JP2006327936A - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP2006327936A
JP2006327936A JP2006228863A JP2006228863A JP2006327936A JP 2006327936 A JP2006327936 A JP 2006327936A JP 2006228863 A JP2006228863 A JP 2006228863A JP 2006228863 A JP2006228863 A JP 2006228863A JP 2006327936 A JP2006327936 A JP 2006327936A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
less
substrate
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006228863A
Other languages
Japanese (ja)
Inventor
Hideki Kawai
秀樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006228863A priority Critical patent/JP2006327936A/en
Publication of JP2006327936A publication Critical patent/JP2006327936A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate which has a high coefficient of liner thermal expansion and is excellent in cost effectiveness and from which alkaline components are hardly eluted. <P>SOLUTION: The glass substrate has a constitution comprising each glass component of, by weight, 45-70% SiO<SB>2</SB>, 1-5.0% Al<SB>2</SB>O<SB>3</SB>, 1.0-8% B<SB>2</SB>O<SB>3</SB>, 0.7-20% of Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O, 0.1-10% MgO, 0.1-10% CaO, 1-15% of MgO+CaO, 0.5-10% TiO<SB>2</SB>, 0.5-10% ZrO<SB>2</SB>, 0-5% ZnO and 0-8% La<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガラス基板に関し、より詳細には磁気ディスク、光磁気ディスク、DVD、MDなどの情報記録用媒体や光通信用素子などの基板として用いるガラス基板に関するものである。   The present invention relates to a glass substrate, and more particularly to a glass substrate used as a substrate for information recording media such as magnetic disks, magneto-optical disks, DVDs, MDs, and optical communication elements.

従来、磁気ディスク用基板としては、デスクトップ用コンピュータやサーバなどの据え置き型にはアルミニウム合金が、他方ノート型コンピュータやモバイル型コンピュータなどの携帯型にはガラス基板が一般に使用されていたが、アルミニウム合金は変形しやすく、また硬さが不十分であるため研磨後の基板表面の平滑性が十分とは言えなかった。さらに、ヘッドが機械的に磁気ディスクに接触する際、磁性膜が基板から剥離しやすいという問題もあった。そこで、変形が少なく、平滑性が良好で、かつ機械的強度の大きいガラス基板が携帯型のみならず据え置き型の機器やその他の家庭用情報機器にも今後広く使用されていくものと予測される。   Conventionally, as a substrate for a magnetic disk, an aluminum alloy is generally used for a stationary type such as a desktop computer or a server, while a glass substrate is generally used for a portable type such as a notebook computer or a mobile computer. Was easily deformed and its hardness was insufficient, so that the substrate surface after polishing was not sufficiently smooth. Further, when the head mechanically contacts the magnetic disk, there is a problem that the magnetic film is easily peeled off from the substrate. Therefore, it is predicted that a glass substrate with little deformation, good smoothness and high mechanical strength will be widely used not only for portable devices but also for stationary devices and other household information devices in the future. .

ガラス基板としては、基板表面のアルカリ元素を他のアルカリ元素と置換することにより圧縮歪みを発生させ、機械的強度を向上させた化学強化ガラスが知られている。しかし化学強化ガラスでは煩雑なイオン交換工程が必要であり、またイオン交換後の再加工が不可能であるため製造歩留を上げることが難しかった。また、ガラス基板にイオン交換性を持たせるために、アルカリイオンの基板中での移動が容易となるようにしていた。このため基板表面のアルカリイオンが、磁性膜を成膜する際の加熱工程時に表面に移動して溶出したり、あるいは磁性膜を侵食したり、磁性膜の付着強度を劣化させたりする問題があった。   As a glass substrate, a chemically strengthened glass is known in which a compressive strain is generated by replacing an alkali element on the surface of the substrate with another alkali element and mechanical strength is improved. However, chemically tempered glass requires a complicated ion exchange process, and rework after ion exchange is impossible, making it difficult to increase the production yield. Moreover, in order to give ion exchange property to the glass substrate, movement of alkali ions in the substrate has been facilitated. For this reason, there is a problem that alkali ions on the surface of the substrate move to the surface during the heating process when the magnetic film is formed and are eluted, or the magnetic film is eroded and the adhesion strength of the magnetic film is deteriorated. It was.

一方、化学強化処理を行わない一般的なガラス基板としてはソーダライム基板があるが、このソーダライム基板を情報記録用基板として用いるには機械的強度、化学的耐久性が不十分であった。また、液晶基板などに使用されているガラス材料では、高温での熱安定性を維持するため無アルカリあるいは低アルカリ化によって線膨張係数を低く抑えているので、SUS鋼などでできたクランプやスピンドルモータ部材の線熱膨張係数との差が大きく、記録媒体の記録装置への取付け時や情報記録時に不具合が生じることがあった。また機械的強度が不十分であるため情報記録用基板へ適用は困難であった。   On the other hand, as a general glass substrate not subjected to chemical strengthening treatment, there is a soda lime substrate, but mechanical strength and chemical durability are insufficient to use this soda lime substrate as an information recording substrate. In addition, glass materials used for liquid crystal substrates, etc. have a low coefficient of linear expansion by alkali-free or low alkali to maintain thermal stability at high temperatures, so clamps and spindles made of SUS steel, etc. The difference between the coefficient of linear thermal expansion of the motor member is large, and problems may occur when the recording medium is attached to the recording apparatus or when information is recorded. In addition, since the mechanical strength is insufficient, it is difficult to apply to an information recording substrate.

また光フィルタや光スイッチなどの光通信用素子でも基板としてガラス基板が用いられているが、ガラス基板から溶出したアルカリ成分によって前記素子が劣化することがあった。また、ガラス基板上に形成される膜の密度が大きくなるほど、温度・湿度の変化による波長シフトが抑制されるところ、従来広く用いられている真空蒸着法では形成できる膜の密度に限界があった。   In addition, although a glass substrate is used as a substrate in an optical communication element such as an optical filter or an optical switch, the element may be deteriorated by an alkali component eluted from the glass substrate. In addition, as the density of the film formed on the glass substrate increases, the wavelength shift due to changes in temperature and humidity is suppressed, but there is a limit to the density of the film that can be formed by the conventionally widely used vacuum deposition method. .

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、強化処理を行うことなく高い機械的強度を有し、また線熱膨張係数がモータ部材のそれに近く、さらには優れた化学的耐久性を有するガラス基板を提供することにある。   The present invention has been made in view of such conventional problems. The object of the present invention is to have a high mechanical strength without performing a strengthening treatment and to have a linear thermal expansion coefficient close to that of a motor member. Another object of the present invention is to provide a glass substrate having excellent chemical durability.

また本発明の他の目的は、アルカリ溶出量が少なく、また高い密度の膜を形成し得るガラス基板を提供することにある。   Another object of the present invention is to provide a glass substrate with a small alkali elution amount and capable of forming a high-density film.

前記目的を達成するため本発明に係るガラス基板では、重量%で、SiO2:45〜70%、Al23:1〜10%、B23:0.5〜8%、Li2O+Na2O+K2O:7〜20%、MgO:0.1〜10%、CaO:0.1〜10%、MgO+CaO:1〜15%、TiO2:0.5〜10%、ZrO2:0.5〜10%、ZnO:0〜5%、La23:0〜8%の各ガラス成分を有する構成とした。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。 The glass substrate according to the present invention for achieving the above object, in weight%, SiO 2: 45~70%, Al 2 O 3: 1~10%, B 2 O 3: 0.5~8%, Li 2 O + Na 2 O + K 2 O: 7 to 20%, MgO: 0.1 to 10%, CaO: 0.1 to 10%, MgO + CaO: 1 to 15%, TiO 2 : 0.5 to 10%, ZrO 2 : 0 .5~10%, ZnO: 0~5%, La 2 O 3: was configured to have 0 to 8% of each glass component. Hereinafter, “%” means “% by weight” unless otherwise specified.

ここでガラス基板の線熱膨張係数Aを60×10-7/℃以上とし、アルカリ溶出量Bを2.5インチディスク当たり250ppb以下とし、ヤング率Eを85GPa以上とし、さらに下記式(1)を満足し、表面および内部の組成が均質で且つアモルファス構造を有する構成とするのが好ましい。
(A/B)×E×107≧30 ・・・・・・(1)
Here, the linear thermal expansion coefficient A of the glass substrate is 60 × 10 −7 / ° C. or more, the alkali elution amount B is 250 ppb or less per 2.5 inch disk, the Young's modulus E is 85 GPa or more, and the following formula (1) It is preferable that the surface and the internal composition are uniform and have an amorphous structure.
(A / B) × E × 10 7 ≧ 30 (1)

なお、線熱膨張係数Aは、示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した値である。またアルカリ溶出量Bは、酸化セリウムで表面を研磨してRa値が2nm以下の平滑面とした後表面を洗浄した試料ガラスを、80℃の逆浸透膜水50ml中に24h浸漬した後、ICP発光分光分析装置でその溶出液を分析し算出した値である。したがってアルカリ溶出量はLi,Na,K溶出量の総量である。なお、試料ガラスは2.5インチディスク基板と略同一の表面積のものを用いた。ヤング率EはJIS R 1602ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定した値である。また表面および内部の組成が均質で且つアモルファス構造を有するとは、強化処理を行っていないとの意味である。   The linear thermal expansion coefficient A is a value measured using a differential expansion measuring device under the conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min. The alkali elution amount B was determined by immersing a sample glass whose surface was polished with cerium oxide to a smooth surface with an Ra value of 2 nm or less and then washed for 24 hours in 50 ml of reverse osmosis membrane water at 80 ° C. It is a value calculated by analyzing the eluate with an emission spectroscopic analyzer. Accordingly, the alkali elution amount is the total amount of Li, Na, and K elution amounts. The sample glass used had a surface area substantially the same as that of the 2.5-inch disk substrate. The Young's modulus E is a value measured according to the dynamic elastic modulus test method of the elastic test method of JIS R 1602 fine ceramics. Moreover, that the composition of the surface and the interior is homogeneous and has an amorphous structure means that no strengthening treatment is performed.

また、耐久性や生産性などの観点から、ビッカース硬度Hvを550より大きくし、液相温度TLを1,300℃以下とし、ガラスの溶融粘性logη=2となる温度Tlogη=2を1,450℃以下とし、さらにガラス転移温度Tgを600℃以下とするのが好ましい。なお、ビッカース硬度Hvは、ビッカース硬度試験機を用い荷重100g、負荷時間15secの条件下にて測定した値である。液相温度TLは、1,550℃で2hr溶融保持後、1,300℃で10時間保持し急冷した後、ガラスの表面及び内部に失透物の発生の有無を確認し判定したものである。温度Tlogη=2は、撹拌式粘性測定機を用いて溶融したガラスの粘性を測定したときのlogη=2となる温度である。ガラス転移点Tgは、粉末状に調整したガラス試料を示差熱測定装置を用いて室温〜900℃の温度範囲を10℃/minの昇温率で加熱し測定した値である。 Further, from the viewpoint of durability, productivity, etc., the Vickers hardness Hv is larger than 550, the liquidus temperature TL is 1,300 ° C. or less, and the temperature T log η = 2 at which the glass melt viscosity log η = 2 is 1 , 450 ° C. or lower, and the glass transition temperature Tg is preferably 600 ° C. or lower. The Vickers hardness Hv is a value measured using a Vickers hardness tester under conditions of a load of 100 g and a load time of 15 sec. The liquidus temperature TL was determined by checking the presence or absence of devitrified substances on the surface and inside of the glass after melting and holding at 1,550 ° C. for 2 hours, holding at 1,300 ° C. for 10 hours and quenching. is there. The temperature T log η = 2 is a temperature at which log η = 2 when the viscosity of the molten glass is measured using a stirring type viscosity measuring machine. The glass transition point Tg is a value measured by heating a glass sample adjusted to a powder form in a temperature range of room temperature to 900 ° C. at a rate of temperature increase of 10 ° C./min using a differential calorimeter.

そしてまた、本発明のガラス基板を情報記録用媒体の基板として用いた場合に密度記録を向上させる観点から、研磨工程および洗浄工程を経て作製されるガラス基板においては、純水、酸、アルカリの少なくとも1つの液によりガラス基板を洗浄した場合に、研磨工程後の表面粗度Raと洗浄工程後の表面粗度Ra’とが下記式、
Ra’/Ra≦1.5 ・・・・・・(2)
Ra≦1nm ・・・・・・・・・(3)
を満足するようにするのが好ましい。なお、ガラス基板の表面粗度Ra,Ra’は原子間力顕微鏡(AFM)で測定した値である。
In addition, from the viewpoint of improving density recording when the glass substrate of the present invention is used as a substrate for an information recording medium, in a glass substrate produced through a polishing process and a cleaning process, pure water, acid, and alkali are used. When the glass substrate is washed with at least one liquid, the surface roughness Ra after the polishing step and the surface roughness Ra ′ after the washing step are expressed by the following formula:
Ra ′ / Ra ≦ 1.5 (2)
Ra ≦ 1nm (3)
Is preferably satisfied. The surface roughness Ra, Ra ′ of the glass substrate is a value measured with an atomic force microscope (AFM).

本発明に係るガラス基板では、特定のガラス組成を有する構成としたので、強化処理を行うことなく高い剛性を有し、また線熱膨張係数が高く且つアルカリ成分の溶出は少なく、加えて作製コストを抑えることができる。   Since the glass substrate according to the present invention has a specific glass composition, it has high rigidity without performing a strengthening treatment, has a high linear thermal expansion coefficient, and has little elution of alkali components. Can be suppressed.

本発明に係るガラス基板を情報記録用媒体に使用すると、耐久性に優れ、高い記録密度が得られる。   When the glass substrate according to the present invention is used for an information recording medium, it has excellent durability and a high recording density.

また本発明に係るガラス基板を光通信用素子に使用すると、経時変化が少なく、温度・湿度の変化による波長シフトを抑制できる。   Further, when the glass substrate according to the present invention is used for an optical communication element, there is little change with time, and wavelength shift due to changes in temperature and humidity can be suppressed.

本発明に係るガラス基板について説明する。本発明者は、強化処理を行うことなくガラス基板の剛性を大きくすると共に、線熱膨張係数を従来よりも大きくしながらアルカリ溶出量は少なくし、さらには化学的耐久性を向上させるべく鋭意検討を重ねた。この結果、ガラスのマトリックス成分として酸化ケイ素を用い、そこにMgOやCaOなどの特定成分を含有させることにより所定の剛性を得ることができ、また特定のアルカリ金属酸化物の総含有量を特定の範囲にすることにより、線熱膨張係数を高くできると同時にアルカリ溶出量を抑えられることを見出し本発明をなすに至った。   The glass substrate according to the present invention will be described. The present inventor has intensively studied to increase the rigidity of the glass substrate without performing a strengthening treatment, to reduce the amount of alkali elution while increasing the linear thermal expansion coefficient than before, and to further improve the chemical durability. Repeated. As a result, silicon oxide is used as the matrix component of the glass, and a specific rigidity such as MgO or CaO can be contained therein, whereby a predetermined rigidity can be obtained, and the total content of a specific alkali metal oxide can be specified. By making it into the range, it was found that the linear thermal expansion coefficient can be increased and at the same time the amount of alkali elution can be suppressed, and the present invention has been made.

以下、本発明に係るガラス基板の成分についてその限定した理由について説明する。まずSiO2はガラスのマトリックスを形成する成分である。その含有量が45%未満では、ガラスの構造が不安定となり化学的耐久性が劣化すると共に、溶融時粘性特性が悪くなり成形性に支障を来す。一方含有量が70%を超えると、溶融性が悪くなり生産性が低下すると共に、十分な剛性が得られなくなる。そこで含有量を45〜70%の範囲と定めた。より好ましい範囲は50〜65%の範囲である。 Hereinafter, the reason why the components of the glass substrate according to the present invention are limited will be described. First, SiO 2 is a component that forms a glass matrix. If its content is less than 45%, the structure of the glass becomes unstable and the chemical durability deteriorates, and at the same time the viscosity characteristics at the time of melting deteriorate and the moldability is hindered. On the other hand, if the content exceeds 70%, the meltability is deteriorated, the productivity is lowered, and sufficient rigidity cannot be obtained. Therefore, the content is determined to be in the range of 45 to 70%. A more preferred range is from 50 to 65%.

Al23はガラスのマトリックス中に入り、ガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が1%未満では十分な安定化効果が得られない。他方10%を超えると溶融性が悪くなり、生産性に支障を来す。そこで含有量を1〜10%の範囲と定めた。より好ましい範囲は2〜8%の範囲である。 Al 2 O 3 enters the glass matrix, stabilizes the glass structure, and improves the chemical durability. If the content is less than 1%, a sufficient stabilizing effect cannot be obtained. On the other hand, if it exceeds 10%, the meltability deteriorates and the productivity is hindered. Therefore, the content is determined to be in the range of 1 to 10%. A more preferred range is from 2 to 8%.

23は溶融性を改善し生産性を向上させると共に、ガラスのマトリックス中に入りガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が0.5%未満では、溶融性の改善効果が乏しくマトリックスの安定化が不十分となる。一方含有量が8%を超えると、溶融時粘性特性が悪くなり、成形性に支障を来すと共に、十分な剛性が得られなくなる。そこで含有量を0.5〜8%の範囲と定めた。より好ましい範囲は1〜6%の範囲である。 B 2 O 3 improves meltability and productivity, and has the effect of entering the glass matrix, stabilizing the glass structure, and improving chemical durability. If the content is less than 0.5%, the effect of improving the meltability is poor and the stabilization of the matrix becomes insufficient. On the other hand, if the content exceeds 8%, the viscosity property at the time of melting deteriorates, and the moldability is hindered and sufficient rigidity cannot be obtained. Therefore, the content is determined to be in the range of 0.5 to 8%. A more preferred range is from 1 to 6%.

アルカリ金属酸化物R2O(R=Li,Na,K)は、溶融性を改善し、線膨張係数を増大させる効果を奏する。アルカリ金属酸化物の総量が7%未満では溶融性の改善および線熱膨張係数の増大という効果が充分には得られない。他方、総量が20%超えるとガラス骨格間に分散されるアルカリ量が過剰となりアルカリ溶出量が増大する。そこでアルカリ金属酸化物の総量を7〜20%の範囲と定めた。より好ましい範囲は8〜15%の範囲である。また、アルカリ溶出量を低減する、いわゆるアルカリ混合効果を得るためには、アルカリ金属酸化物の各成分の含有量をそれぞれ0.5%以上とするのが望ましい。 Alkali metal oxide R 2 O (R = Li, Na, K) has the effect of improving the meltability and increasing the linear expansion coefficient. If the total amount of alkali metal oxides is less than 7%, the effects of improving the meltability and increasing the linear thermal expansion coefficient cannot be obtained sufficiently. On the other hand, if the total amount exceeds 20%, the amount of alkali dispersed between the glass skeletons becomes excessive and the amount of alkali elution increases. Therefore, the total amount of alkali metal oxides was determined to be in the range of 7 to 20%. A more preferable range is 8 to 15%. Further, in order to obtain a so-called alkali mixing effect that reduces the alkali elution amount, it is desirable that the content of each component of the alkali metal oxide is 0.5% or more.

MgOは剛性を上げると共に溶融性を改善する効果を奏する。含有量が0.1%未満では剛性の向上及び溶融性改善に対し十分効果が奏されない。他方、含有量が10%を超えるとガラス構造が不安定となり、溶融生産性が低下すると共に化学的耐久性が低下する。そこで含有量を0.1〜10%の範囲と定めた。より好ましい範囲は0.5〜8%の範囲である。   MgO has the effect of increasing the rigidity and improving the meltability. If the content is less than 0.1%, sufficient effects are not obtained for improvement of rigidity and improvement of meltability. On the other hand, if the content exceeds 10%, the glass structure becomes unstable, and the melt productivity is lowered and the chemical durability is lowered. Therefore, the content is determined to be in the range of 0.1 to 10%. A more preferable range is 0.5 to 8%.

CaOは線熱膨張係数及び剛性を上げると共に溶融性を改善する効果を奏する。含有量が0.1%未満では線熱膨張係数と剛性の向上及び溶融性改善に対し十分効果が奏されない。他方含有量が10%を超えると、ガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下する。そこで含有量を0.1〜10%の範囲とした。より好ましい範囲は0.5〜8%の範囲である。   CaO has the effect of increasing the linear thermal expansion coefficient and rigidity and improving the meltability. If the content is less than 0.1%, a sufficient effect is not exerted with respect to improvement of linear thermal expansion coefficient and rigidity and improvement of meltability. On the other hand, if the content exceeds 10%, the glass structure becomes unstable, the melt productivity is lowered, and the chemical durability is lowered. Therefore, the content is set in the range of 0.1 to 10%. A more preferable range is 0.5 to 8%.

そしてMgOとCaOの総量は1〜15%の範囲とした。この総量が1%未満では剛性を上げると共に溶融性を改善する効果が不十分となり、他方15%を超えるとガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下するからである。より好ましい総量は2〜12%の範囲である。   And the total amount of MgO and CaO was made into the range of 1-15%. If this total amount is less than 1%, the effect of increasing the rigidity and improving the meltability will be insufficient, while if it exceeds 15%, the glass structure will become unstable and the melt productivity will decrease and the chemical durability will decrease. is there. A more preferable total amount is in the range of 2 to 12%.

TiO2はガラスの構造を強固にし、剛性を向上させると共に溶融性を改善する効果を奏する。含有量が0.5%未満では剛性の向上及び溶融性の改善に対し十分効果が奏されない。一方含有量が10%を超えるとガラス構造が不安定となり、溶融生産性が低下すると共に化学的耐久性が低下する。そこで含有量を0.5〜10%の範囲と定めた。より好ましい範囲は1〜8%の範囲である。 TiO 2 has the effect of strengthening the glass structure, improving the rigidity and improving the meltability. If the content is less than 0.5%, sufficient effects are not exerted for improving rigidity and improving meltability. On the other hand, if the content exceeds 10%, the glass structure becomes unstable, and the melt productivity is lowered and the chemical durability is lowered. Therefore, the content is determined to be in the range of 0.5 to 10%. A more preferred range is from 1 to 8%.

ZrO2はガラスの構造を強固にし剛性を向上させると共に化学的耐久性を向上させる効果を奏する。含有量が0.5%未満では剛性の向上及び化学的耐久性の向上に対し十分効果が奏されない。他方含有量が10%を超えると溶融性が低下し生産性を向上させることができない。そこで含有量を0.5〜10%の範囲とした。より好ましい範囲は1〜8%の範囲である。 ZrO 2 has the effect of strengthening the glass structure and improving the rigidity and chemical durability. When the content is less than 0.5%, sufficient effects are not exerted with respect to improvement in rigidity and improvement in chemical durability. On the other hand, if the content exceeds 10%, the meltability is lowered and the productivity cannot be improved. Therefore, the content is set in the range of 0.5 to 10%. A more preferred range is from 1 to 8%.

ZnOは化学的耐久性及び剛性を上げると共に溶融性を改善する効果を奏する。含有量が5%を超えると、ガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下するおそれがある。このためその含有量は5%以下が好ましい。より好ましくは4%以下である。   ZnO has the effect of improving chemical durability and rigidity and improving meltability. If the content exceeds 5%, the glass structure becomes unstable and the melt productivity is lowered and the chemical durability may be lowered. For this reason, the content is preferably 5% or less. More preferably, it is 4% or less.

La23はガラスの構造を堅固にし剛性を向上させる効果を奏する。含有量が8%を超えるとガラス構造が不安定となり、溶融生産性が低下すると共に化学的耐久性が低下するおそれがある。このためその含有量は8%以下が好ましい。より好ましくは6%以下である。剛性を向上させるためにLa23の代わりに、Ta25,Nb25,Y23,Laを除くランタノイド酸化物などを使用してもよいが、La23と比べて高価であるため生産コストを考慮すれば少量の使用が望ましい。 La 2 O 3 has the effect of improving the rigidity by strengthening the structure of the glass. If the content exceeds 8%, the glass structure becomes unstable, and the melt productivity is lowered and the chemical durability may be lowered. For this reason, the content is preferably 8% or less. More preferably, it is 6% or less. In order to improve the rigidity, instead of La 2 O 3 , lanthanoid oxides other than Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , and La may be used, but compared with La 2 O 3 In view of production cost, it is desirable to use a small amount.

本発明のガラス基板には、溶融性を向上させるためにSrO,BaOをそれぞれ5%未満の量で添加してもよい。またSb23などの清澄剤を2%以下の範囲で添加してもよい。その他必要により従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加しても構わない。 In order to improve the meltability, SrO and BaO may be added to the glass substrate of the present invention in less than 5% each. The fining agents such as Sb 2 O 3 may be added in the range of 2% or less. If necessary, conventionally known glass components and additives may be added within a range not impairing the effects of the present invention.

本発明のガラス基板の製造方法に特に限定はなく、これまで公知の製造方法を用いることができる。例えば、各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等を使用し、所望の割合に秤量し、粉末で十分に混合して調合原料とする。これを例えば1,300〜1,550℃に加熱された電気炉中の白金坩堝などに投入し、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込み、徐冷してガラスブロックにする。次に、ガラス転移点付近まで再加熱し、徐冷して歪み取りを行う。そして得られたガラスブロックを円盤形状にスライスして、内周および外周を同心円としてコアドリルを用いて切り出す。あるいは溶融ガラスをプレス成形して円盤状に成形する。そして、このようにして得られた円盤状のガラス基板は、さらにその両面を粗研磨および研磨された後、水、酸、アルカリの少なくとも1つの液で洗浄されて最終的なガラス基板とされる。   There is no limitation in particular in the manufacturing method of the glass substrate of this invention, A conventionally well-known manufacturing method can be used. For example, the corresponding oxides, carbonates, nitrates, hydroxides, etc. are used as raw materials for each component, weighed to a desired ratio, and thoroughly mixed with powder to obtain a blended raw material. This is put into, for example, a platinum crucible in an electric furnace heated to 1,300 to 1,550 ° C., melted and clarified, homogenized with stirring, cast into a preheated mold, and gradually cooled to a glass block. . Next, it is reheated to the vicinity of the glass transition point, and is slowly cooled to remove strain. Then, the obtained glass block is sliced into a disk shape, and the inner periphery and the outer periphery are concentrically cut out using a core drill. Alternatively, the molten glass is press-molded into a disk shape. The disk-shaped glass substrate thus obtained is further subjected to rough polishing and polishing on both surfaces, and then washed with at least one of water, acid, and alkali to form a final glass substrate. .

ここで、本発明のガラス基板を例えば情報記録用媒体の基板として用いる場合に、ヘッドの浮上量や記録媒体の膜厚を小さくする観点などから、研磨工程後のガラス基板の表面粗度Raを1nm以下とし、且つ洗浄工程後の表面粗度Ra’を表面粗度Raの1.5倍以下とするのが好ましい。強化処理を行ったガラス基板の場合には、研磨により表面粗度Raを1nm以下にすることは可能であるが、次の洗浄工程において、水や酸、アルカリで基板表面を表面洗浄したときに、化学的耐久性が低いため表面が激しく浸食される結果、洗浄工程後の表面粗度Ra’が大きくなってしまう。一方、強化処理しないガラス基板では一般に、基板の表面および内部の組成が均質であるので、洗浄工程においても基板の表面粗度Ra’は大きくは変化しない。このため、ガラス成分を最適化することにより洗浄工程後の表面粗度Ra’を研磨工程後の表面粗度Raの1.5倍以下とすることも可能となる。   Here, when the glass substrate of the present invention is used as, for example, a substrate for an information recording medium, the surface roughness Ra of the glass substrate after the polishing step is determined from the viewpoint of reducing the flying height of the head or the film thickness of the recording medium. The surface roughness Ra ′ after the cleaning step is preferably 1.5 nm or less of the surface roughness Ra. In the case of a glass substrate that has been subjected to a tempering treatment, it is possible to reduce the surface roughness Ra to 1 nm or less by polishing, but when the surface of the substrate is cleaned with water, acid, or alkali in the next cleaning step. Since the chemical durability is low, the surface is severely eroded, resulting in an increase in the surface roughness Ra ′ after the cleaning process. On the other hand, since the glass substrate that is not tempered generally has a uniform surface and internal composition, the surface roughness Ra 'of the substrate does not change significantly even in the cleaning process. Therefore, by optimizing the glass component, the surface roughness Ra ′ after the cleaning process can be made 1.5 times or less of the surface roughness Ra after the polishing process.

また本発明に係るガラス基板は所定のガラス物性を有しているのが好ましい。まず、線熱膨張係数が60×10-7/℃以上であるのが好ましい。線熱膨張係数がこの範囲から外れると、ガラス基板を用いた情報記録用媒体を取り付ける駆動部の材料の線熱膨張係数との差が大きくなって、情報記録用媒体の固定部に応力が発生し、基板の破損や基板の変形による記録位置のズレが発生し、記録の読み書きができなくなるからである。線熱膨張係数のより好ましい下限値は62×10-7/℃であり、好ましい上限値は90×10-7/℃である。 Moreover, it is preferable that the glass substrate which concerns on this invention has a predetermined | prescribed glass physical property. First, the linear thermal expansion coefficient is preferably 60 × 10 −7 / ° C. or higher. If the linear thermal expansion coefficient is out of this range, the difference between the linear thermal expansion coefficient of the material of the drive unit to which the information recording medium using the glass substrate is attached becomes large, and stress is generated in the fixed part of the information recording medium. This is because the recording position is shifted due to the breakage of the substrate or the deformation of the substrate, making it impossible to read / write the record. A more preferable lower limit value of the linear thermal expansion coefficient is 62 × 10 −7 / ° C., and a preferable upper limit value is 90 × 10 −7 / ° C.

またこの発明に係るガラス基板では、アルカリ溶出量が2.5インチディスク当たり250ppb以下であるのが好ましい。このアルカリ溶出量が250ppbより多いと、ガラス基板を情報記録用媒体として用いた場合に、ガラス基板表面に形成される磁性膜などの記録膜が、溶出したアルカリ成分によって劣化するからである。より好ましいアルカリ溶出量は230ppb以下である。   In the glass substrate according to the present invention, the alkali elution amount is preferably 250 ppb or less per 2.5 inch disk. This is because when the alkali elution amount is more than 250 ppb, when a glass substrate is used as an information recording medium, a recording film such as a magnetic film formed on the surface of the glass substrate is deteriorated by the eluted alkali component. A more preferable alkali elution amount is 230 ppb or less.

さらにこの発明に係る表面および内部の組成が均質で且つアモルファス構造を有するガラス基板では、機械的強度は基板の剛性に依存するため、ヤング率が85GPa以上であるのが好ましい。ヤング率が85GPaよりも小さいと、基板の機械的強度が不十分となり、HDD搭載時に外部から衝撃を受けた際、HDD部材との締結部分から破損しやすくなるからである。より好ましいヤング率は87GPa以上である。   Furthermore, in a glass substrate having a uniform surface and internal composition and an amorphous structure according to the present invention, the Young's modulus is preferably 85 GPa or more because the mechanical strength depends on the rigidity of the substrate. This is because when the Young's modulus is less than 85 GPa, the mechanical strength of the substrate becomes insufficient, and when it is subjected to an impact from the outside when the HDD is mounted, it tends to be damaged from the fastening portion with the HDD member. A more preferable Young's modulus is 87 GPa or more.

そしてまたこの発明に係るガラス基板では、前記各諸物性を満足しながら、さらに式(1)を満足しているのが好ましい。式(1)を満足していないと、前記各諸物性を満足していても諸物性のバランスが悪く、溶融成形時の生産性が低下したり、研磨・洗浄・加工時の生産性が著しく劣化するなど実際の生産において問題が生じるからである。式(1)の左辺は33以上であるのがより好ましい。一方、好ましい上限値は70である。   The glass substrate according to the present invention preferably further satisfies the formula (1) while satisfying the various physical properties. If the formula (1) is not satisfied, the balance of the physical properties is poor even if the various physical properties are satisfied, the productivity at the time of melt molding is reduced, and the productivity at the time of polishing / cleaning / processing is remarkable. This is because problems occur in actual production such as deterioration. The left side of the formula (1) is more preferably 33 or more. On the other hand, a preferable upper limit is 70.

さらに本発明のガラス基板は、記録面の耐衝撃性及び工程内での損傷防止の面からそのビッカース硬度Hvを550より大きくするのが好ましい。ビッカース硬度をこのような範囲とするには、例えば目的とする主物性を劣化させない範囲で、ガラス中のイオン充填率を高めるように成分比率を調整すればよい。   Furthermore, the glass substrate of the present invention preferably has a Vickers hardness Hv of more than 550 in terms of impact resistance of the recording surface and prevention of damage in the process. In order to set the Vickers hardness in such a range, for example, the component ratio may be adjusted so as to increase the ion filling rate in the glass within a range in which the intended main physical properties are not deteriorated.

また本発明のガラス基板では、溶融成形時における生産性などの観点から液相温度TLを1,300℃以下とし、ガラスの溶融粘性logη=2となる温度Tlogη=2を1,450℃以下とし、さらにガラス転移温度Tgを600℃以下とするのが好ましい。液相温度、Tlogη=2、ガラス転移温度をこのような範囲とするには、例えばガラスの液相温度については、過剰に添加するとガラスが不安定になる成分の総量及び比率を調整してやればよい。Tlogη=2については、目的とする主物性を劣化させない範囲で、粘性を高める主成分であるSiO2と粘性を改善する成分との添加比率を調整すればよい。ガラス転移温度については、骨格成分であるSiO2,B23,Al23の総量及びそれら比率、そしてガラス転移温度を大幅に低下させる成分であるアルカリ金属酸化物の添加量を、目的とする主物性を劣化させない範囲で調整すればよい。 In the glass substrate of the present invention, from the viewpoint of productivity during melt molding, the liquidus temperature TL is 1,300 ° C. or lower, and the temperature T log η = 2 at which the glass melt viscosity log η = 2 is 1,450 ° C. The glass transition temperature Tg is preferably 600 ° C. or lower. In order to set the liquid phase temperature, T log η = 2 , and the glass transition temperature in such a range, for example, the liquid phase temperature of the glass can be adjusted by adjusting the total amount and ratio of components that cause the glass to become unstable when added excessively. That's fine. For T log η = 2 , the addition ratio of SiO 2 , which is the main component for increasing the viscosity, and the component for improving the viscosity may be adjusted within a range in which the intended main physical properties are not deteriorated. Regarding the glass transition temperature, the total amount and ratio of SiO 2 , B 2 O 3 , and Al 2 O 3 that are skeleton components, and the amount of alkali metal oxide that is a component that greatly reduces the glass transition temperature, The main physical properties may be adjusted within a range not deteriorating.

本発明のガラス基板は、その大きさに限定はなく3.5,2.5,1.8インチ、あるいはそれ以下の小径ディスクとすることもでき、またその厚さは2mmや1mm、0.63mm、あるいはそれ以下といった薄型とすることもできる。   The glass substrate of the present invention is not limited in size, and can be a small-diameter disk of 3.5, 2.5, 1.8 inches or less, and the thickness thereof is 2 mm, 1 mm, 0. It can be as thin as 63 mm or less.

次に、本発明のガラス基板を用いた情報記録用媒体について説明する。情報記録用媒体の基板として本発明のガラス基板を用いると、耐久性および高記録密度が実現される。以下、図面に基づき情報記録用媒体について説明する。   Next, an information recording medium using the glass substrate of the present invention will be described. When the glass substrate of the present invention is used as a substrate for an information recording medium, durability and high recording density are realized. Hereinafter, an information recording medium will be described with reference to the drawings.

図1は磁気ディスクの斜視図である。この磁気ディスクDは、円形のガラス基板1の表面に磁性膜2を直接形成したものである。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3〜1.2μm程度、スパッタリング法での膜厚は0.04〜0.08μm程度、無電解めっき法での膜厚は0.05〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。   FIG. 1 is a perspective view of a magnetic disk. This magnetic disk D is obtained by directly forming a magnetic film 2 on the surface of a circular glass substrate 1. As a method for forming the magnetic film 2, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, or a method by sputtering or electroless plating is used. A method is mentioned. The film thickness by spin coating is about 0.3 to 1.2 μm, the film thickness by sputtering is about 0.04 to 0.08 μm, and the film thickness by electroless plating is 0.05 to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.

磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄−希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。 The magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. Addition to the above magnetic material, ferrite, iron - rare-earth or be in a non-magnetic film made of SiO 2, BN Fe, Co, FeCo, etc. granular structure magnetic particles are dispersed, such CoNiPt Also good. Further, the magnetic film may be either an inner surface type or a vertical type recording format.

また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。   In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.

さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。   Furthermore, you may provide a base layer and a protective layer as needed. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.

磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。 Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on the Cr layer, and then colloidal silica fine particles are dispersed and applied, and then baked to form a silicon oxide (SiO 2 ) layer. It may be formed.

以上、情報記録用媒体の一実施態様として磁気ディスクについて説明したが、情報記録用媒体はこれに限定されるものではなく、光磁気ディスクや光ディスクなどにも本発明のガラス基板を用いることができる。   The magnetic disk has been described above as one embodiment of the information recording medium. However, the information recording medium is not limited to this, and the glass substrate of the present invention can be used for a magneto-optical disk, an optical disk, and the like. .

また、本発明のガラス基板は光通信用素子にも好適に使用できる。本発明のガラス基板では、アルカリ溶出量が2.5インチディスク当たり250ppb以下と少なく基板から溶出したアルカリ成分によって基板上の膜が劣化することがない。また、従来のガラス基板に比べて線熱膨張係数が60×10-7/℃以上と大きいので、蒸着工程で加熱されたガラス基板が冷却されて縮む量が大きくなり、このガラス基板の収縮により基板表面に形成された膜が圧縮されてその密度が大きくなる。この結果、温度・湿度の変化による波長シフトが抑制される。 Moreover, the glass substrate of this invention can be used conveniently also for the element for optical communications. In the glass substrate of the present invention, the alkali elution amount is as small as 250 ppb or less per 2.5 inch disk, and the film on the substrate is not deteriorated by the alkali component eluted from the substrate. In addition, since the linear thermal expansion coefficient is as large as 60 × 10 −7 / ° C. or more as compared with the conventional glass substrate, the glass substrate heated in the vapor deposition process is cooled and shrunk, and the shrinkage of the glass substrate The film formed on the substrate surface is compressed to increase its density. As a result, wavelength shift due to changes in temperature and humidity is suppressed.

以下、波長多重分割(「DWDM」;Dense Wavelength Division Multiplexing)用の光フィルタを例に本発明のガラス基板を用いた光通信用素子について説明する。誘電体多層膜を用いた光フィルタは高屈折率層と低屈折率層とを有し、これらの層を積層した構造を有している。これらの層を形成する方法としては、特に限定はなく従来公知の方法、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法などを用いることができる。この中でも生産性が高いことから真空蒸着法が推奨される。真空蒸着は、真空中で蒸着材料を加熱し、発生した蒸気を基体上に凝縮・付着させて薄膜を形成する方法である。蒸着材料の加熱方法には、抵抗加熱、外熱ルツボ、電子ビーム、高周波、レーザーなどの各種方法がある。具体的な蒸着条件として、真空度は1×10-3〜5×10-3Pa程度である。蒸着中は真空度が一定となるように電磁弁を制御して導入酸素量を調整する。そして層厚モニターにより所定層厚となったところでシャターを閉じて蒸着を終了する。 Hereinafter, an optical communication element using the glass substrate of the present invention will be described taking an optical filter for wavelength division division (“DWDM”) as an example. An optical filter using a dielectric multilayer film has a high refractive index layer and a low refractive index layer, and has a structure in which these layers are laminated. A method for forming these layers is not particularly limited, and a conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, or an ion beam assist method can be used. Among these, vacuum deposition is recommended because of its high productivity. Vacuum deposition is a method of forming a thin film by heating a deposition material in vacuum and condensing and adhering the generated vapor onto a substrate. There are various methods such as resistance heating, an external heating crucible, an electron beam, a high frequency, and a laser as a method for heating the vapor deposition material. As specific vapor deposition conditions, the degree of vacuum is about 1 × 10 −3 to 5 × 10 −3 Pa. During the deposition, the amount of introduced oxygen is adjusted by controlling the solenoid valve so that the degree of vacuum is constant. Then, when the predetermined layer thickness is reached by the layer thickness monitor, the shutter is closed and the deposition is finished.

各膜厚としては特に限定はないが、光学的膜厚が波長の1/4とするのが基本であって、一般的に1μm程度までである。また、総層数は一般的に100層を超える。用いる膜材料としては例えば、誘電体や半導体、金属であって、この中でも誘電体が特に好ましい。   Each film thickness is not particularly limited, but the optical film thickness is basically ¼ of the wavelength, and is generally about 1 μm. Moreover, the total number of layers generally exceeds 100 layers. Examples of the film material to be used include dielectrics, semiconductors, and metals. Among these, dielectrics are particularly preferable.

以上、本発明のガラス基板を用いた光通信用素子の一実施態様としてDWDM用の光フィルタについて説明したが、光通信用素子はこれに限定されるものではなく、本発明のガラス基板は光スイッチ、合分波素子などの光通信用素子にも使用できる。   As mentioned above, although the optical filter for DWDM was demonstrated as one embodiment of the element for optical communications using the glass substrate of this invention, the element for optical communications is not limited to this, The glass substrate of this invention is optical. It can also be used for optical communication elements such as switches and multiplexing / demultiplexing elements.

実施例1〜59,比較例1〜11
定められた量の原料粉末を白金るつぼに秤量して入れ、混合したのち、電気炉中で1,550℃で溶解した。原料が充分に溶解したのち、撹拌羽をガラス融液に挿入し、約1時間撹拌した。その後、撹拌羽を取り出し、30分間静置したのち、治具に融液を流しこむことによってガラスブロックを得た。その後各ガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪取りを行った。得られたガラスブロックを約1.5mmの厚さ、2.5インチの円盤形状にスライスし、内周,外周を同心円としてカッターを用いて切り出した。そして、両面を粗研磨及び研磨、洗浄を行って実施例及び比較例のガラス基板を作製した。作製したガラス基板について下記物性評価を行った。結果を合わせて表1〜表6に示す。
Examples 1 to 59, Comparative Examples 1 to 11
A specified amount of raw material powder was weighed into a platinum crucible, mixed, and then melted at 1,550 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, a stirring blade was inserted into the glass melt and stirred for about 1 hour. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then the melt was poured into a jig to obtain a glass block. Thereafter, the glass block was reheated to near the glass transition point of each glass, and slowly cooled to remove strain. The obtained glass block was sliced into a disc shape of about 1.5 mm in thickness and 2.5 inches, and the inner periphery and outer periphery were cut out using a cutter with concentric circles. And both surfaces were subjected to rough polishing, polishing, and cleaning to produce glass substrates of Examples and Comparative Examples. The following physical property evaluation was performed about the produced glass substrate. The results are shown in Tables 1 to 6.

(線熱膨張係数A)
示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した。
(Linear thermal expansion coefficient A)
Using a differential expansion measuring device, the measurement was performed under the conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min.

(アルカリ溶出量B)
ガラス基板の表面を酸化セリウムで研磨して、Ra値が2nm以下の平滑面とした後その表面を洗浄し、80℃の逆浸透膜水50ml中に24h浸漬した後、ICP発光分光分析装置で溶出液を分析し算出した。
(Alkaline elution amount B)
After polishing the surface of the glass substrate with cerium oxide to obtain a smooth surface with an Ra value of 2 nm or less, the surface is washed, immersed in 50 ml of reverse osmosis membrane water at 80 ° C. for 24 hours, and then subjected to an ICP emission spectroscopic analyzer. The eluate was analyzed and calculated.

(ヤング率E)
JIS R 1602ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定した。
(Young's modulus E)
It measured according to the dynamic elastic modulus test method of the elastic test method of JIS R 1602 fine ceramics.

(ガラス転移点Tg)
示差熱測定装置を用いて、室温〜900℃の温度範囲を10℃/minの昇温速度で、粉末状に調整したガラス試料を加熱し測定した。
(Glass transition point Tg)
Using a differential heat measuring device, a glass sample adjusted to a powder form was measured in a temperature range from room temperature to 900 ° C. at a rate of temperature increase of 10 ° C./min.

(ビッカース硬度Hv)
ビッカース硬度試験機を用い荷重100g、負荷時間15secの条件下にて測定した。
(Vickers hardness Hv)
The measurement was performed using a Vickers hardness tester under conditions of a load of 100 g and a load time of 15 sec.

(液相温度TL
1,550℃で2hr溶融保持後、1,300℃で10時間保持し急冷した後、ガラスの表面及び内部に失透物の発生の有無を観察し、失透物がなかった場合を「○」、失透物があった場合を「×」とした。
(Liquid phase temperature T L )
After melting and holding at 1,550 ° C. for 2 hours, holding at 1,300 ° C. for 10 hours and rapid cooling, the presence or absence of devitrified material was observed on the surface and inside of the glass. “,” When there was a devitrified material, “×”.

(温度Tlogη=2
撹拌式粘性測定機を用いて溶融したガラスの粘性を測定し、logη=2となる温度を求め、Tlogη=2が1450℃以下であった場合を「○」、1450℃を超えていた場合を「×」とした。
(Temperature T log η = 2 )
The viscosity of the melted glass was measured using a stirring-type viscometer, and the temperature at which log η = 2 was obtained. When T log η = 2 was 1450 ° C. or less, “◯” was exceeded and 1450 ° C. was exceeded. The case was set as “x”.

(表面粗度)
研磨材として酸化セリウムを用い、研磨パッドとして硬質ウレタンを用いて、サンプル表面を1時間研磨した。次に研磨後のサンプルをウエット状態のまま純水で超音波洗浄した。そしてサンプル表面をAFM(原子間力顕微鏡、デジタルインスツルメント社製「D3100システム」)を用いて観察し研磨工程後の表面粗度Raを測定した。測定領域は10μm×10μmの視野で、測定点数は1サンプル当たり5個である。次に、前記研磨したサンプルを50℃の5wt%水酸化ナトリウム水溶液中に10分間浸漬した後、純水で超音波洗浄した。そして前記と同様にAMFを用いてサンプルの表面粗度Ra’を測定した。
(Surface roughness)
The sample surface was polished for 1 hour using cerium oxide as the abrasive and using hard urethane as the polishing pad. Next, the polished sample was subjected to ultrasonic cleaning with pure water in a wet state. Then, the surface of the sample was observed using an AFM (atomic force microscope, “D3100 system” manufactured by Digital Instruments), and the surface roughness Ra after the polishing step was measured. The measurement area is a visual field of 10 μm × 10 μm, and the number of measurement points is 5 per sample. Next, the polished sample was immersed in a 5 wt% sodium hydroxide aqueous solution at 50 ° C. for 10 minutes, and then ultrasonically cleaned with pure water. In the same manner as described above, the surface roughness Ra ′ of the sample was measured using AMF.

Figure 2006327936
Figure 2006327936

Figure 2006327936
Figure 2006327936

Figure 2006327936
Figure 2006327936

Figure 2006327936
Figure 2006327936

表1〜表4によれば、実施例1〜59のガラス基板では、線熱膨張係数は62×10-7/℃の範囲と、従来のガラス基板に比べ大きい値となった。また、アルカリ溶出量は235ppb以下と従来のガラス基板に比べ少なかった。またヤング率85GPa以上でいずれも実用上まったく問題のないレベルであった。さらに、ガラスの溶融性についても良好なレベルであった。 According to Tables 1 to 4, in the glass substrates of Examples 1 to 59, the linear thermal expansion coefficient was in the range of 62 × 10 −7 / ° C., which was a large value compared to the conventional glass substrate. Moreover, the alkali elution amount was 235 ppb or less, which was smaller than that of the conventional glass substrate. In addition, the Young's modulus was 85 GPa or more, and all of them were practically no problem. Furthermore, the meltability of the glass was also at a good level.

Figure 2006327936
Figure 2006327936

表5によれば、比較例1のガラス基板では、SiO2の含有量が42.9%と少ないため、ガラスの構造が軟弱となりアルカリ溶出量が増加すると共にヤング率が低下した。またガラスに失透物が見られた。一方、SiO2の含有量が72.1%と多い比較例2のガラス基板では、線熱膨張係数が小さくなりと共にヤング率も低下した。Al23の含有量が12.9%と多く、またB23の含有量も8.8%と多い比較例3のガラス基板、及びAl23の含有量が16.9%と多い比較例4のガラス基板では、線熱膨張係数が小さくなると共にヤング率も低下した。さらに温度Tlogη=2が高くガラスの溶融性が悪かった。 According to Table 5, in the glass substrate of Comparative Example 1, since the content of SiO 2 was as low as 42.9%, the glass structure was weak and the alkali elution amount increased and the Young's modulus decreased. In addition, devitrification was observed in the glass. On the other hand, in the glass substrate of Comparative Example 2 having a high SiO 2 content of 72.1%, the coefficient of linear thermal expansion decreased and the Young's modulus also decreased. The glass substrate of Comparative Example 3 having a high Al 2 O 3 content of 12.9% and a B 2 O 3 content of 8.8% and an Al 2 O 3 content of 16.9% In many glass substrates of Comparative Example 4, the coefficient of linear thermal expansion decreased and the Young's modulus also decreased. Furthermore, the temperature T log η = 2 was high and the meltability of the glass was poor.

23を13.8%と多く含有した比較例5のガラス基板では、線熱膨張係数は小さく、アルカリ溶出量は多く、ヤング率は小さく、さらにビッカース硬度は低かった。反対にB23を含まない比較例6のガラス基板では、アルカリ溶出量が多かった。Al23の含有しない比較例7のガラス基板では失透しガラス化しなかった。CaOを12.3%と多く含有した比較例8のガラス基板では、アルカリ溶出量が多く、またビッカース硬度が低かった。さらにガラスに失透物が見られた。また、MgOを12.3%と多く含有した比較例9のガラス基板では、アルカリ溶出量が多く、ガラスに失透物が見られた。ZrO2を13.5%と含有した比較例10のガラス基板では、ガラスの溶融時に未溶物が見られた。また、TiO2を13.0%と多く含有した比較例11のガラス基板では、アルカリ溶出量が多く、ガラスに失透物が見られた。 In the glass substrate of Comparative Example 5 containing a large amount of B 2 O 3 of 13.8%, the coefficient of linear thermal expansion was small, the amount of alkali elution was large, the Young's modulus was small, and the Vickers hardness was low. On the contrary, in the glass substrate of Comparative Example 6 containing no B 2 O 3 , the amount of alkali elution was large. The glass substrate of Comparative Example 7 containing no Al 2 O 3 was devitrified and did not vitrify. In the glass substrate of Comparative Example 8 containing a large amount of CaO as 12.3%, the alkali elution amount was large and the Vickers hardness was low. In addition, devitrification was observed in the glass. Moreover, in the glass substrate of the comparative example 9 which contained MgO as much as 12.3%, there was much alkali elution amount and the devitrification thing was seen by glass. In the glass substrate of Comparative Example 10 containing 13.5% of ZrO 2 , undissolved substances were observed when the glass was melted. Moreover, in the glass substrate of Comparative Example 11 containing a large amount of TiO 2 as 13.0%, the amount of alkali elution was large, and devitrified substances were observed in the glass.

Figure 2006327936
Figure 2006327936

表6に示すように、実施例の各ガラス基板及び比較例のガラス基板では研磨工程後の表面粗度Raはいずれも1.0nm以下であったが、水酸化ナトリウム液で洗浄した後は、実施例の各ガラス基板ではRa’/Raが1.3以下と良好な結果であったのに対し、比較例1のガラス基板ではRa’/Raは1.9と、洗浄工程後のガラス表面粗度Ra’が大きくなり実用上問題があった。   As shown in Table 6, in each glass substrate of the example and the glass substrate of the comparative example, the surface roughness Ra after the polishing step was 1.0 nm or less, but after washing with a sodium hydroxide solution, In each glass substrate of the example, Ra ′ / Ra was 1.3 or less, whereas in the glass substrate of Comparative Example 1, Ra ′ / Ra was 1.9, and the glass surface after the cleaning step The roughness Ra ′ was increased, causing a problem in practical use.

本発明のガラス基板を用いた情報記録用媒体の一例を示す斜視図である。It is a perspective view which shows an example of the information recording medium using the glass substrate of this invention.

符号の説明Explanation of symbols

1 ガラス基板
2 磁性膜
D 磁気ディスク
1 Glass substrate 2 Magnetic film D Magnetic disk

Claims (4)

重量%で、
SiO2:45〜70%、
Al23:1〜5.0%、
23:1.0〜8%、
Li2O+Na2O+K2O:7〜20%、
MgO:0.1〜10%、
CaO:0.1〜10%、
MgO+CaO:1〜15%、
TiO2:0.5〜10%、
ZrO2:0.5〜10%、
ZnO:0〜5%、
La23:0〜8%
の各ガラス成分を有することを特徴とするガラス基板。
% By weight
SiO 2: 45~70%,
Al 2 O 3 : 1 to 5.0%,
B 2 O 3 : 1.0-8%,
Li 2 O + Na 2 O + K 2 O: 7-20%,
MgO: 0.1 to 10%,
CaO: 0.1 to 10%,
MgO + CaO: 1 to 15%,
TiO 2 : 0.5 to 10%,
ZrO 2 : 0.5 to 10%,
ZnO: 0 to 5%,
La 2 O 3 : 0 to 8%
A glass substrate characterized by having each glass component.
線熱膨張係数Aが60×10-7/℃以上で、アルカリ溶出量Bが2.5インチディスク当たり250ppb以下で、ヤング率Eが85GPa以上であって、さらに下記式を満足し、表面および内部の組成が均質で且つアモルファス構造を有する請求項1記載のガラス基板。
(A/B)×E×107≧30 ・・・・・・(1)
The linear thermal expansion coefficient A is 60 × 10 −7 / ° C. or more, the alkali elution amount B is 250 ppb or less per 2.5 inch disk, the Young's modulus E is 85 GPa or more, and the following formula is satisfied. The glass substrate according to claim 1, wherein the internal composition is uniform and has an amorphous structure.
(A / B) × E × 10 7 ≧ 30 (1)
ビッカース硬度Hvが550より大きく、液相温度TLが1,300℃以下で、ガラスの溶融粘性logη=2となる温度Tlogη=2が1,450℃以下で、ガラス転移温度Tgが600℃以下である請求項1又は2記載のガラス基板。 Vickers hardness Hv is greater than 550, liquidus temperature T L is 1,300 ° C. or less, temperature T log η = 2 at which glass melt viscosity log η = 2 is 1,450 ° C. or less, and glass transition temperature Tg is 600 The glass substrate according to claim 1 or 2, wherein the glass substrate has a temperature of ° C or less. 研磨工程および洗浄工程を経て作製されるガラス基板であって、前記洗浄工程では純水、酸、アルカリの少なくとも1つの液により洗浄され、前記研磨工程後の表面粗度Raと前記洗浄工程後の表面粗度Ra’とが下記式(2)、(3)
Ra’/Ra≦1.5 ・・・・・・(2)
Ra≦1.0nm ・・・・・・・・(3)
を満足する請求項1〜3のいずれかに記載のガラス基板。
A glass substrate manufactured through a polishing step and a cleaning step, wherein the glass substrate is cleaned with at least one liquid of pure water, acid, and alkali in the cleaning step, and the surface roughness Ra after the polishing step and after the cleaning step The surface roughness Ra ′ is the following formula (2), (3)
Ra ′ / Ra ≦ 1.5 (2)
Ra ≦ 1.0nm (3)
The glass substrate in any one of Claims 1-3 which satisfy | fills.
JP2006228863A 2006-08-25 2006-08-25 Glass substrate Pending JP2006327936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228863A JP2006327936A (en) 2006-08-25 2006-08-25 Glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228863A JP2006327936A (en) 2006-08-25 2006-08-25 Glass substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002166548A Division JP4282273B2 (en) 2002-06-07 2002-06-07 Glass substrate

Publications (1)

Publication Number Publication Date
JP2006327936A true JP2006327936A (en) 2006-12-07

Family

ID=37550011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228863A Pending JP2006327936A (en) 2006-08-25 2006-08-25 Glass substrate

Country Status (1)

Country Link
JP (1) JP2006327936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate
JP2012038361A (en) * 2010-08-03 2012-02-23 Showa Denko Kk Cerium oxide-based polishing agent and method for manufacturing hard disk substrate made of glass
US8795859B2 (en) 2010-06-24 2014-08-05 Hoya Corporation Magnetic recording medium
CN112851113A (en) * 2019-11-27 2021-05-28 成都光明光电股份有限公司 Glass composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010430A (en) * 2002-06-07 2004-01-15 Minolta Co Ltd Glass substrate
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010430A (en) * 2002-06-07 2004-01-15 Minolta Co Ltd Glass substrate
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate
US8795859B2 (en) 2010-06-24 2014-08-05 Hoya Corporation Magnetic recording medium
JP2012038361A (en) * 2010-08-03 2012-02-23 Showa Denko Kk Cerium oxide-based polishing agent and method for manufacturing hard disk substrate made of glass
CN112851113A (en) * 2019-11-27 2021-05-28 成都光明光电股份有限公司 Glass composition
CN112851113B (en) * 2019-11-27 2022-04-15 成都光明光电股份有限公司 Glass composition

Similar Documents

Publication Publication Date Title
JP4530618B2 (en) Glass composition and glass substrate
JP4039381B2 (en) Glass substrate for information recording medium using glass composition and information recording medium using the same
JP4282273B2 (en) Glass substrate
JP4337821B2 (en) Glass substrate for information recording medium and information recording medium using the same
JP4726399B2 (en) Glass substrate
US8916487B2 (en) Glass substrate for information recording medium
JP5613164B2 (en) Glass substrate for information recording medium and information recording medium
JP2016155750A (en) Glass for use in substrate for information recording medium, substrate for information recording medium and information recording medium and their production methods
JP4726400B2 (en) Manufacturing method of glass substrate
JP2006327935A (en) Glass substrate
JP2023166439A (en) Glass for magnetic recording medium substrate or for glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP2006327936A (en) Glass substrate
JP4161756B2 (en) Glass substrate
JP4151440B2 (en) Glass substrate
JP4225086B2 (en) Glass substrate
JP5375698B2 (en) Manufacturing method of glass substrate
JP4442051B2 (en) Glass substrate, information recording medium using the same, and optical communication element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A132

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A02 Decision of refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100521