JP4161756B2 - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP4161756B2
JP4161756B2 JP2003071833A JP2003071833A JP4161756B2 JP 4161756 B2 JP4161756 B2 JP 4161756B2 JP 2003071833 A JP2003071833 A JP 2003071833A JP 2003071833 A JP2003071833 A JP 2003071833A JP 4161756 B2 JP4161756 B2 JP 4161756B2
Authority
JP
Japan
Prior art keywords
glass
glass substrate
substrate
alkali
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003071833A
Other languages
Japanese (ja)
Other versions
JP2004277232A (en
Inventor
秀樹 河合
登史晴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2003071833A priority Critical patent/JP4161756B2/en
Publication of JP2004277232A publication Critical patent/JP2004277232A/en
Application granted granted Critical
Publication of JP4161756B2 publication Critical patent/JP4161756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Description

【0001】
【発明の属する技術分野】
本発明はガラス組成物を用いて作製されたガラス基板に関し、より詳細には磁気ディスク、光磁気ディスク、DVD、MDなどの情報記録用媒体や光通信用素子などの基板として用いるガラス基板に関するものである。
【0002】
【従来の技術】
従来、磁気ディスク用の基板としては、デスクトップ用PCやサーバ用途としてアルミニウム基板が、そしてノートPCやモバイルPC等の携帯、移動用途としてガラス基板が使用されている。特にガラス基板は、表面の平滑性や機械的強度が優れていることから、今後サーバ用途・情報家電などさらなる用途拡大が期待される。
【0003】
このようなガラス基板の中で最も一般的なものとして、基板表面をアルカリイオン交換することによって圧縮歪を発生させて強化した化学強化ガラス基板が知られている。しかし化学強化ガラス基板では、煩雑なイオン交換工程が必要であり、またイオン交換後の再加工が不可能であるため製造歩留が上がりにくい。更にはイオン交換性を持たせるため基板中のアルカリイオンが移動しやすく、これにより基板表面に形成された磁気膜などを劣化させるなどの問題点があった。
【0004】
一方、化学強化処理を行わないガラス基板として一般的なソーダライム基板では機械強度及び化学耐久性が不十分であった。また液晶基板などに使用されているガラス材料は−般にガラスの高温での熱安定性を維持するため無アルカリ、低アルカリ化により線膨張係数が低く抑えられており、記録装置の他の部材との線熱膨張係数との違いから整合性が取り難く、更に機械的強度が不十分であり、記録装置へ応用は不適合であった。
【0005】
【特許文献1】
特開2001−19466号公報(特許請求の範囲、表1〜表5)
【0006】
【発明が解決しようとする課題】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、強化処理を行うことなく高い機械的強度を有し、またアルカリ溶出量が少なく、そして線熱膨張係数がモータ部材のそれに近く、さらには高い破壊靭性を有するガラス組成物を用いて作製されたガラス基板を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、重量%で、SiO:62.5〜75%、Al:1〜20%、B:0〜8%(ただし、ゼロを含む)、SiO+Al+B:65〜90%、LiO、NaO、KO:それぞれ0.5%以上、RO(R=Li,Na,K)の総量:7〜20%、の各ガラス成分を有し、
LiO/NaO≧1
且つ
0.35<LiO/(LiO+NaO+KO)≦0.8
R’O(R’=Ca,Sr,Ba,Zn)の総量:0〜12%(ただし、ゼロを含む)、
TiO +ZrO +Ln :0.5〜15%、
(ただし、Ln は、必須成分としてのNb と、ランタノイド金属酸化物及びY ,Ta より選ばれた少なくとも1つの化合物を意味する)
を満足するガラス組成物を用いて作製されたガラス基板であって、
強化処理を行うことなく、比弾性率(E/ρ)が33GPa以上、ビッカース硬度Hvが500〜700kg/mm、アルカリ溶出量Aが350ppb以下、線熱膨張係数αが60×10−7〜90×10−7/℃、破壊靭性値Kcが0.80MPa・m1/2より大きいことを特徴とするガラス基板が提供される。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。
【0011】
なお、比弾性率(E/ρ)はヤング率Eを比重ρで割った値であって、ヤング率はJIS R 1602ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定する。またビッカース硬度Hvは、ビッカース硬度試験機を用い荷重100g、負荷時間15secの条件下にて測定した値である。アルカリ溶出量Aは、酸化セリウムで表面を研磨してRa値が2nm以下の平滑面とした後表面を洗浄した試料ガラスを、80℃の純水50ml中に24h浸漬した後、ICP発光分光分析装置でその溶出液を分析し算出した値である。したがってアルカリ溶出量はLi,Na,K溶出量の総量である。なお、試料ガラスは2.5インチディスク基板と略同一の表面積のものを用いた。線熱膨張係数αは、示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した値である。
【0012】
また破壊靭性値Kcは、ビッカース硬度試験機を用いて、荷重500g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけ下記式から算出した(図2を参照)。
Kc=0.018(E/HV)1/2(P/C3/2)=0.026E1/21/2a/C3/2
(式中、Kc:破壊靭性値(Pa・m1/2)、E:弾性率(Pa)、Hv:ビッカース硬度(Pa)、P:押し込み荷重(N)、C:クラック長さの平均の半分(m)、a:圧痕の対角線長さの平均の半分(m))
【0013】
【発明の実施の形態】
本発明者等は、強化処理を行うことなくガラス基板の剛性を大きくすると共に、線熱膨張係数を従来よりも大きくしながらアルカリ溶出量は少なくし、さらには化学的耐久性を向上させ、破壊靭性値を大きくするべく鋭意検討を重ねた。この結果、ガラスの骨格成分であるSiO2−Al23−B23の総量およびLi2O−Na2O−K2Oからなるアルカリ金属酸化物の含有割合を特定範囲とすることにより、高い比弾性率が得られ、線熱膨張係数を高くできると同時に優れた化学的耐久性が得られることを見出し本発明をなすに至った。
【0014】
以下、本発明に係るガラス組成物の成分についてその限定した理由について説明する。まずSiOはガラスのマトリックスを形成する成分である。その含有量が45%未満では、ガラスの構造が不安定となり化学的耐久性が劣化すると共に、溶融時粘性特性が悪くなり成形性に支障を来す。一方含有量が75%を超えると、溶融性が悪くなり生産性が低下すると共に、十分な剛性が得られなくなる。そこで含有量を45〜75%の範囲と定めた。より好ましい範囲は62.5〜72%の範囲である。
【0015】
Al23はガラスのマトリックス中に入り、ガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が1%未満では十分な安定化効果が得られない。他方20%を超えると溶融性が悪くなり、生産性に支障を来す。そこで含有量を1〜20%の範囲と定めた。より好ましい範囲は3〜16%の範囲である。
【0016】
23は溶融性を改善し生産性を向上させると共に、ガラスのマトリックス中に入りガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が8%を超えると、溶融時粘性特性が悪くなり、成形性に支障を来すと共に、ガラスが不安定になる。そこで含有量を8%以下(ただしゼロを含む)の範囲と定めた。より好ましい上限値は7%であり、好ましい下限値は0.5%である。
【0017】
ガラスの骨格成分であるこれら3つのガラス成分の総量が65%より少ないと、ガラスの構造が脆弱となる一方、前記総量が90%を超えると、溶融性が低下し生産性が落ちる。そこで前記総量を65〜90%の範囲と定めた。より好ましい範囲は68〜88%の範囲である。
【0018】
アルカリ金属酸化物R2O(R=Li,Na,K)は、溶融性を改善し、線熱膨張係数を増大させる効果を奏する。アルカリ金属酸化物の総量が7%未満では溶融性の改善および線熱膨張係数の増大という効果が充分には得られない。他方、総量が20%超えると、ガラス骨格間に分散されるアルカリ量が過剰となりアルカリ溶出量が増大し、化学的耐久性が著しく低下する。そこでアルカリ金属酸化物の総量を7〜20%の範囲と定めた。より好ましい範囲は8〜18%の範囲である。また、アルカリ溶出量を低減する、いわゆるアルカリ混合効果を得るためには、アルカリ金属酸化物の各成分の含有量をそれぞれ0.5%以上とするのが望ましい。
【0019】
また、Li2O/Na2Oが1以上であることも重要である。Li2O/Na2Oが1未満であると十分な比弾性率が得られないからである。さらに、前記アルカリ金属酸化物R2Oに占めるLi2Oの割合を0.35〜0.8の範囲とすることも重要である。Li2Oの前記割合が0.35以下であると、十分な比弾性率が得られなくなると共に溶融性および線熱膨張係数が低下する。他方、Li2Oの前記割合が0.8より大きいと、Li2Oの比率が大きくなり過ぎアルカリ混合効果が得られなくなる。このためガラス構造が不安定となり、十分な強度特性や破壊靭性、化学的耐久性が得られなくなると共にガラスの溶融成形性が低下する。アルカリ金属酸化物R2Oに占めるLi2Oのより好ましい割合は0.4〜0.75の範囲である。
【0020】
また、本発明のガラス組成物では、CaO、SrO、BaO、ZnOのガラス成分の1種または2種以上の特定量を必要によりさらに含有させてもよい。CaOは線熱膨張係数及び剛性を上げると共に溶融性を改善する効果を奏する。またSrOとBaOとは線熱膨張係数を大きくすると共に溶融性を改善する効果を奏する。そしてZnOは化学的耐久性及び剛性を上げると共に溶融性を改善する効果を奏する。これらのガラス成分の総量は12%以下であるのが好ましい。総量が12%を超えるとガラス構造が不安定となり溶融性が低下すると共に化学的耐久性が低下するからである。前記総量のより好ましい上限値は10%である。
【0021】
さらに、本発明のガラス組成物では、TiO、ZrO、Lnのガラス成分の1種または2種以上の特定量を必要によりさらに含有させてもよい。TiOはガラスの構造を強固にし、剛性を向上させると共に溶融性を改善する効果を奏する。またZrOもガラスの構造を強固にし剛性を向上させると共に化学的耐久性を向上させる効果を奏する。そしてLnはガラスの構造を堅固にし剛性および靭性を向上させる効果を奏する。なお、このLn、必須成分としてのNb と、ランタノイド金属酸化物及びY ,Ta からなる群より選ばれた少なくとも1つの化合物を意味し、ランタノイド金属酸化物としては、LnやLnOなど種類があり、LnとしてはLa、Ce、Er、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Yb、Luなどが挙げられる。ここで(TiO+ZrO+Ln)が0.5%未満ではガラスの構造を強固にし向上させる効果が十分には得られず、他方15%を超えるとガラスが不安定となり、靭性が大幅に低下すると共に失透傾向が高まり生産性が著しく低下する。そこでこれらの総量を0.5〜15%の範囲と定めた。より好ましい総量は1〜14%の範囲である。
【0022】
本発明のガラス組成物には、Sb23などの清澄剤を2%以下の範囲で添加してもよい。その他必要により従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加しても構わない。
【0023】
次に本発明のガラス基板について説明する。本発明のガラス基板の大きな特徴は前記ガラス組成物を用いて製造したことにある。ガラス基板の製造方法に特に限定はなく、これまで公知の製造方法を用いることができる。例えば、各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等を使用し、所望の割合に秤量し、粉末で十分に混合して調合原料とする。これを例えば1,300〜1,550℃に加熱された電気炉中の白金坩堝などに投入し、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込み、徐冷してガラスブロックにする。次に、ガラス転移点付近まで再加熱し、徐冷して歪み取りを行う。そして得られたガラスブロックを円盤形状にスライスして、内周および外周を同心円としてコアドリルを用いて切り出す。あるいは溶融ガラスをプレス成形して円盤状に成形する。そして、このようにして得られた円盤状のガラス基板は、さらにその両面を粗研磨および研磨された後、水、酸、アルカリの少なくとも1つの液で洗浄されて最終的なガラス基板とされる。
【0024】
ここで、本発明のガラス基板を例えば情報記録用媒体の基板として用いる場合に、ヘッドの浮上量や記録媒体の膜厚を小さくする観点などから、研磨工程後のガラス基板の表面粗度Raを1nm以下とし、且つ洗浄工程後の表面粗度Ra’を表面粗度Raの1.5倍以下とするのが好ましい。アルカリ成分を多く含む、強化処理を行ったガラス基板の場合には、研磨により表面粗度Raを1nm以下にすることは可能であるが、次の洗浄工程において、水や酸、アルカリで基板表面を表面洗浄したときに、化学的耐久性が低いため表面が激しく浸食される結果、洗浄工程後の表面粗度Ra’が大きくなってしまう。一方、強化処理しないガラス基板では一般に、基板の表面および内部の組成が均質であるので、洗浄工程においても基板の表面粗度Ra’は大きくは変化しない。このため、ガラス成分を最適化することにより洗浄工程後の表面粗度Ra’を研磨工程後の表面粗度Raの1.5倍以下とすることも可能となる。
【0025】
本発明に係るガラス基板ではつぎの諸物性を満足しているのが好ましい。まず、比弾性率(E/ρ)が33GPa以上であるのが好ましい。強化処理を行っていないガラス基板では機械的強度は基板の剛性に依存するため、比弾性率が33GPaよりも小さいと、基板の機械的強度が不十分となり、HDD搭載時に外部から衝撃を受けた際、HDD部材との締結部分から破損しやすくなるからである。
【0026】
ビッカース硬度Hvは500〜700kg/mm の範囲が好ましい。ビッカース硬度Hvが500kg/mm よりも小さいと、衝撃による破損や製造工程内での損傷が生じやすくなる。一方、ビッカース硬度Hvが700kg/mm よりも大きいと、ガラス基板の研磨加工において研磨レート低下し、所望の平滑面が得られにくくなる共に、研磨加工後のテープテクスチャー加工による表面形状の調整やテープもしくはスクラブ洗浄処理による表面欠陥修正などが困難となるからである。ビッカース硬度をこのような範囲とするには、例えば目的とする主物性を劣化させない範囲で、ガラス中のイオン充填率を高めるように成分比率を調整すればよい。ビッカース硬度Hvのより好ましい下限値は520kg/mm であり、より好ましい上限値は680kg/mm である。
【0027】
アルカリ溶出量Aは2.5インチディスク当たり350ppb以下が好ましい。アルカリ溶出量Aが350ppbより多いと、ガラス基板を情報記録用媒体として用いた場合に、ガラス基板表面に形成される磁性膜などの記録膜が、溶出したアルカリ成分によって劣化するからである。より好ましいアルカリ溶出量Aは320ppb以下である。
【0028】
線熱膨張係数αは60×10-7〜90×10-7/℃の範囲が好ましい。線熱膨張係数αがこの範囲から外れると、ガラス基板を用いた情報記録用媒体を取り付ける駆動部の材料の線熱膨張係数との差が大きくなって、情報記録用媒体の固定部に応力が発生し、基板の破損や基板の変形による記録位置のズレが発生し、記録の読み書きができなくなるからである。線熱膨張係数のより好ましい下限値は62×10-7/℃であり、より好ましい上限値は88×10-7/℃である。
【0029】
破壊靭性値Kcは0.80MPa・m 1/2 より大きいのが好ましい。ガラス基板を情報記録用媒体として用いる場合、破壊靭性値Kcが0.80MPa・m 1/2 以下であると、ガラス基板表面に磁性膜などの記録膜を形成する工程において加わえられる圧力などによりガラス基板にひび割れが生じることがあるからである。また、破壊靭性値Kcが0.80MPa・m 1/2 以下であると、基板の機械加工において基板が損傷を受けやすくなり、加工歩留まりが大きく低下する。破壊靭性値Kcのより好ましい下限値は0.85MPa・m 1/2 である。
【0030】
本発明のガラス基板は、その大きさに限定はなく3.5,2.5,1.8インチ、あるいはそれ以下の小径ディスクとすることもでき、またその厚さは2mmや1mm、0.63mm、あるいはそれ以下といった薄型とすることもできる。
【0031】
次に、本発明のガラス基板を用いた情報記録用媒体について説明する。情報記録用媒体の基板として本発明のガラス基板を用いると、耐久性および高記録密度が実現される。以下、図面に基づき情報記録用媒体について説明する。
【0032】
図1は磁気ディスクの斜視図である。この磁気ディスクDは、円形のガラス基板1の表面に磁性膜2を直接形成したものである。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3〜1.2μm程度、スパッタリング法での膜厚は0.04〜0.08μm程度、無電解めっき法での膜厚は0.05〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。
【0033】
磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄−希土類系や、SiO、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。
【0034】
また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
【0035】
さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。
【0036】
磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
【0037】
以上、情報記録用媒体の一実施態様として磁気ディスクについて説明したが、情報記録用媒体はこれに限定されるものではなく、光磁気ディスクや光ディスクなどにも本発明のガラス基板を用いることができる。
【0038】
また、本発明のガラス基板は光通信用素子にも好適に使用できる。本発明のガラス基板では、アルカリ溶出量が2.5インチディスク当たり350ppb以下と少なく、基板から溶出したアルカリ成分によって基板上の膜が劣化することがない。また、従来のガラス基板に比べて線熱膨張係数が60×10-7〜90×10-7/℃の範囲と大きいので、蒸着工程で加熱されたガラス基板が冷却されて縮む量が大きくなり、このガラス基板の収縮により基板表面に形成された膜が圧縮されてその密度が大きくなる。この結果、温度・湿度の変化による波長シフトが抑制される。
【0039】
以下、波長多重分割(「DWDM」;Dense Wavelength Division Multiplexing)用の光フィルタを例に本発明のガラス基板を用いた光通信用素子について説明する。誘電体多層膜を用いた光フィルタは高屈折率層と低屈折率層とを有し、これらの層を積層した構造を有している。これらの層を形成する方法としては、特に限定はなく従来公知の方法、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法などを用いることができる。この中でも生産性が高いことから真空蒸着法が推奨される。真空蒸着は、真空中で蒸着材料を加熱し、発生した蒸気を基体上に凝縮・付着させて薄膜を形成する方法である。蒸着材料の加熱方法には、抵抗加熱、外熱ルツボ、電子ビーム、高周波、レーザーなどの各種方法がある。具体的な蒸着条件として、真空度は1×10-3〜5×10-3Pa程度である。蒸着中は真空度が一定となるように電磁弁を制御して導入酸素量を調整する。そして層厚モニターにより所定層厚となったところでシャターを閉じて蒸着を終了する。
【0040】
各膜厚としては特に限定はないが、光学的膜厚が波長の1/4とするのが基本であって、一般的に1μm程度までである。また、総層数は一般的に100層を超える。用いる膜材料としては例えば、誘電体や半導体、金属であって、この中でも誘電体が特に好ましい。
【0041】
以上、本発明のガラス基板を用いた光通信用素子の一実施態様としてDWDM用の光フィルタについて説明したが、光通信用素子はこれに限定されるものではなく、本発明のガラス基板は光スイッチ、合分波素子などの光通信用素子にも使用できる。
【0042】
【実施例】
実施例1〜,比較例1,2
定められた量の原料粉末を白金るつぼに秤量して入れ、混合したのち、電気炉中で1,550℃で溶解した。原料が充分に溶解したのち、撹拌羽をガラス融液に挿入し、約1時間撹拌した。その後、撹拌羽を取り出し、30分間静置したのち、治具に融液を流しこむことによってガラスブロックを得た。その後各ガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪取りを行った。得られたガラスブロックを約1.5mmの厚さ、2.5インチの円盤形状にスライスし、内周,外周を同心円としてカッターを用いて切り出した。そして、両面を粗研磨及び研磨、洗浄を行って実施例及び比較例のガラス基板を作製した。作製したガラス基板について下記物性評価を行った。結果を合わせて表1に示す。
【0043】
(比弾性率E/ρ)
ヤング率Eを「JIS R 1602」ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定し、これをアルキメデス法により25℃の蒸留水中にて測定した比重値で割って比弾性率を算出した。
【0044】
(ビッカース硬度Hv)
ビッカース硬度試験機を用い荷重100g、負荷時間15secの条件下にて測定した。
【0045】
(アルカリ溶出量A)
ガラス基板の表面を酸化セリウムで研磨してRa値が2nm以下の平滑面とした後、表面を洗浄し、80℃の純水50ml中に24h浸漬した後、ICP発光分光分析装置でその溶出液を分析し算出した。
【0046】
(線熱膨張係数α)
示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した。
【0047】
(破壊靭性値Kc)
ビッカース硬度試験機を用い、荷重500g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけ前記式から算出した。
【0048】
【表1】

Figure 0004161756
【0052】
1によれば、実施例1〜のガラス基板では比弾性率が33以上と従来のガラス基板に比べ大きい値となった。またビッカース硬度は555〜581の範囲と適度な表面硬度を有していた。さらに、アルカリ溶出量は317ppb以下と従来のガラス基板に比べ少なかった。そしてまた、線熱膨張係数は64.1〜73.5×10−7/℃の範囲とHDDの部材と近い値であった。また破壊靭性値は0.99以上といずれも実用上まったく問題のないレベルであった。
【0053】
一方、表によれば、比較例1のガラス基板では、LiO/NaOが0.13と小さかったため十分な比弾性率が得られなかった。また、アルカリ金属酸化物ROに占めるLiOの割合が0.86と高い比較例2のガラス基板では、いわゆるアルカリ混合効果が得られずアルカリ溶出量が522ppbと高い値を示した。
【0054】
【発明の効果】
本発明のガラス組成物及びガラス基板では、ガラス組成構成比率、特にSiO2−Ai23−B23からなる骨格成分の総量、Li2O、Na2O、K2Oからなるアルカリ金属酸化物成分の総量及びその構成比率を最適化したので、強化処理を行うことなく高い剛性が得られ、また適度な表面硬度を有し基板表面の傷を防止すると共に研磨などの表面加工が容易で、しかもアルカリ成分の溶出が少ない。またこのアルカリ溶出量が少ないことにより、ガラス基板上に形成される磁性膜などを劣化させにくいという効果が得られる。さらに従来に比べ線熱膨張係数が高くHDDの部材のそれに近くなり、記録装置への取付け時や情報記録時に不具合が生じることがない。そしたまた破壊靭性値が高いので情報記録用基板の製造時などに基板が破損することがない。
【0055】
また本発明に係るガラス基板を情報記録用媒体に使用すると、表面処理が容易で、製造工程中において破損することがなく、耐久性に優れ、高い記録密度が得られる。また高い比弾性率を有するので、高速回転したときの回転安定性が高い。
【0056】
