JP3367060B2 - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JP3367060B2
JP3367060B2 JP00835194A JP835194A JP3367060B2 JP 3367060 B2 JP3367060 B2 JP 3367060B2 JP 00835194 A JP00835194 A JP 00835194A JP 835194 A JP835194 A JP 835194A JP 3367060 B2 JP3367060 B2 JP 3367060B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
electrode
graphite
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00835194A
Other languages
Japanese (ja)
Other versions
JPH07147158A (en
Inventor
辰男 舘野
朋有 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP00835194A priority Critical patent/JP3367060B2/en
Priority to US08/313,832 priority patent/US5571638A/en
Priority to EP94115410A priority patent/EP0652602B1/en
Priority to CA002133277A priority patent/CA2133277A1/en
Priority to KR1019940024677A priority patent/KR100330633B1/en
Priority to CN94117876A priority patent/CN1074170C/en
Priority to DE69430941T priority patent/DE69430941T2/en
Publication of JPH07147158A publication Critical patent/JPH07147158A/en
Application granted granted Critical
Publication of JP3367060B2 publication Critical patent/JP3367060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、初期充放電特性に優れ
たリチウム二次電池用負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery having excellent initial charge / discharge characteristics.

【0002】[0002]

【従来の技術】炭素材料を負極に用いたリチウム二次電
池は、充電時に正極中のリチウムが電解液を介して炭素
材料中に吸蔵され、放電時には炭素材料中のリチウムが
放出され電解液を介して正極中に吸蔵されるという電気
化学的な可逆反応を利用したものである。この負極材料
としての炭素材料に要求される特性としては、炭素材料
へのリチウムの吸蔵能力及び放出能力が大きいこと、リ
チウム放出時の電圧が低いこと、吸蔵放出サイクルでの
容量劣化が少ないことなどである。このような観点にお
いて、従来より種々の炭素材料が提案されており、具体
的には充放電可能なリチウムを結晶中に混入した黒鉛負
極(特開昭57−208079号公報)、易黒鉛化性の
球状粒子からなる黒鉛質材料の負極(特開平4−115
457号公報)、ピッチ炭素化で生じるメソフェース材
の黒鉛化炭素にリチウムをドープした負極(特開平4−
115458号公報)、有機高分子化合物等を炭素化し
た擬黒鉛構造を有する炭素負極(特開昭62−1220
66号公報)、特定構造の炭素負極(特開昭62−90
863号公報)、乱層構造を有する炭素負極(特開平2
−66856号公報)など黒鉛材料から乱層構造炭素材
料まで広範囲にわたっている。
2. Description of the Related Art In a lithium secondary battery using a carbon material as a negative electrode, the lithium in the positive electrode is occluded in the carbon material through the electrolytic solution during charging, and the lithium in the carbon material is released during discharging to remove the electrolytic solution. It utilizes an electrochemical reversible reaction of being occluded in the positive electrode via The characteristics required of the carbon material as the negative electrode material are that it has a large capacity for absorbing and desorbing lithium into the carbon material, that the voltage at the time of discharging lithium is low, and that there is little capacity deterioration during storage and desorption cycles. Is. From this point of view, various carbon materials have been proposed in the past, and specifically, a graphite negative electrode in which chargeable / dischargeable lithium is mixed in the crystal (Japanese Patent Laid-Open No. 57-208079) and graphitizable. Negative electrode made of a graphite material composed of spherical particles described in JP-A-4-115.
No. 457), a negative electrode obtained by doping lithium into graphitized carbon of a mesophase material generated by carbonization of pitch (Japanese Patent Laid-Open No. Hei.
115458), a carbon negative electrode having a pseudo-graphite structure in which an organic polymer compound or the like is carbonized (JP-A-62-1220).
66), a carbon negative electrode having a specific structure (Japanese Patent Laid-Open No. 62-90).
No. 863), a carbon negative electrode having a turbostratic structure (Japanese Patent Application Laid-Open No. HEI 2)
No. 66856), a wide range from graphite materials to turbostratic carbon materials.

【0003】[0003]

【発明が解決しようとする課題】本発明者らの広範囲な
炭素材料を用いた実験検討によれば、リチウムの吸蔵能
力及び放出能力が大きく、さらにリチウム放出時の電圧
が低いので、炭素材料の中では黒鉛材料がリチウム二次
電池用負極材料として適していることを見出した。しか
しながら、単純な黒鉛材料は初期充放電特性が不十分で
あり、高容量の電池が得られないことも見出した。
According to the experiments conducted by the present inventors using a wide range of carbon materials, lithium storage capacity and release capacity are large, and the voltage at the time of lithium release is low. Among them, it was found that a graphite material is suitable as a negative electrode material for lithium secondary batteries. However, it has also been found that a simple graphite material has insufficient initial charge / discharge characteristics and a high capacity battery cannot be obtained.

【0004】即ち、充放電可能なリチウムを含む活物質
から構成した電極と黒鉛材料から構成した電極とを組み
合わせた電池構成では、初期段階で黒鉛材中に吸蔵され
たリチウムは100%放出されず、充放電可能なリチウ
ムの利用効率が悪く高容量の電池が得られないのであ
る。言い替えれば黒鉛材料には多くの初期不可逆容量成
分(不可逆容量成分=黒鉛材電極へのリチウム充電容量
−黒鉛材電極からのリチウム放電容量)が存在するとい
うことである。
That is, in a battery structure in which an electrode composed of an active material containing chargeable / dischargeable lithium and an electrode composed of a graphite material are combined, 100% of lithium occluded in the graphite material is not released at an initial stage. However, the utilization efficiency of chargeable / dischargeable lithium is poor and a high capacity battery cannot be obtained. In other words, the graphite material has many initial irreversible capacity components (irreversible capacity component = lithium charge capacity to graphite material electrode−lithium discharge capacity from graphite material electrode).

【0005】具体的には、黒鉛材料は単位重量当たりの
リチウムを吸蔵、放出できる容量が200mAH/g以
上と大きく、特定の黒鉛材料では300mAH/g以上
に達する。しかし、初期充放電時の不可逆容量も150
〜580mAH/gと非常に大きいので、充放電可能な
リチウムを含む活物質から構成した正極と黒鉛材料から
構成した負極を組み合わせた電池構成では、正極中の充
放電可能なリチウムの利用効率が低いため高容量の電池
が得られないという問題が見出された。
Specifically, the graphite material has a large capacity of occluding and releasing lithium per unit weight of 200 mAH / g or more, and the specific graphite material reaches 300 mAH / g or more. However, the irreversible capacity during initial charge / discharge is also 150
Since it is as large as ˜580 mAH / g, the use efficiency of the chargeable / dischargeable lithium in the positive electrode is low in the battery configuration in which the positive electrode made of the active material containing chargeable / dischargeable lithium and the negative electrode made of the graphite material are combined. Therefore, a problem was found that a high capacity battery could not be obtained.

【0006】本発明の目的は、黒鉛負極の初期充放電時
における不可逆容量を小さくして、正極中の充放電可能
なリチウムの利用効率を向上し、初期充放電特性に優れ
たリチウム二次電池用負極を提供することにある。
An object of the present invention is to reduce the irreversible capacity of a graphite negative electrode during initial charge / discharge, improve the utilization efficiency of chargeable / dischargeable lithium in the positive electrode, and improve the initial charge / discharge characteristics of a lithium secondary battery. It is to provide a negative electrode for use.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
問題を解決するために種々の実験・検討を行った結果、
黒鉛材と擬黒鉛質カーボンブラックとを含有した負極材
を用いることでそれぞれの単独材を負極材とした場合よ
りも大幅に不可逆容量を低下できることを見出し、本発
明を完成するに至った。
The present inventors have conducted various experiments and studies in order to solve these problems, and as a result,
The inventors have found that the use of the negative electrode material containing the graphite material and the pseudographitic carbon black can significantly reduce the irreversible capacity as compared with the case where each of the individual materials is used as the negative electrode material, and completed the present invention.

【0008】即ち、本発明は、次に記す発明からなる。 (1)黒鉛材と擬黒鉛質カーボンブラックを含有し、
黒鉛質カーボンブラックの格子面間隔が3.38〜3.
46Åであり、真比重が1.9〜2.1であり、両者の
割合が黒鉛材70〜99重量%と擬黒鉛質カーボンブラ
ック30〜1重量%であることを特徴とするリチウム二
次電池用負極。 (2)黒鉛材が鱗片状天然黒鉛又は鱗片状人造黒鉛であ
ることを特徴とする(1)記載のリチウム二次電池用負
極。 (3)擬黒鉛質カーボンブラックの揮発成分が0.5重
量%以下であり、数平均一次粒子径が10〜100nm
であり、窒素吸着法による比表面積が10〜300m 2
/gであることを特徴とする(1)記載のリチウム二次
電池用負極。
That is, the present invention comprises the following inventions. (1) containing a graphite material and擬黒lead carbon black, pseudo
The lattice plane spacing of the graphite carbon black is 3.38 to 3.
The lithium secondary battery is 46Å, the true specific gravity is 1.9 to 2.1, and the ratio of the two is 70 to 99% by weight of the graphite material and 30 to 1% by weight of the pseudographitic carbon black. Negative electrode. (2) The negative electrode for a lithium secondary battery according to (1), wherein the graphite material is scale-like natural graphite or scale-like artificial graphite. (3) The volatile component of pseudo-graphitic carbon black is 0.5
The amount average primary particle size is 10 to 100 nm.
And has a specific surface area of 10 to 300 m 2 by the nitrogen adsorption method.
/ G , The negative electrode for a lithium secondary battery according to (1).

【0009】以下、本発明を詳細に説明する。本発明に
おけるリチウム二次電池用負極は、活物質として黒鉛材
と擬黒鉛質カーボンブラックを含有する。本発明におい
て用いる黒鉛材は、充放電によりリチウムを吸蔵・放出
できるものであればよく、鱗片状黒鉛、繊維状黒鉛また
は球状黒鉛などいずれでもよいが、特に鱗片状黒鉛が好
ましく、具体的には鱗片状の天然黒鉛又は人造黒鉛が挙
げられる。さらに、鱗片状の黒鉛に繊維状黒鉛や球状黒
鉛を混合して使用することもできる。本発明において用
いる黒鉛材は、X線回折における格子面間隔d002
3.37Å以下で、真比重が2.23以上の黒鉛材が好
ましく、さらに好ましくはX線回折における格子面間隔
002 が3.36Å以下で、真比重が2.24以上の黒
鉛材である。ここで、格子面間隔d002 とは、X線とし
てCuKα線を用い、高純度シリコンを標準物質とする
X線回折法〔大谷杉郎、炭素繊維、P733−742
(1986)近代編集社〕によって測定された値のこと
を意味する。本発明において用いる黒鉛材の灰分は好ま
しくは0.5重量%以下、より好ましくは0.1重量%
以下である。天然黒鉛の場合は産地によっても異なる
が、含有する灰分が数%以上と大きいため、好ましくは
2500℃以上、さらに好ましくは2800℃以上の高
温度で処理して、灰分を好ましくは0.5重量%以下、
さらに好ましくは0.1重量%以下にしたものがよい。
ここで、灰分はJISM8812による値を意味する。
本発明において用いる黒鉛材の粒度は特に制限されない
が、通常数平均粒径が1〜50μm程度のものが好まし
い。
The present invention will be described in detail below. The negative electrode for a lithium secondary battery in the present invention contains a graphite material and pseudographitic carbon black as active materials. The graphite material used in the present invention may be any one capable of inserting and extracting lithium by charge and discharge, and may be any of scaly graphite, fibrous graphite, spherical graphite, etc., but scaly graphite is particularly preferable, and specifically, Examples include scaly natural graphite and artificial graphite. Furthermore, it is also possible to mix and use fibrous graphite or spherical graphite with scaly graphite. The graphite material used in the present invention is preferably a graphite material having a lattice spacing d 002 in X-ray diffraction of 3.37 Å or less and a true specific gravity of 2.23 or more, and more preferably a lattice spacing d 002 in X-ray diffraction. It is a graphite material with a specific gravity of 3.36Å or less and a true specific gravity of 2.24 or more. Here, the lattice spacing d 002 is an X-ray diffraction method using CuKα rays as X-rays and using high-purity silicon as a standard substance [Sugiro Otani, carbon fiber, P733-742].
(1986) Modern Editing Company]. The ash content of the graphite material used in the present invention is preferably 0.5% by weight or less, more preferably 0.1% by weight.
It is the following. In the case of natural graphite, although it varies depending on the place of origin, since the ash content contained is as large as several percent or more, it is preferably treated at a high temperature of 2500 ° C or higher, more preferably 2800 ° C or higher, and the ash content is preferably 0.5% by weight. %Less than,
More preferably, it is 0.1 wt% or less.
Here, the ash content means a value according to JISM8812.
The particle size of the graphite material used in the present invention is not particularly limited, but it is generally preferable that the number average particle size is about 1 to 50 μm.

【0010】本発明において用いる擬黒鉛質カーボンブ
ラックは、X線回折における格子面間隔d002 が3.3
8〜3.46Åであり、真比重が1.9〜2.1のもの
が好ましい。また、該擬黒鉛質カーボンブラックは揮発
分が0.5重量%以下のものが好ましい。ここで、真比
重はJIS R7222による値、揮発分はJIS M
8812による値を意味する。また、擬黒鉛質カーボン
ブラックの数平均一次粒子径は10〜100nm程度が
好ましく、また窒素吸着法による比表面積は通常10〜
300m2 /g程度が好ましい。該擬黒鉛質カーボンブ
ラックは、カーボンブラックに黒鉛化処理を施すことに
より得られる。具体的には該擬黒鉛質カーボンブラック
は、カーボンブラックを約1500〜3000℃の温度
で熱処理することにより得られる。特に約2500〜3
000℃で熱処理したものが好ましい。カーボンブラッ
クはこのような黒鉛化処理を行なってもX線回折におけ
る格子面間隔d002 が3.37Å以下で、真比重が2.
23以上の黒鉛材にはならない。該擬黒鉛質カーボンブ
ラックとして、例えば、クレオソート油、エチレンボト
ム油、天然ガスなどを原料としたファーネスブラックや
アセチレンを原料としたアセチレンブラックなどのカー
ボンブラックを2500〜2800℃程度の高温度で熱
処理したものが挙げられる。黒鉛化処理をしていないか
又は黒鉛化処理をしても、X線回折における格子面間隔
002 が3.38Å未満で、真比重が1.9未満で、揮
発分が0.5重量%を超えるカーボンブラックを用いた
場合は不可逆容量低下の効果がないか又は少なく、また
リチウム放出時の電位がリチウム電位に対して高くなり
好ましくない。
The pseudographitic carbon black used in the present invention has a lattice spacing d 002 of 3.3 in X-ray diffraction.
It is preferably 8 to 3.46Å and has a true specific gravity of 1.9 to 2.1. The pseudo-graphitic carbon black preferably has a volatile content of 0.5% by weight or less. Here, the true specific gravity is the value according to JIS R7222, and the volatile content is JIS M
8812 means a value. The number average primary particle size of the pseudographitic carbon black is preferably about 10 to 100 nm, and the specific surface area by the nitrogen adsorption method is usually 10 to 10.
It is preferably about 300 m 2 / g. The pseudographitic carbon black is obtained by subjecting carbon black to graphitization treatment. Specifically, the pseudo-graphitic carbon black is obtained by heat treating carbon black at a temperature of about 1500 to 3000 ° C. Especially about 2500-3
What was heat-treated at 000 ° C. is preferable. Even if such carbon black is graphitized, the lattice spacing d 002 in X-ray diffraction is 3.37Å or less and the true specific gravity is 2.
It does not become a graphite material of 23 or more. As the pseudo-graphitic carbon black, for example, carbon black such as furnace black made from creosote oil, ethylene bottom oil, natural gas or the like and acetylene black made from acetylene are heat-treated at a high temperature of about 2500 to 2800 ° C. The ones that have been done are listed. With or without graphitization, the lattice spacing d 002 in X-ray diffraction is less than 3.38Å, the true specific gravity is less than 1.9, and the volatile content is 0.5% by weight. When a carbon black exceeding the above range is used, the effect of decreasing the irreversible capacity is not or small, and the potential at the time of releasing lithium is higher than the lithium potential, which is not preferable.

【0011】次に、黒鉛材と擬黒鉛質カーボンブラック
の割合について説明する。黒鉛材と擬黒鉛質カーボンブ
ラックとの配合量は、黒鉛材70〜99重量%に対して
擬黒鉛質カーボンブラック30〜1重量%である。好ま
しくは黒鉛材80〜97重量%に対して擬黒鉛質カーボ
ンブラック20〜3重量%、より好ましくは、黒鉛材9
0〜96重量%に対して擬黒鉛質処理カーボンブラック
10〜4重量%である。擬黒鉛質カーボンブラックの配
合量が多すぎると負極活物質の放電容量が低下し、一方
配合量が少なすぎると負極活物質の不可逆容量が増加し
てしまうので好ましくない。
Next, the ratio of the graphite material and the pseudo-graphitic carbon black will be described. The blending amount of the graphite material and the pseudographitic carbon black is 30 to 1% by weight of the pseudographitic carbon black with respect to 70 to 99% by weight of the graphite material. The graphite material is preferably 80 to 97% by weight, and the pseudographitic carbon black is 20 to 3% by weight, more preferably the graphite material 9
The content of the pseudographite-treated carbon black is 10 to 4% by weight with respect to 0 to 96% by weight. If the blending amount of the pseudo-graphitic carbon black is too large, the discharge capacity of the negative electrode active material will decrease, whereas if the blending amount is too small, the irreversible capacity of the negative electrode active material will increase, which is not preferable.

【0012】次に、本発明のリチウム二次電池用負極の
製造方法について説明する。活物質としての黒鉛材粉末
と擬黒鉛質カーボンブラック粉末と、粉末同士を結着す
るためのバインダーとを均一に混合した後加圧成形する
か、あるいは有機溶媒等を用いてペースト化し集電材上
に塗布乾燥後プレスするなど、公知の方法で製造するこ
とができる。ここで、活物質としての黒鉛材粉末と擬黒
鉛質カーボンブラック粉末は、付着水分などを除去する
ために、混合する前に約1000℃以下の温度で処理す
ることが好ましい。黒鉛材粉末と擬黒鉛質カーボンブラ
ック粉末を結着するためのバインダーは、結着効果があ
り、使用する非水電解質に対する耐性を有するものであ
ればよく、例えばフッ素樹脂粉末やポリエチレン粉末な
どが挙げられる。該バインダーの量は、黒鉛材粉末と擬
黒鉛質カーボンブラック粉末の合計量100重量部に対
して1〜20重量部程度とすることが好ましい。
Next, a method for manufacturing the negative electrode for a lithium secondary battery of the present invention will be described. The graphite material powder as the active material and the pseudo-graphitic carbon black powder, and the binder for binding the powders are uniformly mixed and then pressure-molded, or made into a paste using an organic solvent or the like to form a current collector. It can be manufactured by a known method, such as applying and drying to and pressing. Here, the graphite material powder and the pseudo-graphitic carbon black powder as the active material are preferably treated at a temperature of about 1000 ° C. or lower before being mixed in order to remove adhering water and the like. The binder for binding the graphite material powder and the pseudo-graphitic carbon black powder may be any binder as long as it has a binding effect and has resistance to the non-aqueous electrolyte used, and examples thereof include fluororesin powder and polyethylene powder. To be The amount of the binder is preferably about 1 to 20 parts by weight based on 100 parts by weight of the total amount of the graphite material powder and the pseudographitic carbon black powder.

【0013】本発明のリチウム二次電池用負極は、充放
電可能なリチウムを含有する活物質から構成した正極と
組み合わせてリチウム二次電池を構成する。ここで使用
する正極活物質としては、リチウムと遷移金属の複合酸
化物が挙げられる。ここで該遷移金属としては、例えば
Co、Ni、Mn、Feなどから選定することができ
る。また、正極にさらに活物質としてMnO2 、MoO
3 、V2 5 、TiO2 、TiS2 、FeS、活性炭な
どの無機化合物やポリアニリンなどの高分子化合物等を
選ぶこともできる。この場合には、予め、負極に所定量
のリチウムを吸蔵させるか、又は所定量のリチウムを圧
着させて使用することもできる。
The negative electrode for a lithium secondary battery of the present invention constitutes a lithium secondary battery in combination with a positive electrode composed of an active material containing chargeable / dischargeable lithium. Examples of the positive electrode active material used here include a composite oxide of lithium and a transition metal. Here, the transition metal can be selected from, for example, Co, Ni, Mn, Fe and the like. In addition, MnO 2 , MoO as an active material is further added to the positive electrode.
Inorganic compounds such as 3 , V 2 O 5 , TiO 2 , TiS 2 , FeS and activated carbon, and polymer compounds such as polyaniline can also be selected. In this case, a predetermined amount of lithium may be stored in the negative electrode in advance, or a predetermined amount of lithium may be pressure-bonded to the negative electrode before use.

【0014】本発明の負極を用いたリチウム二次電池に
用いられる非水電解質溶液としては、リチウム塩を高誘
電率の有機溶媒に溶解させた溶液が好ましい。リチウム
塩の種類には、特に制限はなく、例えば、LiCl
4 、LiPF6 、LiBF4 、LiCF3 SO3 など
を使用することができる。リチウム塩の濃度は、通常
0.5mol/lないし1.5mol/l程度に選ばれ
る。また、有機溶媒は、リチウム塩を溶解して電気伝導
性を与え、かつ構成する負極・正極材に対して電気化学
的に安定性のあるものであればよい。例えば、エチレン
カ−ボネ−ト、プロピレンカ−ボネ−ト、ジメチルカー
ボネート、ジエチルカーボネート、1,2−ジメトキシ
エタン、テトラヒドロフラン、アセトニトリル、スルホ
ラン又はγ−ブチロラクトン等が挙げられる。通常は、
二種類以上を混合して混合溶媒として使用される。
The non-aqueous electrolyte solution used in the lithium secondary battery using the negative electrode of the present invention is preferably a solution prepared by dissolving a lithium salt in an organic solvent having a high dielectric constant. There is no particular limitation on the type of lithium salt, and for example, LiCl
O 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like can be used. The concentration of the lithium salt is usually selected to be about 0.5 mol / l to 1.5 mol / l. Further, the organic solvent may be any one as long as it dissolves a lithium salt to give electrical conductivity and is electrochemically stable with respect to the constituent negative electrode / positive electrode material. Examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, sulfolane, and γ-butyrolactone. Normally,
Two or more kinds are mixed and used as a mixed solvent.

【0015】本発明の負極を用いたリチウム二次電池に
おいては、正極と負極と電解質溶液のほかに、一般に両
極の接触を防止し、かつ電解質溶液を保持し、リチウム
イオンを通過できる機能を有するセパレータと、電極材
を保持して集電する機能を有する集電材とを組み合わせ
て用いることが好ましい。該セパレ−タとしては、例え
ばポリエチレン、ポリプロピレン又はポリテトラフルオ
ロエチレン等の多孔質フィルムや不織布、織布などが挙
げられる。該セパレ−タの厚さは、20〜200μm程
度が好ましい。
In the lithium secondary battery using the negative electrode of the present invention, in addition to the positive electrode, the negative electrode and the electrolyte solution, generally, there is a function of preventing contact between both electrodes, holding the electrolyte solution and allowing passage of lithium ions. It is preferable to use a separator and a current collector having a function of holding an electrode material and collecting current in combination. Examples of the separator include porous films such as polyethylene, polypropylene or polytetrafluoroethylene, non-woven fabrics and woven fabrics. The thickness of the separator is preferably about 20 to 200 μm.

【0016】また、該集電体は、正極・負極活物質、及
び電解液に対して電気化学的に安定性のある導体を使用
することができる。例えば、ニッケル、チタン、ステン
レス鋼、銅、アルミニウムなどが挙げられる。また、本
発明の負極を用いたリチウム二次電池は、円筒型、箱
型、コイン形、ボタン型、ペーパー形、カード形など、
種々の形状とすることができる。
As the current collector, a conductor which is electrochemically stable with respect to the positive electrode / negative electrode active material and the electrolytic solution can be used. For example, nickel, titanium, stainless steel, copper, aluminum and the like can be mentioned. Further, the lithium secondary battery using the negative electrode of the present invention, a cylindrical type, box type, coin type, button type, paper type, card type, etc.
It can have various shapes.

【0017】[0017]

【実施例】以下、本発明について実施例及び比較例を示
して、その効果を具体的に説明するが、本発明は下記の
実施例に制限されるものではない。一般に、リチウム二
次電池用負極(ここで電極という)は、リチウムが電解
質溶液を介して電極中に吸蔵される充電反応と、電極中
のリチウムが電解質溶液中に放出される放電反応の電気
化学的な可逆反応を利用したものであり、対極にリチウ
ム金属を用いた評価用二次電池を構成してこの充放電反
応を行なわせることにより、その電極特性を評価するこ
とができる。該評価法は一般に行なわれているものであ
る(実施例1〜4および比較例1〜3)。また、充放電
可能なリチウムを含有する活物質としてニッケル酸リチ
ウムを含む電極を対極とした例として、実施例5および
比較例4に示す。
EXAMPLES Hereinafter, the effects of the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples. Generally, a negative electrode for a lithium secondary battery (referred to as an electrode here) is an electrochemical reaction of a charge reaction in which lithium is occluded in the electrode through an electrolyte solution and a discharge reaction in which lithium in the electrode is released into the electrolyte solution. The reversible reaction is utilized, and the electrode characteristics can be evaluated by constructing a secondary battery for evaluation using lithium metal as the counter electrode and carrying out this charge / discharge reaction. The evaluation method is generally performed (Examples 1 to 4 and Comparative Examples 1 to 3). In addition, Examples 5 and Comparative Example 4 show examples in which an electrode containing lithium nickel oxide as an active material containing chargeable / dischargeable lithium was used as a counter electrode.

【0018】実施例1 3000℃で熱処理した数平均粒径が10μm、真比重
が2.26、X線回折における格子面間隔d002 が3.
36Å、灰分が0.05重量%の天然黒鉛(マダガスカ
ル産)75重量部と、2800℃で黒鉛化処理した真比
重が2.04、揮発分が0.1重量%、数平均一次粒子
径が66nm、窒素吸着法による比表面積が30m2
gの擬黒鉛質カーボンブラック〔東海カーボン(株)
製、商品名TB3800〕25重量部と、さらにバイン
ダーとしてN−メチルピロリドンを溶媒としたポリフッ
化ビニリデン5.4重量部とを加えてめのう乳鉢で充分
均一混練した後、一部をステンレス(以下SUSという
ことがある。)製メッシュに塗布圧着し真空中で一夜乾
燥して混合炭素材48.7mgの活物質を含む電極を得
た。
Example 1 Heat treated at 3000 ° C., the number average particle size was 10 μm, the true specific gravity was 2.26, and the lattice spacing d 002 in X-ray diffraction was 3.
36Å, 75 parts by weight of natural graphite (made in Madagascar) with an ash content of 0.05% by weight, a true specific gravity of 2.04 graphitized at 2800 ° C, a volatile content of 0.1% by weight, and a number average primary particle size of 66 nm, specific surface area by nitrogen adsorption method of 30 m 2 /
g pseudo-graphitic carbon black [Tokai Carbon Co., Ltd.
Manufactured by the trade name TB3800] 25 parts by weight, and further 5.4 parts by weight of polyvinylidene fluoride using N-methylpyrrolidone as a binder as a solvent and sufficiently kneaded in an agate mortar, and then a part of stainless steel (hereinafter, SUS It was applied to a mesh made of carbon and then dried under vacuum overnight to obtain an electrode containing the active material of 48.7 mg of the mixed carbon material.

【0019】ここで得られた活物質のリチウム充放電特
性を評価するために、対極にリチウム箔を使用し、非水
電解質溶液として過塩素酸リチウムをエチレンカ−ボネ
−ト(EC)と1,2−ジメトキシエタン(DME)と
の等容量混合物に溶解した溶液(濃度1mol/l)
を、厚さ175μm のポリプロピレン製セパレ−タに保
液させて評価用二次電池を作製し一夜放置した。この評
価用電池の試験前の開回路電圧は、3.00Vであっ
た。ついで、定電流0.5mAにて電圧が0.00Vに
なるまで電極中にリチウムの吸蔵(以後充電と呼ぶ)を
行なった後、定電流0.5mAにて電圧が0.6Vにな
るまで電極からリチウムの放出(以後放電と呼ぶ)を行
い、混合炭素材を含む電極の初期充放電特性評価を実施
した。結果は表1に示す。
In order to evaluate the lithium charge / discharge characteristics of the active material obtained here, a lithium foil was used as the counter electrode, and lithium perchlorate was used as a non-aqueous electrolyte solution with ethylene carbonate (EC) and 1, Solution dissolved in an equal volume mixture with 2-dimethoxyethane (DME) (concentration 1 mol / l)
Was stored in a polypropylene separator having a thickness of 175 μm to prepare a secondary battery for evaluation and left overnight. The open circuit voltage of this evaluation battery before the test was 3.00V. Then, lithium was absorbed into the electrode (hereinafter referred to as charging) at a constant current of 0.5 mA until the voltage reached 0.00 V, and then the electrode was charged at a constant current of 0.5 mA until the voltage reached 0.6 V. Lithium was discharged from the battery (hereinafter referred to as discharge), and the initial charge / discharge characteristics of the electrode containing the mixed carbon material were evaluated. The results are shown in Table 1.

【0020】実施例2 実施例1において、天然黒鉛を90重量部、擬黒鉛質カ
ーボンブラックを10重量部、さらにポリフッ化ビニリ
デンを4.1重量部として用いた以外は、実施例1と同
様にして混合炭素材51.1mgの活物質を含む電極を
作製後、リチウム対極の評価用電池を作製して、混合炭
素材を含む電極の初期充放電特性評価を実施した。結果
は表1に示す。
Example 2 Example 2 was repeated except that 90 parts by weight of natural graphite, 10 parts by weight of pseudographitic carbon black and 4.1 parts by weight of polyvinylidene fluoride were used. After preparing an electrode containing 51.1 mg of the mixed carbon material as an active material, a lithium counter electrode evaluation battery was prepared and the initial charge / discharge characteristics of the electrode containing the mixed carbon material were evaluated. The results are shown in Table 1.

【0021】実施例3 実施例1において、天然黒鉛を95重量部、擬黒鉛質カ
ーボンブラックを5重量部、さらにポリフッ化ビニリデ
ンを3.7重量部として用いた以外は、実施例1と同様
にして混合炭素材49.9mgの活物質を含む電極を作
製後、リチウム対極の評価用電池を作製して、混合炭素
材を含む電極の初期充放電特性評価を実施した。結果は
表1に示す。
Example 3 The same as Example 1 except that 95 parts by weight of natural graphite, 5 parts by weight of pseudo-graphitic carbon black and 3.7 parts by weight of polyvinylidene fluoride were used. After preparing an electrode containing 49.9 mg of the mixed carbon material as an active material, a battery for evaluation of a lithium counter electrode was prepared and the initial charge / discharge characteristics of the electrode containing the mixed carbon material were evaluated. The results are shown in Table 1.

【0022】実施例4 実施例1において、天然黒鉛と擬黒鉛質カーボンブラッ
クとを混練処理する前にアルゴン雰囲気中で1000℃
熱処理を行った以外は、実施例1と同様に実施して、混
合炭素材を含む電極の初期充放電特性評価を実施した。
結果は表1に示す。
Example 4 In Example 1, 1000 ° C. in an argon atmosphere before kneading the natural graphite and the pseudographitic carbon black.
The initial charge and discharge characteristics of the electrode containing the mixed carbon material were evaluated in the same manner as in Example 1 except that the heat treatment was performed.
The results are shown in Table 1.

【0023】実施例5 実施例1と同様にして天然黒鉛と擬黒鉛質カーボンブラ
ックとの混合炭素材25.8mgの活物質を含む電極
(1)を作製した。一方ニッケル酸リチウム粉末と、導
電材としてアセチレンブラックと、バインダーとしてN
−メチルピロリドンを溶媒としたポリフッ化ビニリデン
とを重量比で、91:6:3の比率で混合した後、SU
S製メッシュに塗布圧着し真空中で一夜乾燥してニッケ
ル酸リチウム47.9mgの活物質を含む電極(2)を
作製した。次に、ここで得られた電極(1)と電極
(2)を用い、電解液として過塩素酸リチウムをエチレ
ンカ−ボネ−ト(EC)と1,2−ジメトキシエタン
(DME)との等容量混合物に溶解した溶液(濃度1m
ol/l)を、厚さ175μm のポリプロピレン製セパ
レ−タに保液させて電池を作製し一夜放置した。この電
池の試験前の開回路電圧は、0.12Vであった。つい
で、電極(2)を正極、電極(1)を負極として、定電
流0.5mAにて電圧が 4.15Vになるまで充電
(電極(1)へのリチウム吸蔵)を行なった後、定電流
0.5mAにて電圧が2.5Vになるまで放電(電極
(1)からのリチウム放出)を行い、混合炭素材を含む
電極(1)の初期充放電特性評価を実施した。結果は表
1に示す。
Example 5 In the same manner as in Example 1, an electrode (1) containing 25.8 mg of a mixed carbon material of natural graphite and pseudographitic carbon black as an active material was prepared. On the other hand, lithium nickel oxide powder, acetylene black as a conductive material, and N as a binder.
After mixing with polyvinylidene fluoride in a solvent of methylpyrrolidone in a weight ratio of 91: 6: 3,
An electrode (2) containing an active material containing 47.9 mg of lithium nickel oxide was prepared by applying the composition on an S mesh, press-bonding it, and drying it in a vacuum overnight. Next, using the electrode (1) and the electrode (2) obtained here, lithium perchlorate was used as an electrolytic solution in an equal volume of ethylene carbonate (EC) and 1,2-dimethoxyethane (DME). Solution dissolved in mixture (concentration 1m
ol / l) was retained in a polypropylene separator having a thickness of 175 μm to prepare a battery and left overnight. The open circuit voltage of this battery before the test was 0.12V. Then, using the electrode (2) as a positive electrode and the electrode (1) as a negative electrode, charging was performed at a constant current of 0.5 mA until the voltage reached 4.15 V (lithium occlusion in the electrode (1)), and then a constant current was applied. Discharge (lithium release from the electrode (1)) was performed at 0.5 mA until the voltage reached 2.5 V, and the initial charge / discharge characteristic of the electrode (1) containing the mixed carbon material was evaluated. The results are shown in Table 1.

【0024】比較例1 実施例1において、擬黒鉛質カーボンブラックを用いず
に、天然黒鉛を100重量部、ポリフッ化ビニリデンを
3.1重量部を用いた以外は、実施例1と同様にして炭
素材49.0mgの活物質を含む電極を作製後、リチウ
ム対極の評価用電池を作製して、炭素材を含む電極の初
期充放電特性評価を実施した。結果は表1に示す。
Comparative Example 1 In the same manner as in Example 1 except that 100 parts by weight of natural graphite and 3.1 parts by weight of polyvinylidene fluoride were used without using the pseudographitic carbon black. After preparing an electrode containing 49.0 mg of the carbon material, a lithium counter electrode evaluation battery was prepared and the initial charge / discharge characteristics of the electrode containing the carbon material were evaluated. The results are shown in Table 1.

【0025】比較例2 実施例1において、天然黒鉛を用いずに、擬黒鉛質カー
ボンブラックを100重量部と、ポリフッ化ビニリデン
を11.1重量部を用いた以外は、実施例1と同様にし
て炭素材31.0mgの活物質を含む電極を作製後、リ
チウム対極の評価用電池を作製して評価試験を実施し
て、炭素材を含む電極の初期充放電特性評価を実施し
た。結果は表1に示す。
Comparative Example 2 The same as Example 1 except that 100 parts by weight of pseudo-graphitic carbon black and 11.1 parts by weight of polyvinylidene fluoride were used without using natural graphite. After preparing an electrode containing 31.0 mg of the carbon material as an active material, a battery for evaluation of a lithium counter electrode was prepared and an evaluation test was conducted to evaluate the initial charge / discharge characteristics of the electrode containing the carbon material. The results are shown in Table 1.

【0026】比較例3 実施例1において、天然黒鉛を75重量部とし、ポリフ
ッ化ビニリデンを6.4重量部とし、真比重1.82、
X線回折における格子面間隔d002 が3.63Å、揮発
分が0.6重量%、数平均一次粒子径が40nm、窒素
吸着法による比表面積が60m2 /gのカーボンブラッ
ク〔東海カーボン(株)製、商品名TB4500〕25
重量部を熱処理せずにそのまま用いた以外は実施例1と
同様にして混合炭素材45.3mgの活物質を含む電極
を作製後、リチウム対極の評価用電池を作製して評価試
験を実施して、混合炭素材を含む電極の初期充放電特性
評価を実施した。結果は表1に示す。
Comparative Example 3 In Example 1, natural graphite was 75 parts by weight, polyvinylidene fluoride was 6.4 parts by weight, and true specific gravity was 1.82.
Carbon black having a lattice spacing d 002 of 3.63Å in X-ray diffraction, a volatile content of 0.6% by weight, a number average primary particle diameter of 40 nm, and a specific surface area of 60 m 2 / g measured by a nitrogen adsorption method (Tokai Carbon Co., Ltd. ), Trade name TB4500] 25
After preparing an electrode containing the active material of 45.3 mg of mixed carbon material in the same manner as in Example 1 except that the parts by weight were used as they were without heat treatment, a battery for evaluation of a lithium counter electrode was prepared and an evaluation test was conducted. Then, the initial charge / discharge characteristics of the electrode containing the mixed carbon material were evaluated. The results are shown in Table 1.

【0027】比較例4 比較例1と同様にして天然黒鉛26.5mgの活物質を
含む電極(3)を作製した。一方、実施例5と同様にし
てニッケル酸リチウム48.7mgの活物質を含む電極
(4)を作製し、電極(4)を正極、電極(3)を負極
とした電池を実施例5と同様にして試験して、炭素材を
含む電極の初期充放電特性評価を実施した。結果は表1
に示す。
Comparative Example 4 An electrode (3) containing 26.5 mg of active material of natural graphite was prepared in the same manner as in Comparative Example 1. On the other hand, an electrode (4) containing an active material of lithium nickel oxide 48.7 mg was prepared in the same manner as in Example 5, and a battery having the electrode (4) as a positive electrode and the electrode (3) as a negative electrode was prepared in the same manner as in Example 5. Then, the initial charge and discharge characteristics of the electrode containing the carbon material were evaluated. The results are shown in Table 1.
Shown in.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、リチウム二次電池用負
極の初期充放電時における不可逆容量を小さくして、対
極または正極中の充放電可能なリチウムの利用効率を向
上し、初期充放電特性に優れたリチウム二次電池用負極
を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the irreversible capacity of the negative electrode for a lithium secondary battery at the time of initial charge / discharge is reduced to improve the utilization efficiency of chargeable / dischargeable lithium in the counter electrode or the positive electrode, thereby improving the initial charge / discharge. A negative electrode for a lithium secondary battery having excellent characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】黒鉛材と擬黒鉛質カーボンブラックを含有
し、擬黒鉛質カーボンブラックの格子面間隔が3.38
〜3.46Åであり、真比重が1.9〜2.1であり、
両者の割合が黒鉛材70〜99重量%と擬黒鉛質カーボ
ンブラック30〜1重量%であることを特徴とするリチ
ウム二次電池用負極。
1. A graphite material and pseudographitic carbon black are contained, and the lattice spacing of the pseudographitic carbon black is 3.38.
~ 3.46Å, the true specific gravity is 1.9 ~ 2.1,
A negative electrode for a lithium secondary battery, characterized in that the proportion of both is 70 to 99% by weight of graphite material and 30 to 1% by weight of pseudographitic carbon black.
【請求項2】黒鉛材が鱗片状天然黒鉛又は鱗片状人造黒
鉛であることを特徴とする請求項1記載のリチウム二次
電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the graphite material is scaly natural graphite or scaly artificial graphite.
【請求項3】擬黒鉛質カーボンブラックの揮発成分が
0.5重量%以下であり、数平均一次粒子径が10〜1
00nmであり、窒素吸着法による比表面積が10〜3
00m 2 /gであることを特徴とする請求項1記載のリ
チウム二次電池用負極。
3. The volatile component of pseudo-graphitic carbon black is
0.5% by weight or less and a number average primary particle size of 10 to 1
00 nm, and the specific surface area by the nitrogen adsorption method is 10 to 3
The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode is 00 m 2 / g .
JP00835194A 1993-09-30 1994-01-28 Negative electrode for lithium secondary battery Expired - Fee Related JP3367060B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP00835194A JP3367060B2 (en) 1993-09-30 1994-01-28 Negative electrode for lithium secondary battery
US08/313,832 US5571638A (en) 1993-09-30 1994-09-28 Lithium secondary battery
CA002133277A CA2133277A1 (en) 1993-09-30 1994-09-29 Lithium secondary battery
KR1019940024677A KR100330633B1 (en) 1993-09-30 1994-09-29 Lithium secondary battery
EP94115410A EP0652602B1 (en) 1993-09-30 1994-09-29 Lithium secondary battery
CN94117876A CN1074170C (en) 1993-09-30 1994-09-29 Li secondary battery
DE69430941T DE69430941T2 (en) 1993-09-30 1994-09-29 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24481993 1993-09-30
JP5-244819 1993-09-30
JP00835194A JP3367060B2 (en) 1993-09-30 1994-01-28 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07147158A JPH07147158A (en) 1995-06-06
JP3367060B2 true JP3367060B2 (en) 2003-01-14

Family

ID=26342849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00835194A Expired - Fee Related JP3367060B2 (en) 1993-09-30 1994-01-28 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3367060B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054771A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Electrode for non-aqueous electrolytic cells
JP3691714B2 (en) * 2000-03-06 2005-09-07 三洋電機株式会社 Lithium secondary battery
JP2002008655A (en) * 2000-06-20 2002-01-11 Sony Corp Negative electrode and non-aqueous electrolyte cell
CA2394056A1 (en) * 2002-07-12 2004-01-12 Hydro-Quebec Particles with a non-conductive or semi-conductive core covered by a conductive layer, the processes for obtaining these particles and their use in electrochemical devices
DE102005011940A1 (en) * 2005-03-14 2006-09-21 Degussa Ag Process for the preparation of coated carbon particles and their use in anode materials for lithium-ion batteries
JP4763407B2 (en) * 2005-09-28 2011-08-31 日立ビークルエナジー株式会社 Non-aqueous electrolyte and lithium secondary battery using the non-aqueous electrolyte
JP2012221684A (en) * 2011-04-07 2012-11-12 Denki Kagaku Kogyo Kk Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
KR102171853B1 (en) * 2015-11-30 2020-10-29 주식회사 엘지화학 A lithium ion secondary battery with enhanced high speed charging performance
JP6734093B2 (en) * 2016-03-29 2020-08-05 デンカ株式会社 Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics

Also Published As

Publication number Publication date
JPH07147158A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JPH087885A (en) Lithium secondary battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP7165913B2 (en) Non-aqueous electrolyte secondary battery
JP2001126733A (en) Nonaqueous electrolytic material
JP3430691B2 (en) Lithium secondary battery
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPH0636760A (en) Nonaqueous electrolyte secondary battery
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP2000036325A (en) Secondary power supply
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002117830A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
JP2001236960A (en) Method of manufacturing secondary power supply
JP2845069B2 (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees