 9% by weight cracked the glass in the thermal shock test. From the above, B2OThreeIf the content was 8% by weight or less, a good glass was obtained.
[0063]
Regarding ZnO, as shown in No. 72, when the addition amount exceeds 10% by weight, precipitation of crystals becomes remarkable in the glass, and it is difficult to obtain a stable glass. At 10% by weight, no such crystal precipitation was observed. Therefore, the ZnO content was preferably 10% by weight or less.
[0064]
Next, among the alkali metal oxides, Li2O content and Na2Focusing on the O 2 content, the composition ratio was examined. Li2O / Na2In the glass of No. 65 with an O ratio of 0.60 and No. 67 of 6.15, cracks occurred in the glass in the thermal shock test, and the ring strength also decreased.2O / Na2The O 2 ratio was preferably 0.61 or more and 6.00 or less.
[0065]
【The invention's effect】
Since the glass substrate for magnetic disks of the present invention is colored and has a small magnetization when a magnetic field is applied, a glass substrate for magnetic disks excellent in mass productivity and a magnetic disk using the same can be produced. Further, the glass substrate for magnetic disk of the present invention has a coefficient of thermal expansion of 65 to 90 × 10.-7Because the temperature coefficient is consistent with the thermal expansion coefficient of the magnetic disk drive device because of / ° C, there are few problems such as glass cracking and track misalignment due to thermal shock tests, etc., so high recording density and high reliability are required. It is most suitable as a substrate material for magnetic disks.
[Brief description of the drawings]
FIG. 1 is a plan view of a glass substrate for a magnetic disk according to the present invention.
FIG. 2 is a sectional view of a magnetic disk using the magnetic disk glass substrate of the present invention.
FIG. 3 is a schematic view of a magnetic disk device manufactured according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Glass substrate for magnetic discs, 2 ... Hole for inner periphery chuck | zipper, 3 ... Chamfer part, 4 ... Grain size control layer, 5 ... Orientation control layer, 6 ... Magnetic film, 7 ... Protective film, 8 ... Lubrication film, DESCRIPTION OF SYMBOLS 9 ... Magnetic disk, 10 ... Spindle, 11 ... Magnetic head, 12 ... Arm of magnetic head, 13 ... Voice coil motor, 14 ... Housing | casing.

Claims (4)

重量百分率で
SiO2:55%〜70%、
Al2310〜17%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5%〜9%、またはEu23を2.5%〜8%を含有し、前記R2O(Rはアルカリ金属元素を表す)が、Li2O,Na2O,K2Oからなり、かつLi2OとNa2Oの割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であることを特徴とする磁気ディスク用ガラス基板。
In terms of weight percentage, SiO 2 : 55% to 70%,
Al 2 O 3 : 10 to 17%,
B 2 O 3 : 0% to 8%
R 2 O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%,
1 to 7% of Pr 2 O 3 or Nd 2 O 3 , or 2.5% to Sm 2 O 3 , in the following oxide-based weight percentage: 9%, or Eu 2 O 3 is contained 2.5% to 8%, and the R 2 O (R represents an alkali metal element) is composed of Li 2 O, Na 2 O, K 2 O, and Li 2 O and Na 2 O ratio of Li 2 O / Na 2 O ratio in the 0.61 or more and 6.00 or less, 30 ° C. to 100 ° C. thermal expansion coefficient of 65 × 10 -7 at a temperature range of A glass substrate for a magnetic disk, wherein the glass substrate is / ° C or higher and 90 × 10 -7 / ° C or lower.
厚さ0.635mmにおいて、波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつ1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下であることを特徴とする磁気ディスク用ガラス基板。At a thickness of 0.635 mm, the transmittance for visible light having a wavelength of 300 nm to 700 nm is 50% or more and 90% or less, and the magnetization when a magnetic field of 1 kOe is applied is 3 × 10 −3 emu / cc or less. A glass substrate for magnetic disks characterized by 磁気ディスク用ガラス基板と、この基板上に直接又は他の層を介して形成された磁性層を有する磁気ディスクであって、上記ガラス基板は重量百分率で
SiO2:55%〜70%、
Al2310%〜17%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5%〜9%、またはEu23を2.5%〜8%を含有し、前記R2O(Rはアルカリ金属元素を表す)が、Li2O,Na2O,K2Oからなり、かつLi2OとNa2Oの割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であることを特徴とする磁気ディスク。
A magnetic disk having a magnetic disk glass substrate and a magnetic layer formed directly or via another layer on the substrate, wherein the glass substrate is SiO 2 : 55% to 70% by weight,
Al 2 O 3 : 10% to 17%,
B 2 O 3 : 0% to 8%
R 2 O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%,
1 to 7% of Pr 2 O 3 or Nd 2 O 3 , or 2.5% to Sm 2 O 3 , in the following oxide-based weight percentage: 9%, or Eu 2 O 3 is contained 2.5% to 8%, and the R 2 O (R represents an alkali metal element) is composed of Li 2 O, Na 2 O, K 2 O, and Li 2 O and Na 2 O ratio of Li 2 O / Na 2 O ratio in the 0.61 or more and 6.00 or less, 30 ° C. to 100 ° C. thermal expansion coefficient of 65 × 10 -7 at a temperature range of A magnetic disk characterized by a temperature of not less than / ° C and not more than 90 × 10 -7 / ° C.
少なくともガラス基板と、その表面上に直接または他の層を介して形成される磁性膜とを有する磁気ディスクであって、厚さ0.635mmのガラス基板の波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつこのガラス基板に1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下であることを特徴とする磁気ディスク。A magnetic disk having at least a glass substrate and a magnetic film formed on the surface thereof directly or via another layer, the transmittance of visible light having a wavelength of 300 nm to 700 nm of a glass substrate having a thickness of 0.635 mm And a magnetization of 3 × 10 −3 emu / cc or less when a magnetic field of 1 kOe is applied to the glass substrate.
JP2002371271A 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same Expired - Fee Related JP4193489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371271A JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371271A JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Publications (2)