本発明に係るガラス基板を光通信用素子に使用すると、経時変化が少なく、温度・湿度の変化による波長シフトを抑制できる。
【図面の簡単な説明】
【図1】 本発明のガラス基板を用いた情報記録用媒体の一例を示す斜視図である。
【図2】 ビッカース圧子で押圧したときにできるガラス基板表面の圧痕とクラックの模式図である。
【符号の説明】
1 ガラス基板
2 磁性膜
D 磁気ディスク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass board made of a glass composition, and more particularly magnetic disks, magneto-optical disk, DVD, glass base used as a substrate, such as the information recording medium and optical communication devices such as MD it relates to the plate.
[0002]
[Prior art]
Conventionally, as a substrate for a magnetic disk, an aluminum substrate is used for desktop PCs and servers, and a glass substrate is used for portable and mobile applications such as notebook PCs and mobile PCs. In particular, since the glass substrate has excellent surface smoothness and mechanical strength, further expansion of applications such as server applications and information appliances is expected in the future.
[0003]
Among such glass substrates, a chemically tempered glass substrate is known which is reinforced by generating compressive strain by alkali ion exchange on the substrate surface. However, a chemically tempered glass substrate requires a complicated ion exchange process, and rework after ion exchange is impossible, so that the production yield is difficult to increase. Furthermore, in order to provide ion exchange properties, alkali ions in the substrate can easily move, which causes problems such as deterioration of the magnetic film formed on the substrate surface.
[0004]
Meanwhile, in a typical soda-lime substrate it had insufficient mechanical strength and chemical durability as a glass base plate that does not perform chemical strengthening treatment. In addition, glass materials used for liquid crystal substrates and the like generally have a low coefficient of linear expansion due to alkali-free and low alkalinity in order to maintain the thermal stability of glass at high temperatures. Therefore, it was difficult to achieve consistency due to the difference from the linear thermal expansion coefficient, and the mechanical strength was insufficient, and the application to the recording apparatus was unsuitable.
[0005]
[Patent Document 1]
JP 2001-19466 A (Claims, Tables 1 to 5)
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems. The object of the present invention is to have high mechanical strength without performing a strengthening treatment, to reduce the amount of alkali elution, and to linear thermal expansion. coefficient is close to that of the motor member, further to provide a glass board made of a glass composition having a high fracture toughness.
[0007]
[Means for Solving the Problems]
According to the present invention, by weight percent, SiO 2 : 62.5 to 75%, Al 2 O 3 : 1 to 20%, B 2 O 3 : 0 to 8% (including zero), SiO 2 + Al 2 O 3 + B 2 O 3 : 65 to 90%, Li 2 O, Na 2 O, K 2 O: 0.5% or more, total amount of R 2 O (R = Li, Na, K): 7 to 20 % , Each glass component,
Li 2 O / Na 2 O ≧ 1
And 0.35 <Li 2 O / (Li 2 O + Na 2 O + K 2 O) ≦ 0.8
Total amount of R′O (R ′ = Ca, Sr, Ba, Zn): 0 to 12% (including zero),
TiO 2 + ZrO 2 + Ln x O y: 0.5~15%,
(However, Ln x O y means at least one compound selected from Nb 2 O 5 as an essential component , a lanthanoid metal oxide, and Y 2 O 3 , Ta 2 O 5 )
A glass substrate produced using a glass composition satisfying
Without performing a strengthening treatment, specific elastic modulus (E / ρ) is 33 GPa or more, Vickers hardness Hv is 500 to 700 kg / mm 2 , alkali elution amount A is 350 ppb or less, and linear thermal expansion coefficient α is 60 × 10 −7 to There is provided a glass substrate characterized by 90 × 10 −7 / ° C. and a fracture toughness value Kc of greater than 0.80 MPa · m 1/2 . Hereinafter, “%” means “% by weight” unless otherwise specified.
[0011]
The specific elastic modulus (E / ρ) is a value obtained by dividing the Young's modulus E by the specific gravity ρ, and the Young's modulus is measured according to the dynamic elastic modulus test method of the elastic test method of JIS R 1602 fine ceramics. The Vickers hardness Hv is a value measured using a Vickers hardness tester under the conditions of a load of 100 g and a load time of 15 sec. The alkali elution amount A was determined by polishing the surface with cerium oxide to obtain a smooth surface with a Ra value of 2 nm or less and then rinsing the sample glass in 50 ml of pure water at 80 ° C. for 24 hours, followed by ICP emission spectroscopic analysis. This is a value calculated by analyzing the eluate with an apparatus. Accordingly, the alkali elution amount is the total amount of Li, Na, and K elution amounts. The sample glass used had a surface area substantially the same as that of the 2.5-inch disk substrate. The linear thermal expansion coefficient α is a value measured using a differential expansion measuring device under the conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min.
[0012]
Further, the fracture toughness value Kc was calculated from the following formula using a Vickers hardness tester, indented with a Vickers indenter under conditions of a load of 500 g and a load time of 15 sec (see FIG. 2).
Kc = 0.018 (E / HV) 1/2 (P / C 3/2 ) = 0.026 E 1/2 P 1/2 a / C 3/2
(Wherein, Kc: fracture toughness value (Pa · m 1/2 ), E: elastic modulus (Pa), Hv: Vickers hardness (Pa), P: indentation load (N), C: average crack length Half (m), a: Half of the average diagonal length of the indentation (m)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention increase the rigidity of the glass substrate without performing a strengthening treatment, reduce the amount of alkali elution while increasing the linear thermal expansion coefficient than before, further improve the chemical durability and break down. We intensively studied to increase the toughness value. As a result, to a specific range the content of alkali metal oxides consisting of total and Li 2 O-Na 2 O- K 2 O of SiO 2 -Al 2 O 3 -B 2 O 3 is a skeleton component of the glass As a result, it was found that a high specific elastic modulus can be obtained, the linear thermal expansion coefficient can be increased, and at the same time, excellent chemical durability can be obtained.
[0014]
Hereinafter, the reason why the components of the glass composition according to the present invention are limited will be described. First, SiO 2 is a component that forms a glass matrix. If its content is less than 45%, the structure of the glass becomes unstable and the chemical durability deteriorates, and at the same time the viscosity characteristics at the time of melting deteriorate and the moldability is hindered. On the other hand, if the content exceeds 75%, the meltability deteriorates and the productivity is lowered, and sufficient rigidity cannot be obtained. Therefore, the content is determined to be in the range of 45 to 75%. A more preferred range is from 62.5 to 72%.
[0015]
Al 2 O 3 enters the glass matrix, stabilizes the glass structure, and improves the chemical durability. If the content is less than 1%, a sufficient stabilizing effect cannot be obtained. On the other hand, if it exceeds 20%, the meltability is deteriorated and the productivity is impaired. Therefore, the content was determined to be in the range of 1-20%. A more preferable range is 3 to 16%.
[0016]
B 2 O 3 improves meltability and productivity, and has the effect of entering the glass matrix, stabilizing the glass structure, and improving chemical durability. If the content exceeds 8%, the viscosity characteristics at the time of melting deteriorate, the moldability is hindered, and the glass becomes unstable. Therefore, the content is defined as a range of 8% or less (including zero). A more preferable upper limit value is 7%, and a preferable lower limit value is 0.5%.
[0017]
When the total amount of these three glass components, which are glass skeleton components, is less than 65%, the glass structure becomes brittle. On the other hand, when the total amount exceeds 90%, the meltability decreases and the productivity decreases. Therefore, the total amount is set to a range of 65 to 90%. A more preferable range is 68 to 88%.
[0018]
Alkali metal oxide R 2 O (R = Li, Na, K) has the effect of improving the meltability and increasing the linear thermal expansion coefficient. If the total amount of alkali metal oxides is less than 7%, the effects of improving the meltability and increasing the linear thermal expansion coefficient cannot be obtained sufficiently. On the other hand, when the total amount exceeds 20%, the amount of alkali dispersed between the glass skeletons becomes excessive, the amount of alkali elution increases, and the chemical durability is remarkably lowered. Therefore, the total amount of alkali metal oxides was determined to be 7 to 20%. A more preferable range is 8 to 18%. Further, in order to obtain a so-called alkali mixing effect that reduces the alkali elution amount, it is desirable that the content of each component of the alkali metal oxide is 0.5% or more.
[0019]
It is also important that Li 2 O / Na 2 O is 1 or more. This is because if Li 2 O / Na 2 O is less than 1, sufficient specific elastic modulus cannot be obtained. Furthermore, it is also important that the ratio of Li 2 O in the alkali metal oxide R 2 O is in the range of 0.35 to 0.8. When the ratio of Li 2 O is 0.35 or less, a sufficient specific elastic modulus cannot be obtained and the meltability and the linear thermal expansion coefficient are lowered. On the other hand, when the ratio of Li 2 O is larger than 0.8, the ratio of Li 2 O becomes too large to obtain the alkali mixing effect. For this reason, the glass structure becomes unstable, and sufficient strength characteristics, fracture toughness and chemical durability cannot be obtained, and the melt moldability of the glass is lowered. A more preferable ratio of Li 2 O to the alkali metal oxide R 2 O is in the range of 0.4 to 0.75.
[0020]
Further, the glass composition of the present invention, C aO-, SrO, BaO, may further contain as necessary one or more particular of the glass component of ZnO. C aO has the effect of increasing the linear thermal expansion coefficient and rigidity and improving the meltability. SrO and BaO have the effect of increasing the linear thermal expansion coefficient and improving the meltability. ZnO has the effect of improving chemical durability and rigidity and improving meltability. The total amount of these glass components is preferably 12% or less. This is because if the total amount exceeds 12%, the glass structure becomes unstable, the meltability is lowered, and the chemical durability is lowered. A more preferable upper limit value of the total amount is 10%.
[0021]
Further, in the glass composition of the present invention, TiO 2, ZrO 2, Ln x O may further contain as necessary one or more particular of the glass component of y. TiO 2 has the effect of strengthening the glass structure, improving the rigidity and improving the meltability. ZrO 2 also has the effect of strengthening the glass structure and improving the rigidity and chemical durability. Ln x O y has the effect of improving the rigidity and toughness by making the glass structure firm. Note that this Ln x O y means at least one compound selected from the group consisting of Nb 2 O 5 as an essential component , a lanthanoid metal oxide, and Y 2 O 3 , Ta 2 O 5 , and a lanthanoid metal the oxide has types such as Ln 2 O 3 and LnO, as the Ln La, Ce, Er, Pr , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, Lu , etc. Is mentioned. Here, if (TiO 2 + ZrO 2 + Ln x O y ) is less than 0.5%, the effect of strengthening and improving the structure of the glass cannot be sufficiently obtained, and if it exceeds 15%, the glass becomes unstable and the toughness is increased. Along with a significant decrease, the tendency to devitrification increases and the productivity decreases significantly. Therefore, the total amount of these is set to a range of 0.5 to 15%. A more preferred total amount is in the range of 1-14%.
[0022]
The glass composition of the present invention, a clarifying agent, such as Sb 2 O 3 may be added in the range of 2% or less. If necessary, conventionally known glass components and additives may be added within a range not impairing the effects of the present invention.
[0023]
Next, the glass substrate of the present invention will be described. A major feature of the glass substrate of the present invention is that it is produced using the glass composition. There is no limitation in particular in the manufacturing method of a glass substrate, A conventionally well-known manufacturing method can be used. For example, the corresponding oxides, carbonates, nitrates, hydroxides, etc. are used as raw materials for each component, weighed to a desired ratio, and thoroughly mixed with powder to obtain a blended raw material. This is put into, for example, a platinum crucible in an electric furnace heated to 1,300 to 1,550 ° C., melted and clarified, stirred and homogenized, cast into a preheated mold, and gradually cooled to a glass block. . Next, it is reheated to the vicinity of the glass transition point and slowly cooled to remove strain. Then, the obtained glass block is sliced into a disk shape, and the inner periphery and the outer periphery are concentrically cut out using a core drill. Alternatively, the molten glass is press-molded into a disk shape. The disk-shaped glass substrate thus obtained is further subjected to rough polishing and polishing on both surfaces, and then washed with at least one liquid of water, acid, and alkali to obtain a final glass substrate. .
[0024]
Here, when the glass substrate of the present invention is used as, for example, a substrate for an information recording medium, the surface roughness Ra of the glass substrate after the polishing step is determined from the viewpoint of reducing the flying height of the head or the film thickness of the recording medium. The surface roughness Ra ′ after the cleaning step is preferably 1.5 nm or less of the surface roughness Ra. In the case of a tempered glass substrate containing a large amount of alkali components, it is possible to reduce the surface roughness Ra to 1 nm or less by polishing, but in the next cleaning step, the substrate surface with water, acid, or alkali When the surface is cleaned, since the chemical durability is low, the surface is severely eroded, resulting in an increase in the surface roughness Ra ′ after the cleaning step. On the other hand, since the glass substrate not subjected to the tempering treatment generally has a uniform surface and internal composition, the surface roughness Ra ′ of the substrate does not change greatly even in the cleaning process. For this reason, by optimizing the glass component, the surface roughness Ra ′ after the cleaning process can be 1.5 times or less of the surface roughness Ra after the polishing process.
[0025]
The glass substrate according to the present invention preferably satisfies the following physical properties. First, specific modulus (E / ρ) is is preferably at 33 GPa or more. Since the mechanical strength of a glass substrate that has not been tempered depends on the rigidity of the substrate, if the specific elastic modulus is less than 33 GPa , the mechanical strength of the substrate becomes insufficient, and the external shock is applied when the HDD is mounted. This is because it tends to be damaged from the fastening portion with the HDD member.
[0026]
Vickers hardness Hv is preferably in the range of 500 to 700 kg / mm 2 . When the Vickers hardness Hv is smaller than 500 kg / mm 2 , breakage due to impact or damage in the manufacturing process is likely to occur. On the other hand, if the Vickers hardness Hv is larger than 700 kg / mm 2 , the polishing rate is lowered in the glass substrate polishing process, and it becomes difficult to obtain a desired smooth surface, and the surface shape is adjusted by tape texture processing after the polishing process. This is because it becomes difficult to correct surface defects by cleaning with tape or scrub. In order to set the Vickers hardness in such a range, for example, the component ratio may be adjusted so as to increase the ion filling rate in the glass within a range in which the intended main physical properties are not deteriorated. A more preferable lower limit value of the Vickers hardness Hv is 520 kg / mm 2 , and a more preferable upper limit value is 680 kg / mm 2 .
[0027]
The alkali elution amount A is preferably 350 ppb or less per 2.5 inch disk. This is because when the alkali elution amount A is more than 350 ppb, when a glass substrate is used as an information recording medium, a recording film such as a magnetic film formed on the surface of the glass substrate is deteriorated by the eluted alkali component. A more preferable alkali elution amount A is 320 ppb or less.
[0028]
The linear thermal expansion coefficient α is preferably in the range of 60 × 10 −7 to 90 × 10 −7 / ° C. If the linear thermal expansion coefficient α is out of this range, the difference between the linear thermal expansion coefficient of the material of the drive unit to which the information recording medium using the glass substrate is attached becomes large, and stress is applied to the fixed part of the information recording medium. This is because the recording position is shifted due to the breakage of the substrate or the deformation of the substrate, making it impossible to read / write the record. A more preferable lower limit value of the linear thermal expansion coefficient is 62 × 10 −7 / ° C., and a more preferable upper limit value is 88 × 10 −7 / ° C.
[0029]
The fracture toughness value Kc is preferably greater than 0.80 MPa · m 1/2 . When a glass substrate is used as an information recording medium, when the fracture toughness value Kc is 0.80 MPa · m 1/2 or less, pressure applied in the step of forming a recording film such as a magnetic film on the glass substrate surface, etc. This is because the glass substrate may crack. Further, when the fracture toughness value Kc is 0.80 MPa · m 1/2 or less, the substrate is easily damaged in the machining of the substrate, and the processing yield is greatly reduced. A more preferable lower limit value of the fracture toughness value Kc is 0.85 MPa · m 1/2 .
[0030]
The glass substrate of the present invention is not limited in size, and can be a small-diameter disk of 3.5, 2.5, 1.8 inches or less, and the thickness thereof is 2 mm, 1 mm, 0. It can be as thin as 63 mm or less.
[0031]
Next, an information recording medium using the glass substrate of the present invention will be described. When the glass substrate of the present invention is used as a substrate for an information recording medium, durability and high recording density are realized. Hereinafter, an information recording medium will be described with reference to the drawings.
