JP2001236960A - Method of manufacturing secondary power supply - Google Patents

Method of manufacturing secondary power supply

Info

Publication number
JP2001236960A
JP2001236960A JP2000044810A JP2000044810A JP2001236960A JP 2001236960 A JP2001236960 A JP 2001236960A JP 2000044810 A JP2000044810 A JP 2000044810A JP 2000044810 A JP2000044810 A JP 2000044810A JP 2001236960 A JP2001236960 A JP 2001236960A
Authority
JP
Japan
Prior art keywords
secondary power
carbon material
power supply
negative electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000044810A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000044810A priority Critical patent/JP2001236960A/en
Publication of JP2001236960A publication Critical patent/JP2001236960A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary power supply having high breakdown voltage, high capacity, and good quick charging and discharging cycle characteristics. SOLUTION: A secondary power supply has a negative electrode mainly containing a carbon material with an edge surface thereof increased by treating carbon material capable of absorbing and desorbing a lithium ion with a solution with aromatic hydrocarbon dissolved in an ether solvent, a positive electrode mainly containing activated carbon, and an organic electrolyte containing a lithium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が記載され
ている。また、特開平8−107048には、リチウム
イオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的
方法又は電気化学的方法でリチウムイオンを吸蔵させた
炭素材料を負極に用いる電池が記載されている。また、
特開平9−55342には、リチウムイオンを吸蔵、脱
離しうる炭素材料をリチウムと合金を形成しない多孔質
集電体に担持させる負極を有する、上限電圧4Vの二次
電源が提案されている。しかしこれらの二次電源は、負
極の炭素材料にあらかじめリチウムイオンを吸蔵させる
工程を必要とする問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.356 nm.
A secondary power supply having an upper limit voltage of 3 V using an electrode in which lithium ions are previously absorbed in a carbon material as a negative electrode is described. Japanese Patent Application Laid-Open No. 8-107048 describes a battery in which a carbon material which can occlude and desorb lithium ions by absorbing lithium ions in advance by a chemical method or an electrochemical method is used as a negative electrode. Also,
Japanese Patent Application Laid-Open No. 9-55342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of absorbing and releasing lithium ions is supported on a porous current collector that does not form an alloy with lithium. However, these secondary power supplies have a problem that a step of previously storing lithium ions in the carbon material of the negative electrode is required.

【0004】また、電気二重層キャパシタ以外に大電流
充放電可能な電源にはリチウムイオン二次電池がある。
リチウムイオン二次電池は電気二重層キャパシタに比べ
て高電圧かつ高容量であるが、抵抗が高く、急速充放電
サイクルによる寿命が電気二重層キャパシタに比べ著し
く短い問題があった。
In addition to the electric double layer capacitor, a power source capable of charging and discharging a large current is a lithium ion secondary battery.
A lithium ion secondary battery has a higher voltage and a higher capacity than an electric double layer capacitor, but has a problem that it has a high resistance and has a significantly shorter life due to a rapid charge / discharge cycle than an electric double layer capacitor.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能で高耐電圧かつ高容量でエネルギ密度が高
く、充放電サイクル信頼性の高い二次電源の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of manufacturing a secondary power supply capable of rapid charge / discharge, high withstand voltage, high capacity, high energy density, and high charge / discharge cycle reliability. Aim.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭を主体
とする正極と、リチウムイオンを吸蔵、脱離しうる炭素
材料を主体とする負極と、リチウム塩を含む有機電解液
とを有する二次電源の製造方法において、負極の主体と
される前記炭素材料は、エーテル系溶媒に芳香族炭化水
素を溶解した溶液とリチウム金属とを反応させて得られ
た溶液によりリチウムイオンを吸蔵、脱離しうる炭素材
料を処理することにより得ることを特徴とする二次電源
の製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a secondary battery comprising a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and an organic electrolyte containing a lithium salt. In the method of manufacturing a power supply, the carbon material used as the main component of the negative electrode can occlude and desorb lithium ions by a solution obtained by reacting a solution obtained by dissolving an aromatic hydrocarbon in an ether solvent with lithium metal. Provided is a method for manufacturing a secondary power supply, which is obtained by processing a carbon material.

【0007】[0007]

【発明の実施の形態】本明細書において、リチウムイオ
ンを吸蔵、脱離しうる炭素材料を主体とする負極と集電
体とを接合して一体化させたものを負極体という。正極
体についても同様の定義とする。また、二次電池も電気
二重層キャパシタも二次電源の1種であるが、本明細書
では、正極を活性炭を主体とし、負極をリチウムイオン
を吸蔵、脱離しうる炭素材料を主体とする特定の構成の
二次電源を単に二次電源という。
BEST MODE FOR CARRYING OUT THE INVENTION In this specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions with a current collector. The same definition applies to the positive electrode body. In addition, although both secondary batteries and electric double layer capacitors are one type of secondary power supply, in this specification, the positive electrode is mainly composed of activated carbon, and the negative electrode is mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Is simply referred to as a secondary power supply.

【0008】リチウム金属は、エーテル系溶媒に芳香族
炭化水素を溶解させた溶液に溶解できる。この場合、前
記溶液とリチウム金属が反応して、芳香族炭化水素とリ
チウムイオンが錯体を形成していると考えられている。
充分に水分の少ない環境で、この溶液にリチウムイオン
を吸蔵、脱離しうる炭素材料を加えて撹拌すると、上記
錯体からリチウムイオンのみが炭素材料に吸蔵されると
考えられる。炭素材料を加えてから好ましくは1〜24
時間ほど撹拌して充分に反応させて、溶媒を除去する
と、上記溶液に加える前の炭素材料とは性質の異なった
炭素材料を得ることができる。以下、本明細書では、上
記溶液に加える前の炭素材料を未処理炭素、上記溶液中
で反応させた後の炭素材料を処理後炭素という。
[0008] Lithium metal can be dissolved in a solution in which an aromatic hydrocarbon is dissolved in an ether-based solvent. In this case, it is considered that the solution and the lithium metal react to form a complex between the aromatic hydrocarbon and the lithium ion.
When a carbon material capable of absorbing and desorbing lithium ions is added to this solution and stirred in an environment with sufficiently low moisture, it is considered that only lithium ions are absorbed by the carbon material from the complex. After adding the carbon material, preferably 1 to 24
When the solvent is removed by sufficiently stirring and reacting for about an hour, a carbon material having properties different from those of the carbon material before being added to the solution can be obtained. Hereinafter, in this specification, the carbon material before being added to the solution is referred to as untreated carbon, and the carbon material after reacting in the solution is referred to as treated carbon.

【0009】処理後炭素をラマン分光法で測定すると、
1360cm-1の強度I1360と1580cm-1の強度I
1580の比R=I1360/I1580が未処理炭素より大きくな
り、表面構造の変化が認められる。強度比Rは、大きい
ほど黒鉛のエッジ面が相対的に多く、小さいほどベーサ
ル面が多いことを示すので、上記処理により黒鉛のエッ
ジ面が増えている。リチウムイオンが吸蔵、脱離するサ
イトはエッジ面であるため、エッジ面が増えることによ
り大電流放電に適した炭素材料になると考えられる。
When the carbon after the treatment is measured by Raman spectroscopy,
Intensity intensity I 1360 and 1580 cm -1 in 1360 cm -1 I
The 1580 ratio R = I 1360 / I 1580 is larger than that of the untreated carbon, and a change in the surface structure is observed. As the intensity ratio R is larger, the edge surface of the graphite is relatively larger, and as the ratio is smaller, the basal surface is more, the edge surface of the graphite is increased by the above processing. Since the site where lithium ions are inserted and desorbed is an edge surface, it is considered that a carbon material suitable for large-current discharge is obtained by increasing the edge surface.

【0010】上記の処理により得られる処理後炭素を本
発明の負極炭素材料として使用する場合、処理後炭素の
ラマンスペクトルにおける1360cm-1の強度I1360
と1580cm-1の強度I1580の比R1と未処理炭素の
ラマンスペクトルにおける1360cm-1の強度I1360
と1580cm-1の強度I1580の比R2とは、その差Δ
R=R1−R2が0.05〜0.6であることが好まし
い。ΔRが0.05未満であると処理効果が現れにく
く、大電流放電特性が向上しにくい。0.6を超える
と、エッジ面が増えすぎて容量が低下する。より好まし
くはΔRは0.1〜0.4である。
When the carbon after treatment obtained by the above treatment is used as the negative electrode carbon material of the present invention, the intensity I 1360 at 1360 cm -1 in the Raman spectrum of the carbon after treatment.
Intensity I 1360 of 1360 cm -1 in the ratio R 1 and Raman spectrum of the untreated carbon intensity I 1580 of 1580 cm -1
And the ratio R 2 of the intensity I 1580 of 1580 cm −1 is the difference Δ
It is preferable that R = R 1 -R 2 is 0.05 to 0.6. When ΔR is less than 0.05, the processing effect is hardly exhibited, and the large current discharge characteristics are hardly improved. If it exceeds 0.6, the edge surface becomes too large and the capacity decreases. More preferably, ΔR is from 0.1 to 0.4.

【0011】本発明において使用する未処理炭素の強度
比R2は、0.06〜0.15、特に0.08〜0.1
2であることが好ましい。R2がこの範囲の未処理炭素
を使用し、上記処理によりR1が0.2〜0.4の処理
後炭素を得ると、該処理後炭素を負極に用いた二次電源
は大電流放電特性に優れ容量が大きくなる。
The strength ratio R 2 of the untreated carbon used in the present invention is 0.06 to 0.15, particularly 0.08 to 0.1.
It is preferably 2. When untreated carbon in this range is used for R 2 and the treated carbon having R 1 of 0.2 to 0.4 is obtained by the above treatment, the secondary power source using the treated carbon as the negative electrode is subjected to a large current discharge. Excellent characteristics and large capacity.

【0012】エーテル系溶媒は特に限定されないが、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
2,5−ジメチルテトラヒドロフラン、ジメトキシメタ
ン、1,2−ジエトキシエタン、1,2−ジブトキシエ
タン、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、1,2−ジメトキシプロパン、1−メトキシブ
タン、ジエチルエーテル、ジメチルエーテル及びエチル
メチルエーテルからなる群から選ばれる1種以上を含む
ことが好ましい。
The ether solvent is not particularly restricted but includes tetrahydrofuran, 2-methyltetrahydrofuran,
2,5-dimethyltetrahydrofuran, dimethoxymethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dimethoxypropane, 1- It preferably contains at least one member selected from the group consisting of methoxybutane, diethyl ether, dimethyl ether and ethyl methyl ether.

【0013】芳香族炭化水素としては縮合多環式炭化水
素が好ましく、なかでもナフタレン、ピレン、アントラ
セン、ナフタセン、フェナントレン、1,2−ベンゾピ
レン及び4,5−ベンゾピレンからなる群から選ばれる
1種以上が好ましい。上記エーテル系溶媒にこれらの芳
香族炭化水素は溶解でき、得られた溶液にリチウム金属
を溶解させることができる。そして、リチウム金属が溶
解した溶液に未処理炭素を浸漬させると、未処理炭素に
リチウムイオンを容易に吸蔵できる。
As the aromatic hydrocarbon, a condensed polycyclic hydrocarbon is preferable, and at least one selected from the group consisting of naphthalene, pyrene, anthracene, naphthacene, phenanthrene, 1,2-benzopyrene and 4,5-benzopyrene is preferred. Is preferred. These aromatic hydrocarbons can be dissolved in the above ether solvent, and lithium metal can be dissolved in the obtained solution. When the untreated carbon is immersed in a solution in which lithium metal is dissolved, lithium ions can be easily inserted into the untreated carbon.

【0014】一般に、リチウムイオン二次電池の場合
は、正極はリチウム含有遷移金属酸化物を主体とする電
極、負極はリチウムイオンを吸蔵、脱離しうる炭素材料
を主体とする電極であり、充電によりリチウムイオンが
正極のリチウム含有遷移金属酸化物から脱離し、負極の
リチウムイオンを吸蔵、脱離しうる炭素材料へ吸蔵さ
れ、放電により負極からリチウムイオンが脱離し、正極
にリチウムイオンが吸蔵される。したがって、本質的に
は電解液中のリチウムイオンは電池の充放電に関与しな
い。
In general, in the case of a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Lithium ions are desorbed from the lithium-containing transition metal oxide of the positive electrode, are stored in a carbon material capable of occluding and desorbing lithium ions of the negative electrode, lithium ions are desorbed from the negative electrode by discharging, and lithium ions are stored in the positive electrode. Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0015】一方、本発明の二次電源は、充電により電
解液中のアニオンが正極の活性炭に吸着し、電解液中の
リチウムイオンが負極のリチウムイオンを吸蔵、脱離し
うる炭素材料へ吸蔵される。そして放電により負極から
リチウムイオンが脱離し、正極では前記アニオンが脱着
される。すなわち、本発明の二次電源では充放電に電解
液の溶質が本質的に関与しており、リチウムイオン電池
とは充放電の機構が異なっている。また、リチウムイオ
ン二次電池のように正極活物質自体にリチウムイオンが
吸蔵、脱離することがないため、本発明の二次電源は充
放電サイクル信頼性に優れている。
On the other hand, in the secondary power supply of the present invention, the anion in the electrolytic solution is adsorbed on the activated carbon of the positive electrode by charging, and the lithium ions in the electrolytic solution are stored in the carbon material capable of absorbing and desorbing the lithium ions of the negative electrode. You. Then, lithium ions are desorbed from the negative electrode by discharging, and the anions are desorbed in the positive electrode. That is, in the secondary power supply of the present invention, the solute of the electrolytic solution is essentially involved in the charging and discharging, and the charging and discharging mechanism is different from that of the lithium ion battery. Further, unlike the lithium ion secondary battery, since the lithium ion is not inserted or extracted from the positive electrode active material itself, the secondary power supply of the present invention has excellent charge / discharge cycle reliability.

【0016】正極を活性炭、負極をリチウムイオンを吸
蔵、脱離しうる炭素材料を主体として用いた二次電源で
は、電解液に溶解しているイオンが充放電に関与する。
したがって、電解液の溶質濃度が低い場合には充分に充
電できなくなるおそれがある。電解液の溶質濃度として
は0.5〜2.0モル/L、特に0.75〜1.5モル
/Lが好ましい。
In a secondary power supply using a positive electrode as activated carbon and a negative electrode mainly as a carbon material capable of absorbing and desorbing lithium ions, ions dissolved in the electrolyte participate in charging and discharging.
Therefore, when the solute concentration of the electrolytic solution is low, there is a possibility that the battery cannot be sufficiently charged. The solute concentration of the electrolyte is preferably 0.5 to 2.0 mol / L, particularly preferably 0.75 to 1.5 mol / L.

【0017】本発明の二次電源では、1度目の充放電サ
イクルにおける負極のサイクル効率は必ずしも100%
ではなく、吸蔵されたリチウムイオンで脱離しないもの
もある。その場合、電解液中のリチウムイオン濃度が減
少し、次の充電から充分に充電できないおそれがあるの
で、正極にリチウム含有遷移金属酸化物を添加して特性
劣化を防ぐことが好ましい。この方法により、負極から
脱離できないリチウムイオンを補うことができる。この
場合、正極中に含まれるリチウム含有遷移金属酸化物
は、正極全質量の0.1〜20%、特に3〜15%が好
ましい。0.1%未満ではその効果が小さく、一方、2
0%超ではリチウム含有遷移金属酸化物の容量が大きい
ため、活性炭電極の特徴の高出力かつ高信頼性という二
次電源性能が得られなくなる。
In the secondary power supply of the present invention, the cycle efficiency of the negative electrode in the first charge / discharge cycle is not necessarily 100%.
Instead, some occluded lithium ions do not desorb. In this case, since the lithium ion concentration in the electrolyte decreases and charging may not be sufficiently performed from the next charging, it is preferable to add a lithium-containing transition metal oxide to the positive electrode to prevent characteristic deterioration. By this method, lithium ions that cannot be eliminated from the negative electrode can be supplemented. In this case, the content of the lithium-containing transition metal oxide contained in the positive electrode is preferably 0.1 to 20%, more preferably 3 to 15% of the total weight of the positive electrode. If it is less than 0.1%, the effect is small.
If it exceeds 0%, the capacity of the lithium-containing transition metal oxide is large, so that the secondary power supply performance of high output and high reliability, which is a characteristic of the activated carbon electrode, cannot be obtained.

【0018】上記リチウム含有遷移金属酸化物として
は、V、Mn、Fe、Co、Ni、Zn及びWからなる
群から選ばれる1種以上の遷移金属とリチウムとの複合
酸化物が好ましい。特に、Mn、Co及びNiからなる
群から選ばれる1種以上とリチウムとの複合酸化物が好
ましく、なかでもLixCoyNi(1-y)2又はLiz
24(ただし、0<x<2、0≦y≦1、0<z<
2。)で表される化合物が好ましい。
As the lithium-containing transition metal oxide, a composite oxide of lithium and one or more transition metals selected from the group consisting of V, Mn, Fe, Co, Ni, Zn and W is preferable. In particular, a composite oxide of lithium and at least one selected from the group consisting of Mn, Co, and Ni is preferable. Among them, Li x Co y Ni (1-y) O 2 or Li z M
n 2 O 4 (however, 0 <x <2, 0 ≦ y ≦ 1, 0 <z <
2. ) Is preferred.

【0019】本発明において、正極に含まれる活性炭
は、比表面積が800〜3000m2/gであることが
好ましい。活性炭の原料、賦活条件は限定されないが、
例えば原料としてはやしがら、フェノール樹脂、石油コ
ークス等が挙げられ、賦活方法としては水蒸気賦活法、
溶融アルカリ賦活法等が挙げられる。本発明では特に、
水蒸気賦活したやしがら系活性炭又は水蒸気賦活したフ
ェノール樹脂系活性炭が好ましい。また、正極の抵抗を
低くするために、正極中に導電材として導電性のカーボ
ンブラック又は黒鉛を含ませておくのも好ましく、この
とき導電材は正極全質量の0.1〜20%含まれること
が好ましい。
In the present invention, the activated carbon contained in the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g. Activated carbon raw materials and activation conditions are not limited,
For example, as raw materials, coconut, phenolic resin, petroleum coke, and the like can be mentioned. As the activation method, a steam activation method,
A molten alkali activation method and the like can be mentioned. In the present invention,
Steam activated charcoal activated carbon or steam activated phenolic resin activated carbon is preferred. Further, in order to reduce the resistance of the positive electrode, it is preferable to include conductive carbon black or graphite as a conductive material in the positive electrode. In this case, the conductive material is included in 0.1 to 20% of the total mass of the positive electrode. Is preferred.

【0020】正極体の作製方法としては、例えば活性炭
粉末にバインダとしてポリテトラフルオロエチレンを混
合し、混練した後シート状に成形して正極とし、これを
集電体に導電性接着剤を用いて固定する方法がある。ま
た、バインダとしてポリフッ化ビニリデン、ポリアミド
イミド、ポリイミド等を用い、これらを溶媒に溶解した
溶液に活性炭粉末を分散させ、この液をドクターブレー
ド法等によって集電体上に塗工し、乾燥して得てもよ
い。正極中に含まれるバインダの量は、正極体の強度と
容量等の特性とのバランスから、正極全質量の1〜20
%であることが好ましい。
As a method for producing a positive electrode body, for example, polytetrafluoroethylene as a binder is mixed with activated carbon powder, kneaded and then formed into a sheet to form a positive electrode, which is then used as a current collector with a conductive adhesive. There is a way to fix. Further, using polyvinylidene fluoride, polyamide imide, polyimide or the like as a binder, the activated carbon powder is dispersed in a solution in which these are dissolved in a solvent, and this solution is coated on a current collector by a doctor blade method or the like, and dried. You may get it. The amount of the binder contained in the positive electrode may be 1 to 20 times the total weight of the positive electrode, based on the balance between the strength of the positive electrode body and characteristics such as capacity.
%.

【0021】本発明における未処理炭素は、X線回折の
測定による[002]面の面間隔が0.335〜0.4
10nmであることが好ましい。面間隔が0.410n
m超の炭素材料は充放電サイクルにおいて劣化しやす
い。具体的には石油コークス、メソフェーズピッチ系炭
素材料又は気相成長炭素繊維を800〜3000℃で熱
処理した材料、天然黒鉛、人造黒鉛、難黒鉛性炭素材料
等が挙げられる。本発明ではこれらの材料はいずれも好
ましく使用できる。なかでも[002]面の面間隔が
0.335〜0.337nmの難黒鉛性炭素材料や、天
然黒鉛又は易黒鉛性炭素を2800℃以上で熱処理した
[002]面の面間隔が0.335〜0.337nmの
材料は、リチウムイオン吸蔵、脱離の電位が低く好まし
い。
The untreated carbon according to the present invention has a [002] plane spacing of 0.335 to 0.4 as measured by X-ray diffraction.
It is preferably 10 nm. 0.410n
Carbon materials with a length of more than m are liable to deteriorate in charge / discharge cycles. Specific examples include petroleum coke, a material obtained by heat-treating mesophase pitch-based carbon material or vapor-grown carbon fiber at 800 to 3000 ° C., natural graphite, artificial graphite, and non-graphitizable carbon material. In the present invention, any of these materials can be preferably used. Above all, the [002] plane is 0.335 to 0.337 nm, and the non-graphitizable carbon material or natural graphite or easily graphitic carbon is heat-treated at 2800 ° C. or more. A material having a thickness of about 0.337 nm is preferably low in the potential for inserting and extracting lithium ions.

【0022】本発明における負極体は、正極体同様ポリ
テトラフルオロエチレンをバインダとして処理後炭素と
混練してシート状に成形し、導電性接着剤を用いて集電
体に接着させて得られる。また、ポリフッ化ビニリデ
ン、ポリアミドイミド又はポリイミドをバインダとし、
バインダとなる樹脂又はその前駆体を有機溶媒に溶解さ
せた溶液に処理後炭素を分散させ、集電体に塗工し、乾
燥させて得る方法もある。
The negative electrode body of the present invention is obtained by treating with polytetrafluoroethylene as a binder, kneading with carbon, forming a sheet, and adhering it to a current collector using a conductive adhesive. In addition, polyvinylidene fluoride, polyamideimide or polyimide as a binder,
There is also a method in which carbon is dispersed after treatment in a solution in which a resin serving as a binder or a precursor thereof is dissolved in an organic solvent, the resultant is coated on a current collector, and then dried.

【0023】集電体に液を塗工して負極体を得る方法に
おいて、バインダとなる樹脂又はその前駆体を溶解させ
る溶媒は限定されないが、バインダを構成する樹脂又は
その前駆体を容易に溶解でき、入手も容易であることか
らN−メチル−2−ピロリドン(以下、NMPという)
が好ましい。ここで、ポリアミドイミドの前駆体又はポ
リイミドの前駆体とは、加熱することにより重合してそ
れぞれポリアミドイミド又はポリイミドとなるものをい
う。
In the method of applying the liquid to the current collector to obtain the negative electrode body, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof is easily dissolved. N-methyl-2-pyrrolidone (hereinafter referred to as NMP)
Is preferred. Here, the term “polyamide imide precursor” or “polyimide precursor” refers to those which are polymerized by heating to form polyamide imide or polyimide, respectively.

【0024】上に挙げたバインダは、加熱することによ
り硬化し、耐薬品性、機械的性質、寸法安定性に優れ
る。熱処理の温度は200℃以上であることが好まし
い。200℃以上であれば、ポリアミドイミドの前駆体
又はポリイミドの前駆体であっても通常重合して、それ
ぞれポリアミドイミド又はポリイミドとなる。また、熱
処理する雰囲気は窒素、アルゴン等の不活性雰囲気又は
133Pa以下の減圧下が好ましい。ポリアミドイミド
又はポリイミドは、本発明で使用される有機電解液に対
する耐性があり、また負極から水分を除去するために3
00℃程度の高温加熱又は減圧下の加熱をしても充分耐
性がある。
The above-mentioned binders are cured by heating and are excellent in chemical resistance, mechanical properties and dimensional stability. The temperature of the heat treatment is preferably 200 ° C. or higher. If the temperature is 200 ° C. or higher, even if it is a polyamideimide precursor or a polyimide precursor, it is usually polymerized to be a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon or a reduced pressure of 133 Pa or less. Polyamide imide or polyimide is resistant to the organic electrolyte used in the present invention, and is used to remove water from the negative electrode.
It is sufficiently resistant to high temperature heating of about 00 ° C. or heating under reduced pressure.

【0025】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6、LiBF4、LiClO4、Li
N(SO2CF32、CF3SO3Li、LiC(SO2
3 3、LiAsF6及びLiSbF6からなる群から選
ばれる1種以上が好ましい。溶媒はエチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、スルホラン及び1,2−ジメトキ
シエタンからなる群から選ばれる1種以上が好ましい。
これらのリチウム塩と溶媒とからなる電解液は耐電圧が
高く、電気伝導度も高い。
The lithium contained in the organic electrolyte according to the present invention
Um salt is LiPF6, LiBFFour, LiClOFour, Li
N (SOTwoCFThree)Two, CFThreeSOThreeLi, LiC (SOTwoC
FThree) Three, LiAsF6And LiSbF6Selected from the group consisting of
One or more types are preferred. Solvent is ethylene carbonate
G, propylene carbonate, butylene carbonate,
Dimethyl carbonate, ethyl methyl carbonate, di
Ethyl carbonate, sulfolane and 1,2-dimethoxy
One or more selected from the group consisting of cyethanes is preferred.
The electrolyte consisting of these lithium salts and solvents has a withstand voltage.
High electrical conductivity.

【0026】[0026]

【実施例】次に、実施例(例1〜5)及び比較例(例
6、7)により本発明をさらに具体的に説明するが、本
発明はこれらにより限定されない。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 5) and Comparative Examples (Examples 6 and 7), but the present invention is not limited thereto.

【0027】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2/gの
活性炭、導電性カーボンブラック、及びバインダとして
のポリテトラフルオロエチレンの質量比で8:1:1の
混合物をエタノールを加えて混練し、圧延した後、20
0℃で2時間真空乾燥して電極シートを得た。この電極
シートから大きさ6cm×3cm、厚さ150μmの電
極を得て、ポリアミドイミドをバインダとする導電性接
着剤を用いてアルミニウム箔に接合し、減圧下で300
℃で2時間熱処理し、正極体とした。
Example 1 A mass ratio of activated carbon having a specific surface area of 2000 m 2 / g, conductive carbon black, and polytetrafluoroethylene as a binder obtained by a steam activation method using a phenol resin as a raw material is 8: 1: 1. The mixture was kneaded with ethanol and rolled.
Vacuum drying was performed at 0 ° C. for 2 hours to obtain an electrode sheet. An electrode having a size of 6 cm × 3 cm and a thickness of 150 μm was obtained from this electrode sheet, and bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder.
Heat treatment was performed at 2 ° C. for 2 hours to obtain a positive electrode body.

【0028】次に、アルゴン雰囲気の露点−60℃のグ
ローブボックス中で1,2−ジメトキシエタン20mL
にナフタレンを1.0g溶解し、この溶液にリチウム金
属箔を100mg加えて撹拌し、リチウム金属を溶解さ
せた。その後、リチウムイオンを吸蔵、脱離できる材料
である、2800℃で熱処理したメソカーボンマイクロ
ビーズ(大阪ガス社製、以下MCMBという。)5.0
gを加え密閉容器にて24時間撹拌した。これを、空気
中にてろ過し、200℃で乾燥した。ラマン分光法によ
る1360cm-1の強度I1360と1580cm-1の強度
1580の比R=I1360/I1580が、未処理炭素はR2
0.14であったのに対して、処理後炭素はR1=0.
32であった。すなわち、ΔR=R1−R2=0.18で
あった。
Next, 1,2-dimethoxyethane (20 mL) was placed in a glove box having a dew point of -60 ° C. in an argon atmosphere.
In this solution, 1.0 g of naphthalene was dissolved, and 100 mg of lithium metal foil was added to this solution, followed by stirring to dissolve lithium metal. Thereafter, mesocarbon microbeads (manufactured by Osaka Gas Co., Ltd .; hereinafter, referred to as MCMB) 5.0, which is a material capable of absorbing and desorbing lithium ions, heat-treated at 2800 ° C.
g was added and the mixture was stirred in a closed container for 24 hours. This was filtered in the air and dried at 200 ° C. The ratio R = I 1360 / I 1580 of the intensity I 1580 of the intensity I 1360 and 1580 cm -1 in 1360 cm -1 by Raman spectroscopy, the untreated carbon R 2 =
In contrast to 0.14, the carbon after treatment was R 1 = 0.1.
32. That is, ΔR = R 1 −R 2 = 0.18.

【0029】気相成長炭素繊維(以下、VGCFとい
う。)を黒鉛化したものと上記処理後炭素とを、NMP
にポリフッ化ビニリデンを溶解させた溶液に分散させ、
この液を銅からなる集電体に塗布して乾燥し、負極体を
得た。負極中の処理後炭素:黒鉛化VGCF:ポリフッ
化ビニリデンは質量比で8:1:1であった。この負極
体をさらにロールプレス機でプレスしたところ、得られ
た負極は、大きさが6cm×3cm、負極層の厚さが1
5μmであった。
A graphitized carbon fiber (hereinafter, referred to as VGCF) obtained by vapor growth and the above-mentioned treated carbon were subjected to NMP.
Dispersed in a solution of polyvinylidene fluoride dissolved in
This liquid was applied to a current collector made of copper and dried to obtain a negative electrode body. The mass ratio of carbon: graphitized VGCF: polyvinylidene fluoride after treatment in the negative electrode was 8: 1: 1. When this negative electrode body was further pressed by a roll press, the obtained negative electrode had a size of 6 cm × 3 cm and a thickness of the negative electrode layer of 1 cm.
It was 5 μm.

【0030】露点が−60℃以下のアルゴングローブボ
ックス中で、上記のように得られた正極体と負極体をポ
リプロピレン製のセパレータを介して対向させ、1モル
/LのLiBF4をエチレンカーボネートとジエチルカ
ーボネートとの混合溶媒(体積比で50:50)に溶解
した溶液に充分な時間含浸させて二次電源を得た。露点
が−60℃以下のアルゴングローブボックス中で、この
二次電源の初期容量を測定後、充放電電流180mAで
4.2Vから2.75Vまでの範囲で充放電サイクルを
行い、3000サイクル後の容量を測定し、容量変化率
を算出した。結果を表1に示す。
In a argon glove box having a dew point of −60 ° C. or lower, the positive electrode body and the negative electrode body obtained as described above are opposed to each other via a polypropylene separator, and 1 mol / L of LiBF 4 is mixed with ethylene carbonate. A secondary power source was obtained by impregnating a solution dissolved in a mixed solvent with diethyl carbonate (50:50 by volume) for a sufficient time. After measuring the initial capacity of this secondary power supply in an argon glove box having a dew point of −60 ° C. or less, a charge / discharge cycle was performed at a charge / discharge current of 180 mA in a range from 4.2 V to 2.75 V. After 3000 cycles, The capacity was measured and the rate of change in capacity was calculated. Table 1 shows the results.

【0031】[例2]リチウムを溶解させる溶液の溶媒
として、2−メチルテトラヒドロフランを用いた以外は
例1と同様にしてMCMBを処理した。処理後炭素は、
ラマン分光法による1360cm-1の強度I1360と15
80cm-1の強度I1580の比R1=0.28であった。
すなわち、R=R1−R2=0.14であった。これを用
いて例1と同様な方法で負極体を作製し、例1と同様に
して二次電源を作製し、例1と同様に評価した。結果を
表1に示す。
Example 2 MCMB was treated in the same manner as in Example 1 except that 2-methyltetrahydrofuran was used as a solvent for a solution in which lithium was dissolved. The carbon after treatment is
Intensities I 1360 and 15 at 1360 cm -1 by Raman spectroscopy
The ratio R 1 of the intensity I 1580 of 80 cm −1 was R 0.28.
That is, R = R 1 −R 2 = 0.14. Using this, a negative electrode body was manufactured in the same manner as in Example 1, a secondary power supply was manufactured in the same manner as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0032】[例3]リチウムを溶解させる溶液の溶媒
として、ジエチルエーテルを用いた以外は例1と同様に
してMCMBを処理した。R1=0.30であった。す
なわち、ΔR=R1−R2=0.16であった。これを用
いて例1と同様な方法で負極体を作製し、例1と同様に
して二次電源を作製し、例1と同様に評価した。結果を
表1に示す。
Example 3 MCMB was treated in the same manner as in Example 1 except that diethyl ether was used as a solvent for a solution in which lithium was dissolved. It was R 1 = 0.30. That is, ΔR = R 1 −R 2 = 0.16. Using this, a negative electrode body was manufactured in the same manner as in Example 1, a secondary power supply was manufactured in the same manner as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0033】[例4]リチウムを溶解させる溶液の溶媒
として、テトラヒドロフランを用いた以外は例1と同様
にしてMCMBを処理した。R1=0.31であった。
すなわち、ΔR=R1−R2=0.17であった。これを
用いて例1と同様な方法で負極体を作製し、例1と同様
にして二次電源を作製し、例1と同様に評価した。結果
を表1に示す。
Example 4 MCMB was treated in the same manner as in Example 1 except that tetrahydrofuran was used as a solvent for a solution in which lithium was dissolved. It was R 1 = 0.31.
That is, ΔR = R 1 −R 2 = 0.17. Using this, a negative electrode body was manufactured in the same manner as in Example 1, a secondary power supply was manufactured in the same manner as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0034】[例5]リチウムイオンを吸蔵、脱離しう
る炭素材料として天然黒鉛(LB−CG、R 2=0.1
3、日本黒鉛社製)を用いた以外は、例1と同様にして
炭素材料を処理した。R1=0.33であった。すなわ
ち、ΔR=R1−R2=0.16であった。これを用いて
例1と同様な方法で負極体を作製し、例1と同様にして
二次電源を作製し、例1と同様に評価した。結果を表1
に示す。
[Example 5] Occlusion and desorption of lithium ions
Natural graphite (LB-CG, R Two= 0.1
3, manufactured by Nippon Graphite Co., Ltd.)
The carbon material was processed. R1= 0.33. Sand
ΔR = R1-RTwo= 0.16. Using this
A negative electrode body was prepared in the same manner as in Example 1, and was manufactured in the same manner as in Example 1.
A secondary power supply was manufactured and evaluated in the same manner as in Example 1. Table 1 shows the results
Shown in

【0035】[例6]リチウムイオンを吸蔵、脱離する
炭素材料として、例1と同じ2800℃で熱処理したM
CMBをリチウム金属を溶解した溶液で処理せずに用い
た以外は例1と同様な方法で負極体を作製した。これを
用いて例1と同様に二次電源を作製し、例1と同様に評
価した。結果を表1に示す。
Example 6 As a carbon material capable of inserting and extracting lithium ions, M was heat-treated at 2800 ° C. as in Example 1.
A negative electrode body was prepared in the same manner as in Example 1, except that CMB was used without being treated with a solution in which lithium metal was dissolved. Using this, a secondary power supply was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0036】[例7]リチウムイオンを吸蔵、脱離する
炭素材料として、例5と同じ天然黒鉛をリチウム金属を
溶解した溶液で処理せずに用いた以外は例1と同様な方
法で負極体を作製した。これを用いて例1と同様に二次
電源を作製し、例1と同様に評価した。結果を表1に示
す。
Example 7 A negative electrode was produced in the same manner as in Example 1 except that the same natural graphite as in Example 5 was used as a carbon material for absorbing and desorbing lithium ions without being treated with a solution in which lithium metal was dissolved. Was prepared. Using this, a secondary power supply was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明によれば、耐電圧が高く、容量が
大きく、かつ急速充放電サイクル信頼性の高い二次電源
を提供できる。
According to the present invention, it is possible to provide a secondary power supply having a high withstand voltage, a large capacity, and a high reliability of a rapid charge / discharge cycle.

フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK08 AL06 AM02 CJ11 CJ15 HJ13 5H050 AA02 AA07 AA08 BA15 CA16 CB07 DA02 DA03 FA19 GA11 GA16 HA13 Continued on the front page F term (reference) 5H029 AJ02 AJ03 AJ05 AK08 AL06 AM02 CJ11 CJ15 HJ13 5H050 AA02 AA07 AA08 BA15 CA16 CB07 DA02 DA03 FA19 GA11 GA16 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主体とする正極と、リチウムイオ
ンを吸蔵、脱離しうる炭素材料を主体とする負極と、リ
チウム塩を含む有機電解液とを有する二次電源の製造方
法において、負極の主体とされる前記炭素材料は、エー
テル系溶媒に芳香族炭化水素を溶解した溶液とリチウム
金属とを反応させて得られた溶液によりリチウムイオン
を吸蔵、脱離しうる炭素材料を処理することにより得る
ことを特徴とする二次電源の製造方法。
1. A method of manufacturing a secondary power supply comprising: a positive electrode mainly composed of activated carbon; a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions; and an organic electrolytic solution containing a lithium salt. The main carbon material is obtained by treating a carbon material capable of absorbing and desorbing lithium ions by a solution obtained by reacting a solution obtained by dissolving an aromatic hydrocarbon in an ether solvent with lithium metal. A method for manufacturing a secondary power supply, comprising:
【請求項2】負極の主体とされる前記炭素材料のラマン
スペクトルにおける1360cm-1の強度I1360と15
80cm-1の強度I1580の比をR1=I1360/I1580
し、前記溶液による処理前の炭素材料のラマンスペクト
ルにおける1360cm-1の強度I1360と1580cm
-1の強度I1580の比をR2=I1360/I1580として、Δ
R=R1−R2が0.05〜0.6である請求項1に記載
の二次電源の製造方法。
2. The intensity I 1360 and 15 at 1360 cm -1 in the Raman spectrum of the carbon material used as the main component of the negative electrode.
The ratio of the intensity I 1580 at 80 cm −1 is R 1 = I 1360 / I 1580, and the intensity I 1360 at 1360 cm −1 and 1580 cm in the Raman spectrum of the carbon material before being treated with the solution.
Assuming that the ratio of the intensity I 1580 of -1 is R 2 = I 1360 / I 1580 , Δ
2. The method of claim 1, wherein R = R 1 −R 2 is 0.05 to 0.6. 3.
【請求項3】R1が0.2〜0.4であり、R2が0.0
6〜0.15である請求項2に記載の二次電源の製造方
法。
3. The method according to claim 1, wherein R 1 is 0.2 to 0.4 and R 2 is 0.0 to 0.4.
3. The method for manufacturing a secondary power supply according to claim 2, wherein the number is 6 to 0.15.
【請求項4】前記エーテル系溶媒は、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、2,5−ジメチル
テトラヒドロフラン、ジメトキシメタン、1,2−ジエ
トキシエタン、1,2−ジブトキシエタン、1,2−ジ
メトキシエタン、1,2−ジエトキシエタン、1,2−
ジメトキシプロパン、1−メトキシブタン、ジエチルエ
ーテル、ジメチルエーテル及びエチルメチルエーテルか
らなる群から選ばれる1種以上であり、前記芳香族炭化
水素は、ナフタレン、ピレン、アントラセン、ナフタセ
ン、フェナントレン、1,2−ベンゾピレン及び4,5
−ベンゾピレンからなる群から選ばれる1種以上である
請求項1、2又は3に記載の二次電源。
4. The ether solvent is tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, dimethoxymethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, 1,2-dimethoxyethane. , 1,2-diethoxyethane, 1,2-
At least one selected from the group consisting of dimethoxypropane, 1-methoxybutane, diethyl ether, dimethyl ether and ethyl methyl ether, wherein the aromatic hydrocarbon is naphthalene, pyrene, anthracene, naphthacene, phenanthrene, 1,2-benzopyrene And 4,5
The secondary power source according to claim 1, 2 or 3, which is at least one member selected from the group consisting of -benzopyrene.
JP2000044810A 2000-02-22 2000-02-22 Method of manufacturing secondary power supply Withdrawn JP2001236960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044810A JP2001236960A (en) 2000-02-22 2000-02-22 Method of manufacturing secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044810A JP2001236960A (en) 2000-02-22 2000-02-22 Method of manufacturing secondary power supply

Publications (1)

Publication Number Publication Date
JP2001236960A true JP2001236960A (en) 2001-08-31

Family

ID=18567516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044810A Withdrawn JP2001236960A (en) 2000-02-22 2000-02-22 Method of manufacturing secondary power supply

Country Status (1)

Country Link
JP (1) JP2001236960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
EP1950779A1 (en) * 2005-11-04 2008-07-30 Stella Chemifa Corporation Electrical storage device
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2013513541A (en) * 2009-12-14 2013-04-22 カリフォルニア インスティチュート オブ テクノロジー Storage and / or generation of hydrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
US7626804B2 (en) 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
EP1950779A1 (en) * 2005-11-04 2008-07-30 Stella Chemifa Corporation Electrical storage device
EP1950779A4 (en) * 2005-11-04 2012-08-08 Stella Chemifa Corp Electrical storage device
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2013513541A (en) * 2009-12-14 2013-04-22 カリフォルニア インスティチュート オブ テクノロジー Storage and / or generation of hydrogen

Similar Documents

Publication Publication Date Title
US6294292B1 (en) Secondary power source
JP4929182B2 (en) Electricity storage element
JP4096438B2 (en) Secondary power supply
JPH0955342A (en) Electric double layer capacitor
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP2003031220A (en) Secondary power source
US20160225541A1 (en) Phenolic resin sourced carbon anode in a lithium ion capacitor
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000090971A (en) Secondary power source
JPH1154384A (en) Electric double layer capacitor
JP2001236960A (en) Method of manufacturing secondary power supply
JP4284934B2 (en) Secondary power supply
JP4352532B2 (en) Secondary power supply
JPH11144759A (en) Secondary power source
JPH11102708A (en) Negative electrode body, and secondary electric source
JP2000223368A (en) Secondary power source
JP2001266872A (en) Secondary power source and its manufacturing method
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source
JP2009130066A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100323