Publication Number Publication Date
JP2004206741A JP2004206741A (en) 2004-07-22
JP4193489B2 true JP4193489B2 (en) 2008-12-10

Family

ID=32810195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371271A Expired - Fee Related JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Country Status (1)

Country Link
JP (1) JP4193489B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790300B2 (en) * 2005-04-14 2011-10-12 株式会社日立製作所 Glass
JP5609636B2 (en) * 2010-12-28 2014-10-22 旭硝子株式会社 GLASS PLATE QUALITY TEST METHOD, GLASS PLATE QUALITY TEST DEVICE, AND GLASS PLATE MANUFACTURING METHOD
US20130136909A1 (en) 2011-11-30 2013-05-30 John Christopher Mauro Colored alkali aluminosilicate glass articles
US9139469B2 (en) 2012-07-17 2015-09-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
WO2017120424A1 (en) 2016-01-08 2017-07-13 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US20170362119A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US10246371B1 (en) 2017-12-13 2019-04-02 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US10450220B2 (en) 2017-12-13 2019-10-22 Corning Incorporated Glass-ceramics and glasses

Also Published As

Publication number Publication date
JP2004206741A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US7566673B2 (en) Glass substrate for an information recording medium and information recording medium employing it
US7396788B2 (en) Glass composition and glass substrate
US7687419B2 (en) Glass composition, glass susbstrate employing it for an information recording medium, and information recording medium employing it
US8283060B2 (en) Crystallized glass substrate for information recording medium and method of producing the same
US8916487B2 (en) Glass substrate for information recording medium
JP3211683B2 (en) Glass substrate for information recording disk
WO2011037001A1 (en) Glass substrate for information recording media and information recording medium
US7192898B2 (en) Glass composition and glass substrate
JP5993306B2 (en) Glass substrate for magnetic recording medium and use thereof
US6942934B2 (en) Glass material for a substrate, glass substrate, and information recording medium employing the same
JP2009114005A (en) Crystallized glass
JP4193489B2 (en) Glass substrate for magnetic disk and magnetic disk using the same
JP5788643B2 (en) Glass substrate
JP2002260216A (en) Glass substrate for information recording disk and information recording disk using the same
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP3994371B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING DISC AND INFORMATION RECORDING DISC USING THE GLASS SUBSTRATE
WO2013146256A1 (en) Glass for magnetic recording medium substrate, and glass substrate for magnetic recording medium and use thereof
JP2002025040A (en) Glass substrate for magnetic disk and magnetic disk using the same
JP2003099913A (en) Glass base plate for magnetic disk and magnetic disk using it
WO2002004371A1 (en) Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same
JP4161756B2 (en) Glass substrate
JP4151440B2 (en) Glass substrate
US20050181218A1 (en) Glass substrate for information recording media and information recording medium
JP4225086B2 (en) Glass substrate
JP4045076B2 (en) Glass substrate for information recording disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees