JP2000228222A - Secondary power supply - Google Patents

Secondary power supply

Info

Publication number
JP2000228222A
JP2000228222A JP11028575A JP2857599A JP2000228222A JP 2000228222 A JP2000228222 A JP 2000228222A JP 11028575 A JP11028575 A JP 11028575A JP 2857599 A JP2857599 A JP 2857599A JP 2000228222 A JP2000228222 A JP 2000228222A
Authority
JP
Japan
Prior art keywords
activated carbon
lithium
negative electrode
secondary power
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11028575A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11028575A priority Critical patent/JP2000228222A/en
Publication of JP2000228222A publication Critical patent/JP2000228222A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high breakdown voltage lower than the natural potential at the end of discharging and a good charging-discharging cycle characteristic by using a mixture obtained by mixing a specified quantity of activated carbon with carbon material and an organic electrolyte containing a specified metal salt in a negative electrode. SOLUTION: Material containing activated carbon is used in a positive electrode, and an organic electrolytic solution containing quaternary onium salt and lithium salt is used as an electrolytic solution. The negative electrode is formed of a mixture obtained by mixing activated carbon 10-80 wt.% of the total quantity with carbon material which stores and desorbs lithium ion. At the time of charging, at the negative electrode, lithium ion and quaternary onium ion are adsorbed to activated carbon, lithium ions are stored in the carbon material, and at the time of discharging, some of lithium ions remain in the activated carbon. At the end of discharge, the potential at the negative electrode becomes base potential lower than the natural potential before charging, and at the time of re-charging, charging is performed in the base potential lower than the natural potential. At the time of charging and discharging with a large current, lowering of capacity due to repetition is inhibited by physical reaction such as ion adsorption and desorption to/from the activated carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte.

【0003】しかし、有機電解液を使用した電気二重層
キャパシタでもそのエネルギ密度は鉛蓄電池等の二次電
池の1/10以下であり、さらなるエネルギ密度の向上
が必要とされている。電気二重層キャパシタのエネルギ
密度向上には電圧を高くすることが最も効果的である
が、電圧を高くすると電解液の分解が起こり寿命に大き
く影響を及ぼす。
However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required. Increasing the voltage is most effective for improving the energy density of the electric double layer capacitor. However, increasing the voltage causes decomposition of the electrolytic solution and greatly affects the life.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、高耐
電圧かつ高容量でエネルギ密度が高く、充放電サイクル
信頼性の高い二次電源を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary power supply having a high withstand voltage, a high capacity, a high energy density and a high charge / discharge cycle reliability.

【0005】[0005]

【課題を解決するための手段】本発明は、活性炭を含む
正極と、活性炭とリチウムイオンを吸蔵、脱離しうる炭
素材料とを含む負極と、第4級オニウム塩とリチウム塩
とを含む有機電解液と、を有することを特徴とする二次
電源を提供する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode containing activated carbon, a negative electrode containing activated carbon and a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolysis containing a quaternary onium salt and a lithium salt. And a liquid.

【0006】本明細書において、活性炭又は活性炭とリ
チウム含有遷移金属酸化物を含む正極と集電体とを接合
して一体化させたものを正極体という。負極体について
も同様の定義とする。また、二次電池も電気二重層キャ
パシタも二次電源の1種であるが、本明細書では、正極
に活性炭を含み、負極に活性炭とリチウムイオンを吸
蔵、脱離しうる炭素材料を含む特定の構成の二次電源を
単に二次電源という。
[0006] In the present specification, a positive electrode body is obtained by joining and integrating a positive electrode containing activated carbon or activated carbon, a lithium-containing transition metal oxide, and a current collector. The same definition applies to the negative electrode body. In addition, although both secondary batteries and electric double layer capacitors are one type of secondary power supply, in this specification, a specific electrode containing a carbon material capable of absorbing and desorbing activated carbon and lithium ions in a negative electrode contains activated carbon in a positive electrode. The secondary power supply having the configuration is simply referred to as a secondary power supply.

【0007】本発明の二次電源では、充電時には、正極
では電解液中のアニオンが活性炭に吸着し、負極では活
性炭にリチウムイオンと第4級オニウムイオンが吸着
し、リチウムイオンを吸蔵、脱離しうる炭素材料にリチ
ウムイオンが吸蔵される。なお、本明細書では、吸着と
は充電時に電気二重層形成によるイオンの活性炭への吸
着をいい、イオンが電極に取り込まれると同時に電荷移
動を伴う反応を吸蔵という。また、放電時に活性炭から
イオンが離れることを脱着といい、イオンが離れると同
時に電荷移動を伴うものを脱離という。
In the secondary power supply of the present invention, during charging, anions in the electrolytic solution are adsorbed on the activated carbon at the positive electrode, and lithium ions and quaternary onium ions are adsorbed on the activated carbon at the negative electrode, and occlude and desorb lithium ions. Lithium ions are stored in the resulting carbon material. Note that, in this specification, the term “adsorption” refers to the adsorption of ions to activated carbon due to the formation of an electric double layer during charging, and the term “occlusion” refers to a reaction accompanied by charge transfer at the same time that ions are taken into the electrode. The separation of ions from the activated carbon during discharge is called desorption, and the separation of ions with charge transfer at the same time as the separation of ions is called desorption.

【0008】この二次電源の放電時には、正極では活性
炭に吸着しているアニオンの脱着が起こり、負極では活
性炭に吸着しているリチウムイオンと第4級オニウムイ
オンの脱着が起こる。第4級オニウムイオンは活性炭か
ら脱着しやすいが、リチウムイオンは全ては脱着せず
に、活性炭に一部残存する。そのため、放電終了時の負
極の電位は、初めの充電前の負極の自然電位より卑にな
る。
At the time of discharge of the secondary power supply, desorption of anions adsorbed on activated carbon occurs at the positive electrode, and lithium ions and quaternary onium ions adsorbed on the activated carbon desorb at the negative electrode. The quaternary onium ions are easily desorbed from the activated carbon, but all of the lithium ions are not desorbed but remain partially on the activated carbon. Therefore, the potential of the negative electrode at the end of discharging becomes lower than the natural potential of the negative electrode before the first charge.

【0009】その後、再び充電すると、上記活性炭には
活性炭本来の自然電位より卑な電位から第4級オニウム
イオンの吸着が起こる。すなわち、自然電位より卑な電
位で負極の充電ができるので、二次電源の耐電圧を高め
られる。
Then, when the activated carbon is charged again, quaternary onium ions are adsorbed on the activated carbon from a potential lower than the natural potential of the activated carbon. That is, since the negative electrode can be charged at a potential lower than the natural potential, the withstand voltage of the secondary power supply can be increased.

【0010】リチウムイオンを吸蔵、脱離しうる炭素材
料は、一般に負極活物質として使用すると、リチウムイ
オンが炭素材料へ吸蔵及び脱離する電気化学反応により
大容量が得られるが、大電流で放電すると容量低下が著
しい。ところが、本発明における負極のリチウムイオン
を吸蔵、脱離しうる炭素材料は、比較的小電流による充
電時及び放電時はそれぞれリチウムイオンを吸蔵及び脱
離するが、大電流による充放電の場合はほとんど反応し
ない。本発明の二次電源では、大電流による充放電の場
合は、活性炭に対するイオンの吸脱着の物理反応が起こ
る。物理反応の場合、容量は小さいが大電流充放電を繰
り返しても容量低下が少ない。
When a carbon material capable of absorbing and desorbing lithium ions is generally used as a negative electrode active material, a large capacity can be obtained by an electrochemical reaction in which lithium ions are absorbed and desorbed from the carbon material. Significant decrease in capacity. However, the carbon material capable of occluding and desorbing lithium ions of the negative electrode according to the present invention stores and desorbs lithium ions at the time of charging and discharging with a relatively small current, respectively. no response. In the secondary power supply of the present invention, in the case of charging and discharging with a large current, a physical reaction of adsorption and desorption of ions to activated carbon occurs. In the case of a physical reaction, the capacity is small, but the capacity is not reduced even after repeated charging and discharging of a large current.

【0011】すなわち、本発明では、高容量のリチウム
イオンを吸蔵、脱離しうる炭素材料と、低容量ではある
が大電流充放電に対し容量低下が少ない活性炭との混合
物を負極に使用することにより、高容量でありかつ大電
流放電による容量低下が少ない負極となりうる。
That is, in the present invention, a mixture of a carbon material capable of occluding and desorbing high-capacity lithium ions and activated carbon having a low capacity but having a small capacity reduction with respect to large-current charge / discharge is used for the negative electrode. It can be a negative electrode having a high capacity and a small decrease in capacity due to a large current discharge.

【0012】負極に含まれる活性炭の量は、活性炭とリ
チウムイオンを吸蔵、脱離しうる炭素材料との合量中に
10〜80重量%が好ましい。10重量%未満では、大
電流放電による二次電源の容量の低下が著しい。80重
量%超では、負極自体の容量が小さくなり、二次電源の
容量を大きくできない。活性炭の量は、特に30〜70
重量%が好ましい。
The amount of activated carbon contained in the negative electrode is preferably 10 to 80% by weight based on the total amount of activated carbon and a carbon material capable of occluding and desorbing lithium ions. If it is less than 10% by weight, the capacity of the secondary power supply is significantly reduced due to the large current discharge. If it exceeds 80% by weight, the capacity of the negative electrode itself becomes small, and the capacity of the secondary power supply cannot be increased. The amount of activated carbon is especially 30 to 70
% By weight is preferred.

【0013】本発明では、有機電解液中にはカチオンと
して第4級オニウムイオンとリチウムイオンが含まれ
る。第4級オニウムイオンとしては、第4級アンモニウ
ムイオン又は第4級ホスホニウムイオンが好ましく、特
に(C254+イオン、(C 254+イオン、(C
253(CH3)N+イオン等が好ましい。
In the present invention, a cation is contained in the organic electrolyte.
Contains quaternary onium ions and lithium ions
You. As quaternary onium ions, quaternary ammonium
And quaternary phosphonium ions are preferred.
To (CTwoHFive)FourP+Ion, (C TwoHFive)FourN+Ion, (C
TwoHFive)Three(CHThree) N+Ions and the like are preferred.

【0014】また、第4級オニウム塩及びリチウム塩の
アニオンであって有機電解液中に含まれるアニオンは、
PF6 -、BF4 -、ClO4 -、N(CF3SO22 -、CF
3SO3 -、C(SO2CF33 -、AsF6 -及びSbF6 -
からなる群から選ばれる1種類以上が好ましく、特にB
4 -が好ましい。なお、第4級オニウム塩のアニオンと
リチウム塩のアニオンは同じでも異なっていてもよい。
The anions of the quaternary onium salt and the lithium salt, which are contained in the organic electrolyte, are
PF 6 , BF 4 , ClO 4 , N (CF 3 SO 2 ) 2 , CF
3 SO 3 -, C (SO 2 CF 3) 3 -, AsF 6 - and SbF 6 -
At least one member selected from the group consisting of
F 4 - is preferred. In addition, the anion of the quaternary onium salt and the anion of the lithium salt may be the same or different.

【0015】有機電解液に含まれる第4級オニウム塩及
びリチウム塩の濃度は、第4級オニウム塩が0.5〜
2.5mol/L、リチウム塩が0.5〜2.0mol
/Lであることが好ましく、特にリチウム塩が0.8〜
1.5mol/L、リチウム塩が0.8〜1.5mol
/Lであることが好ましい。
[0015] The concentration of the quaternary onium salt and the lithium salt contained in the organic electrolyte is 0.5 to 0.5%.
2.5mol / L, lithium salt 0.5 ~ 2.0mol
/ L, especially when the lithium salt is 0.8 to
1.5 mol / L, lithium salt 0.8-1.5 mol
/ L is preferable.

【0016】有機電解液の溶媒は、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、スルホラン及びジメトキシエタン
からなる群から選ばれる1種以上が好ましい。
The solvent of the organic electrolyte is ethylene carbonate, propylene carbonate, butylene carbonate,
One or more selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane and dimethoxyethane are preferred.

【0017】正極及び負極に含まれる活性炭は同じでも
異なっていてもよいが、いずれも比表面積が300〜3
000m2/gであることが好ましい。活性炭の原料、
賦活条件は特に限定されず、例えば原料としてはやしが
ら、フェノール樹脂、石油コークス等が挙げられ、賦活
方法としては水蒸気賦活法、溶融アルカリ賦活法等が挙
げられる。
The activated carbon contained in the positive electrode and the negative electrode may be the same or different, but each has a specific surface area of 300 to 3
Preferably, it is 000 m 2 / g. Raw material of activated carbon,
The activation conditions are not particularly limited. For example, the raw materials include bean, phenol resin, petroleum coke and the like, and the activation methods include a steam activation method and a molten alkali activation method.

【0018】本発明の二次電源の容量を高めるには、正
極にリチウム含有遷移金属酸化物が含まれることが好ま
しい。V、Fe、Co、Mn、Ni、W及びZnからな
る群から選ばれる1種以上とリチウムとのリチウム含有
遷移金属酸化物が好ましく、特にはLixCoyNi1-y
2又はLizMn24(ただし、0<x<2、0≦y≦
1、0<z<2。)が好ましい。リチウム含有遷移金属
酸化物が含まれることにより正極の容量が高まり、それ
に合わせて負極のリチウムイオンを吸蔵、脱離しうる炭
素材料の量を増大させると、二次電源はより高容量にで
きる。
In order to increase the capacity of the secondary power supply of the present invention, the positive electrode preferably contains a lithium-containing transition metal oxide. A lithium-containing transition metal oxide of lithium and at least one selected from the group consisting of V, Fe, Co, Mn, Ni, W and Zn is preferred, and Li x Co y Ni 1-y is particularly preferred.
O 2 or Li z Mn 2 O 4 (provided that 0 <x <2, 0 ≦ y ≦
1, 0 <z <2. Is preferred. By including the lithium-containing transition metal oxide, the capacity of the positive electrode is increased. If the amount of the carbon material capable of occluding and releasing lithium ions of the negative electrode is accordingly increased, the secondary power supply can have a higher capacity.

【0019】正極中のリチウム含有遷移金属酸化物の量
は、活性炭とリチウム含有遷移金属酸化物の合量の5〜
80重量%が好ましい。5重量%未満であると、リチウ
ム含有遷移金属酸化物が正極に含まれる効果が小さく、
二次電源の電圧を高められない。80重量%を超える
と、相対的に正極中の活性炭の量が少なくなるため、充
放電サイクルにおける容量減少が著しくなる。より好ま
しくは10〜60重量%である。
The amount of the lithium-containing transition metal oxide in the positive electrode is 5 to 5 of the total amount of the activated carbon and the lithium-containing transition metal oxide.
80% by weight is preferred. When the content is less than 5% by weight, the effect of the lithium-containing transition metal oxide being contained in the positive electrode is small,
The voltage of the secondary power supply cannot be increased. If it exceeds 80% by weight, the amount of activated carbon in the positive electrode becomes relatively small, so that the capacity is significantly reduced in the charge / discharge cycle. More preferably, it is 10 to 60% by weight.

【0020】また、正極の抵抗を低くするために、正極
中に導電材として導電性のカーボンブラック又は黒鉛が
含まれることが好ましい。このとき、導電材は正極中に
0.1〜20重量%含まれることが好ましい。
In order to reduce the resistance of the positive electrode, it is preferable that the positive electrode contains conductive carbon black or graphite as a conductive material. At this time, the conductive material is preferably contained in the positive electrode in an amount of 0.1 to 20% by weight.

【0021】本発明において負極に含まれるリチウムイ
オンを吸蔵脱離しうる炭素材料は、X線回折測定による
[002]面の面間隔が0.335〜0.410nmで
あることが好ましい。面間隔が0.410nm超の炭素
材料は充放電サイクルにおいて劣化しやすい。具体的に
は石油コークス、メソフェーズピッチ系炭素材料又は気
相成長炭素繊維を800〜3000℃で熱処理した材
料、天然黒鉛、人造黒鉛、難黒鉛性炭素材料等が挙げら
れる。
In the present invention, the carbon material capable of inserting and extracting lithium ions contained in the negative electrode preferably has a [002] plane spacing of 0.335 to 0.410 nm as measured by X-ray diffraction. A carbon material having a plane spacing of more than 0.410 nm is liable to be deteriorated in a charge / discharge cycle. Specific examples include petroleum coke, a material obtained by heat-treating mesophase pitch-based carbon material or vapor-grown carbon fiber at 800 to 3000 ° C., natural graphite, artificial graphite, and non-graphitizable carbon material.

【0022】正極体の作製方法としては、例えば活性炭
粉末と導電材としてのカーボンブラックとバインダとし
てのポリテトラフルオロエチレンとの混合物を混練した
後、シート状に成形して正極とし、この正極を集電体に
導電性接着剤を用いて固定する方法がある。また、バイ
ンダとしてポリフッ化ビニリデン、ポリアミドイミド、
ポリイミド等を溶解したワニスに、活性炭粉末とカーボ
ンブラックを分散させ、これをドクターブレード法等に
よって集電体上に塗工し、乾燥して得てもよい。正極に
リチウム含有遷移金属酸化物が含まれる場合は、上記の
活性炭粉末のかわりに活性炭粉末とリチウム含有遷移金
属酸化物粉末との混合物を用いて同様に作製できる。
As a method of manufacturing a positive electrode body, for example, a mixture of activated carbon powder, carbon black as a conductive material, and polytetrafluoroethylene as a binder is kneaded, and then formed into a sheet to form a positive electrode. There is a method of fixing to an electric body using a conductive adhesive. Further, as a binder, polyvinylidene fluoride, polyamide imide,
Activated carbon powder and carbon black may be dispersed in a varnish in which polyimide or the like has been dissolved, and this may be obtained by applying the powder on a current collector by a doctor blade method or the like and drying. When the positive electrode contains a lithium-containing transition metal oxide, it can be similarly prepared using a mixture of activated carbon powder and lithium-containing transition metal oxide powder instead of the above-mentioned activated carbon powder.

【0023】正極に含まれるバインダの量は、正極体の
強度と容量等の特性とのバランスから1〜20重量%で
あることが好ましい。また、負極体も正極体と同様にし
て作製することが好ましく、負極体に含まれるバインダ
の量も1〜20重量%が好ましい。
The amount of the binder contained in the positive electrode is preferably 1 to 20% by weight in view of the balance between the strength of the positive electrode body and characteristics such as capacity. Further, the negative electrode body is preferably produced in the same manner as the positive electrode body, and the amount of the binder contained in the negative electrode body is also preferably 1 to 20% by weight.

【0024】[0024]

【実施例】次に、実施例(例1〜4)及び比較例(例
5)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜5における
セルの作製及び測定はすべて露点が−60℃以下のアル
ゴングローブボックス中で行った。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 4) and Comparative Examples (Example 5), but the present invention is not limited thereto. The production and measurement of the cells in Examples 1 to 5 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0025】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2/gの
活性炭を80重量%、導電性カーボンブラックを10重
量%、及びバインダとしてポリテトラフルオロエチレン
を10重量%からなる混合物をエタノールを加えて混練
し、圧延した後、200℃で2時間真空乾燥して厚さ1
50μmの電極シートを得た。このシートをポリアミド
イミドをバインダとする導電性接着剤を用いてアルミニ
ウム箔に接合し、減圧下で300℃で2時間熱処理し、
正極体とした。なお、電極面積は24cm2とした。
Example 1 80% by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by a steam activation method using a phenol resin as a raw material, 10% by weight of conductive carbon black, and 10% by weight of polytetrafluoroethylene as a binder % By weight, kneaded with ethanol, rolled, and vacuum dried at 200 ° C. for 2 hours to form a mixture having a thickness of 1%.
An electrode sheet of 50 μm was obtained. This sheet was bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated under reduced pressure at 300 ° C. for 2 hours.
A positive electrode body was obtained. The electrode area was 24 cm 2 .

【0026】正極体に使用した活性炭を70重量%、石
油コークスを熱処理することによって得られる[00
2]面の面間隔が0.344nmでありリチウムイオン
を吸蔵、脱離しうる炭素材料を10重量%、カーボンブ
ラックを10重量%、及びバインダとしてポリテトラフ
ルオロエチレンを10重量%からなる混合物をエタノー
ルを加えて混練し、正極と同様の方法で厚さ150μm
の電極シートを作製した。このシートを正極同様、ポリ
アミドイミドをバインダとする導電性接着剤を用いて銅
箔に接合し、減圧下で300℃で2時間熱処理し、負極
体とした。なお、電極面積は24cm2とした。
The activated carbon used for the positive electrode body is obtained by heat-treating 70% by weight of petroleum coke.
2] A mixture of 10% by weight of a carbon material capable of absorbing and desorbing lithium ions having a plane spacing of 0.344 nm, 10% by weight of carbon black, and 10% by weight of polytetrafluoroethylene as a binder is ethanol. Is added and kneaded, and the thickness is 150 μm in the same manner as for the positive electrode.
Was prepared. This sheet was bonded to a copper foil using a conductive adhesive having polyamideimide as a binder, similarly to the positive electrode, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a negative electrode body. The electrode area was 24 cm 2 .

【0027】上記正極体と上記負極体とを、ポリプロピ
レン製不織布セパレータを介して対向させ挟持して素子
を作製した。プロピレンカーボネートに1mol/Lの
(C 253(CH3)NBF4と1mol/LのLiB
4を溶解した溶液を電解液とし、該電解液に前記素子
を充分に含浸させ、初めに3.2Vで24時間充電し、
その後1Vまで放電した。次に3.2Vから1Vまでの
範囲で初期容量を測定した。その後、充放電電流240
mAで、3.2Vから1Vまでの範囲で充放電サイクル
試験を行い、2000サイクル後の容量を測定し、容量
変化率を算出した。結果を表1に示す。
The positive electrode body and the negative electrode body are
Opposed and sandwiched by a non-woven fabric separator made of ren
Was prepared. 1 mol / L of propylene carbonate
(C TwoHFive)Three(CHThree) NBFFourAnd 1 mol / L LiB
FFourIs used as an electrolyte, and the element is added to the electrolyte.
, Fully charged at 3.2V for 24 hours,
Thereafter, the battery was discharged to 1V. Next, from 3.2V to 1V
The initial capacity was measured in the range. Thereafter, the charge / discharge current 240
Charge / discharge cycle in the range of 3.2V to 1V at mA
Perform a test and measure the capacity after 2000 cycles.
The rate of change was calculated. Table 1 shows the results.

【0028】[例2]負極の電極シートの混合比を、活
性炭を40重量%、リチウムイオンを吸蔵、脱離しうる
炭素材料を40重量%、カーボンブラックを10重量
%、及びバインダとしてポリテトラフルオロエチレンを
10重量%に変更した以外は例1と同様にして負極体を
得た。この負極体を用いた以外は例1と同様にして素子
を作製し、例1と同様に電解液を含浸させた。この素子
を用いて例1と同様に評価した。結果を表1に示す。
[Example 2] The mixing ratio of the negative electrode sheet was 40% by weight of activated carbon, 40% by weight of a carbon material capable of absorbing and desorbing lithium ions, 10% by weight of carbon black, and polytetrafluorocarbon as a binder. A negative electrode body was obtained in the same manner as in Example 1 except that ethylene was changed to 10% by weight. A device was prepared in the same manner as in Example 1 except that this negative electrode body was used, and was impregnated with an electrolytic solution in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1 using this device. Table 1 shows the results.

【0029】[例3]活性炭を80重量%、導電性カー
ボンブラックを10重量%及びポリテトラフルオロエチ
レンを10重量%の混合物のかわりに、活性炭を60重
量%、LiCoO2を20重量%、導電性カーボンブラ
ックを10重量%及びポリテトラフルオロエチレンを1
0重量%の混合物を使用した以外は例1と同様にして正
極体を得た。
Example 3 Instead of a mixture of 80% by weight of activated carbon, 10% by weight of conductive carbon black and 10% by weight of polytetrafluoroethylene, 60% by weight of activated carbon, 20% by weight of LiCoO 2 , 10% by weight of conductive carbon black and 1% of polytetrafluoroethylene
A positive electrode body was obtained in the same manner as in Example 1 except that a mixture of 0% by weight was used.

【0030】上記正極体を用いた以外は例1と同様にし
て素子を作製し、例1と同様に評価した。結果を表1に
示す。
An element was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode body was used, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0031】[例4]LiCoO2のかわりにLiCo
0.2Ni0.82を用いた以外は例3と同様にして正極体
を得た。この正極体を用いた以外は例1と同様にして素
子を作製し、例1と同様に評価した。結果を表1に示
す。
Example 4 Instead of LiCoO 2 , LiCo
A positive electrode body was obtained in the same manner as in Example 3, except that 0.2 Ni 0.8 O 2 was used. An element was prepared in the same manner as in Example 1 except that this positive electrode body was used, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0032】[例5]正極体にも負極体にも例1で得ら
れた正極体を用いた以外は例1と同様にして素子を作製
し、例1と同様にして容量を測定し、例1と同様に評価
した。結果を表1に示す。
Example 5 An element was prepared in the same manner as in Example 1 except that the positive electrode body obtained in Example 1 was used for both the positive electrode body and the negative electrode body, and the capacity was measured in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の二次電源は、負極において、比
較的大きな電流での充放電では第4級オニウムイオンが
吸着、脱着し、比較的小さな電流での充放電ではリチウ
ムイオンを吸蔵、脱離しうる炭素材料にリチウムイオン
が吸蔵、脱離する。そのため、大きな電流での充放電に
よるリチウムイオンを吸蔵、脱離しうる炭素材料の劣化
が少なく、急速充放電特性に優れている。
According to the secondary power supply of the present invention, the quaternary onium ions are adsorbed and desorbed in the negative electrode during charging and discharging with a relatively large current, and the lithium ions are absorbed and discharged in the charging and discharging with a relatively small current. Lithium ions are absorbed and desorbed in the desorbable carbon material. Therefore, the carbon material capable of occluding and desorbing lithium ions due to charging and discharging with a large current is hardly deteriorated and has excellent rapid charging and discharging characteristics.

【0035】また、負極に含まれる活性炭の電位は自然
電位より卑になっているので、本発明の二次電源は耐電
圧が高い。さらに、負極にリチウムイオンを吸蔵、脱離
しうる炭素材料が含まれているため、高容量である。
Since the potential of the activated carbon contained in the negative electrode is lower than the natural potential, the secondary power supply of the present invention has a high withstand voltage. Further, since the negative electrode contains a carbon material capable of inserting and extracting lithium ions, the capacity is high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01G 9/00 301D 4/58 301A Fターム(参考) 5H003 AA01 AA02 AA04 AA10 BB01 BB05 BD00 BD04 BD06 5H014 AA02 EE08 EE10 HH00 HH01 HH08 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AM03 AM04 AM07 DJ09 HJ10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/02 H01G 9/00 301D 4/58 301A F-term (Reference) 5H003 AA01 AA02 AA04 AA10 BB01 BB05 BD00 BD04 BD06 5H014 AA02 EE08 EE10 HH00 HH01 HH08 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AM03 AM04 AM07 DJ09 HJ10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活性炭を含む正極と、活性炭とリチウムイ
オンを吸蔵、脱離しうる炭素材料とを含む負極と、第4
級オニウム塩とリチウム塩とを含む有機電解液と、を有
することを特徴とする二次電源。
A positive electrode containing activated carbon; a negative electrode containing activated carbon and a carbon material capable of absorbing and desorbing lithium ions;
A secondary power supply, comprising: an organic electrolyte containing a graded onium salt and a lithium salt.
【請求項2】負極中に活性炭は、活性炭と前記炭素材料
との合量中に10〜80重量%含まれる請求項1に記載
の二次電源。
2. The secondary power source according to claim 1, wherein the active carbon is contained in the negative electrode in an amount of 10 to 80% by weight in the total amount of the activated carbon and the carbon material.
【請求項3】有機電解液には、第4級オニウム塩が0.
5〜2.5mol/L、リチウム塩が0.5〜2.0m
ol/L含まれる請求項1又は2に記載の二次電源。
3. The organic electrolyte contains a quaternary onium salt in an amount of 0.1%.
5 to 2.5 mol / L, lithium salt is 0.5 to 2.0 m
The secondary power source according to claim 1, wherein the secondary power source includes ol / L.
【請求項4】正極には、V、Fe、Co、Mn、Ni、
W及びZnからなる群から選ばれる1種以上とリチウム
とを含むリチウム含有遷移金属酸化物が含まれる請求項
1、2又は3に記載の二次電源。
4. The cathode has V, Fe, Co, Mn, Ni,
4. The secondary power supply according to claim 1, wherein the secondary power supply includes a lithium-containing transition metal oxide containing lithium and at least one selected from the group consisting of W and Zn. 5.
【請求項5】リチウム含有遷移金属酸化物が、Lix
yNi1-y2又はLizMn24(ただし、0<x<
2、0≦y≦1、0<z<2。)である請求項4に記載
の二次電源。
5. The method according to claim 1, wherein the lithium-containing transition metal oxide is Li x C
o y Ni 1-y O 2 or Li z Mn 2 O 4 (where 0 <x <
2, 0 ≦ y ≦ 1, 0 <z <2. The secondary power supply according to claim 4, wherein
【請求項6】リチウム含有遷移金属酸化物は、正極中に
5〜80重量%含まれる請求項4又は5に記載の二次電
源。
6. The secondary power supply according to claim 4, wherein the lithium-containing transition metal oxide is contained in the positive electrode in an amount of 5 to 80% by weight.
JP11028575A 1999-02-05 1999-02-05 Secondary power supply Pending JP2000228222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11028575A JP2000228222A (en) 1999-02-05 1999-02-05 Secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028575A JP2000228222A (en) 1999-02-05 1999-02-05 Secondary power supply

Publications (1)

Publication Number Publication Date
JP2000228222A true JP2000228222A (en) 2000-08-15

Family

ID=12252419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028575A Pending JP2000228222A (en) 1999-02-05 1999-02-05 Secondary power supply

Country Status (1)

Country Link
JP (1) JP2000228222A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2003092104A (en) * 2001-09-18 2003-03-28 Denso Corp Electrode for capacitor and capacitor
US6824923B2 (en) * 2001-03-09 2004-11-30 Asahi Glass Company, Limited Secondary power source having a lithium titanate
JP2005158719A (en) * 2003-10-30 2005-06-16 Yuasa Corp Lithium ion secondary battery
WO2007010833A1 (en) 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and electrochemical energy storage device using same
JP2007053080A (en) * 2005-07-19 2007-03-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution, and electrochemical energy accumulating device using the same
CN101133468A (en) * 2005-03-04 2008-02-27 松下电器产业株式会社 Nonaqueous electrolyte for electrochemical energy storage device and electrochemical energy storage device making use of the same
JP2009016441A (en) * 2007-07-02 2009-01-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte for electrochemical capacitor, and electrochemical capacitor using the same
JP2012009805A (en) * 2010-06-28 2012-01-12 Samsung Electro-Mechanics Co Ltd Electrolyte solution composition and energy storage device with the same
US8148017B2 (en) * 2006-04-28 2012-04-03 Panasonic Corporation Electrochemical energy storage device
JP2013520805A (en) * 2010-02-26 2013-06-06 上海奥威科技開発有限公司 Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
US6824923B2 (en) * 2001-03-09 2004-11-30 Asahi Glass Company, Limited Secondary power source having a lithium titanate
JP2003092104A (en) * 2001-09-18 2003-03-28 Denso Corp Electrode for capacitor and capacitor
JP2005158719A (en) * 2003-10-30 2005-06-16 Yuasa Corp Lithium ion secondary battery
CN101133468A (en) * 2005-03-04 2008-02-27 松下电器产业株式会社 Nonaqueous electrolyte for electrochemical energy storage device and electrochemical energy storage device making use of the same
JP2007053080A (en) * 2005-07-19 2007-03-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution, and electrochemical energy accumulating device using the same
WO2007010833A1 (en) 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and electrochemical energy storage device using same
EP1906481A1 (en) * 2005-07-19 2008-04-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and electrochemical energy storage device using same
EP1906481A4 (en) * 2005-07-19 2010-02-17 Panasonic Corp Nonaqueous electrolyte solution and electrochemical energy storage device using same
US8148017B2 (en) * 2006-04-28 2012-04-03 Panasonic Corporation Electrochemical energy storage device
JP2009016441A (en) * 2007-07-02 2009-01-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte for electrochemical capacitor, and electrochemical capacitor using the same
JP2013520805A (en) * 2010-02-26 2013-06-06 上海奥威科技開発有限公司 Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
JP2012009805A (en) * 2010-06-28 2012-01-12 Samsung Electro-Mechanics Co Ltd Electrolyte solution composition and energy storage device with the same
KR101118862B1 (en) 2010-06-28 2012-03-06 삼성전기주식회사 Electrolyte solution composition and energy storage device with the same
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4705566B2 (en) Electrode material and manufacturing method thereof
CN109994322B (en) Battery type super capacitor and application thereof
JP4096438B2 (en) Secondary power supply
CN104835652A (en) Lithium-intercalation negative pole piece used for lithium super-capacitor battery, method for preparing same, and lithium super-capacitor battery
WO2020118880A1 (en) Graphite positive electrode and zinc negative electrode-based hybrid super capacitor
JP2000228222A (en) Secondary power supply
JP2003031220A (en) Secondary power source
JP2000138074A (en) Secondary power supply
JPH1154383A (en) Electric double layer capacitor
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP2008283161A (en) Electrochemical capacitor and electrolyte therefor
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JPH1154384A (en) Electric double layer capacitor
JP4042187B2 (en) Secondary power supply
JP2007294539A (en) Lithium ion hybrid capacitor
JP4099970B2 (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
CN102938322A (en) Super-capacitance battery and preparation method thereof
JPH11329492A (en) Secondary power source
JP2001338679A (en) Secondary electric power source
JP6607211B2 (en) Electrode for power storage device and power storage device
JP4352532B2 (en) Secondary power supply
JP2000003729A (en) Manufacture of secondary power supply
JP4039071B2 (en) Secondary power supply