JP2000036325A - Secondary power supply - Google Patents

Secondary power supply

Info

Publication number
JP2000036325A
JP2000036325A JP10202304A JP20230498A JP2000036325A JP 2000036325 A JP2000036325 A JP 2000036325A JP 10202304 A JP10202304 A JP 10202304A JP 20230498 A JP20230498 A JP 20230498A JP 2000036325 A JP2000036325 A JP 2000036325A
Authority
JP
Japan
Prior art keywords
lithium
secondary power
power supply
layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10202304A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10202304A priority Critical patent/JP2000036325A/en
Publication of JP2000036325A publication Critical patent/JP2000036325A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easily manufacturable secondary power supply having a high breakdown voltage and excellent in quick charging/discharging cycle characteristics. SOLUTION: A secondary power supply comprises a positive electrode consisting of a layer 3 chiefly containing activated charcoal and a layer 4 chiefly containing a lithium-containing transition metal oxide to contact the layer 3, a negative electrode 5 confronting the layer 4 of the positive electrode and containing carbon material capable of occluding and separating lithium ions, and an organic electrolytic solution 7 containing lithium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、急
速充放電サイクル特性に優れる二次電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage and excellent rapid charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用される。電気二重層キャパシタの耐電圧は、水系電
解液を使用すると1.2V、有機系電解液を使用すると
2.5〜3.3Vである。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used.

【0003】電気二重層キャパシタのエネルギは耐電圧
の2乗に比例するので、耐電圧の高い有機電解液の方が
水系電解液より高エネルギである。しかし、有機電解液
を使用した電気二重層キャパシタでもそのエネルギ密度
は鉛蓄電池、リチウムイオン二次電池等の二次電池の1
/10以下であり、さらなるエネルギ密度の向上が必要
とされている。
Since the energy of an electric double layer capacitor is proportional to the square of the withstand voltage, an organic electrolyte having a high withstand voltage has a higher energy than an aqueous electrolyte. However, even with an electric double layer capacitor using an organic electrolyte, its energy density is one of that of secondary batteries such as lead storage batteries and lithium ion secondary batteries.
/ 10 or less, and further improvement in energy density is required.

【0004】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が提案され
ている。また、特開平8−107048には、リチウム
イオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的
方法又は電気化学的方法でリチウムイオンを吸蔵させた
炭素材料を負極に用いる電池が提案されている。また、
特開平9−55342には、リチウムイオンを吸蔵、脱
離しうる炭素材料をリチウムと合金を形成しない多孔質
集電体に担持させる負極を有する、上限電圧4Vの二次
電源が提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane is 0.338 to 0.356 nm by X-ray diffraction.
There has been proposed a secondary power supply having an upper limit voltage of 3 V using an electrode in which lithium ions are previously stored in a carbon material as a negative electrode. Japanese Patent Application Laid-Open No. H08-107048 proposes a battery using, as a negative electrode, a carbon material which can occlude and desorb lithium ions by absorbing lithium ions in advance by a chemical method or an electrochemical method. Also,
Japanese Patent Application Laid-Open No. 9-55342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of absorbing and releasing lithium ions is supported on a porous current collector that does not form an alloy with lithium.

【0005】しかし、上述したような二次電源の場合、
負極の容量が正極の容量よりはるかに大きく負極の電位
を充分に卑にできないため、該二次電源の電圧は高くで
きない。これに対し、リチウムイオンを吸蔵、脱離しう
る炭素材料にあらかじめリチウムイオンを吸蔵させてお
く方法が提案されている。
However, in the case of the secondary power supply as described above,
Since the capacity of the negative electrode is much larger than the capacity of the positive electrode and the potential of the negative electrode cannot be made sufficiently low, the voltage of the secondary power supply cannot be increased. On the other hand, there has been proposed a method in which lithium ions are stored in advance in a carbon material capable of storing and releasing lithium ions.

【0006】[0006]

【発明が解決しようとする課題】リチウムイオンを吸
蔵、脱離しうる炭素材料にあらかじめリチウムイオンを
吸蔵させて負極とし、活性炭を主体とする正極と組み合
わせた二次電源は、耐電圧が高く、エネルギ密度、出力
密度ともに高くできる。しかし、この二次電源の場合、
あらかじめ負極にリチウムイオンを吸蔵させるプロセス
が必要である。
A secondary power supply in which a lithium ion is occluded and desorbed into a carbon material capable of absorbing and desorbing lithium ions in advance to form a negative electrode and a positive electrode mainly comprising activated carbon has a high withstand voltage and a high energy Both density and power density can be increased. However, in the case of this secondary power supply,
A process for storing lithium ions in the negative electrode in advance is required.

【0007】そこで本発明は、急速充放電が可能で高耐
電圧かつ高容量の二次電源であって、かつ作製が容易な
二次電源を提供することを目的とする。
Accordingly, an object of the present invention is to provide a secondary power supply that can be rapidly charged and discharged, has a high withstand voltage and a high capacity, and is easy to manufacture.

【0008】[0008]

【課題を解決するための手段】本発明は、活性炭を主体
とする層と該層に接触するリチウム含有遷移金属酸化物
を主体とする層とからなる正極と、セパレータを介して
前記正極のリチウム含有遷移金属酸化物を主体とする層
と対向するリチウムイオンを吸蔵、脱離しうる炭素材料
を含む負極と、リチウム塩を含む有機電解液と、を有す
ることを特徴とする二次電源を提供する。
According to the present invention, there is provided a positive electrode comprising a layer mainly composed of activated carbon and a layer mainly composed of a transition metal oxide containing lithium in contact with the layer; Provided is a secondary power supply, comprising: a negative electrode containing a carbon material capable of absorbing and desorbing lithium ions facing a layer mainly containing a transition metal oxide; and an organic electrolyte containing a lithium salt. .

【0009】本明細書において、リチウムイオンを吸
蔵、脱離しうる炭素材料を含む負極を集電体と接合した
り集電体上に負極層が形成されて負極と集電体とが一体
化したものを負極体という。そして、活性炭を主体とす
る層を集電体と一体化し、該層にリチウム含有遷移金属
酸化物を主体とする層を接触させて積層したものを正極
体という。また、二次電池も電気二重層キャパシタも二
次電源の1種であるが、本明細書では、正極に活性炭を
含み、負極にリチウムイオンを吸蔵、脱離しうる炭素材
料を含む特定の構成の二次電源を単に二次電源という。
In this specification, a negative electrode containing a carbon material capable of absorbing and desorbing lithium ions is joined to a current collector, or a negative electrode layer is formed on the current collector to integrate the negative electrode and the current collector. The thing is called a negative electrode body. A layer obtained by integrating a layer mainly composed of activated carbon with a current collector and contacting and laminating a layer mainly composed of a lithium-containing transition metal oxide to the layer is referred to as a positive electrode body. In addition, both the secondary battery and the electric double layer capacitor are one type of secondary power supply. In this specification, the positive electrode contains activated carbon, and the negative electrode contains a carbon material capable of inserting and extracting lithium ions. The secondary power supply is simply called a secondary power supply.

【0010】従来の活性炭を主体とする正極とリチウム
イオンを吸蔵、脱離しうる炭素材料を主体とする負極と
リチウム塩を含む有機電解液とからなる二次電源を充電
すると、正極では活性炭に対して電解液のリチウム塩の
アニオンの吸着が起こり、負極では炭素材料に対して電
解液のリチウムイオンの吸蔵が起こる。しかし、この場
合、正極の容量が負極の容量に比べてはるかに小さいの
で、負極には充分な量のリチウムイオンが吸蔵されず、
負極の電位が充分に卑にならない。したがって、二次電
源の電圧を高くできない。そのため、二次電源の電圧を
高めるにはあらかじめ負極の炭素材料に化学的方法又は
電気化学的方法でリチウムイオンを吸蔵するプロセスが
必要とされる。
When a secondary power supply comprising a conventional positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions and an organic electrolyte containing a lithium salt is charged, the positive electrode reacts with activated carbon. Thus, the anion of the lithium salt of the electrolytic solution is adsorbed, and the negative electrode absorbs lithium ions of the electrolytic solution with respect to the carbon material. However, in this case, since the capacity of the positive electrode is much smaller than the capacity of the negative electrode, a sufficient amount of lithium ions are not occluded in the negative electrode,
The potential of the negative electrode does not become sufficiently low. Therefore, the voltage of the secondary power supply cannot be increased. Therefore, in order to increase the voltage of the secondary power supply, a process of storing lithium ions in the carbon material of the negative electrode in advance by a chemical method or an electrochemical method is required.

【0011】一方、本発明の二次電源は、活性炭を主体
とする層にリチウム含有遷移金属酸化物を電気的に接触
させ、セパレータを介してリチウムイオンを吸蔵、脱離
しうる炭素材料からなる負極と組み合わせた二次電源で
あるため、小電流で充電するとリチウム含有遷移金属酸
化物からリチウムイオンが脱離して負極に吸蔵され、負
極電位を充分に卑にすることができる。そのため、あら
かじめ負極にリチウムイオンを吸蔵させる必要がない。
On the other hand, the secondary power supply of the present invention is a negative electrode comprising a carbon material capable of inserting and extracting lithium ions through a separator by electrically contacting a layer containing activated carbon with a lithium-containing transition metal oxide. When charged with a small current, lithium ions are desorbed from the lithium-containing transition metal oxide and occluded in the negative electrode, so that the negative electrode potential can be made sufficiently low. Therefore, there is no need to previously store lithium ions in the negative electrode.

【0012】本発明の二次電源において、大電流で充放
電するときは、活性炭におけるイオンの吸脱着がリチウ
ム含有遷移金属酸化物におけるリチウムの吸蔵、脱離反
応よりはやい。したがって、大電流での充放電では正極
に接触しているリチウム含有遷移金属酸化物は関与せ
ず、リチウム塩のアニオンの活性炭に対する吸脱着が起
こるため、正極の容量は活性炭の電気二重層容量で決定
される。また、リチウム含有遷移金属酸化物は、大電流
での充放電においては充放電に関与せず反応が起こらな
いので、充放電サイクルに伴う劣化が小さい。
In the secondary power supply of the present invention, when charging and discharging with a large current, the adsorption and desorption of ions in the activated carbon is faster than the insertion and extraction of lithium in the lithium-containing transition metal oxide. Therefore, the lithium-containing transition metal oxide in contact with the positive electrode is not involved in charge and discharge at a large current, and the adsorption and desorption of the lithium salt anion to the activated carbon occurs.Therefore, the capacity of the positive electrode is the electric double layer capacity of the activated carbon. It is determined. In addition, since the lithium-containing transition metal oxide does not participate in charge / discharge and does not react in charge / discharge at a large current, deterioration due to the charge / discharge cycle is small.