[0032]
FIG. 1 is a perspective view of a magnetic disk. This magnetic disk D is obtained by directly forming a magnetic film 2 on the surface of a circular glass substrate 1. As a method for forming the magnetic film 2, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, or by sputtering or electroless plating. A method is mentioned. The film thickness by spin coating is about 0.3 to 1.2 μm, the film thickness by sputtering is about 0.04 to 0.08 μm, and the film thickness by electroless plating is 0.05 to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
[0033]
The magnetic material used in the magnetic layer, particularly but limited those known not available, a basic high crystal anisotropy Co in order to obtain a high coercive magnetic force, Ni for the purpose of adjusting the residual magnetic flux density A Co-based alloy or the like to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, CoCrPtSiO, and the like. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. In addition to the above magnetic materials, granular materials such as ferrite, iron-rare earth, and non-magnetic films made of SiO 2 , BN, etc. in which magnetic particles such as Fe, Co, FeCo, CoNiPt are dispersed, etc. Also good. Further, the magnetic film may be either an inner surface type or a vertical type recording format.
[0034]
In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
[0035]
Furthermore, you may provide a base layer and a protective layer as needed. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
[0036]
Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on the Cr layer, and then colloidal silica fine particles are dispersed and applied, and then baked to form a silicon oxide (SiO 2 ) layer. It may be formed.
[0037]
The magnetic disk has been described above as one embodiment of the information recording medium. However, the information recording medium is not limited to this, and the glass substrate of the present invention can be used for a magneto-optical disk, an optical disk, and the like. .
[0038]
Moreover, the glass substrate of this invention can be used conveniently also for the element for optical communications. In the glass substrate of the present invention, the alkali elution amount is as small as 350 ppb per 2.5 inch disk, and the film on the substrate is not deteriorated by the alkali component eluted from the substrate. In addition, since the linear thermal expansion coefficient is as large as 60 × 10 −7 to 90 × 10 −7 / ° C. compared to the conventional glass substrate, the amount of shrinkage caused by cooling of the glass substrate heated in the vapor deposition process is increased. The film formed on the substrate surface is compressed by the shrinkage of the glass substrate, and the density thereof is increased. As a result, wavelength shift due to changes in temperature and humidity is suppressed.
[0039]
Hereinafter, an optical communication element using the glass substrate of the present invention will be described taking an optical filter for wavelength division division (“DWDM”) as an example. An optical filter using a dielectric multilayer film has a high refractive index layer and a low refractive index layer, and has a structure in which these layers are laminated. A method for forming these layers is not particularly limited, and a conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, or an ion beam assist method can be used. Among these, vacuum deposition is recommended because of its high productivity. Vacuum deposition is a method of forming a thin film by heating a deposition material in vacuum and condensing and adhering the generated vapor onto a substrate. There are various methods such as resistance heating, an external heating crucible, an electron beam, a high frequency, and a laser as a method for heating the deposition material. As specific vapor deposition conditions, the degree of vacuum is about 1 × 10 −3 to 5 × 10 −3 Pa. During the deposition, the amount of introduced oxygen is adjusted by controlling the solenoid valve so that the degree of vacuum is constant. Then, when the predetermined layer thickness is reached by the layer thickness monitor, the shutter is closed and the deposition is finished.
[0040]
Each film thickness is not particularly limited, but the optical film thickness is basically ¼ of the wavelength, and is generally about 1 μm. Moreover, the total number of layers generally exceeds 100 layers. Examples of the film material to be used include dielectrics, semiconductors, and metals. Among these, dielectrics are particularly preferable.
[0041]
As mentioned above, although the optical filter for DWDM was demonstrated as one embodiment of the element for optical communications using the glass substrate of this invention, the element for optical communications is not limited to this, The glass substrate of this invention is optical. It can also be used for optical communication elements such as switches and multiplexing / demultiplexing elements.
[0042]
【Example】
Examples 1 5 and Comparative Examples 1 and 2
A predetermined amount of the raw material powder was weighed into a platinum crucible, mixed, and then melted at 1,550 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, a stirring blade was inserted into the glass melt and stirred for about 1 hour. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then the melt was poured into a jig to obtain a glass block. Thereafter, the glass block was reheated to near the glass transition point of each glass, and slowly cooled to remove strain. The obtained glass block was sliced into a disc shape of about 1.5 mm in thickness and 2.5 inches, and the inner periphery and outer periphery were cut out using a cutter with concentric circles. And both surfaces were subjected to rough polishing, polishing, and cleaning to produce glass substrates of Examples and Comparative Examples. The following physical property evaluation was performed about the produced glass substrate. The results are shown in Table 1 .
[0043]
(Specific elastic modulus E / ρ)
The Young's modulus E is measured according to the dynamic elastic modulus test method of the elastic test method of “JIS R 1602” fine ceramics, which is divided by the specific gravity value measured in distilled water at 25 ° C. by the Archimedes method. Was calculated.
[0044]
(Vickers hardness Hv)
The measurement was performed using a Vickers hardness tester under conditions of a load of 100 g and a load time of 15 sec.
[0045]
(Alkaline elution amount A)
After polishing the surface of the glass substrate with cerium oxide to obtain a smooth surface with an Ra value of 2 nm or less, the surface is washed, immersed in 50 ml of pure water at 80 ° C. for 24 hours, and then eluted with an ICP emission spectrometer. Was analyzed and calculated.
[0046]
(Linear thermal expansion coefficient α)
Using a differential expansion measuring device, the measurement was performed under the conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min.
[0047]
(Fracture toughness value Kc)
Using a Vickers hardness tester, an indentation was made with a Vickers indenter under the conditions of a load of 500 g and a load time of 15 sec, and the calculation was performed from the above formula.
[0048]
[Table 1]
Figure 0004161756
[0052]
According to Table 1, in the glass substrates of Examples 1 to 5 , the specific elastic modulus was 33 or more, which was a value larger than that of the conventional glass substrate. The Vickers hardness was in a range of 555-581 and an appropriate surface hardness. Furthermore, the alkali elution amount was 317 ppb or less, which was smaller than that of the conventional glass substrate. The linear thermal expansion coefficient was in the range of 64.1 to 73.5 × 10 −7 / ° C. and a value close to that of the HDD member. Further, the fracture toughness value was 0.99 or more, which was a practically no problem level.
[0053]
On the other hand, according to Table 1 , in the glass substrate of Comparative Example 1, since Li 2 O / Na 2 O was as small as 0.13, a sufficient specific modulus could not be obtained. Further, in the glass substrate of Comparative Example 2 in which the ratio of Li 2 O in the alkali metal oxide R 2 O was as high as 0.86, the so-called alkali mixing effect was not obtained and the alkali elution amount was as high as 522 ppb.
[0054]
【The invention's effect】
In the glass composition and glass substrate of the present invention, the glass composition constituent ratio, in particular, the total amount of the skeletal component composed of SiO 2 —Ai 2 O 3 —B 2 O 3 , the alkali composed of Li 2 O, Na 2 O, K 2 O. Since the total amount of metal oxide components and their composition ratios have been optimized, high rigidity can be obtained without performing a strengthening process, and the surface has a suitable surface hardness to prevent scratches on the substrate surface and surface processing such as polishing. Easy and less alkaline component elution. Further, since the amount of alkali elution is small, an effect that it is difficult to deteriorate a magnetic film or the like formed on the glass substrate can be obtained. Furthermore, the coefficient of linear thermal expansion is higher than that of the conventional one, and it is close to that of a member of the HDD. In addition, since the fracture toughness value is high, the substrate is not damaged at the time of manufacturing the information recording substrate.
