JP2003099913A - Glass base plate for magnetic disk and magnetic disk using it - Google Patents

Glass base plate for magnetic disk and magnetic disk using it

Info

Publication number
JP2003099913A
JP2003099913A JP2001295345A JP2001295345A JP2003099913A JP 2003099913 A JP2003099913 A JP 2003099913A JP 2001295345 A JP2001295345 A JP 2001295345A JP 2001295345 A JP2001295345 A JP 2001295345A JP 2003099913 A JP2003099913 A JP 2003099913A
Authority
JP
Japan
Prior art keywords
less
magnetic disk
glass substrate
glass
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001295345A
Other languages
Japanese (ja)
Inventor
Takashi Namekawa
滑川  孝
Hirotaka Yamamoto
浩貴 山本
Takashi Naito
内藤  孝
Mitsutoshi Honda
光利 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001295345A priority Critical patent/JP2003099913A/en
Publication of JP2003099913A publication Critical patent/JP2003099913A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Abstract

PROBLEM TO BE SOLVED: To provide a glass base plate that can meet the requirement for high density recording and has an appropriate thermal expansion coefficient and Young's modulus with a high mechanical strength and is also excellent in mass production, and provide a magnetic disk that uses it. SOLUTION: This glass base plate for a magnetic disk is a glass plate that contains rare earth oxides of Pr, Nd, Sm, and Eu. This glass plate has a thermal expansion coefficient larger than 61×10<-7> / deg.C but less than 72×10<-7> / deg.C within the range of 30-100 deg.C. Its Young's modulus is 80 GPa or larger but 90 GPa or smaller and its transmissivity is 50% or larger but 80% or smaller to the visible light of the wavelength of 300 nm-700 nm. And also, its magnetization is 3×10<-3> emu/cc or less when a magnetic field of 1 kOe is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク用ガ
ラス基板に係わり、特に熱膨張係数及びヤング率に適正
で、さらに、量産性が良好な高密度記録に適した磁気デ
ィスク用ガラス基板及びそれを用いた磁気ディスクに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass substrate for a magnetic disk, and in particular, a glass substrate for a magnetic disk suitable for high density recording, which is suitable for thermal expansion coefficient and Young's modulus and has good mass productivity. Relates to a magnetic disk using.

【0002】[0002]

【従来の技術】現在、汎用大型コンピュータやパーソナ
ルコンピュータ用の記録媒体として、さらにはデジタル
信号で配信される映像を一時的に保管する家庭用のサー
バーとして、磁気ディスク装置が用いられている。従来
はこの磁気ディスク用の基板として汎用向けやデスクト
ップ型のパーソナルコンピューター用途には3.5″ サ
イズのアルミニウム基板が、また持ち運び可能なノート
型のパーソナルコンピューター用には主に2.5″ のガ
ラス基板が用いられてきた。
2. Description of the Related Art At present, magnetic disk devices are used as recording media for general-purpose large-sized computers and personal computers, and also as home servers for temporarily storing images distributed by digital signals. Conventionally, as a substrate for this magnetic disk, an aluminum substrate of 3.5 ″ size is used for general purpose or desktop personal computers, and a glass of 2.5 ″ is mainly used for a portable notebook computer. Substrates have been used.

【0003】このガラス基板はアルミニウム基板に比べ
硬くて変形し難く、かつ、表面平滑度が優れているた
め、前記汎用型の3.5″ あるいは3″サイズの基板に
も適用されるようになってきている。さらには1.8″
,1″といった小型携帯端末用の記録装置にもこのガ
ラス基板が適用されようとしている。
Since this glass substrate is harder than an aluminum substrate and is less likely to be deformed and has excellent surface smoothness, it can be applied to the general-purpose substrate of 3.5 "or 3" size. Is coming. Furthermore 1.8 "
, 1 ″, such a glass substrate is about to be applied to a recording device for a small mobile terminal.

【0004】こうした小型化の他、磁気ディスク装置に
対する大容量化の要請が強まっており、近年では年率1
00%の割合でその記憶容量が増大している。これに対
応するには記録部の磁気ヘッドの浮上量をより低減させ
る必要があるため、より平滑な記録面を持つ磁気ディス
クの開発が必要である。
In addition to such miniaturization, there is an increasing demand for larger capacity of the magnetic disk device, and in recent years, the annual rate is 1
The storage capacity is increasing at a rate of 00%. In order to cope with this, it is necessary to further reduce the flying height of the magnetic head in the recording section, and therefore it is necessary to develop a magnetic disk having a smoother recording surface.

【0005】現在では、化学強化ガラス基板や、結晶化
ガラス基板を用いることにより、ガラス本来の持つ割れ
の問題を克服している。しかしながら、化学強化された
非晶質のガラス基板では、化学強化の工程の際、アルカ
リイオンの置換によって強化するために表面が荒れ、将
来のヘッド低浮上化に対応することが難しい。さらに上
記のような使用環境下では、化学強化ガラスの表面は、
置換されたイオン半径の大きいアルカリイオンが化学的
に不安定であるため、生産工程中の洗浄工程や成膜工程
における加熱過程の際、あるいは長期間の使用や高温多
湿といった環境のもとでこのアルカリイオンが基板表面
に移動,析出し、磁性膜の磁気特性の劣化、膜の剥がれ
や粘着などの不良を生ずることが懸念される。
At present, the problem of breakage inherent in glass is overcome by using a chemically strengthened glass substrate or a crystallized glass substrate. However, in the chemically strengthened amorphous glass substrate, the surface is roughened because it is strengthened by the substitution of alkali ions during the chemical strengthening process, and it is difficult to cope with future low head flying height. Furthermore, under the use environment as described above, the surface of the chemically strengthened glass is
Since the substituted alkali ions with a large ionic radius are chemically unstable, this may occur during the cleaning process in the production process, the heating process in the film formation process, or under the environment of long-term use or high temperature and high humidity. There is a concern that alkali ions may move and precipitate on the surface of the substrate, resulting in deterioration of the magnetic properties of the magnetic film, peeling of the film, and adhesion.

【0006】一方、結晶化ガラス基板は、非晶質なガラ
スの中に結晶質の微粒子が生成しているが、この非晶質
部分と結晶部分の硬度差により研磨速度が異なり、磁気
ディスクに求められている更なる高密度化に対応できる
十分な平滑性を持った記録面が作り難いという問題があ
った。
On the other hand, in the crystallized glass substrate, crystalline fine particles are formed in amorphous glass. However, the polishing rate varies depending on the hardness difference between the amorphous part and the crystalline part, and thus the magnetic disk is There has been a problem that it is difficult to form a recording surface having sufficient smoothness to meet the demand for higher density.

【0007】上記のような問題を克服するため、発明者
らは、特開平10−083531号公報に記載のよう
に、ガラス基板に希土類イオンを含有させることにより
機械的強度を高め、この問題を解決している。
In order to overcome the above problems, the inventors of the present invention increase the mechanical strength by containing rare earth ions in the glass substrate as described in Japanese Patent Application Laid-Open No. 10-083531. Has been resolved.

【0008】[0008]

【発明が解決しようとする課題】上記特開平10−08
3531号公報では、基板の機械的強度は高いガラス基
板は得られるものの、磁気ディスク用ガラス基板として
必要な特性である熱膨張係数やヤング率の適正化が十分
に考慮されているとは言いがたかった。そのため、熱衝
撃などの熱的環境試験においてガラス基板とそれを支持
する磁気ディスクドライブ装置部材との熱膨張特性の不
整合、あるいはヤング率の不具合による上記ドライブ装
置の高速回転時に生じるトラックずれが発生することが
考えられる。これは、今後の大容量化に伴い、より厳し
い課題となるものと思われる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In Japanese Patent No. 3531, although a glass substrate having a high mechanical strength can be obtained, it cannot be said that the thermal expansion coefficient and Young's modulus, which are the properties required as a glass substrate for a magnetic disk, are adequately considered. I wanted Therefore, in a thermal environment test such as thermal shock, there is a mismatch between the thermal expansion characteristics of the glass substrate and the magnetic disk drive device member that supports it, or a track shift occurs during high-speed rotation of the drive device due to a defect in Young's modulus. It is possible to do it. This is expected to become a more severe subject as the capacity increases in the future.

【0009】そこで本発明では、特に熱膨張係数及びヤ
ング率が適正で、さらに、量産性が良好な高密度記録に
適した磁気ディスク用ガラス基板及びそれを用いた磁気
ディスクを得ることを目的とした。
In view of the above, the present invention has an object to obtain a glass substrate for a magnetic disk and a magnetic disk using the same, which have suitable thermal expansion coefficient and Young's modulus and are suitable for mass production with good mass productivity. did.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の磁気ディスク用ガラス基板は、重量百分率
でSiO2:55%以上,70%以下、Al23:10
%以上,17%以下、B23:2%以上,8%以下、R
2O:10%以上,16%以下(Rはアルカリ金属元素
を表す)、ZnO:0%以上,10%以下 ReO:0%以上,10%以下(Reはアルカリ土類金
属元素を表す)の酸化物換算で示される酸化物を含有
し、さらに下記の酸化物換算の重量百分率でPr23
たはNd23を1%以上,7%以下、またはSm23
2.5% 以上,9%以下、またはEu23を2.5%以
上 ,8%以下を含有し、30℃〜100℃の温度範囲
における熱膨張係数が61×10-7/℃以上,72×1
-7/℃以下である。
In order to solve the above problems, the glass substrate for a magnetic disk of the present invention has a weight percentage of SiO 2 : 55% or more and 70% or less, Al 2 O 3 : 10.
% Or more, 17% or less, B 2 O 3 : 2% or more, 8% or less, R
2 O: 10% or more and 16% or less (R represents an alkali metal element), ZnO: 0% or more, 10% or less ReO: 0% or more, 10% or less (Re represents an alkaline earth metal element) It contains an oxide expressed as an oxide and further contains Pr 2 O 3 or Nd 2 O 3 in an amount of 1% or more and 7% or less, or Sm 2 O 3 of 2.5% in the following oxide conversion weight percentage. or 9% or less, or Eu 2 O 3 2.5% or more, containing 8% or less, a thermal expansion coefficient in a temperature range of 30 ° C. to 100 ° C. is 61 × 10 -7 / ℃ or higher, 72 × 1
It is 0 -7 / ° C or less.