【0013】本発明の二次電源において、リチウム含有
遷移金属酸化物は初めの充電においてリチウムイオンを
吸蔵、脱離しうる炭素材料に対するリチウムイオンを吸
蔵させる機能を有すれば、充放電サイクルに関与しなく
てもよい。特に大電流での充放電の場合は上述したよう
に関与できない。したがって、リチウム含有遷移金属酸
化物は電位が貴になるときにリチウムイオンを脱離でき
る化合物であればよく、通常のリチウムイオン二次電池
の正極に使用される化合物のようにリチウムイオンを吸
蔵できなくてもよい。
In the secondary power supply of the present invention, if the lithium-containing transition metal oxide has a function of absorbing lithium ions in the first charge, and absorbing lithium ions in the carbon material capable of absorbing and desorbing lithium ions, it is involved in the charge / discharge cycle. It is not necessary. In particular, in the case of charging / discharging with a large current, it cannot be involved as described above. Therefore, the lithium-containing transition metal oxide only needs to be a compound capable of releasing lithium ions when the potential becomes noble, and can store lithium ions like a compound used for a positive electrode of a normal lithium ion secondary battery. It is not necessary.

【0014】本発明において、リチウム含有遷移金属酸
化物を主体とする層は、ポリテトラフルオロエチレンを
バインダとしてシート状に成形すると容易に取り扱うこ
とができ好ましい。このとき作製するシートの空隙率
は、セパレータの空隙率と同程度かセパレータの空隙率
より高空隙率であることが好ましい。具体的にはシート
の空隙率は40%以上、さらには50〜80%であるこ
とが好ましい。このシートの空隙率が40%未満である
と、充放電時の抵抗が大きくなり大電流放電時の出力が
小さくなる。また、このシート中のバインダの量は、5
〜30重量%であることが好ましい。
In the present invention, the layer mainly composed of a transition metal oxide containing lithium is preferably formed into a sheet using polytetrafluoroethylene as a binder because it can be easily handled. The porosity of the sheet produced at this time is preferably equal to or higher than the porosity of the separator. Specifically, the porosity of the sheet is preferably 40% or more, and more preferably 50 to 80%. If the porosity of this sheet is less than 40%, the resistance during charging and discharging increases, and the output during high-current discharging decreases. The amount of binder in this sheet is 5
It is preferably about 30% by weight.

【0015】リチウム含有遷移金属酸化物層の厚さは、
厚すぎると二次電源の抵抗が高くなり、薄すぎると初め
の充電において負極に充分にリチウムイオンを吸蔵する
ことができない。したがって、リチウム含有遷移金属酸
化物のリチウムイオンを脱離しうる量が、負極の炭素材
料がリチウムを吸蔵しうる量の0.5〜1.5倍となる
ように選定することが好ましい。
[0015] The thickness of the lithium-containing transition metal oxide layer is:
If the thickness is too thick, the resistance of the secondary power supply will be high. If the thickness is too thin, the lithium ions cannot be sufficiently occluded in the negative electrode in the first charge. Therefore, it is preferable that the amount of the lithium-containing transition metal oxide capable of desorbing lithium ions is selected to be 0.5 to 1.5 times the amount of the negative electrode carbon material capable of absorbing lithium.

【0016】活性炭を含む層に接触しているリチウム含
有遷移金属酸化物としては、V、Fe、Co、Mn、N
i、W及びZnからなる群から選ばれる1種以上の遷移
金属とリチウムとの複合酸化物が好ましい。特に好まし
いのは、Co、Mn及びNiからなる群から選ばれる1
種以上とリチウムとの複合酸化物であり、さらにはLi
x Coy Ni1-y2 又はLiz Mn24 (ただし、
0<x<2、0≦y≦1、0<z<2。)が好ましい。
As the lithium-containing transition metal oxide in contact with the layer containing activated carbon, V, Fe, Co, Mn, N
A composite oxide of lithium and one or more transition metals selected from the group consisting of i, W and Zn is preferred. Particularly preferred is 1 selected from the group consisting of Co, Mn and Ni.
Complex oxide of at least one species and lithium, and further Li
x Co y Ni 1-y O 2 or Li z Mn 2 O 4 (provided that,
0 <x <2, 0 ≦ y ≦ 1, 0 <z <2. Is preferred.

【0017】本発明において、正極に含まれる活性炭
は、比表面積が800〜3000m2/gであることが
好ましい。活性炭の原料、賦活条件は限定されないが、
例えば原料としてはやしがら、フェノール樹脂、石油コ
ークス等が挙げられ、賦活方法としては水蒸気賦活法、
溶融アルカリ賦活法等が挙げられる。本発明では水蒸気
賦活されたやしがら系活性炭又は水蒸気賦活されたフェ
ノール樹脂系活性炭が好ましい。また、活性炭を含む層
は、その抵抗を低くするために、導電材として導電性の
カーボンブラック又は黒鉛を含ませておくのも好まし
く、このとき導電材は活性炭を含む層中に0.1〜20
重量%であることが好ましい。
In the present invention, the activated carbon contained in the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g. Activated carbon raw materials and activation conditions are not limited,
For example, as raw materials, coconut, phenolic resin, petroleum coke, and the like can be mentioned. As the activation method, a steam activation method,
A molten alkali activation method and the like can be mentioned. In the present invention, steam activated charcoal activated carbon or steam activated phenolic resin activated carbon is preferred. In addition, the layer containing activated carbon preferably contains conductive carbon black or graphite as a conductive material in order to reduce its resistance. 20
% By weight.

【0018】正極体の作製方法としては、例えば活性炭
粉末と導電性のカーボンブラックの粉末との混合物にバ
インダとしてポリテトラフルオロエチレンを混合し、混
練した後シート状に成形して活性炭を含む層を形成し、
これを集電体に導電性接着剤を用いて固定する。そして
上記のリチウム含有遷移金属酸化物を含むシートを活性
炭を含む層に重ねて接触させることにより得られる。こ
のとき、活性炭を含む層とリチウム含有遷移金属酸化物
とは外圧等を加えて、接触が良好であるほど二次電源の
抵抗を低くできるので好ましい。
As a method for producing a positive electrode body, for example, a mixture of activated carbon powder and conductive carbon black powder is mixed with polytetrafluoroethylene as a binder, kneaded, and then formed into a sheet to form a layer containing activated carbon. Forming
This is fixed to the current collector using a conductive adhesive. Then, the sheet containing the above-mentioned lithium-containing transition metal oxide is obtained by overlapping and contacting the layer containing activated carbon. At this time, the layer containing the activated carbon and the lithium-containing transition metal oxide are preferably applied with an external pressure or the like, so that the better the contact, the lower the resistance of the secondary power supply can be.

【0019】また、活性炭を含む層を集電体と接合する
方法としては、バインダとしてポリフッ化ビニリデン、
ポリアミドイミド、ポリイミド等を溶解したワニスに活
性炭粉末と導電性のカーボンブラックの粉末とを分散さ
せ、この液をドクターブレード法等によって集電体上に
塗工し、乾燥して得てもよい。活性炭を含む層に含まれ
るバインダの量は、正極体の強度と容量等の特性とのバ
ランスから1〜20重量%であることが好ましい。
As a method for joining the layer containing activated carbon to the current collector, polyvinylidene fluoride as a binder,
Activated carbon powder and conductive carbon black powder may be dispersed in a varnish in which polyamideimide, polyimide, or the like is dissolved, and the resulting liquid may be applied on a current collector by a doctor blade method or the like, and dried to obtain a powder. The amount of the binder contained in the layer containing activated carbon is preferably 1 to 20% by weight in view of the balance between the strength of the positive electrode body and characteristics such as capacity.

【0020】本発明におけるリチウムイオンを吸蔵、脱
離しうる炭素材料は、X線回折の測定による[002]
面の面間隔が0.335〜0.410nmであることが
好ましい。面間隔が0.410nm超の炭素材料は充放
電サイクルにおいて劣化しやすい。具体的には石油コー
クス、メソフェーズピッチ系炭素材料又は気相成長炭素
繊維を800〜3000℃で熱処理した材料、天然黒
鉛、人造黒鉛、難黒鉛性炭素材料等が挙げられる。本発
明ではこれらの材料はいずれも好ましく使用できる。
The carbon material capable of occluding and releasing lithium ions in the present invention is obtained by X-ray diffraction measurement [002].
It is preferable that the spacing between the surfaces is 0.335 to 0.410 nm. A carbon material having a plane spacing of more than 0.410 nm is liable to be deteriorated in a charge / discharge cycle. Specific examples include petroleum coke, a material obtained by heat-treating mesophase pitch-based carbon material or vapor-grown carbon fiber at 800 to 3000 ° C., natural graphite, artificial graphite, and non-graphitizable carbon material. In the present invention, any of these materials can be preferably used.

【0021】難黒鉛性炭素材料又は石油コークス等を低
温処理した炭素材料を使用する場合、例えば気相成長炭
素を黒鉛化した材料等の黒鉛性の炭素材料と混合して使
用すると抵抗を低減できるので好ましい。この場合、難
黒鉛性炭素材料等と黒鉛性の炭素材料とは重量比で9
5:5〜70:30であることが好ましい。黒鉛性の炭
素材料が5%未満では抵抗低減の効果が発揮できず、3
0%超では負極の容量が低下する。
When using a non-graphitizable carbon material or a carbon material obtained by treating petroleum coke at a low temperature, the resistance can be reduced by using a vapor-grown carbon mixed with a graphitic carbon material such as a graphitized material. It is preferred. In this case, the weight ratio of the non-graphitizable carbon material or the like to the graphitic carbon material is 9%.
The ratio is preferably 5: 5 to 70:30. If the graphite carbon material is less than 5%, the effect of reducing the resistance cannot be exhibited, and
If it exceeds 0%, the capacity of the negative electrode decreases.

【0022】本発明における負極体は、活性炭を含む層
同様ポリテトラフルオロエチレンをバインダとして混練
してシート状に成形して負極を形成し、導電性接着剤を
用いて集電体に接着させて得ることができる。また、ポ
リフッ化ビニリデン、ポリアミドイミド又はポリイミド
をバインダとし、バインダとなる樹脂又はその前駆体を
有機溶媒に溶解させた溶液に前記炭素材料を分散させ、
集電体に塗工し、乾燥させて得る方法もある。これらの
方法はいずれも好ましい。
The negative electrode body according to the present invention is formed by kneading polytetrafluoroethylene as a binder and forming the same into a sheet, similarly to the layer containing activated carbon, to form a negative electrode, and bonding the negative electrode to a current collector using a conductive adhesive. Obtainable. Further, polyvinylidene fluoride, polyamideimide or polyimide as a binder, the carbon material is dispersed in a solution obtained by dissolving a resin serving as a binder or a precursor thereof in an organic solvent,
There is also a method in which a current collector is applied and dried. All of these methods are preferred.

【0023】集電体に負極層を塗工して得られる方法に
おいて、バインダとなる樹脂又はその前駆体を溶解させ
る溶媒は限定されないが、バインダを構成する樹脂又は
その前駆体を容易に溶解でき、入手も容易であることか
らN−メチル−2−ピロリドン(以下、NMPという)
が好ましい。ここで、ポリフッ化ビニリデンの前駆体、
ポリアミドイミドの前駆体又はポリイミドの前駆体と
は、加熱することにより重合してそれぞれポリフッ化ビ
ニリデン、ポリアミドイミド又はポリイミドとなるもの
をいう。
In the method obtained by applying the negative electrode layer to the current collector, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof can be easily dissolved. N-methyl-2-pyrrolidone (hereinafter referred to as NMP) because it is easily available
Is preferred. Here, a precursor of polyvinylidene fluoride,
The term “polyamideimide precursor” or “polyimide precursor” refers to those which are polymerized by heating to become polyvinylidene fluoride, polyamideimide or polyimide, respectively.

【0024】上記のようにして得られるバインダは、加
熱することにより硬化し、耐薬品性、機械的性質、寸法
安定性に優れる。熱処理の温度は200℃以上であるこ
とが好ましい。200℃以上であれば、ポリアミドイミ
ドの前駆体又はポリイミドの前駆体であっても通常重合
して、それぞれポリアミドイミド又はポリイミドとな
る。また、熱処理する雰囲気は窒素、アルゴン等の不活
性雰囲気又は1torr以下の減圧下が好ましい。ポリ
アミドイミド又はポリイミドは、本発明で使用される有
機電解液に対する耐性があり、また負極から水分を除去
するために300℃程度の高温加熱又は減圧下の加熱を
しても充分耐性がある。
The binder obtained as described above is cured by heating and is excellent in chemical resistance, mechanical properties and dimensional stability. The temperature of the heat treatment is preferably 200 ° C. or higher. If the temperature is 200 ° C. or higher, even if it is a polyamideimide precursor or a polyimide precursor, it is usually polymerized to be a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon, or a reduced pressure of 1 torr or less. Polyamide imide or polyimide has resistance to the organic electrolyte used in the present invention, and is sufficiently resistant to high temperature heating of about 300 ° C. or heating under reduced pressure to remove water from the negative electrode.

【0025】本発明において、負極と集電体の間にポリ
アミドイミド又はポリイミドからなる接着層を介在させ
ると、負極と集電体の接着力はより強固になる。この場
合、あらかじめ集電体にポリアミドイミド、ポリイミド
又はこれらの前駆体を溶剤に溶解させたワニスを、ドク
ターブレード法等の塗工法で塗工し、乾燥して接着層を
形成し、この上に負極を形成する。また、接着層を形成
するワニスに銅、黒鉛等の導電材を分散させておくと、
負極と集電体との接触抵抗を低減できるので好ましい。
この導電材を含むワニスは、活性炭を含む層をシート状
に成形した場合における該層と集電体との間にも導電性
接着剤として介在させることもできる。
In the present invention, if an adhesive layer made of polyamideimide or polyimide is interposed between the negative electrode and the current collector, the adhesive force between the negative electrode and the current collector becomes stronger. In this case, a varnish obtained by previously dissolving polyamideimide, polyimide or their precursors in a solvent on a current collector is applied by a coating method such as a doctor blade method, and dried to form an adhesive layer. A negative electrode is formed. Also, if a conductive material such as copper and graphite is dispersed in a varnish forming an adhesive layer,
This is preferable because the contact resistance between the negative electrode and the current collector can be reduced.
The varnish containing the conductive material can also be interposed as a conductive adhesive between the layer containing the activated carbon and the current collector when the layer containing the activated carbon is formed into a sheet.

【0026】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6 、LiBF4、LiClO4 、L
iN(SO2 CF32 、CF3 SO3 Li、LiC
(SO2 CF33 、LiAsF6 及びLiSbF6
らなる群から選ばれる1種以上が好ましい。溶媒はエチ
レンカーボネート、プロピレンカーボネート、ブチレン
カーボネート、ジメチルカーボネート、エチルメチルカ
ーボネート、ジエチルカーボネート、スルホラン及びジ
メトキシエタンからなる群から選ばれる1種以上を含む
ことが好ましい。これらのリチウム塩と溶媒とからなる
電解液は耐電圧が高く、電気伝導度も高い。また、電解
液中のリチウム塩の濃度は0.1〜2.5mol/L、
さらには0.5〜2mol/Lが好ましい。
The lithium salt contained in the organic electrolyte according to the present invention includes LiPF 6 , LiBF 4 , LiClO 4 , L
iN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC
(SO 2 CF 3) 3, LiAsF 6 and one or more selected from the group consisting of LiSbF 6 are preferred. The solvent preferably contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. Electrolyte solutions composed of these lithium salts and solvents have high withstand voltage and high electric conductivity. The concentration of the lithium salt in the electrolyte is 0.1 to 2.5 mol / L,
Furthermore, 0.5 to 2 mol / L is preferable.

【0027】[0027]

【実施例】次に、実施例(例1〜4)及び比較例(例
5)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 4) and Comparative Examples (Example 5), but the present invention is not limited thereto.

【0028】なお、実施例のセルは、図1に示すとおり
に作製した。また、例1〜5におけるセルの作製及び測
定はすべて露点が−60℃以下のアルゴングローブボッ
クス中で行った。
The cell of the example was manufactured as shown in FIG. The production and measurement of the cells in Examples 1 to 5 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0029】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2 /gの
活性炭を80重量%、導電性カーボンブラックを10重
量%、及びバインダとしてポリテトラフルオロエチレン
を10重量%からなる混合物をエタノールを加えて混練
し、圧延した後、200℃で2時間真空乾燥して活性炭
を含む層3を得た。この層3をポリアミドイミド樹脂を
バインダとする導電性接着剤を用いてアルミニウム箔か
らなる正極集電体1に接合し、減圧下で300℃で2時
間熱処理して正極体とした。活性炭からなる層は、面積
が24cm2 、厚さが180μmであった。
Example 1 80% by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by a steam activation method using a phenol resin as a raw material, 10% by weight of conductive carbon black, and 10% by weight of polytetrafluoroethylene as a binder The mixture consisting of wt% was kneaded with ethanol, kneaded, rolled, and vacuum dried at 200 ° C. for 2 hours to obtain a layer 3 containing activated carbon. This layer 3 was bonded to a positive electrode current collector 1 made of aluminum foil using a conductive adhesive having a polyamideimide resin as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body. The layer made of activated carbon had an area of 24 cm 2 and a thickness of 180 μm.

【0030】次に、石油コークス系炭素材料を1000
℃で熱処理することによりリチウムイオンを吸蔵、脱離
しうる炭素材料を得た。この炭素材料のX線回折による
[002]面の面間隔は0.340nmであった。この
炭素材料80重量%、導電剤として気相成長炭素を30
00℃で処理した材料10重量%、及びポリテトラフル
オロエチレン10重量%からなる混合物をエタノールを
加えて混練し、圧延した後、200℃で2時間真空乾燥
して負極5を得た。この負極5をポリアミドイミド樹脂
をバインダとする導電性接着剤を用いて銅箔からなる集
電体2に接合し、減圧下で300℃で2時間熱処理し、
負極体とした。電極面積は24cm2 、電極シートの厚
さは100μmであった。
Next, a petroleum coke-based carbon material was
A carbon material capable of occluding and desorbing lithium ions was obtained by heat treatment at ℃. The plane interval of the [002] plane of the carbon material by X-ray diffraction was 0.340 nm. 80% by weight of this carbon material and 30% of vapor grown carbon as a conductive agent
A mixture composed of 10% by weight of the material treated at 00 ° C. and 10% by weight of polytetrafluoroethylene was kneaded by adding ethanol, rolled, and then vacuum-dried at 200 ° C. for 2 hours to obtain a negative electrode 5. This negative electrode 5 was joined to a current collector 2 made of copper foil using a conductive adhesive having a polyamideimide resin as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure.
A negative electrode body was obtained. The electrode area was 24 cm 2 , and the thickness of the electrode sheet was 100 μm.

【0031】LiCoO2 90重量%とポリテトラフル
オロエチレン10重量%からなる混合物をエタノールを
加えて混練し、シート状に成形して圧延し、空隙率60
%、厚さ100μmのリチウム含有遷移金属酸化物を含
む層4を得た。この層4を上記の活性炭を含む層3に接
触させ、空隙率60%のポリプロピレン製のセパレータ
6を介して上記負極体と対向させ、二次電源素子を作製
した。この素子を1mol/LのLiBF4 を含むプロ
ピレンカーボネート溶液からなる電解液7に充分に浸漬
した後、5mAの定電流で4.2Vに充電した。240
mAの充放電電流で4.2Vから3Vまでの範囲で充放
電サイクル試験を行い、1000サイクル後の容量変化
率を算出した。結果を表1に示す。
A mixture consisting of 90% by weight of LiCoO 2 and 10% by weight of polytetrafluoroethylene is kneaded by adding ethanol, formed into a sheet, rolled, and formed into a porosity of 60%.
%, And a layer 4 containing a lithium-containing transition metal oxide having a thickness of 100 μm was obtained. This layer 4 was brought into contact with the above-mentioned layer 3 containing activated carbon, and was opposed to the above-mentioned negative electrode body via a polypropylene separator 6 having a porosity of 60%, thereby producing a secondary power supply element. The device was sufficiently immersed in an electrolyte solution 7 composed of a propylene carbonate solution containing 1 mol / L LiBF 4 and then charged to 4.2 V at a constant current of 5 mA. 240
A charge / discharge cycle test was performed at a charge / discharge current of mA in a range from 4.2 V to 3 V, and a capacity change rate after 1000 cycles was calculated. Table 1 shows the results.

【0032】[例2]LiCoO2 のかわりにLiMn
24 を用いてリチウム含有遷移金属酸化物を含む層を
形成した以外は例1と同様にして二次電源素子を得た。
この素子を用いて例1と同様にして充電し、充放電サイ
クル試験を行い容量変化率を算出した。結果を表1に示
す。
[Example 2] LiMn instead of LiCoO 2
A secondary power device was obtained in the same manner as in Example 1, except that a layer containing a lithium-containing transition metal oxide was formed using 2 O 4 .
Using this device, charging was performed in the same manner as in Example 1, and a charge / discharge cycle test was performed to calculate a capacity change rate. Table 1 shows the results.

【0033】[例3]LiCoO2 のかわりにLiNi
2 を用いてリチウム含有遷移金属酸化物を含む層を形
成した以外は例1と同様にして二次電源素子を得た。こ
の素子を用いて例1と同様にして充電し、充放電サイク
ル試験を行い容量変化率を算出した。結果を表1に示
す。
[Example 3] LiNi instead of LiCoO 2
A secondary power supply device was obtained in the same manner as in Example 1, except that a layer containing a lithium-containing transition metal oxide was formed using O 2 . Using this device, charging was performed in the same manner as in Example 1, and a charge / discharge cycle test was performed to calculate a capacity change rate. Table 1 shows the results.

【0034】[例4]LiCoO2 のかわりにLiCo
0.2 Ni0.82 を用いてリチウム含有遷移金属酸化物
を含む層を形成した以外は例1と同様にして二次電源素
子を得た。この素子を用いて例1と同様にして充電し、
充放電サイクル試験を行い容量変化率を算出した。結果
を表1に示す。
Example 4 LiCoO 2 was replaced with LiCo
A secondary power supply device was obtained in the same manner as in Example 1, except that a layer containing a lithium-containing transition metal oxide was formed using 0.2 Ni 0.8 O 2 . Using this element, charging was performed in the same manner as in Example 1,
A charge / discharge cycle test was performed to calculate a capacity change rate. Table 1 shows the results.

【0035】[例5]LiCoO2 を含む層を使用せ
ず、活性炭からなる層をセパレータを介して負極体と対
向させた以外は例1と同様にして二次電源素子を得た。
この素子を用いて例1と同様にして充電し、充放電サイ
クル試験を行い容量変化率を算出した。結果を表1に示
す。
Example 5 A secondary power supply device was obtained in the same manner as in Example 1, except that the layer containing activated carbon was opposed to the negative electrode body via a separator without using the layer containing LiCoO 2 .
Using this device, charging was performed in the same manner as in Example 1, and a charge / discharge cycle test was performed to calculate a capacity change rate. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明の二次電源は、耐電圧が高く、急
速充放電サイクル特性に優れている。また、二次電源の
作製時の負極炭素材料へのリチウムイオンの吸蔵も、あ
らかじめ化学的方法又は電気化学的方法により行う必要
がなく、二次電源を作製した後に充電により行うことが
できるため、二次電源の作製が容易である。
The secondary power supply according to the present invention has a high withstand voltage and excellent rapid charge / discharge cycle characteristics. In addition, occlusion of lithium ions into the negative electrode carbon material at the time of manufacturing the secondary power supply does not need to be performed by a chemical method or an electrochemical method in advance, and can be performed by charging after the secondary power supply is manufactured. It is easy to make a secondary power supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の二次電源素子を表す断面図FIG. 1 is a sectional view illustrating a secondary power supply element according to an embodiment.

【符号の説明】[Explanation of symbols]

1:正極集電体 2:負極集電体 3:活性炭を含む層 4:リチウム含有遷移金属酸化物を含む層 5:負極 6:セパレータ 7:電解液 1: positive electrode current collector 2: negative electrode current collector 3: layer containing activated carbon 4: layer containing lithium-containing transition metal oxide 5: negative electrode 6: separator 7: electrolytic solution

フロントページの続き Fターム(参考) 5H003 AA01 AA04 AA08 BA00 BB01 BB05 BB11 BC06 BD00 BD02 5H014 AA02 AA06 BB11 EE01 EE08 EE10 HH00 HH06 5H029 AJ02 AJ05 AJ14 AK03 AK08 AK18 AL06 AM03 AM04 AM05 AM07 BJ12 CJ11 DJ04 DJ08 EJ04 HJ02 HJ13 Continued on the front page F-term (reference) 5H003 AA01 AA04 AA08 BA00 BB01 BB05 BB11 BC06 BD00 BD02 5H014 AA02 AA06 BB11 EE01 EE08 EE10 HH00 HH06 5H029 AJ02 AJ05 AJ14 AK03 AK08 AK18 DJ04J04 AM05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主体とする層と該層に接触するリ
チウム含有遷移金属酸化物を主体とする層とからなる正
極と、セパレータを介して前記正極のリチウム含有遷移
金属酸化物を主体とする層と対向するリチウムイオンを
吸蔵、脱離しうる炭素材料を含む負極と、リチウム塩を
含む有機電解液と、を有することを特徴とする二次電
源。
1. A positive electrode comprising a layer mainly composed of activated carbon and a layer mainly composed of a lithium-containing transition metal oxide in contact with the layer, and a lithium-containing transition metal oxide of the positive electrode mainly comprising a separator interposed therebetween. A secondary power supply, comprising: a negative electrode containing a carbon material capable of absorbing and desorbing lithium ions facing a layer to be formed, and an organic electrolyte containing a lithium salt.
【請求項2】リチウム含有遷移金属酸化物を主体とする
層が、バインダとしてポリテトラフルオロエチレンを含
むシート状物である請求項1記載の二次電源。
2. The secondary power source according to claim 1, wherein the layer mainly composed of a transition metal oxide containing lithium is a sheet containing polytetrafluoroethylene as a binder.
【請求項3】リチウム含有遷移金属酸化物が、V、F
e、Co、Mn、Ni、W及びZnからなる群から選ば
れる1種以上とリチウムとの複合酸化物である請求項1
又は2記載の二次電源。
3. The method according to claim 1, wherein the lithium-containing transition metal oxide is V, F
2. A composite oxide of at least one selected from the group consisting of e, Co, Mn, Ni, W and Zn with lithium.
Or the secondary power supply according to 2.
【請求項4】リチウム含有遷移金属酸化物が、Lix
y Ni1-y2 又はLiz Mn24 (ただし、0<
x<2、0≦y≦1、0<z<2。)である請求項1又
は2記載の二次電源。
4. The method according to claim 1, wherein the lithium-containing transition metal oxide is Li x C
o y Ni 1-y O 2 or Li z Mn 2 O 4 (where 0 <
x <2, 0 ≦ y ≦ 1, 0 <z <2. The secondary power supply according to claim 1 or 2, wherein
【請求項5】活性炭が、水蒸気賦活されたやしがら系活
性炭又は水蒸気賦活されたフェノール樹脂系活性炭であ
る請求項1、2、3又は4記載の二次電源。
5. The secondary power supply according to claim 1, wherein the activated carbon is steam activated activated palm-based activated carbon or steam activated activated phenolic resin activated carbon.
【請求項6】負極の炭素材料は、[002]面の面間隔
が0.335〜0.410nmである請求項1、2、
3、4又は5記載の二次電源。
6. The carbon material of the negative electrode, wherein a plane interval of a [002] plane is 0.335 to 0.410 nm.
The secondary power supply according to 3, 4, or 5.
JP10202304A 1998-07-16 1998-07-16 Secondary power supply Pending JP2000036325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10202304A JP2000036325A (en) 1998-07-16 1998-07-16 Secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10202304A JP2000036325A (en) 1998-07-16 1998-07-16 Secondary power supply

Publications (1)

Publication Number Publication Date
JP2000036325A true JP2000036325A (en) 2000-02-02

Family

ID=16455335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10202304A Pending JP2000036325A (en) 1998-07-16 1998-07-16 Secondary power supply

Country Status (1)

Country Link
JP (1) JP2000036325A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2005327489A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Positive electrode for power storage element
JP2006172775A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Energy storage device, its module and automobile using it
JP2008235169A (en) * 2007-03-23 2008-10-02 Nec Tokin Corp Non-aqueous electrolyte system electrochemical device
EP2017911A1 (en) 2007-07-17 2009-01-21 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
EP2040320A1 (en) 2007-09-18 2009-03-25 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
US8007936B2 (en) 2007-11-12 2011-08-30 Fuji Jukogyo Kabushiki Kaisha Electric storage device
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
US20150004473A1 (en) * 2013-07-01 2015-01-01 Samsung Sdi Co., Ltd. Secondary battery
CN104412438A (en) * 2012-06-26 2015-03-11 三菱自动车工业株式会社 Secondary cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2005327489A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Positive electrode for power storage element
JP2006172775A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Energy storage device, its module and automobile using it
JP2008235169A (en) * 2007-03-23 2008-10-02 Nec Tokin Corp Non-aqueous electrolyte system electrochemical device
US9012089B2 (en) 2007-07-17 2015-04-21 Fuji Jukogyo Kabushiki Kaisha Electric storage device
EP2017911A1 (en) 2007-07-17 2009-01-21 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
EP2040320A1 (en) 2007-09-18 2009-03-25 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
US8283072B2 (en) 2007-09-18 2012-10-09 Fuji Jukogyo Kabushiki Kaisha Electric storage device
US8007936B2 (en) 2007-11-12 2011-08-30 Fuji Jukogyo Kabushiki Kaisha Electric storage device
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
CN104412438A (en) * 2012-06-26 2015-03-11 三菱自动车工业株式会社 Secondary cell
US20150004473A1 (en) * 2013-07-01 2015-01-01 Samsung Sdi Co., Ltd. Secondary battery
US9583279B2 (en) * 2013-07-01 2017-02-28 Samsung Sdi Co., Ltd. Secondary battery

Similar Documents

Publication Publication Date Title
JP3689948B2 (en) Electric double layer capacitor
JP4929182B2 (en) Electricity storage element
JP4096438B2 (en) Secondary power supply
US6558846B1 (en) Secondary power source
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
WO2017213149A1 (en) Lithium-ion secondary battery and assembled battery
JP2000036325A (en) Secondary power supply
JP2003031220A (en) Secondary power source
JP2000306609A (en) Secondary power supply
JP2000090971A (en) Secondary power source
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JPH1154384A (en) Electric double layer capacitor
JP4284934B2 (en) Secondary power supply
JPH07147158A (en) Negative electrode for lithium secondary battery
JP4352532B2 (en) Secondary power supply
JP2000223368A (en) Secondary power source
JP2001052749A (en) Manufacture of lithium secondary battery
JP2009130066A (en) Lithium ion capacitor
JP2001236960A (en) Method of manufacturing secondary power supply
JP4617702B2 (en) Lithium secondary battery and manufacturing method thereof
JP2001266872A (en) Secondary power source and its manufacturing method
JP4039071B2 (en) Secondary power supply
JP2000003729A (en) Manufacture of secondary power supply