[0055]
Further, when the glass substrate according to the present invention is used for an information recording medium, the surface treatment is easy, the glass substrate is not damaged during the production process, the durability is excellent, and a high recording density is obtained. Moreover, since it has a high specific modulus, the rotational stability when rotating at high speed is high.
[0056]
When the glass substrate according to the present invention is used for an optical communication element, a change with time is small, and a wavelength shift due to a change in temperature and humidity can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an information recording medium using a glass substrate of the present invention.
FIG. 2 is a schematic diagram of indentations and cracks on the surface of a glass substrate formed when pressed with a Vickers indenter.
[Explanation of symbols]
1 Glass substrate 2 Magnetic film D Magnetic disk

Claims (2)

重量%で、
SiO:62.5〜75%、
Al:1〜20%、
:0〜8%(ただし、ゼロを含む)、
SiO+Al+B:65〜90%、
LiO、NaO、KO:それぞれ0.5%以上、
O(R=Li,Na,K)の総量:7〜20%、
の各ガラス成分を有し、
LiO/NaO≧1
且つ
0.35<LiO/(LiO+NaO+KO)≦0.8
R’O(R’=Ca,Sr,Ba,Zn)の総量:0〜12%(ただし、ゼロを含む)、
TiO +ZrO +Ln :0.5〜15%、
(ただし、Ln は、必須成分としてのNb と、ランタノイド金属酸化物及びY ,Ta より選ばれた少なくとも1つの化合物を意味する)
を満足するガラス組成物を用いて作製されたガラス基板であって、
強化処理を行うことなく、比弾性率(E/ρ)が33GPa以上、ビッカース硬度Hvが500〜700kg/mm、アルカリ溶出量Aが350ppb以下、線熱膨張係数αが60×10−7〜90×10−7/℃、破壊靭性値Kcが0.80MPa・m1/2より大きいことを特徴とするガラス基板。
% By weight
SiO 2: 62.5~75%,
Al 2 O 3: 1~20%,
B 2 O 3 : 0 to 8% (including zero),
SiO 2 + Al 2 O 3 + B 2 O 3 : 65 to 90%,
Li 2 O, Na 2 O, K 2 O: 0.5% or more,
Total amount of R 2 O (R = Li, Na, K): 7-20%,
Each glass component,
Li 2 O / Na 2 O ≧ 1
And 0.35 <Li 2 O / (Li 2 O + Na 2 O + K 2 O) ≦ 0.8
Total amount of R′O (R ′ = Ca, Sr, Ba, Zn): 0 to 12% (including zero),
TiO 2 + ZrO 2 + Ln x O y: 0.5~15%,
(However, Ln x O y means at least one compound selected from Nb 2 O 5 as an essential component , a lanthanoid metal oxide, and Y 2 O 3 , Ta 2 O 5 )
A glass substrate produced using a glass composition satisfying
Without performing a strengthening treatment, specific elastic modulus (E / ρ) is 33 GPa or more, Vickers hardness Hv is 500 to 700 kg / mm 2 , alkali elution amount A is 350 ppb or less, and linear thermal expansion coefficient α is 60 × 10 −7 to A glass substrate characterized by 90 × 10 −7 / ° C. and a fracture toughness value Kc of greater than 0.80 MPa · m 1/2 .
前記ガラス組成物が、Mgを含有しないことを特徴とする請求項1記載のガラス基板。Glass substrate according to claim 1, wherein the glass composition is characterized by containing no Mg O.
JP2003071833A 2003-03-17 2003-03-17 Glass substrate Expired - Fee Related JP4161756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071833A JP4161756B2 (en) 2003-03-17 2003-03-17 Glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071833A JP4161756B2 (en) 2003-03-17 2003-03-17 Glass substrate

Publications (2)

Publication Number Publication Date
JP2004277232A JP2004277232A (en) 2004-10-07
JP4161756B2 true JP4161756B2 (en) 2008-10-08

Family

ID=33288174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071833A Expired - Fee Related JP4161756B2 (en) 2003-03-17 2003-03-17 Glass substrate

Country Status (1)

Country Link
JP (1) JP4161756B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151440B2 (en) * 2003-03-17 2008-09-17 コニカミノルタオプト株式会社 Glass substrate
JP4726399B2 (en) 2003-05-29 2011-07-20 コニカミノルタオプト株式会社 Glass substrate
JP4656863B2 (en) * 2003-06-06 2011-03-23 Hoya株式会社 Zirconium-containing glass composition, chemically strengthened glass article, glass substrate for magnetic recording medium, and method for producing glass plate
JP5699434B2 (en) 2009-04-02 2015-04-08 旭硝子株式会社 Glass for information recording medium substrate, glass substrate for information recording medium and magnetic disk
WO2019009069A1 (en) * 2017-07-04 2019-01-10 Agc株式会社 Glass ball
JP7303482B2 (en) * 2017-12-26 2023-07-05 日本電気硝子株式会社 cover glass

Also Published As

Publication number Publication date
JP2004277232A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4530618B2 (en) Glass composition and glass substrate
JP4039381B2 (en) Glass substrate for information recording medium using glass composition and information recording medium using the same
JP4726399B2 (en) Glass substrate
KR100866175B1 (en) Glass substrate for information recording medium and information recording medium employing same
JP4282273B2 (en) Glass substrate
US8916487B2 (en) Glass substrate for information recording medium
JP5613164B2 (en) Glass substrate for information recording medium and information recording medium
US7015161B2 (en) Substrate for information recording medium and magnetic recording medium composed of crystallized glass
JP4252956B2 (en) Glass for chemical strengthening, substrate for information recording medium, information recording medium, and method for producing information recording medium
JP4726400B2 (en) Manufacturing method of glass substrate
JP2006327935A (en) Glass substrate
JP4161756B2 (en) Glass substrate
JP2006327936A (en) Glass substrate
JP4151440B2 (en) Glass substrate
JP4225086B2 (en) Glass substrate
JP3793401B2 (en) Substrate for information recording medium made of crystallized glass and information recording medium
JP4442051B2 (en) Glass substrate, information recording medium using the same, and optical communication element
JP5375698B2 (en) Manufacturing method of glass substrate
JP2005119963A (en) Process for preparation of crystallized glass for information recording disk

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4161756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees