JP4042187B2 - Secondary power supply - Google Patents

Secondary power supply Download PDF

Info

Publication number
JP4042187B2
JP4042187B2 JP30603797A JP30603797A JP4042187B2 JP 4042187 B2 JP4042187 B2 JP 4042187B2 JP 30603797 A JP30603797 A JP 30603797A JP 30603797 A JP30603797 A JP 30603797A JP 4042187 B2 JP4042187 B2 JP 4042187B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
salt
capacity
secondary power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30603797A
Other languages
Japanese (ja)
Other versions
JPH11144759A (en
Inventor
学 對馬
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30603797A priority Critical patent/JP4042187B2/en
Publication of JPH11144759A publication Critical patent/JPH11144759A/en
Application granted granted Critical
Publication of JP4042187B2 publication Critical patent/JP4042187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低抵抗で、耐電圧が高い二次電源に関する。
【0002】
【従来の技術】
従来のパルスパワー用の電源である電気二重層キャパシタの電極は、正極、負極ともに活性炭を主体とする分極性電極からなっていた。この場合の耐電圧は水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。
【0003】
電気二重層キャパシタの静電エネルギは耐電圧の2乗に比例するので、耐電圧の高い有機電解液を使用した方が水系電解液を使用するより高エネルギにできる。しかし、有機電解液を使用し、正極と負極がともに活性炭を主体とする分極性電極である電気二重層キャパシタのエネルギ密度は、鉛蓄電池、リチウムイオン二次電池等の二次電池の10分の1以下であり、さらなるエネルギ密度の向上が必要とされている。
【0004】
これに対し、特開昭64−14882には、活性炭を主体とする電極を正極とし、X線回折により測定した[002]面の面間隔が0.338〜0.356nmである炭素材料に、あらかじめリチウムイオンを吸蔵させた電極を負極とする、上限電圧が3Vの二次電池が提案されている。
【0005】
また、特開平8−107048には、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電気二重層キャパシタが提案されている。
【0006】
また、特開平9−55342には、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させた負極を有する、上限電圧が4Vの電気二重層キャパシタが提案されている。これらはいずれも電解液の溶質としてリチウム塩を使用している。
【0007】
リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめリチウムイオンを吸蔵させた負極は、活性炭を主体とする負極より電位がより卑になるので、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめリチウムイオンを吸蔵させた負極と、活性炭を主体とする正極を組み合わせた二次電源の耐電圧は、正極、負極ともに活性炭を主体とする電気二重層キャパシタの耐電圧より高い。
【0008】
【発明が解決しようとする課題】
二次電源の抵抗は、正極の抵抗、電解液の抵抗及び負極の抵抗により決定される。したがってこれら二次電源の構成成分それぞれの抵抗の低減が二次電源の急速充放電特性に大きく寄与する。リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめリチウムイオンを吸蔵した負極と活性炭を主成分とする正極とリチウム塩を溶質とする電解液とからなる二次電源では、電解液の電気抵抗が大きいことが問題であった。
【0009】
そこで、本発明は、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめリチウムイオンを吸蔵した負極と活性炭を主成分とする正極とを有する二次電源において、電解液を検討することにより、耐電圧が高く、抵抗が低い二次電源を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、a)活性炭を主体とする分極性電極を集電体と一体化してなる正極体と、b)リチウムイオンを吸蔵、脱離しうる炭素材料に化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた負極を集電体と一体化してなる負極体と、c)リチウム塩と第4級アンモニウム塩又は第4級ホスホニウム塩とを含み、リチウム塩の濃度が0.1〜2.0mol/Lであり、かつ第4級アンモニウム塩又は第4級ホスホニウム塩の濃度が0.1〜2.0mol/Lである有機電解液と、を有する二次電源を提供する。
【0011】
本明細書において、リチウムイオンを吸蔵、脱離しうる炭素材料からなる負極を集電体と一体化させたものを負極体という。また、同様に、活性炭を主成分とする分極性電極を集電体と一体化させたものを正極体という。
【0012】
本発明における有機電解液において、リチウム塩の濃度は0.1〜2.0mol/Lであり、第4級アンモニウム塩又は第4級ホスホニウム塩の濃度は0.1〜2.0mol/Lである。
【0013】
第4級アンモニウム塩又は第4級ホスホニウム塩の濃度が0.1mol/L未満であると、電気抵抗低減に寄与しがたい。また、2.0mol/Lを超えると電解液の粘度が高くなりやすい。
【0014】
また、リチウム塩の濃度が0.1mol/L未満であると、充電時に負極に吸蔵されるべきリチウムイオンが充分ではない。2.0mol/Lを超えると、電解液の粘度が高くなり、電解液の電気伝導度が小さくなりやすい。より好ましくは、リチウム塩の濃度は0.5〜1.5mol/Lであり、第4級アンモニウム塩又は第4級ホスホニウム塩の濃度は0.5〜1.5mol/Lである。
【0015】
電気二重層キャパシタの容量は式1で与えられる。ただし、Cはセル容量、C+ は正極容量、C- は負極容量である。正極、負極ともに活性炭を主体とする電気二重層キャパシタは、正極と負極の容量がほぼ同じなので、電気二重層キャパシタセルとしての容量は式2で表される。
【0016】
すなわち、電気二重層キャパシタセルとしての容量は、正極又は負極の容量の半分である。ところが、正極の容量が一定である場合は、式1を書き換えた式3より明らかなように、負極の容量が正極の容量より大きいほど電気二重層キャパシタセルの容量は大きくなる。
【0017】
1/C=1/C+ +1/C- 式1
1/C=1/C+ +1/C- ≒2/C+ 式2
C=C+ {1/(1+C+ /C- )} 式3
【0018】
そして、C- ≫C+ である場合はC+ /C- ≒0となり、セルとしての容量は正極の容量とほぼ等しくなり、正極、負極ともに活性炭を主体とする電気二重層キャパシタに比較して容量は2倍になる。
【0019】
本発明の電気二重層キャパシタのC+ /C- は、有機電解液中において電流1mAの条件で0.001〜0.9であることが好ましい。0.001未満とするには正極容量を小さくしなくてはならないので、その結果セル容量が小さくなる。また、0.9を超えると、正極と負極の容量がほぼ等しくなりセル容量を大きくできないし、そのような炭素材料では負極の電位が正極に比べてあまり卑にならないので、セルとしての耐電圧も高くならず、充放電サイクルによる劣化が顕著であり、さらには急速充放電もしがたい。より好ましくはC+ /C- は0.01〜0.2である。
【0020】
リチウムイオンを吸蔵、脱離しうる炭素材料としては天然黒鉛、人造黒鉛、難黒鉛性炭素、易黒鉛性炭素、低温焼成炭素などが存在する。本発明において、炭素材料はX線回折の測定による[002]面の面間隔が0.335〜0.410nmであることが好ましい。この範囲の負極炭素材料であればいずれの炭素材料も使用できる。[002]面の面間隔が0.410nm超の炭素材料は、充放電サイクルにおいて劣化が著しいため好ましくない。より好ましくは0.356〜0.390nmである。具体的には、天然黒鉛、人造黒鉛及び2500℃以上で熱処理された難黒鉛性炭素材料や易黒鉛性炭素材料等は、[002]面の面間隔が0.335〜0.337nmであり好ましく使用できる。
【0021】
本発明における負極体は、リチウムイオンを吸蔵、脱離しうる炭素材料を、結合材を有機溶媒に溶解した溶液に分散させてスラリを作製し、これを集電体に塗工して乾燥することにより得ることが好ましい。このとき、結合材としてはポリアミドイミド樹脂又はポリイミド樹脂が好ましい。また、スラリ中の結合材は、加熱することにより重合してポリアミドイミド樹脂又はポリイミド樹脂となる、ポリアミドイミド樹脂の前駆体又はポリイミド樹脂の前駆体であってもよい。上記結合材を溶解させる有機溶媒は限定されないが、例えばN−メチル−2−ピロリドンが挙げられる。
【0022】
これら樹脂の耐熱温度は通常200〜400℃の範囲にあり耐熱性が高い。ポリイミド樹脂はその主鎖の繰り返し単位中にイミド結合を有する樹脂の総称である。ポリアミドイミド樹脂は、その主鎖の繰り返し単位中にイミド結合及びアミド結合を有する樹脂の総称であり、ポリイミド樹脂に比べ耐熱性は少し劣るが可撓性に富み耐磨耗性が優れる。
【0023】
ポリアミドイミド樹脂、ポリイミド樹脂又はこれらの前駆体は、加熱することにより硬化し、耐薬品性、機械的性質、寸法安定性に優れる。ポリアミドイミド樹脂又はポリイミド樹脂の前駆体の場合は200℃以上で加熱することによりポリアミドイミド樹脂又はポリイミド樹脂となる。また、熱処理する雰囲気としては、窒素中、アルゴン等の不活性雰囲気中又は1torr以下の減圧下が好ましい。これらの樹脂は、二次電源に使用される有機電解液に対する耐性があり、また炭素材料中に存在する水分を除去するための高温加熱や減圧加熱に対しても充分な耐性がある。
【0024】
リチウムイオンを吸蔵、脱離しうる炭素材料と結合材との重量比は、70/30〜96/4が好ましい。結合材が30重量%より多いと、負極容量が小さくなり好ましくない。結合材が4重量%より少ないと、負極と集電体との剥離が多くなり好ましくない。
【0025】
分極性電極からなる正極に用いられる活性炭は、比表面積が800〜3000m2 /gであることが好ましい。活性炭の原料としては、やしがら、フェノール樹脂、石油コークス等が挙げられ、水蒸気賦活法、溶融KOH賦活法等によって賦活されることが好ましい。
【0026】
本発明における正極体は、活性炭、カーボンブラック及び結合材をエタノールなどの溶媒を用いて混練した後圧延し、シート状に成形してなる正極を、導電性接着剤を介して集電体に接着させることによって得ると、高容量を発現でき好適である。ここで使用される導電性接着剤は、負極に使用する導電性接着剤と同じでも異なっていてもよい。
【0027】
本発明における有機電解液の溶質のリチウム塩としては、LiPF6 、LiBF4 、LiClO4 、LiN(CF3 SO22 、CF3 SO3 Li、LiC(SO2 CF33 、LiAsF6 及びLiSbF6 等が挙げられる。
【0028】
第4級アンモニウム塩又は第4級ホスホニウム塩としては、R1234+ 又はR1234+ で表されるカチオン(ただし、R1 、R2 、R3 、R4 は炭素数1〜6のアルキル基)と、PF6 -、BF4 -、ClO4 -、N(CF3 SO22 -、CF3 SO3 -、C(SO2 CF33 -、AsF6 -又はSbF6 -からなるアニオンとからなる塩であることが好ましい。特にPF6 -、BF4 -、ClO4 -、N(CF3 SO22 -をアニオンとすることが好ましい。また、リチウム塩のアニオンと第4級オニウム塩のアニオンは同じであっても異なっていてもよい。
【0029】
電解液の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。上記の溶質と溶媒とからなる有機電解液は、耐電圧が高く電気伝導度が高い。
【0030】
【実施例】
以下に、実施例(例1〜3)と比較例(例4)により本発明をさらに具体的に説明するが、本発明はこれらにより限定されない。
【0031】
[例1]
やしがらを水蒸気賦活することによって得られた比表面積2000m2 /gの活性炭80重量部、導電性カーボンブラック10重量部、結合材としてポリテトラフルオロエチレン10重量部をエタノールを用いて混練して圧延し、シートを形成した。このシートを200℃で2時間真空乾燥後、アルミニウム箔に導電性接着剤を用いて接着して正極体とした。有効電極面積は1cm2 、アルミニウム箔の厚さを除いた正極シートの厚さは150μmであった。
【0032】
ポリアミドイミド樹脂をN−メチル−2−ピロリドンに溶解し、これに[002]面の面間隔が0.337nm、比表面積が7m2 /g、平均粒径7μmの、リチウムイオンを吸蔵、脱離しうるメソフェーズピッチ系炭素繊維を分散させた。この液を、エッチングした100μmの銅箔にドクターブレードで塗工し、空気中で120℃で2時間乾燥した後、0.2torrの減圧下で260℃で2時間熱処理して負極体を得た。塗工された負極の乾燥後の厚さは80μmであり、メソフェーズピッチ系炭素繊維:ポリアミドイミド樹脂の重量比は9:1であった。
【0033】
正極、負極をそれぞれ単極で、エチレンカーボネートとエチルメチルカーボネートとの容積比が1:1の混合溶媒にLiBF4 を1.0mol/Lとなるように溶解した溶液中でリチウム参照極を用い電流1mAで評価したところ、正極容量は4.25Vから2.75Vまでの範囲で0.401mAh、負極容量は0.005Vから2Vまでの範囲で4.57mAhであった。正極の負極に対する容量比は0.0877であった。
【0034】
次に、有効電極面積1cm2 の上記負極に、リチウム金属をニッケルメッシュに固定させて対極、参照極に用い、電気化学的方法で1mAの定電流で4.1mAhとなるまで充電することによってリチウムイオンを吸蔵させた。この負極を厚さ25μmのポリプロピレン製のセパレータを介して正極と対向させセルを作製した。
【0035】
電解液としてエチレンカーボネートとエチルメチルカーボネートとの1:1の混合溶媒にLiBF4 と(C253 (CH3 )NBF4 とを、それぞれ1.0mol/L、0.5mol/Lの濃度となるように溶解した溶液を用い、4Vから3Vまでの範囲で放電し、容量と抵抗を測定した。その結果を表1に示す。
【0036】
[例2]
電解液の溶質である(C253 (CH3 )NBF4 の濃度を0.5mol/Lとせずに1.0mol/Lとした以外は例1と同様にしてセルを作製し、例1と同様に容量と抵抗を測定した。その結果を表1に示す。
【0037】
[例3]
正極体は例1と同じものを用いた。メソフェーズピッチ系炭素繊維のかわりに、[002]面の面間隔が0.358nm、比表面積が7m2 /g、平均粒径10μmの、リチウムイオンを吸蔵、脱離しうる石油コークスの1500℃熱処理物を用いた以外は例1と同様にして負極体を得た。
【0038】
例1と同様にして容量を測定したところ、正極の容量は0.422mAhであり、負極の容量は5.12mAhであり、正極の負極に対する容量比は0.0824であった。
【0039】
上記負極体を用い、4.2mAhとなるまで充電した以外は例1と同様にしてセルを作製し、例1と同じ電解液を用いて例1と同様に容量と抵抗を測定した。その結果を表1に示す。
【0040】
[例4]
電解液の溶質として1.0mol/LのLiBF4 を用い、(C253 (CH3 )NBF4 を用いなかった以外は例1と同様にしてセルを作製し、例1と同様にして容量と抵抗を測定した。その結果を表1に示す。
【0041】
【表1】