【0011】さらに本発明の磁気ディスク用ガラス基板
は、ヤング率が80GPa以上,90GPa以下であ
り、波長300nm〜700nmの可視光における透過
率が50%以上85%以下であり、かつ1kOeの磁界
を印加したときの磁化が3×10-3emu/cc以下であ
る。
Further, the glass substrate for a magnetic disk of the present invention has a Young's modulus of 80 GPa or more and 90 GPa or less, a transmittance of visible light of wavelength 300 nm to 700 nm of 50% or more and 85% or less, and a magnetic field of 1 kOe. The magnetization when applied is 3 × 10 −3 emu / cc or less.

【0012】また本発明の磁気ディスクは、磁気ディス
ク用ガラス基板と、この基板上に直接又は他の層を介し
て形成された磁性層を有する磁気ディスクであって、上
記ガラス基板は重量百分率でSiO2:55%以上,7
0%以下、Al23:10%以上,17%以下、B
23:2%以上,8%以下、R2O:10%以上,16
%以下(Rはアルカリ金属元素を表す)、ZnO:0%
以上,10%以下 ReO:0%以上,10%以下(Reはアルカリ土類金
属元素を表す)の酸化物換算で示される酸化物を含有
し、さらに下記の酸化物換算の重量百分率でPr23
たはNd23を1%以上,7%以下、またはSm23
2.5% 以上,9%以下、またはEu23を2.5% 以
上,8%以下を含有し、30℃〜100℃の温度範囲に
おける熱膨張係数が61×10-7/℃以上,72×10
-7/℃以下である。
The magnetic disk of the present invention is a magnetic disk having a glass substrate for a magnetic disk and a magnetic layer formed on the glass substrate directly or through another layer, wherein the glass substrate is in weight percentage. SiO 2 : 55% or more, 7
0% or less, Al 2 O 3 : 10% or more, 17% or less, B
2 O 3 : 2% or more, 8% or less, R 2 O: 10% or more, 16
% Or less (R represents an alkali metal element), ZnO: 0%
Or more, 10% or less ReO: 0% or more, 10% or less (Re represents an alkaline earth metal element) containing an oxide represented by oxide conversion, and further, Pr 2 in the following oxide conversion weight percentage: Contains O 3 or Nd 2 O 3 in an amount of 1% to 7%, Sm 2 O 3 in an amount of 2.5% to 9%, or Eu 2 O 3 in an amount of 2.5% to 8%. , The coefficient of thermal expansion in the temperature range of 30 ° C. to 100 ° C. is 61 × 10 −7 / ° C. or more, 72 × 10
-7 / ° C or less.

【0013】また本発明の磁気ディスクは、少なくとも
ガラス基板と、その表面上に直接または他の層を介して
形成される磁性膜とを有する磁気ディスクであって、前
記ガラス基板の面粗さヤング率が80GPa以上,90
GPa以下であり、このガラス基板の波長300nm〜
700nmの可視光における透過率が50%以上85%
以下であり、かつこのガラス基板に1kOeの磁界を印
加したときの磁化が3×10-3emu/cc以下である。
The magnetic disk of the present invention is a magnetic disk having at least a glass substrate and a magnetic film formed on the surface of the glass substrate directly or through another layer, and the surface roughness of the glass substrate is Young. Rate is over 80 GPa, 90
The glass substrate has a wavelength of 300 nm or less
Transmittance in visible light of 700 nm is 50% or more and 85%
And the magnetization when a magnetic field of 1 kOe is applied to this glass substrate is 3 × 10 −3 emu / cc or less.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail.

【0015】(実施例1)図1に、本発明による磁気デ
ィスク基板の平面図を示す。本発明では磁気ディスク用
ガラス基板1として直径65mmφ,厚さ0.635mmの
2.5″ 型ガラス基板を作製した。なお、この基板は内
周チャックのための直径20mmφの丸穴2が形成されて
いる。また、この内周,外周部は、チャンファー部3が
形成されている。このチャンファーは、基板エッジ部に
両面45°の面取りがなされている。
(Embodiment 1) FIG. 1 is a plan view of a magnetic disk substrate according to the present invention. In the present invention, a 2.5 ″ type glass substrate having a diameter of 65 mmφ and a thickness of 0.635 mm was produced as the glass substrate 1 for a magnetic disk. In this substrate, a circular hole 2 having a diameter of 20 mmφ for an inner peripheral chuck was formed. A chamfer portion 3 is formed on the inner and outer peripheries of the chamfer.

【0016】この磁気ディスク用ガラス基板の作製は、
以下のようにして行った。まず、目的のガラス組成にな
るように定められた量の原料粉末を秤量して混合し、白
金製の坩堝に入れて、電気炉中で1600℃で溶解し
た。原料が十分に溶解した後、攪拌羽をガラス融液に挿
入し、約4時間攪拌した。その後、攪拌羽を取り出し、
30分間静置した後、鋳型に融液を流し込むことによっ
て直径約70mmφ,厚さ約1mmのガラスブロックを得
た。その後、このガラスのガラス転移点付近までガラス
ブロックを再加熱し、徐冷して歪み取りを行った。
The production of this glass substrate for magnetic disk is
The procedure was as follows. First, raw material powders in an amount determined so as to have a desired glass composition were weighed and mixed, put into a platinum crucible, and melted at 1600 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, a stirring blade was inserted into the glass melt and stirred for about 4 hours. After that, take out the stirring blade,
After standing still for 30 minutes, the melt was poured into a mold to obtain a glass block having a diameter of about 70 mmφ and a thickness of about 1 mm. Then, the glass block was reheated to near the glass transition point of this glass and gradually cooled to remove strain.

【0017】次いで、歪み取りされたガラスブロックを
内周,外周を同心円としてコアドリルを用いて切り出し
た。さらに、内外周をダイヤモンド砥石を用いてチャン
ファー部の面取り加工を行った。その後、両面を粗研磨
し、次いでポリッシングを行い、さらに洗浄剤、純水で
基板を洗浄し、磁気ディスク用ガラス基板とした。以上
のように本発明の磁気ディスク用ガラス基板では、化学
強化処理のような特別な強化処理を施していない。
Next, the strain-relieved glass block was cut out using a core drill with the inner circumference and the outer circumference being concentric circles. Further, chamfering of the chamfer portion was performed on the inner and outer circumferences using a diamond grindstone. Then, both surfaces were roughly polished, then polished, and the substrate was washed with a cleaning agent and pure water to obtain a glass substrate for a magnetic disk. As described above, the glass substrate for a magnetic disk of the present invention is not subjected to any special strengthening treatment such as chemical strengthening treatment.

【0018】本基板上に磁性膜を成膜し、磁気ディスク
を作製した。図2に、本発明で作製した磁気記録媒体の
断面構造の概略図を示す。図2において1は本発明で作
製したガラス基板、4は磁性膜の粒径を制御するための
粒径制御層、5は磁性膜の配向を制御するための配向制
御層、6は磁性膜、7は保護膜、8は潤滑膜である。本
発明では4の粒径制御層としてNiAl系の合金膜を2
0nm成膜した。また5の配向制御層としてCrMo系
合金薄膜を10nm、さらに6の磁性膜としてCoCr
PrB系磁性膜を20nm成膜した。また保護膜にはC
を4nm成膜した。これらの薄膜はすべてスパッタリン
グ法を用いて成膜した。また潤滑膜はスパッタ終了後、
塗布法によって形成した。
A magnetic film was formed on this substrate to prepare a magnetic disk. FIG. 2 shows a schematic view of a cross-sectional structure of the magnetic recording medium manufactured by the present invention. In FIG. 2, 1 is a glass substrate produced by the present invention, 4 is a grain size control layer for controlling the grain size of the magnetic film, 5 is an orientation control layer for controlling the orientation of the magnetic film, 6 is a magnetic film, Reference numeral 7 is a protective film, and 8 is a lubricating film. In the present invention, a NiAl alloy film is used as the grain size control layer of 2
A 0 nm film was formed. A CrMo-based alloy thin film having a thickness of 10 nm was used as the orientation control layer 5 and CoCr was used as a magnetic film 6.
A PrB-based magnetic film having a thickness of 20 nm was formed. In addition, the protective film is C
Was deposited to a thickness of 4 nm. All of these thin films were formed by using the sputtering method. Also, the lubricating film is
It was formed by a coating method.

【0019】以上のようにして作製した磁気ディスク用
ガラス基板、及びそれに磁性膜を形成した磁気ディスク
の特性,量産性を評価し、ガラス組成の検討を行った。
The glass composition for a magnetic disk manufactured as described above and the magnetic disk having a magnetic film formed thereon were evaluated for characteristics and mass productivity, and the glass composition was examined.

【0020】まず、添加する希土類元素の種類に着目
し、色々な組成のガラスを作製した。表1に、本発明で
作製したガラスの組成、及びそれらのガラス基板及び磁
気ディスクの特性を示す。
First, focusing on the kind of rare earth element to be added, glasses having various compositions were produced. Table 1 shows the composition of the glass produced in the present invention and the characteristics of the glass substrate and the magnetic disk.

【0021】[0021]

【表1】 [Table 1]

【0022】表1において、希土類元素以外の母ガラス
組成は、同一組成のアルミノホウケイ酸ガラスとした。
含有させる希土類酸化物の量はいずれも2.8 重量%と
一定にした。ガラス基板の特性として、マイクロビッカ
ース硬さ,可視光の透過率、及び着色性及びガラス基板
の歩留まりを評価した。マイクロビッカース硬さは重量
500g,荷重印加時間15秒の条件で荷重を印加し、
10点の平均値として求めた。可視光の透過率は、分光
光度計を用いて300nmから700nmまでの波長の
分光透過率曲線より透過率スペクトルを測定し、この波
長範囲の光の全透過率の積分値として求めた。着色性は
目視により着色の程度を評価し、黒色のものは×、着色
しているものは○とした。歩留まりの評価は、ガラス基
板をレーザー光照射による散乱光により異物数を検査す
る装置により評価し、気泡,研磨傷,かけ,表面異物等
の不良がディスク片面当たり20個以上のものを不良と
してカウントし、不良でないものの割合を評価した。
In Table 1, the mother glass composition other than the rare earth elements was aluminoborosilicate glass having the same composition.
The amount of rare earth oxide contained was constant at 2.8% by weight. As the characteristics of the glass substrate, the micro Vickers hardness, the visible light transmittance, the coloring property, and the yield of the glass substrate were evaluated. The micro Vickers hardness is 500 g and the load is applied for 15 seconds.
It was determined as an average value of 10 points. The transmittance of visible light was obtained as an integral value of the total transmittance of light in this wavelength range by measuring a transmittance spectrum from a spectral transmittance curve of wavelengths from 300 nm to 700 nm using a spectrophotometer. The colorability was evaluated by visually observing the degree of coloring, and the black ones were marked with X, and the colored ones were marked with ◯. The yield is evaluated by a device that inspects the number of foreign substances on the glass substrate by scattered light from laser light irradiation, and defects such as bubbles, polishing scratches, chips, and surface foreign substances are counted as 20 or more defects on each side of the disk. Then, the ratio of non-defective ones was evaluated.

【0023】また磁気ディスクの特性として磁化、及び
磁化の標準偏差,記録再生特性及び磁気ディスクの歩留
まりを評価した。また基板加工前のブロック作製から磁
気ディスク作製にいたるまでの総合歩留まりを評価し
た。磁化及び磁化の標準偏差は、B−H曲線を振動試料
型磁力計(VSM)によって測定し、磁性膜のヒステリ
シスループのバックグラウンド成分を基板からの磁性と
し、そのバックグラウンド成分の大きさを評価した。表
には磁界として1kOe印加したときのバックグラウン
ドの磁化の大きさを掲載した。
As the characteristics of the magnetic disk, the magnetization, the standard deviation of the magnetization, the recording / reproducing characteristics, and the yield of the magnetic disk were evaluated. In addition, the overall yield from the block fabrication before substrate processing to the magnetic disk fabrication was evaluated. The magnetization and the standard deviation of the magnetization are measured by measuring the BH curve with a vibrating sample magnetometer (VSM), and the background component of the hysteresis loop of the magnetic film is regarded as magnetism from the substrate, and the magnitude of the background component is evaluated. did. The table shows the magnitude of background magnetization when a magnetic field of 1 kOe was applied.

【0024】またこの磁気ディスクの記録再生特性を評
価した。図3に、本発明で作製した記録再生特性評価用
の磁気ディスクドライブを示す。図3において、9は磁
気ディスク、10はスピンドル、11は磁気ヘッド、1
2は磁気ヘッドのアーム、13はヘッドを駆動するため
のボイスコイルモーター、14は全体を支える筐体であ
る。なお、この図では記されていないが、磁気ディスク
9の下部にはスピンドルモーターが設置されており、デ
ィスク全体を回転させる。図3の磁気ディスクドライブ
に各磁気ディスクを搭載し、20Gb/in2 に相当す
る磁気信号を記録し、磁気記録再生特性を評価した。こ
の評価を150枚のディスクに対して行い、十分な記録
再生特性が得られたものの割合を磁気ディスク歩留まり
として表記した。
The recording / reproducing characteristics of this magnetic disk were evaluated. FIG. 3 shows a magnetic disk drive manufactured by the present invention for evaluating recording / reproducing characteristics. In FIG. 3, 9 is a magnetic disk, 10 is a spindle, 11 is a magnetic head, 1
Reference numeral 2 is an arm of the magnetic head, 13 is a voice coil motor for driving the head, and 14 is a casing for supporting the whole. Although not shown in this figure, a spindle motor is installed below the magnetic disk 9 to rotate the entire disk. Each magnetic disk was mounted on the magnetic disk drive of FIG. 3, a magnetic signal corresponding to 20 Gb / in 2 was recorded, and the magnetic recording / reproducing characteristics were evaluated. This evaluation was performed on 150 disks, and the ratio of those having sufficient recording / reproducing characteristics was expressed as the magnetic disk yield.

【0025】さらに上部のガラス基板歩留まりと磁気デ
ィスク歩留まりより総合歩留まりを評価した。総合での
歩留まりが80%未満のものを×、80%以上90%未
満のものを○、90%以上のものを◎とした。
Further, the total yield was evaluated from the yield of the glass substrate on the upper part and the yield of the magnetic disk. When the overall yield was less than 80%, it was evaluated as X, when 80% or more and less than 90% was evaluated as ◯, and when 90% or more was evaluated as ◎.

【0026】表1の基板特性のマイクロビッカース硬さ
はいずれの基板でも640以上が得られており、良好で
あることが分かった。また可視光の透過率は、いずれの
基板でも80%以上であった。これらのうちNd,P
r,Sm,Eu,Ho,Erは可視光域に希土類のf−
f遷移に起因するシャープな吸収が見られた。このた
め、他の元素に比べて透過率は若干低下しており、85
%以下であった。しかしながらこの鋭い吸収のため、ガ
ラス基板に明確な着色が見られた。白熱灯下での目視観
察による評価では、Prは黄緑、Ndは紫色、Sm,E
uは非常に淡いがそれぞれ黄色と桃色に着色しているの
が見られた。また、Er,Hoも桃色に着色していた。
The micro-Vickers hardness of the substrate characteristics shown in Table 1 was 640 or more on any of the substrates, which proved to be good. In addition, the transmittance of visible light was 80% or more on any of the substrates. Of these, Nd and P
r, Sm, Eu, Ho and Er are f-of rare earths in the visible light region.
Sharp absorption due to the f transition was observed. Therefore, the transmittance is slightly lower than that of other elements.
% Or less. However, due to this sharp absorption, clear coloring was seen on the glass substrate. By visual observation under an incandescent lamp, Pr is yellow-green, Nd is purple, Sm, E
u was very light, but it was seen to be colored yellow and pink respectively. Further, Er and Ho were also colored pink.

【0027】そのほかの希土類元素を含有させた基板は
無色であり、透過率はいずれも85%を超え、着色は見
られなかった。
Substrates containing other rare earth elements were colorless and had a transmittance of more than 85% and no coloring was observed.

【0028】これらの基板に対するガラス基板の歩留ま
りを評価すると、明瞭な着色の見られたPr,Nd,S
m,Eu,Ho,Erでは加工による不良、特に傷不良
が着色していないものに比べて少なく、歩留まりが95
%以上となった。これは、基板加工工程、洗浄工程にお
いて基板が可視であるため、取扱いが容易なことから歩
留まりが向上したと考えられる。
When the yields of the glass substrates with respect to these substrates were evaluated, Pr, Nd and S showing clear coloring were observed.
With m, Eu, Ho, and Er, the number of defects due to processing, especially scratches, was smaller than that of the uncolored product, and the yield was 95.
It was over%. It is considered that this is because the substrate is visible in the substrate processing step and the cleaning step, and thus the handling is easy, and thus the yield is improved.

【0029】また比較例として酸化ニッケル(NiO)
を含有する着色性の高いガラス基板について評価した。
この基板は透過率が47%と低く、ガラス中に存在する
気泡、あるいは熔融時のるつぼを構成する成分のガラス
中への溶損を発見することが難しく、基板表面にこれら
が残存することから歩留まりが低下していた。また若干
NiO含有量を低下させ、透過率を50%以下としたガ
ラス基板では、基板を光が透過して、基板内部を観察可
能であることが分かった。このため、気泡などによる不
良が減少し、歩留まりが向上した。
As a comparative example, nickel oxide (NiO)
A glass substrate having a high coloring property containing was evaluated.
Since this substrate has a low transmittance of 47%, it is difficult to find bubbles present in the glass or melting loss of the components that make up the crucible in the glass during melting, and these remain on the substrate surface. The yield was falling. Further, it was found that in the glass substrate in which the NiO content was slightly reduced and the transmittance was 50% or less, light was transmitted through the substrate and the inside of the substrate could be observed. Therefore, defects due to bubbles and the like are reduced, and the yield is improved.

【0030】以上のことから、透過率と磁気ディスクの
歩留まりとの間に明瞭な相関関係が見られた。ガラス基
板の透過率が50%以上85%以下のとき着色性が良好
で、歩留まりが良好なガラス基板が得られた。透過率が
50%未満となると基板中に残存する気泡、炉材混入が
発見し難く、歩留まり低下の要因となった。また基板の
透過率が85%をこえると、基板取扱いが難しくなり、
傷などの加工不良が増加していたため、好ましいといえ
なかった。
From the above, a clear correlation was found between the transmittance and the yield of magnetic disks. When the transmittance of the glass substrate was 50% or more and 85% or less, the colorability was good, and a glass substrate with a good yield was obtained. When the transmittance was less than 50%, it was difficult to find bubbles remaining in the substrate and the mixture of furnace materials, which was a factor of lowering the yield. Also, when the transmittance of the substrate exceeds 85%, it becomes difficult to handle the substrate,
Since the number of processing defects such as scratches increased, it was not preferable.

【0031】また上記の光学的な特性を達成するため、
添加する元素はPr,Nd,Sm,Eu,Er又はHo
が良好であることが分かった。このうち、Pr,Nd,
Er又はHoであれば着色が顕著であり、より好ましか
った。
In order to achieve the above optical characteristics,
The element to be added is Pr, Nd, Sm, Eu, Er or Ho.
Was found to be good. Of these, Pr, Nd,
Er or Ho was more preferable because the coloring was remarkable.

【0032】次に、磁気ディスクの磁気特性について評
価した。Sc,Y,Laを含有した磁気ディスクでは、
基板の磁化の大きさが10-4emu/ccのオーダーであ
り、きわめて小さい磁化量であった。Smを用いたとき
は、磁化は反磁性的な挙動を示しており、−4×10-4
emu/ccとなった。またPr,Nd,Euでは1.0〜
3.0×10-3emu/ccのオーダーであったが、G
d,Tb,Dy,Ho,Er,Tm,Ybでは5×10
-3〜2×10-2emu/ccと、磁化の値が大きくなって
いた。
Next, the magnetic characteristics of the magnetic disk were evaluated. In the magnetic disk containing Sc, Y, La,
The magnitude of magnetization of the substrate was on the order of 10 −4 emu / cc, and the amount of magnetization was extremely small. When Sm is used, the magnetization exhibits diamagnetic behavior, and is −4 × 10 −4.
It became emu / cc. For Pr, Nd and Eu, 1.0-
It was on the order of 3.0 × 10 -3 emu / cc, but G
5 × 10 for d, Tb, Dy, Ho, Er, Tm, Yb
The magnetization value was as large as −3 to 2 × 10 −2 emu / cc.

【0033】磁化の固体差を示す磁化の標準偏差を評価
したところ、磁化の大きさの大きいものほど大きくなっ
ており、基板によるばらつきが大きくなっていた。とく
に磁化の大きさが3×10-3を超えるGd,Tb,D
y,Ho,Er,Tm,Ybでは、磁化の標準偏差が1
×10-3emu/cc以上となり、基板による磁気特性の
ばらつきが大きくなった。
When the standard deviation of the magnetization showing the individual difference in the magnetization was evaluated, it was found that the larger the magnitude of the magnetization was, the larger it was, and the larger the variation due to the substrate was. In particular, the magnitude of magnetization exceeds 3 × 10 -3 Gd, Tb, D
For y, Ho, Er, Tm, and Yb, the standard deviation of magnetization is 1
X10 -3 emu / cc or more, and the variation in magnetic characteristics depending on the substrate increased.

【0034】磁気記録再生特性による磁気ディスク歩留
まりを見ると、磁化が3×10-3emu/cc以下で、磁
化の標準偏差が1×10-3emu/cc未満の試料では、
良好な磁気特性の得られる磁気ディスクが90%以上と
良好であったが、磁化が3×10-3emu/ccを超え、
かつ磁化の標準偏差が1×10-3emu/cc以上となる
試料では、歩留まりが80%以下と急激に低下している
ことが分かった。これは、基板に含有される希土類元素
の若干の固体差により基板の磁気特性が変化し、そのた
めに標準偏差が大きくなるため、記録する際の磁界を一
定にした場合の記録にばらつきが生じたためと考えられ
る。
Looking at the magnetic disk yield due to the magnetic recording / reproducing characteristics, in the case where the magnetization is 3 × 10 −3 emu / cc or less and the standard deviation of the magnetization is less than 1 × 10 −3 emu / cc,
The magnetic disk with good magnetic characteristics was 90% or more, but the magnetization exceeded 3 × 10 -3 emu / cc,
Moreover, it was found that the yield of the sample having the standard deviation of magnetization of 1 × 10 −3 emu / cc or more was drastically reduced to 80% or less. This is because the magnetic characteristics of the substrate change due to slight differences in the solids of the rare earth elements contained in the substrate, which increases the standard deviation, resulting in variations in recording when the magnetic field during recording is constant. it is conceivable that.

【0035】以上より、基板の磁化に与える影響が小さ
い希土類元素としてSc,Y,La,Pr,Nd,S
m,Euが良好であった。また、磁化の大きさが3×1
-3emu/cc以下であれば磁気記録再生のばらつきが
小さい磁気記録媒体が得られた。磁化の大きさが3×1
-3emu/ccを超えると磁気記録再生特性に基板ごと
のばらつきが大きくなるため、好ましいとはいえなかっ
た。
From the above, Sc, Y, La, Pr, Nd and S are used as rare earth elements which have a small influence on the magnetization of the substrate.
m and Eu were good. Also, the magnitude of magnetization is 3 × 1
When it was 0 −3 emu / cc or less, a magnetic recording medium with small variations in magnetic recording and reproduction was obtained. The magnitude of magnetization is 3 × 1
When it exceeds 0 −3 emu / cc, the magnetic recording / reproducing characteristics vary greatly from substrate to substrate, and therefore it is not preferable.

【0036】上記の光学的な特性が及ぼすガラス基板の
歩留まりに与える影響、及び磁気的な特性が記録再生特
性に及ぼす影響を考慮して総合歩留まりを評価した。そ
の結果、両者とも良好なPr,Nd,Sm,Euを用い
たガラス基板の場合、総合歩留まりが80%以上とな
り、良好であった。これに対してその他の希土類を添加
した場合には、総合歩留まりが80%以下となるため、
良好といえなかった。
The overall yield was evaluated in consideration of the influence of the above optical characteristics on the yield of the glass substrate and the influence of the magnetic characteristics on the recording / reproducing characteristics. As a result, in the case of both glass substrates using good Pr, Nd, Sm, and Eu, the overall yield was 80% or more, which was good. On the other hand, when other rare earths are added, the total yield becomes 80% or less,
It wasn't good.

【0037】また、特に希土類元素としてPrを用いる
と、総合歩留まりが90%となり、さらに良好な結果が
得られた。
Further, particularly when Pr is used as the rare earth element, the total yield is 90%, and a further excellent result is obtained.

【0038】次に、希土類酸化物の種類と添加量の関係
について詳細に調べた。着色については、表1で透明で
あったものについては含有量を増減させても透過率に変
化は見られなかった。このため、着色した元素のうち、
Pr,Er,Smについて、その含有量を変化させたガ
ラス基板を作製し、表1と同様の検討を行った。表2
に、検討した結果を示す。
Next, the relationship between the kind of rare earth oxide and the amount added was examined in detail. Regarding the coloring, the transparent ones shown in Table 1 showed no change in transmittance even if the content was increased or decreased. Therefore, among the colored elements,
A glass substrate was prepared in which the contents of Pr, Er, and Sm were changed, and the same examination as in Table 1 was conducted. Table 2
The results of the examination are shown in.

【0039】[0039]

【表2】 [Table 2]

【0040】Prの含有量を変化させていったところ、
試料No.17のPr23を0.7重量%含有するガラス
基板では、マイクロビッカース硬さが低く、そのためガ
ラスの機械的強度が低いためにガラス基板歩留まりが8
2%と低かった。1%の試料No.16、及び1.5%〜
7%の実施例18〜21では、マイクロビッカース硬さ
も高い値を示しており、着色,磁気特性とも良好であっ
た。この事から総合歩留まりも80%を超えており、良
好な結果となった。
When the Pr content was changed,
The glass substrate containing 0.7 wt% of Pr 2 O 3 of Sample No. 17 has a low micro-Vickers hardness, and the mechanical strength of the glass is low, resulting in a glass substrate yield of 8
It was as low as 2%. 1% of sample No. 16 and 1.5% ~
In Examples 18 to 21 with 7%, the micro Vickers hardness also showed a high value, and the coloring and magnetic properties were good. From this fact, the total yield exceeded 80%, which was a good result.

【0041】一方、試料No.22のようにPr23
有量が7%を超えるものでは着色に関しては問題無かっ
たものの、磁気ディスクの磁化が3×10-3emu/cc
を超える値となった。このため、磁化のばらつきが大き
くなり、磁気ディスク歩留まりが80%を下回り、好ま
しい結果とは言えなかった。さらに実施例23のガラス
基板ではガラス中の希土類元素が均一にガラス中に溶解
せず、不良品数が多く、歩留まりが15%と低かった。
このため、ガラス基板材料としては好ましくなかった。
On the other hand, when the Pr 2 O 3 content exceeds 7% like sample No. 22, there was no problem in coloring, but the magnetization of the magnetic disk was 3 × 10 -3 emu / cc.
The value exceeded. For this reason, the variation in magnetization becomes large, and the magnetic disk yield falls below 80%, which is not a preferable result. Further, in the glass substrate of Example 23, the rare earth elements in the glass were not uniformly dissolved in the glass, the number of defective products was large, and the yield was low at 15%.
Therefore, it is not preferable as a glass substrate material.

【0042】さらに希土類元素をErに変えた場合の実
施例をみると、Er含有量が0.5%の試料No.25
では含有量が少なく、マイクロビッカース硬さが小さい
ため、歩留まりが悪かった。またこのとき磁気ディスク
の磁化の値が3.1 ×10-3emu/ccと高く、磁気デ
ィスクとしての歩留まりも低下していた。またEr含有
量が1%からEr含有量を増加させていくと、マイクロ
ビッカース硬さも高くなり、透過率は低くなって基板歩
留まりは上昇するものの、磁化が依然として3×10-3
emu/ccを超えるため、基板としての歩留まりが低下
していた。以上より、希土類元素としてErを用いた場
合では、基板の硬さ,光学特性,磁気特性の両者を同時
に満たす組成範囲が存在しないことが分かった。
Further, looking at the examples in which the rare earth element was changed to Er, sample No. 25 with an Er content of 0.5% was used.
However, the yield was poor because the content was low and the micro Vickers hardness was low. At this time, the magnetization value of the magnetic disk was as high as 3.1 × 10 −3 emu / cc, and the yield of the magnetic disk was also low. Further, when the Er content is increased from 1%, the Micro Vickers hardness is also increased, the transmittance is decreased and the substrate yield is increased, but the magnetization is still 3 × 10 −3.
Since it exceeded emu / cc, the yield as a substrate was reduced. From the above, it has been found that when Er is used as the rare earth element, there is no composition range that simultaneously satisfies both the hardness, optical characteristics, and magnetic characteristics of the substrate.

【0043】Smについてみると、光学的特性について
は2.5 重量%以上であると透過率が85%以下で適正
な範囲となった。磁気特性は10重量%含有させても適
正であったが、10重量%を超えるとPrの時と同様に
ガラス中に残存原料が残り、好ましくなかった。
Regarding Sm, regarding the optical characteristics, when the content was 2.5% by weight or more, the transmittance was 85% or less, which was in the proper range. Although the magnetic properties were proper even if contained in 10% by weight, if it exceeds 10% by weight, the residual raw material remains in the glass as in the case of Pr, which is not preferable.

【0044】同様にNd,Eu,Hoについて検討を行
ったところ、Nd,Euについては、8重量%を超える
場合に磁気特性が良好でなかったものの、Smと同様の
結果が得られた。HoについてはErと同じく、光学的
特性と磁気特性の両者を同時に満たす組成範囲が存在し
なかったため、好ましい結果が得られなかった。
Similarly, when Nd, Eu and Ho were examined, when Nd and Eu exceeded 8% by weight, the magnetic properties were not good, but the same results as Sm were obtained. As for Er, like Er, there was no composition range that simultaneously satisfied both optical characteristics and magnetic characteristics, so favorable results were not obtained.

【0045】以上より、光学的特性、磁気特性の双方で
好ましい組成範囲をとる希土類元素としてPr,Nd,
Sm,Euが良好であると判断できた。その中でもP
r,Ndを用いれば1重量%〜7重量%の組成範囲で良
好な組成範囲をとることができた。またSmの場合では
2.5 〜9重量%、Euの場合では2.5 〜8重量%で
良好な特性を得ることができた。またPrを1.5重量
%〜5.2重量%含有させた場合については、総合歩留
まりが90%以上となり、非常に良好な結果が得られ
た。
From the above, as a rare earth element having a preferable composition range in both optical characteristics and magnetic characteristics, Pr, Nd,
It was judged that Sm and Eu were good. Among them, P
When r and Nd were used, a good composition range could be obtained in the composition range of 1% by weight to 7% by weight. Further, good characteristics could be obtained in the case of Sm of 2.5 to 9% by weight and in the case of Eu of 2.5 to 8% by weight. Further, when Pr was contained in an amount of 1.5% by weight to 5.2% by weight, the overall yield was 90% or more, and very good results were obtained.

【0046】これらの希土類の含有量が少ないと、マイ
クロビッカース硬さなどの機械的強度が低かったり、透
過率が高かったりし、ガラス基板の歩留まりが低下する
ため好ましくなかった。また希土類含有量が多いと、基
板の磁化の値が大きくなるため、磁気特性が良好でなく
なった。また、さらに多量に添加するとガラス中に原料
が残存するため、好ましくなかった。
When the content of these rare earths is small, the mechanical strength such as micro Vickers hardness is low, the transmittance is high, and the yield of the glass substrate is lowered, which is not preferable. Further, when the content of the rare earth element is large, the value of the magnetization of the substrate becomes large, so that the magnetic characteristics are not good. Further, addition of a larger amount is not preferable because the raw material remains in the glass.

【0047】(実施例2)次に、磁気ディスク用ガラス
基板として適切なガラス組成範囲について検討した。表
3に、本発明で作製したガラス基板の実施例を示す。添
加する希土類としては実施例1で良好な結果が得られた
Prを用いた。表のガラス組成の中で、R2OとはLi2
O,Na2O,K2Oのトータルのアルカリ金属酸化物含
有量を示す。
Example 2 Next, a glass composition range suitable for a magnetic disk glass substrate was examined. Table 3 shows examples of the glass substrate manufactured according to the present invention. As the rare earth element to be added, Pr which gave good results in Example 1 was used. Among the glass compositions in the table, R 2 O is Li 2
The total content of alkali metal oxides of O, Na 2 O and K 2 O is shown.

【0048】[0048]

【表3】 [Table 3]

【0049】各試料について、磁気ディスク用ガラス基
板材料の熱膨張係数、磁気ディスク用ガラス基板を作製
して測定した熱衝撃試験結果、この基板を作製の際のガ
ラスの安定性、円環強度,ヤング率、高速回転試験結果
及び基板の表面粗さを示した。
For each sample, the thermal expansion coefficient of the glass substrate material for magnetic disk, the thermal shock test result measured by making the glass substrate for magnetic disk, the stability of the glass at the time of making this substrate, the annular strength, The Young's modulus, the high speed rotation test result and the surface roughness of the substrate are shown.

【0050】ここで、熱膨張係数は各ガラスのブロック
を作製し、15mm×4mm×4mmの熱膨張測定用試験片を
切り出し、熱膨張測定装置を用いて測定した。測定温度
範囲は、30℃〜100℃とした。
Here, the coefficient of thermal expansion was measured by making a block of each glass, cutting out a test piece for measuring thermal expansion of 15 mm × 4 mm × 4 mm, and using a thermal expansion measuring device. The measurement temperature range was 30 ° C to 100 ° C.

【0051】また得られた基板より実施例1と同様に磁
気ディスクを作製し、これを図3に示した磁気ディスク
ドライブに搭載してドライブの熱衝撃試験を実施した。
熱衝撃試験によりガラスにクラックや割れ、トラックず
れによる読み取りエラーなどの問題が生じなかった場合
は○を、生じた場合を×とした。熱衝撃試験は−40℃
で2時間保持後、80℃まで急速加熱させ、80℃で2
時間保持後、−40℃まで急冷する。これを5回繰り返
し、その間で上記した問題が生じるか否かを判定した。
A magnetic disk was manufactured from the obtained substrate in the same manner as in Example 1, and this was mounted on the magnetic disk drive shown in FIG. 3 to carry out a thermal shock test of the drive.
When the thermal shock test did not cause problems such as cracks and breaks in the glass and reading errors due to track displacement, the mark was ◯, and when the problem occurred, the mark was x. Thermal shock test is -40 ℃
After heating at 80 ° C for 2 hours, heat rapidly to 80 ° C
After holding for a while, it is rapidly cooled to -40 ° C. This was repeated 5 times, and it was determined whether the above-mentioned problems would occur during that time.

【0052】ガラスの安定性では、ガラス溶解後ガラス
基板中に見られる気泡,脈理,異物などが顕著に見られ
たものは×とし、そのような物が見られず、清澄なガラ
スが得られた場合は○とした。
Regarding the stability of the glass, those in which bubbles, striae, foreign matters, etc., which were found in the glass substrate after melting the glass, were marked were marked with x, and such a thing was not found, and clear glass was obtained. If it was given, it was marked as ○.

【0053】また、円環強度は以下のようにして求め
た。2.5″ 基板の内周部の上部に、外径22mmφの円
環を載せ、また内径63mmφ,外径65mmφの円環の基
板の下部に設置した後、円環に荷重をかけて破壊強度を
測定した。
The annular strength was determined as follows. A ring with an outer diameter of 22 mmφ is placed on the upper part of the inner circumference of the 2.5 ″ substrate, and a ring with an inner diameter of 63 mmφ and an outer diameter of 65 mmφ is placed on the lower part of the substrate. Was measured.

【0054】ヤング率は、各ガラスのブロックを作製
し、10mm×2mm×55mmのヤング率測定用試験片を切
り出し、ヤング率測定装置を用いて測定した。測定は、
室温とした。
The Young's modulus was measured using a Young's modulus measuring device by cutting out a block of each glass, cutting out a 10 mm × 2 mm × 55 mm Young's modulus measuring test piece. The measurement is
At room temperature.

【0055】同様に、磁気ディスクを作製し、磁気ディ
スクドライブに搭載してドライブの高速回転試験を実施
した。高速回転試験により回転ひずみなどから生じるト
ラックずれによる読み取りエラーなどの問題が生じる割
合が1%以下の場合は○を、1%以上の場合を×とし
た。高速回転試験は回転数7000rpm で5時間保持
し、その間でエラーが生じるか否かを判定した。また、
表面粗さ計を用いて表面粗さを評価した。
Similarly, a magnetic disk was prepared and mounted on a magnetic disk drive to carry out a high speed rotation test of the drive. In the high-speed rotation test, when the rate of occurrence of problems such as reading errors due to track displacement caused by rotational strain or the like was 1% or less, ◯ was given, and when 1% or more, x was given. In the high speed rotation test, the rotation speed was maintained at 7,000 rpm for 5 hours, and it was determined whether an error occurred during that time. Also,
The surface roughness was evaluated using a surface roughness meter.

【0056】まず、Li2O,Na2O,K2Oのトータ
ルのアルカリ酸化物量(表中のR2O)を変化させた試料
を表3のNo.42〜49に示す。
First, samples in which the total amount of alkali oxides of Li 2 O, Na 2 O and K 2 O (R 2 O in the table) were changed are shown in Nos. 42 to 49 of Table 3.

【0057】No.44,No.45のようにアルカリ金
属酸化物含有量が10%未満と少ないガラスを用いた場
合、熱衝撃試験でガラスにクラックが生じた。またヤン
グ率が大きくなり過ぎるため、基板加工時における表面
粗さを小さくすることができず、好ましくなかった。ま
た、逆にNo.48,No.49のようにアルカリ金属酸
化物の含有量が16重量%を超えるような場合には、熱
衝撃試験ではトラックずれによるエラーが生じ、また高
速回転試験では回転歪が生じやすくなるため、トラック
ずれによるエラーが生じるため好ましくなかった。N
o.43,46,47ガラスのようにアルカリ金属酸化
物の合計の含有量が10重量%以上16重量%以下の場
合、熱衝撃試験や高速回転試験などで良好な結果が得ら
れ、好ましい結果となった。
When glass having a low alkali metal oxide content of less than 10%, such as No. 44 and No. 45, was used, cracks occurred in the glass in the thermal shock test. Further, since the Young's modulus becomes too large, the surface roughness during substrate processing cannot be reduced, which is not preferable. On the contrary, when the content of alkali metal oxide exceeds 16% by weight like No. 48 and No. 49, an error due to track deviation occurs in the thermal shock test, and rotation occurs in the high speed rotation test. Since distortion is likely to occur, an error due to track deviation occurs, which is not preferable. N
When the total content of alkali metal oxides is 10% by weight or more and 16% by weight or less like glass of o.43,46,47, good results can be obtained in a thermal shock test or a high speed rotation test, and favorable results are obtained. Became.

【0058】これらのガラスの熱膨張係数に着目する
と、表3よりNo.44,No.45のガラスはそれぞれ
55×10-7/℃,59×10-7/℃とドライブ装置部
材の熱膨張係数である70×10-7/℃〜80×10-7
/℃よりもかなり小さくなっていた。また、No.4
8、No.49のガラスはそれぞれ74×10-7/℃,
78×10-7/℃と装置部材とほぼ同等であった。これ
らのガラスでは、他の装置部材との熱膨張の差異により
熱衝撃試験においてクラックが発生したりトラックずれ
が生じたりしたため、好ましいとは言えなかった。
Focusing on the thermal expansion coefficients of these glasses, Table 3 shows that the glass of No. 44 and No. 45 had a thermal expansion of 55 × 10 −7 / ° C. and 59 × 10 −7 / ° C., respectively, of the drive device members. 70 × 10 −7 / ° C. to 80 × 10 −7 which is a coefficient
It was much smaller than / ° C. Also, No. 4
No.8 and No.49 glass are 74 × 10 -7 / ° C,
The value was 78 × 10 −7 / ° C., which was almost the same as that of the device member. These glasses were not preferable because cracks and track deviations occurred in the thermal shock test due to the difference in thermal expansion with other device members.

【0059】No.43,46及び47ガラスに示すよ
うに、熱膨張係数が61×10-7/℃以上,72×10
-7/℃以下であれば良好な結果が得られた。このことか
らガラス基板の熱膨張係数はドライブ装置部材の熱膨張
係数より若干小さくすることにより熱衝撃試験に対して
整合がとれ、良好な結果が得られた。
As shown in Nos. 43, 46 and 47 glass, the coefficient of thermal expansion is 61 × 10 −7 / ° C. or higher, 72 × 10.
Good results were obtained at -7 / ° C or lower. From this, it was found that the thermal expansion coefficient of the glass substrate was set to be slightly smaller than the thermal expansion coefficient of the drive device member so that the glass substrate was matched with the thermal shock test and good results were obtained.

【0060】以上より、適正な熱膨張係数は61×10
-7/℃以上,72×10-7/℃以下であった。61×1
-7/℃未満であると他のドライブを構成する材料との
熱膨張係数の整合が取れず、熱衝撃試験試験によりクラ
ックが生じるため好ましくなかった。また72×10-7
/℃であるとトラックずれなどの問題が生じるため好ま
しくなかった。
From the above, an appropriate coefficient of thermal expansion is 61 × 10.
It was -7 / ° C or higher and 72 × 10 -7 / ° C or lower. 61 x 1
If it is less than 0 -7 / ° C, the coefficient of thermal expansion cannot be matched with that of the material forming the other drive, and cracks are generated in the thermal shock test, which is not preferable. 72 × 10 -7
The temperature of / ° C is not preferable because a problem such as track deviation occurs.

【0061】また、ヤング率に着目すると、No.4
4,No.45のガラスではそれぞれ91GPa,95
GPaであった。これらのガラスではヤング率が高すぎ
るために基板加工時の研磨性が良好で無く、表面粗さが
粗くなるため好ましくなかった。No.48,49 のガ
ラスではそれぞれ79GPa,75GPaと低かった。
このため高速回転試験において回転歪が生じ、好ましく
なかった。No.43,46,47ガラスに示すよう
に、80GPa以上,90GPa以下であれば、良好な
表面粗さの基板が得られ、かつ高速回転試験においても
回転歪を生じることがなく好ましいことが分かった。
Focusing on Young's modulus, No. 4
For No. 4 and No. 45 glass, 91 GPa and 95, respectively
It was GPa. These glasses were not preferable because the Young's modulus was too high, so that the polishing property at the time of processing the substrate was not good and the surface roughness became rough. The glass of Nos. 48 and 49 was as low as 79 GPa and 75 GPa, respectively.
For this reason, rotational strain was generated in the high-speed rotation test, which was not preferable. As shown in Nos. 43, 46, and 47 glass, it is preferable that the substrate has a surface roughness of 80 GPa or more and 90 GPa or less, and that rotational distortion does not occur even in a high-speed rotation test. It was

【0062】以上より、ヤング率は80GPa以上90
GPa以下であることが好ましかった。ヤング率が80
GPaを下回ると、高速回転試験において良好な結果が
得られなくなる。90GPaを超えると、基板の表面粗
さが粗くなり、好ましくない。
From the above, the Young's modulus is 80 GPa or more and 90.
It was preferable that it was not more than GPa. Young's modulus is 80
Below GPa, good results cannot be obtained in the high speed rotation test. If it exceeds 90 GPa, the surface roughness of the substrate becomes rough, which is not preferable.

【0063】つぎにNo.50〜55においてSiO2
含有量について検討したい。SiO2含有量が54.5
重量%のNo.52ガラスでは、ヤング率,円環強度が
十分でなく、磁気ディスク用ガラス基板として適切では
なかった。しかしNo.51 に示すようにSiO2 量が
55重量%であれば、ヤング率が80GPa以上となる
ため、基板として適切であった。またNo.55のよう
にSiO2量が70重量%を超えると、ガラス溶解時に
気泡などの発生が顕著になり、好ましくなかった。一
方、No.54のようにSiO2 含有量が70重量%で
は、気泡,脈理等の発生がなく、耐水性,機械的強度に
優れたガラス基板が得られた。
Next, in Nos. 50 to 55, SiO 2
I would like to examine the content. SiO 2 content is 54.5
The weight% No. 52 glass was insufficient in Young's modulus and annular strength and was not suitable as a glass substrate for magnetic disks. However, as shown in No. 51, when the amount of SiO 2 was 55% by weight, the Young's modulus was 80 GPa or more, and it was suitable as a substrate. Further, as in No. 55, when the amount of SiO 2 exceeds 70% by weight, bubbles and the like are significantly generated when the glass is melted, which is not preferable. On the other hand, when the SiO 2 content was 70 wt% as in No. 54, a glass substrate excellent in water resistance and mechanical strength was obtained without generation of bubbles and striae.

【0064】以上より、SiO2 含有量は55重量%以
上70重量%以下であると磁気ディスク用ガラス基板と
して良好な結果が得られた。
From the above, good results were obtained as a glass substrate for a magnetic disk when the SiO 2 content was 55% by weight or more and 70% by weight or less.

【0065】次にAl23含有量について検討した。N
o.57 のAl23含有量が18重量%であるガラスで
は、ガラスの熔融温度が高くなりすぎ、1600℃の熔
融ではガラスの原料が残存したため、好ましくなかっ
た。しかし、No.56 のAl23含有量が17重量%
のガラスでは清澄なガラスを得ることができた。この
時、ヤング率,円環強度とも優れた値を示した。
Next, the Al 2 O 3 content was examined. N
The glass having an Al 2 O 3 content of o.57 of 18% by weight was not preferable because the melting temperature of the glass was too high and the raw material of the glass remained in the melting at 1600 ° C. However, the Al 2 O 3 content of No. 56 is 17% by weight.
With this glass, clear glass could be obtained. At this time, both Young's modulus and annular strength showed excellent values.

【0066】一方、Al23含有量が10重量%のN
o.58に記載のガラスでは、安定したガラスが得ら
れ、磁気ディスク用ガラス基板としても良好な結果が得
られたが、Al23含有量が9.5重量%のNo.59ガ
ラスでは、ガラス中に脈理等の不均一が生じた。
On the other hand, N with an Al 2 O 3 content of 10% by weight is used.
With the glass described in o.58, stable glass was obtained and good results were obtained as a glass substrate for magnetic disks, but with No. 59 glass having an Al 2 O 3 content of 9.5 wt%. , Nonuniformity such as striae occurred in the glass.

【0067】以上より、Al23含有量が10重量%以
上17重量%以下のとき良好なガラスが得られた。
From the above, a good glass was obtained when the Al 2 O 3 content was 10% by weight or more and 17% by weight or less.

【0068】さらにB23含有量について検討した。N
o.60 に示すように、9重量%であるガラスでは円環
強度,ヤング率とも十分に満足できず、高速回転試験に
おいて十分な特性が得られなかった。しかし、No.6
1 に示す8重量%であるガラスでは円環強度,ヤング
率とも優れた値を示し、高速回転試験結果も良好であっ
た。
Further, the B 2 O 3 content was examined. N
As shown in o.60, the glass of 9% by weight could not sufficiently satisfy the ring strength and Young's modulus, and could not obtain sufficient characteristics in the high speed rotation test. However, No. 6
In the glass of 8% by weight shown in 1, the annular strength and Young's modulus were excellent, and the high-speed rotation test result was also good.

【0069】B23含有量が2重量%のNo.62のガ
ラスでは、安定にガラスを作製でき、ヤング率、機械的
強度も適正な値を示した。一方、No.63に示したB2
3を1.5 重量%含有するガラスでは、ヤング率が9
0GPaを超えるため機械加工性に難点があり、良好な
表面粗さが得られなかった。
The No. 62 glass having a B 2 O 3 content of 2% by weight was able to stably produce the glass, and the Young's modulus and the mechanical strength also showed appropriate values. On the other hand, B 2 shown in No. 63
A glass containing 1.5% by weight of O 3 has a Young's modulus of 9
Since it exceeds 0 GPa, there is a problem in machinability and good surface roughness cannot be obtained.

【0070】以上より、B23含有量が2重量%以上,
8重量%以下であれば円環強度,ヤング率において良好
な結果が得られた。
From the above, the B 2 O 3 content is 2% by weight or more,
When the content is 8% by weight or less, good results were obtained in the annular strength and Young's modulus.

【0071】また、ガラスNo.63〜72 に示すよう
に、これまでに述べたガラス組成にMgO,CaOなど
のアルカリ土類金属、あるいはZnOを含有させると、
いずれもヤング率を上昇させる効果があり、好ましかっ
た。また同時に円環強度に優れたガラスを得ることがで
きた。しかし、いずれも含有させすぎると種々の問題が
生じた。
Further, as shown in Glass Nos. 63 to 72, when an alkaline earth metal such as MgO or CaO or ZnO is added to the glass composition described above,
All had the effect of increasing the Young's modulus, and were preferable. At the same time, it was possible to obtain a glass having excellent annular strength. However, if any of them is contained too much, various problems occur.

【0072】MgO,CaOなどのアルカリ土類金属酸
化物の場合、No.68 に示すように10重量%を超え
ると、クラックの発生が顕著になり、円環強度が小さく
なるなど、機械的強度が低下するため好ましくなかっ
た。No.65 ガラスのように、アルカリ土類元素の含
有量が10重量%では、円環強度,ヤング率とも適正な
値となった。従って、アルカリ土類金属酸化物の含有量
は10重量%以下であることが好ましかった。
In the case of alkaline earth metal oxides such as MgO and CaO, as shown in No. 68, when the content exceeds 10% by weight, cracking becomes remarkable and the ring strength becomes small, and the mechanical strength is reduced. Was decreased, which was not preferable. When the content of the alkaline earth element was 10% by weight like No. 65 glass, both the annular strength and the Young's modulus were appropriate values. Therefore, the content of the alkaline earth metal oxide is preferably 10% by weight or less.

【0073】またZnOに関しては、No.72 に示す
ように、添加量が10重量%を超えるとガラス中に結晶
の析出が著しくなり、安定なガラスを得ることが難しか
った。10重量%ではこのような結晶の析出は認められ
なかった。従って、ZnO含有量は、10重量%以下で
あることが好ましかった。
Regarding ZnO, as shown in No. 72, when the addition amount exceeds 10% by weight, precipitation of crystals becomes remarkable in the glass and it is difficult to obtain a stable glass. At 10% by weight, no such precipitation of crystals was observed. Therefore, the ZnO content was preferably 10% by weight or less.

【0074】[0074]

【発明の効果】本発明の磁気ディスク用ガラス基板は、
基板が着色しており、磁界印加時の磁化が小さいため、
量産性に優れた磁気ディスク用ガラス基板、及びそれを
用いた磁気ディスクが作製できる。さらに本発明の磁気
ディスク用ガラス基板は熱膨張係数が61〜72×10
-7/℃であるため磁気ディスクドライブ装置部材の熱膨
張係数と整合性が良好なため、熱衝撃試験等によるガラ
スのクラック発生やトラックずれなどの問題が少ない。
また、ヤング率が80〜90GPaであるため、ディス
クの高速回転によるトラックずれなどの問題もない。従
って機械的強度が高く,高記録密度,高信頼性が要求さ
れる磁気ディスクの基板材料として最適である。
The glass substrate for a magnetic disk of the present invention comprises:
Since the substrate is colored and the magnetization when applying a magnetic field is small,
A glass substrate for a magnetic disk excellent in mass productivity and a magnetic disk using the glass substrate can be manufactured. Further, the glass substrate for a magnetic disk of the present invention has a thermal expansion coefficient of 61 to 72 × 10.
Since it is -7 / ° C, it has good compatibility with the thermal expansion coefficient of the magnetic disk drive device members, so there are few problems such as glass cracking and track shift due to thermal shock tests.
Further, since the Young's modulus is 80 to 90 GPa, there is no problem such as track deviation due to high speed rotation of the disk. Therefore, it is optimal as a substrate material for magnetic disks that have high mechanical strength, high recording density, and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気ディスク用ガラス基板の平面図。FIG. 1 is a plan view of a glass substrate for a magnetic disk according to the present invention.

【図2】本発明の磁気ディスク用ガラス基板を用いた磁
気ディスクの断面図。
FIG. 2 is a cross-sectional view of a magnetic disk using the glass substrate for a magnetic disk of the present invention.

【図3】本発明で作製した磁気ディスク装置の概略図。FIG. 3 is a schematic view of a magnetic disk device manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1…磁気ディスク用ガラス基板、2…内周チャック用
穴、3…チャンファー部、4…粒径制御層、5…配向制
御層、6…磁性膜、7…保護膜、8…潤滑膜、9…磁気
ディスク、10…スピンドル、11…磁気ヘッド、12
…磁気ヘッドのアーム、13…ボイスコイルモーター、
14…筐体。
DESCRIPTION OF SYMBOLS 1 ... Glass substrate for magnetic disks, 2 ... Hole for inner circumference chucks, 3 ... Chamfer part, 4 ... Grain size control layer, 5 ... Orientation control layer, 6 ... Magnetic film, 7 ... Protective film, 8 ... Lubrication film, 9 ... Magnetic disk, 10 ... Spindle, 11 ... Magnetic head, 12
... arm of magnetic head, 13 ... voice coil motor,
14 ... Housing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 孝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 本田 光利 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4G062 AA01 BB01 DA06 DB04 DC03 DD01 DE01 DE02 DE03 DF01 EA01 EA02 EA03 EA04 EA10 EB01 EB02 EB03 EB04 EC01 EC02 EC03 EC04 ED01 ED02 ED03 EE01 EE02 EE03 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK02 KK03 KK04 KK05 KK07 MM27 NN29 NN33 5D006 CB04 CB06 CB07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Naito             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Mitsutoshi Honda             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 4G062 AA01 BB01 DA06 DB04 DC03                       DD01 DE01 DE02 DE03 DF01                       EA01 EA02 EA03 EA04 EA10                       EB01 EB02 EB03 EB04 EC01                       EC02 EC03 EC04 ED01 ED02                       ED03 EE01 EE02 EE03 EF01                       EF02 EF03 EG01 EG02 EG03                       FA01 FA10 FB01 FC01 FD01                       FE01 FF01 FG01 FH01 FJ01                       FK01 FL01 GA01 GA10 GB01                       GC01 GD01 GE01 HH01 HH03                       HH05 HH07 HH09 HH11 HH13                       HH15 HH17 HH20 JJ01 JJ03                       JJ05 JJ07 JJ10 KK02 KK03                       KK04 KK05 KK07 MM27 NN29                       NN33                 5D006 CB04 CB06 CB07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量百分率でSiO2:55%以上,70
%以下、 Al23:10以上,17%以下、 B23:2%以上,8%以下、 R2O:10%以上,16%以下(Rはアルカリ金属元
素を表す)、 ZnO:0%以上,10%以下 ReO:0%以上,10%以下(Reはアルカリ土類金
属元素を表す)の酸化物換算で示される酸化物を含有
し、さらに下記の酸化物換算の重量百分率でPr23
たはNd23を1%以上,7%以下、またはSm23
2.5% 以上,9%以下、またはEu23を2.5% 以
上,8%以下を含有し、 30℃〜100℃の温度範囲における熱膨張係数が61
×10-7/℃以上,72×10-7/℃以下であることを
特徴とする磁気ディスク用ガラス基板。
1. SiO 2 by weight percentage: 55% or more, 70
% Or less, Al 2 O 3 : 10 or more, 17% or less, B 2 O 3 : 2% or more, 8% or less, R 2 O: 10% or more, 16% or less (R represents an alkali metal element), ZnO : 0% or more and 10% or less ReO: 0% or more and 10% or less (Re represents an alkaline earth metal element) containing an oxide represented by the oxide conversion, and further, the following oxide conversion weight percentages. in Pr 2 O 3 or Nd 2 O 3 more than 1%, 7% or less, or Sm 2 O 3 2.5% or more, 9% or less, or Eu 2 O 3 2.5% or more, 8% or less And has a thermal expansion coefficient of 61 in the temperature range of 30 ° C to 100 ° C.
A glass substrate for a magnetic disk, which has a temperature of x10 -7 / ° C or higher and 72 x 10 -7 / ° C or lower.
【請求項2】ヤング率が80GPa以上,90GPa以
下、波長300nm〜700nmの可視光における透過
率が50%以上85%以下であり、かつ1kOeの磁界
を印加したときの磁化が3×10-3emu/cc以下であ
ることを特徴とする磁気ディスク用ガラス基板。
2. A Young's modulus of 80 GPa or more and 90 GPa or less, a transmittance of visible light having a wavelength of 300 nm to 700 nm of 50% or more and 85% or less, and a magnetization of 3 × 10 −3 when a magnetic field of 1 kOe is applied. A glass substrate for a magnetic disk, which has an emu / cc or less.
【請求項3】磁気ディスク用ガラス基板と、この基板上
に直接又は他の層を介して形成された磁性層を有する磁
気ディスクであって、上記ガラス基板は重量百分率でS
iO2:55%以上,70%以下、 Al23:10%以上,17%以下、 B23:2%以上,8%以下、 R2O:10%以上,16%以下(Rはアルカリ金属元
素を表す)、 ZnO:0%以上,10%以下 ReO:0%以上,10%以下(Reはアルカリ土類金
属元素を表す)の酸化物換算で示される酸化物を含有
し、さらに下記の酸化物換算の重量百分率でPr23
たはNd23を1%以上,7%以下、またはSm23
2.5% 以上,9%以下、またはEu23を2.5% 以
上,8%以下を含有し、 30℃〜100℃の温度範囲における熱膨張係数が61
×10-7/℃以上,72×10-7/℃以下であることを
特徴とする磁気ディスク。
3. A magnetic disk having a glass substrate for a magnetic disk and a magnetic layer formed on the glass substrate directly or through another layer, wherein the glass substrate is S by weight percentage.
iO 2: 55% or more, 70% or less, Al 2 O 3: 10% or more, 17% or less, B 2 O 3: 2% or more, 8% or less, R 2 O: 10% or more, 16% or less (R Represents an alkali metal element), ZnO: 0% or more, 10% or less ReO: 0% or more, 10% or less (Re represents an alkaline earth metal element), Further, Pr 2 O 3 or Nd 2 O 3 is 1% or more and 7% or less, or Sm 2 O 3 is 2.5% or more, 9% or less, or Eu 2 O 3 in the following oxide-based weight percentage. It contains 2.5% or more and 8% or less and has a thermal expansion coefficient of 61 in the temperature range of 30 ° C to 100 ° C.
A magnetic disk having a temperature of not less than × 10 -7 / ° C and not more than 72 × 10 -7 / ° C.
【請求項4】少なくともガラス基板と、その表面上に直
接または他の層を介して形成される磁性膜とを有する磁
気ディスクであって、前記ガラス基板の面粗さヤング率
が80GPa以上,90GPa以下であり、このガラス
基板の波長300nm〜700nmの可視光における透
過率が50%以上85%以下であり、かつこのガラス基
板に1kOeの磁界を印加したときの磁化が3×10-3
emu/cc以下であることを特徴とする磁気ディスク。
4. A magnetic disk having at least a glass substrate and a magnetic film formed on the surface of the glass substrate directly or via another layer, wherein the glass substrate has a surface roughness Young's modulus of 80 GPa or more and 90 GPa. The glass substrate has a transmittance of 50% to 85% in the visible light having a wavelength of 300 nm to 700 nm, and has a magnetization of 3 × 10 −3 when a magnetic field of 1 kOe is applied to the glass substrate.
A magnetic disk characterized by being emu / cc or less.
JP2001295345A 2001-09-27 2001-09-27 Glass base plate for magnetic disk and magnetic disk using it Pending JP2003099913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295345A JP2003099913A (en) 2001-09-27 2001-09-27 Glass base plate for magnetic disk and magnetic disk using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295345A JP2003099913A (en) 2001-09-27 2001-09-27 Glass base plate for magnetic disk and magnetic disk using it

Publications (1)

Publication Number Publication Date
JP2003099913A true JP2003099913A (en) 2003-04-04

Family

ID=19116796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295345A Pending JP2003099913A (en) 2001-09-27 2001-09-27 Glass base plate for magnetic disk and magnetic disk using it

Country Status (1)

Country Link
JP (1) JP2003099913A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
WO2017218859A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10246371B1 (en) 2017-12-13 2019-04-02 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US10450220B2 (en) 2017-12-13 2019-10-22 Corning Incorporated Glass-ceramics and glasses
JPWO2019150654A1 (en) * 2018-02-05 2020-11-26 Agc株式会社 Chemical strengthening glass

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
US11124444B2 (en) 2012-07-17 2021-09-21 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US11814316B2 (en) 2012-07-17 2023-11-14 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10183887B2 (en) 2012-07-17 2019-01-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11718554B2 (en) 2016-01-08 2023-08-08 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11220452B2 (en) 2016-01-08 2022-01-11 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
CN109311730A (en) * 2016-06-17 2019-02-05 康宁股份有限公司 Shield the transparent glass ceramics of near-infrared
US11214511B2 (en) 2016-06-17 2022-01-04 Corning Incorporated Transparent, near infrared-shielding glass ceramic
WO2017218859A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11629091B2 (en) 2016-06-17 2023-04-18 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11643359B2 (en) 2017-10-23 2023-05-09 Corning Incorporated Glass-ceramics and glasses
US11046609B2 (en) 2017-10-23 2021-06-29 Corning Incorporated Glass-ceramics and glasses
US10450220B2 (en) 2017-12-13 2019-10-22 Corning Incorporated Glass-ceramics and glasses
US10370291B2 (en) 2017-12-13 2019-08-06 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11312653B2 (en) 2017-12-13 2022-04-26 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US10807906B2 (en) 2017-12-13 2020-10-20 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US10246371B1 (en) 2017-12-13 2019-04-02 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11912609B2 (en) 2017-12-13 2024-02-27 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
JP2021008401A (en) * 2018-02-05 2021-01-28 Agc株式会社 Glass for chemical strengthening
JPWO2019150654A1 (en) * 2018-02-05 2020-11-26 Agc株式会社 Chemical strengthening glass

Similar Documents

Publication Publication Date Title
JP5964921B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method thereof, and magnetic recording medium
JP4815002B2 (en) Crystallized glass substrate for information recording medium and manufacturing method thereof
JP4785274B2 (en) Glass article and glass substrate for magnetic recording medium using the same
JP4559523B2 (en) Glass substrate for information recording medium and manufacturing method thereof
WO2011037001A1 (en) Glass substrate for information recording media and information recording medium
WO2009096120A1 (en) Glass for substrate for data storage medium, glass substrate for data storage medium, and magnetic disk
JP5993306B2 (en) Glass substrate for magnetic recording medium and use thereof
JP2004161597A (en) Glass composition and glass substrate
JP2009114005A (en) Crystallized glass
JP2004352570A (en) Glass composition and glass substrate
JP4774466B1 (en) Crystallized glass substrate for information recording medium and manufacturing method thereof
JP5788643B2 (en) Glass substrate
JP2023166439A (en) Glass for magnetic recording medium substrate or for glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
JP4193489B2 (en) Glass substrate for magnetic disk and magnetic disk using the same
JP2002260216A (en) Glass substrate for information recording disk and information recording disk using the same
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP2003099913A (en) Glass base plate for magnetic disk and magnetic disk using it
WO2013146256A1 (en) Glass for magnetic recording medium substrate, and glass substrate for magnetic recording medium and use thereof
JP3994371B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING DISC AND INFORMATION RECORDING DISC USING THE GLASS SUBSTRATE
JP2002025040A (en) Glass substrate for magnetic disk and magnetic disk using the same
WO2002004371A1 (en) Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same
JP4161756B2 (en) Glass substrate
JP4619115B2 (en) Glass substrate for information recording medium and information recording medium
JP4151440B2 (en) Glass substrate
JP4225086B2 (en) Glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A02 Decision of refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A02