Figure 0004042187
【0042】
【発明の効果】
本発明によれば、耐電圧が高く、容量が大きくかつ抵抗が低い二次電源が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary power source with low resistance and high withstand voltage.
[0002]
[Prior art]
An electrode of an electric double layer capacitor, which is a conventional power source for pulse power, consists of a polarizable electrode mainly composed of activated carbon for both the positive electrode and the negative electrode. In this case, the withstand voltage is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used.
[0003]
Since the electrostatic energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the use of the organic electrolyte having a high withstand voltage can achieve higher energy than the use of the aqueous electrolyte. However, the energy density of an electric double layer capacitor, which uses an organic electrolyte and both the positive electrode and the negative electrode are polarizable electrodes mainly composed of activated carbon, is 10 minutes that of a secondary battery such as a lead storage battery or a lithium ion secondary battery. 1 or less, and further improvement in energy density is required.
[0004]
On the other hand, JP-A-64-14882 discloses a carbon material having an electrode mainly composed of activated carbon as a positive electrode and a [002] plane spacing measured by X-ray diffraction of 0.338 to 0.356 nm. A secondary battery having an upper limit voltage of 3 V has been proposed in which an electrode previously occluded with lithium ions is used as a negative electrode.
[0005]
JP-A-8-107048 proposes an electric double layer capacitor in which a carbon material in which lithium ions are occluded and desorbed in advance by a chemical method or an electrochemical method is used as a negative electrode. ing.
[0006]
Japanese Patent Application Laid-Open No. 9-55342 discloses an electric double layer capacitor having a negative electrode in which a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium and having an upper limit voltage of 4V. Proposed. All of these use lithium salt as the solute of the electrolytic solution.
[0007]
A negative electrode in which lithium ions are previously stored in a carbon material that can store and desorb lithium ions has a lower potential than a negative electrode mainly composed of activated carbon. The withstand voltage of a secondary power source that combines a negative electrode with occluded and a positive electrode mainly composed of activated carbon is higher than that of an electric double layer capacitor mainly composed of activated carbon.
[0008]
[Problems to be solved by the invention]
The resistance of the secondary power source is determined by the resistance of the positive electrode, the resistance of the electrolytic solution, and the resistance of the negative electrode. Therefore, the reduction in the resistance of each component of the secondary power supply greatly contributes to the rapid charge / discharge characteristics of the secondary power supply. A secondary power source consisting of a negative electrode that has previously stored lithium ions in a carbon material that can store and desorb lithium ions, a positive electrode mainly composed of activated carbon, and an electrolytic solution containing lithium salt as a solute, has a large electrical resistance. That was the problem.
[0009]
Therefore, the present invention provides a withstand voltage by investigating an electrolyte solution in a secondary power source having a negative electrode in which lithium ions are previously occluded in a carbon material capable of inserting and extracting lithium ions and a positive electrode mainly composed of activated carbon. An object of the present invention is to provide a secondary power source having high resistance and low resistance.
[0010]
[Means for Solving the Problems]
The present invention includes a) a positive electrode formed by integrating a polarizable electrode mainly composed of activated carbon with a current collector, and b) a carbon material capable of inserting and extracting lithium ions by a chemical method or an electrochemical method. look containing a negative electrode body comprising a negative electrode was occluded ions integrally with the current collector, c) a lithium salt and a quaternary ammonium salt or quaternary phosphonium salt, the concentration of the lithium salt is 0.1 to 2 And an organic electrolyte having a concentration of quaternary ammonium salt or quaternary phosphonium salt of 0.1 to 2.0 mol / L.
[0011]
In this specification, a negative electrode body in which a negative electrode made of a carbon material capable of inserting and extracting lithium ions is integrated with a current collector. Similarly, a positive electrode body is obtained by integrating a polarizable electrode mainly composed of activated carbon with a current collector.
[0012]
In the organic electrolyte solution of the present invention, the concentration of the lithium salt is 0.1 to 2.0 mol / L , and the concentration of the quaternary ammonium salt or quaternary phosphonium salt is 0.1 to 2.0 mol / L. The
[0013]
When the concentration of the quaternary ammonium salt or quaternary phosphonium salt is less than 0.1 mol / L, difficult to contribute to reduce electric resistance. Moreover, when it exceeds 2.0 mol / L, the viscosity of the electrolytic solution tends to increase.
[0014]
Further, when the concentration of the lithium salt is less than 0.1 mol / L, the lithium ions to be occluded in the negative electrode during charging are not sufficient. When it exceeds 2.0 mol / L, the viscosity of the electrolytic solution increases and the electrical conductivity of the electrolytic solution tends to decrease. More preferably, the concentration of the lithium salt is 0.5 to 1.5 mol / L, and the concentration of the quaternary ammonium salt or quaternary phosphonium salt is 0.5 to 1.5 mol / L.
[0015]
The capacitance of the electric double layer capacitor is given by Equation 1. However, C is a cell capacity, C + is a positive electrode capacity, and C is a negative electrode capacity. Since the electric double layer capacitor mainly composed of activated carbon for both the positive electrode and the negative electrode has substantially the same capacity of the positive electrode and the negative electrode, the capacity of the electric double layer capacitor cell is expressed by Formula 2.
[0016]
That is, the capacity of the electric double layer capacitor cell is half of the capacity of the positive electrode or the negative electrode. However, when the capacity of the positive electrode is constant, the capacity of the electric double layer capacitor cell increases as the capacity of the negative electrode is larger than the capacity of the positive electrode, as is apparent from Expression 3 in which Expression 1 is rewritten.
[0017]
1 / C = 1 / C + + 1 / C - Formula 1
1 / C = 1 / C + + 1 / C ≈2 / C + Equation 2
C = C + {1 / (1 + C + / C )} Equation 3
[0018]
Then, C - »C + a is when C + / C - ≒ 0, and the capacity of the cell is substantially equal to the capacity of the positive electrode, as compared cathode, the electric double layer capacitor made mainly of activated carbon in the negative electrode both The capacity is doubled.
[0019]
C + / C of the electric double layer capacitor of the present invention is preferably 0.001 to 0.9 under the condition of a current of 1 mA in the organic electrolyte. In order to make it less than 0.001, the positive electrode capacity must be reduced, and as a result, the cell capacity is reduced. Further, if it exceeds 0.9, the capacity of the positive electrode and the negative electrode is almost equal, and the cell capacity cannot be increased, and in such a carbon material, the potential of the negative electrode is not so low compared to the positive electrode, so the withstand voltage as a cell However, the deterioration due to the charge / discharge cycle is remarkable, and it is difficult to rapidly charge / discharge. More preferably, C + / C is 0.01 to 0.2.
[0020]
Examples of carbon materials that can occlude and desorb lithium ions include natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon. In the present invention, the carbon material preferably has a [002] plane spacing of 0.335 to 0.410 nm as measured by X-ray diffraction. Any carbon material can be used as long as it is a negative electrode carbon material in this range. A carbon material having a [002] plane spacing of more than 0.410 nm is not preferable because of significant deterioration in the charge / discharge cycle. More preferably, it is 0.356 to 0.390 nm. Specifically, natural graphite, artificial graphite, and non-graphitizable carbon materials and graphitizable carbon materials that have been heat-treated at 2500 ° C. or higher have a [002] plane spacing of 0.335 to 0.337 nm. Can be used.
[0021]
In the negative electrode body of the present invention, a carbon material capable of inserting and extracting lithium ions is dispersed in a solution in which a binder is dissolved in an organic solvent to prepare a slurry, which is applied to a current collector and dried. Is preferably obtained. At this time, a polyamideimide resin or a polyimide resin is preferable as the binder. The binder in the slurry may be a polyamideimide resin precursor or a polyimide resin precursor that is polymerized by heating to become a polyamideimide resin or a polyimide resin. The organic solvent in which the binder is dissolved is not limited, and examples thereof include N-methyl-2-pyrrolidone.
[0022]
The heat resistance temperature of these resins is usually in the range of 200 to 400 ° C. and has high heat resistance. Polyimide resin is a general term for resins having an imide bond in the repeating unit of the main chain. Polyamideimide resin is a general term for resins having an imide bond and an amide bond in the repeating unit of the main chain, and is slightly inferior in heat resistance to polyimide resin but rich in flexibility and excellent in wear resistance.
[0023]
Polyamideimide resin, polyimide resin or their precursors are cured by heating, and are excellent in chemical resistance, mechanical properties, and dimensional stability. In the case of a polyamide-imide resin or a polyimide resin precursor, it becomes a polyamide-imide resin or a polyimide resin by heating at 200 ° C. or higher. Further, the atmosphere for the heat treatment is preferably in an inert atmosphere such as nitrogen or argon, or under a reduced pressure of 1 torr or less. These resins are resistant to the organic electrolyte used in the secondary power source, and are sufficiently resistant to high temperature heating and reduced pressure heating for removing water present in the carbon material.
[0024]
The weight ratio between the carbon material capable of inserting and extracting lithium ions and the binder is preferably 70/30 to 96/4. When the binder is more than 30% by weight, the negative electrode capacity becomes small, which is not preferable. When the binding material is less than 4% by weight, peeling between the negative electrode and the current collector increases, which is not preferable.
[0025]
The activated carbon used for the positive electrode made of a polarizable electrode preferably has a specific surface area of 800 to 3000 m 2 / g. Examples of the raw material for the activated carbon include palm resin, phenol resin, and petroleum coke, which are preferably activated by a steam activation method, a molten KOH activation method, or the like.
[0026]
The positive electrode body in the present invention is prepared by kneading activated carbon, carbon black and a binder using a solvent such as ethanol and then rolling, and bonding the positive electrode formed into a sheet shape to a current collector through a conductive adhesive. It is preferable that a high capacity can be expressed. The conductive adhesive used here may be the same as or different from the conductive adhesive used for the negative electrode.
[0027]
The solute lithium salt of the organic electrolyte in the present invention includes LiPF 6 , LiBF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (SO 2 CF 3 ) 3 , LiAsF 6 and LiSbF 6, and the like.
[0028]
As a quaternary ammonium salt or a quaternary phosphonium salt, a cation represented by R 1 R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P + (however, R 1 , R 2 , R 3 and R 4 are alkyl groups having 1 to 6 carbon atoms), PF 6 , BF 4 , ClO 4 , N (CF 3 SO 2 ) 2 , CF 3 SO 3 , C (SO 2 CF 3 ) 3 -, AsF 6 - is preferably composed of an anion consisting of salt - or SbF 6. In particular, PF 6 , BF 4 , ClO 4 and N (CF 3 SO 2 ) 2 are preferably used as anions. Further, the anion of the lithium salt and the anion of the quaternary onium salt may be the same or different.
[0029]
The solvent of the electrolytic solution preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. The organic electrolyte solution composed of the above solute and solvent has high withstand voltage and high electrical conductivity.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples (Examples 1 to 3) and Comparative Examples (Example 4), but the present invention is not limited thereto.
[0031]
[Example 1]
80 parts by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by steam activation of coconut palm, 10 parts by weight of conductive carbon black, and 10 parts by weight of polytetrafluoroethylene as a binder are kneaded with ethanol. Rolled to form a sheet. This sheet was vacuum-dried at 200 ° C. for 2 hours, and then adhered to an aluminum foil using a conductive adhesive to obtain a positive electrode body. The effective electrode area was 1 cm 2 , and the thickness of the positive electrode sheet excluding the thickness of the aluminum foil was 150 μm.
[0032]
Polyamideimide resin is dissolved in N-methyl-2-pyrrolidone, and [002] plane spacing is 0.337 nm, specific surface area is 7 m 2 / g, and average particle size is 7 μm. A mesophase pitch-based carbon fiber was dispersed. This solution was applied to an etched 100 μm copper foil with a doctor blade, dried in air at 120 ° C. for 2 hours, and then heat-treated at 260 ° C. for 2 hours under a reduced pressure of 0.2 torr to obtain a negative electrode body. . The thickness of the coated negative electrode after drying was 80 μm, and the weight ratio of mesophase pitch-based carbon fiber: polyamideimide resin was 9: 1.
[0033]
Using a lithium reference electrode in a solution in which LiBF 4 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate and ethyl methyl carbonate of 1: 1 to be 1.0 mol / L with a single electrode for each of the positive electrode and the negative electrode When evaluated at 1 mA, the positive electrode capacity was 0.401 mAh in the range from 4.25 V to 2.75 V, and the negative electrode capacity was 4.57 mAh in the range from 0.005 V to 2 V. The capacity ratio of the positive electrode to the negative electrode was 0.0877.
[0034]
Next, lithium metal is fixed to a nickel mesh on the negative electrode having an effective electrode area of 1 cm 2 , used as a counter electrode and a reference electrode, and charged by an electrochemical method until a constant current of 1 mA reaches 4.1 mAh. Ions were occluded. The negative electrode was opposed to the positive electrode through a polypropylene separator having a thickness of 25 μm to produce a cell.
[0035]
Of ethylene carbonate and ethyl methyl carbonate as an electrolytic solution 1: 1 of the mixed solvent and LiBF 4 and (C 2 H 5) 3 ( CH 3) NBF 4, respectively 1.0 mol / L, of 0.5 mol / L Using a solution dissolved to a concentration, discharging was performed in the range from 4 V to 3 V, and the capacity and resistance were measured. The results are shown in Table 1.
[0036]
[Example 2]
A cell was prepared in the same manner as in Example 1 except that the concentration of (C 2 H 5 ) 3 (CH 3 ) NBF 4 , which is the solute of the electrolytic solution, was changed to 1.0 mol / L instead of 0.5 mol / L. The capacity and resistance were measured in the same manner as in Example 1. The results are shown in Table 1.
[0037]
[Example 3]
The same positive electrode body as in Example 1 was used. Heat-treated petroleum coke at 1500 ° C. that can occlude and desorb lithium ions with a [002] plane spacing of 0.358 nm, a specific surface area of 7 m 2 / g, and an average particle size of 10 μm instead of mesophase pitch-based carbon fibers A negative electrode body was obtained in the same manner as in Example 1 except that was used.
[0038]
When the capacity was measured in the same manner as in Example 1, the capacity of the positive electrode was 0.422 mAh, the capacity of the negative electrode was 5.12 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0824.
[0039]
A cell was prepared in the same manner as in Example 1 except that the negative electrode was used and charged to 4.2 mAh, and the capacity and resistance were measured in the same manner as in Example 1 using the same electrolytic solution as in Example 1. The results are shown in Table 1.
[0040]
[Example 4]
A cell was prepared in the same manner as in Example 1 except that 1.0 mol / L LiBF 4 was used as the solute of the electrolytic solution, and (C 2 H 5 ) 3 (CH 3 ) NBF 4 was not used. The capacity and resistance were measured. The results are shown in Table 1.
[0041]
[Table 1]
Figure 0004042187
[0042]
【The invention's effect】
According to the present invention, a secondary power source having a high withstand voltage, a large capacity, and a low resistance can be obtained.

Claims (3)

a)活性炭を主体とする分極性電極を集電体と一体化してなる正極体と、
b)リチウムイオンを吸蔵、脱離しうる炭素材料に化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた負極を集電体と一体化してなる負極体と、
c)リチウム塩と第4級アンモニウム塩又は第4級ホスホニウム塩とを含み、リチウム塩の濃度が0.1〜2.0mol/Lであり、かつ第4級アンモニウム塩又は第4級ホスホニウム塩の濃度が0.1〜2.0mol/Lである有機電解液と、
を有する二次電源。
a) a positive electrode formed by integrating a polarizable electrode mainly composed of activated carbon with a current collector;
b) a negative electrode body in which a negative electrode in which lithium ions are occluded by a chemical method or an electrochemical method in a carbon material capable of inserting and extracting lithium ions is integrated with a current collector;
c) viewing contains a lithium salt and a quaternary ammonium salt or quaternary phosphonium salt, the concentration of the lithium salt is 0.1~2.0mol / L, and quaternary ammonium salt or quaternary phosphonium salt An organic electrolyte solution having a concentration of 0.1 to 2.0 mol / L ,
Having a secondary power supply.
リチウムイオンを吸蔵、脱離しうる炭素材料の、X線回折の測定による[002]面の面間隔が0.335〜0.410nmである請求項1記載の二次電源。Occlude lithium ions, a carbon material capable of elimination, the secondary power supply of claim 1 Symbol placement spacing of [002] plane by the measurement of X-ray diffraction is 0.335~0.410Nm. 分極性電極からなる正極が、比表面積800〜3000m2 /gの活性炭と、導電性カーボンブラックと、結合材と、からなる請求項1又は2記載の二次電源。The secondary power supply according to claim 1 or 2 , wherein the positive electrode made of a polarizable electrode comprises activated carbon having a specific surface area of 800 to 3000 m 2 / g, conductive carbon black, and a binder.
JP30603797A 1997-11-07 1997-11-07 Secondary power supply Expired - Fee Related JP4042187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30603797A JP4042187B2 (en) 1997-11-07 1997-11-07 Secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30603797A JP4042187B2 (en) 1997-11-07 1997-11-07 Secondary power supply

Publications (2)

Publication Number Publication Date
JPH11144759A JPH11144759A (en) 1999-05-28
JP4042187B2 true JP4042187B2 (en) 2008-02-06

Family

ID=17952311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30603797A Expired - Fee Related JP4042187B2 (en) 1997-11-07 1997-11-07 Secondary power supply

Country Status (1)

Country Link
JP (1) JP4042187B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973180A3 (en) * 1998-07-14 2003-11-19 Asahi Glass Company Ltd. Secondary power source
KR20030047644A (en) * 2001-12-07 2003-06-18 주식회사 네스캡 Electric Energy Storage System
AU2002236325A1 (en) * 2001-12-07 2003-06-17 Nesscap Co., Ltd. Electric energy storage system
JP2005019762A (en) * 2003-06-27 2005-01-20 Asahi Kasei Electronics Co Ltd Nonaqueous lithium type electricity storage element
JP5165862B2 (en) * 2005-07-19 2013-03-21 パナソニック株式会社 Non-aqueous electrolyte and electrochemical energy storage device using the same
KR100992299B1 (en) * 2005-07-19 2010-11-05 파나소닉 주식회사 Non-aqueous electrolyte and electrochemical energy storage device using the same
CN101847513B (en) * 2010-02-26 2013-08-07 上海奥威科技开发有限公司 Preparation process of long-lived negative pole piece and capacitor battery using negative pole piece
JP5785014B2 (en) * 2011-07-22 2015-09-24 旭化成株式会社 Non-aqueous lithium storage element

Also Published As

Publication number Publication date
JPH11144759A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP4731967B2 (en) Lithium ion capacitor
JP4096438B2 (en) Secondary power supply
JP2008294314A (en) Capacitor
JPH0955342A (en) Electric double layer capacitor
JP4042187B2 (en) Secondary power supply
JP2003031220A (en) Secondary power source
JPH1154383A (en) Electric double layer capacitor
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP2000228222A (en) Secondary power supply
JPH1154384A (en) Electric double layer capacitor
JP2000306609A (en) Secondary power supply
JP2000090971A (en) Secondary power source
JP2000036325A (en) Secondary power supply
JP2006303118A (en) Lithium ion capacitor
JP4284934B2 (en) Secondary power supply
JP4099970B2 (en) Secondary power supply
JPH11329492A (en) Secondary power source
JPH11102708A (en) Negative electrode body, and secondary electric source
JP2000223368A (en) Secondary power source
JP2011204828A (en) Non-aqueous electrolyte for lithium ion capacitor and lithium ion capacitor using with the same
JP4039071B2 (en) Secondary power supply
JP4352532B2 (en) Secondary power supply
JP2009130066A (en) Lithium ion capacitor
JP2001052749A (en) Manufacture of lithium secondary battery
JPH11185751A (en) Secondary power source

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees