JP3989820B2 - Multilayer wiring board and manufacturing method thereof - Google Patents

Multilayer wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP3989820B2
JP3989820B2 JP2002333307A JP2002333307A JP3989820B2 JP 3989820 B2 JP3989820 B2 JP 3989820B2 JP 2002333307 A JP2002333307 A JP 2002333307A JP 2002333307 A JP2002333307 A JP 2002333307A JP 3989820 B2 JP3989820 B2 JP 3989820B2
Authority
JP
Japan
Prior art keywords
layer
flexible
wiring
wiring board
insulator layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333307A
Other languages
Japanese (ja)
Other versions
JP2004172185A (en
Inventor
敏 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaichi Electronics Co Ltd
Original Assignee
Yamaichi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaichi Electronics Co Ltd filed Critical Yamaichi Electronics Co Ltd
Priority to JP2002333307A priority Critical patent/JP3989820B2/en
Publication of JP2004172185A publication Critical patent/JP2004172185A/en
Application granted granted Critical
Publication of JP3989820B2 publication Critical patent/JP3989820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リジッド配線回路部およびフレキシブル配線回路部を有する平板型の多層の配線板およびその製造方法に関する。
【0002】
【従来の技術】
たとえばCTスキャナーやカテーテルなどの医療機器、MTヘッドやPCカードなどのPC周辺機器等、電子機器類の短小軽薄化などに伴って、電気回路を形成する配線板についても、高密度配線化や短小軽薄化だけでなくフレキシブル性が要求されている。このような要求に対応して、図7に要部構成を斜視的に、また、図8に図7のA−A線に沿った要部構成を拡大して断面的に示すように、リジッド配線回路部101,102、およびフレキシブル配線回路部120を一体的に組み合わせた混成型の配線板が開発されている。(例えば特許文献1参照。)。
【0003】
図7および図8において、101,102は全体の厚さ100μm程度のリジッドな配線回路部であり、たとえばポリイミド樹脂フィルム103,104およびガラスエポキシ樹脂系シート105,106,107,108,109,110、111,112,113,114,115,116の接着、積層によって層間絶縁体を構成し、また、各フィルム層間および外表面に所要の配線パターン130が多層的に形成されている。一方、フレキシブルな配線回路部120は、前記リジッドな配線回路部101,102の層間絶縁体層の一層を成すポリイミド樹脂フィルム103(104)を延長させ、これを層間絶縁体とした両面に配線パター131が形成されている。
【0004】
そして、リジッドな配線回路部101,102は、その外表面に所要の電子部品を実装するように構成されており、一方、フレキシブルな配線回路部120は、リジッドな配線回路部101,102間の接続に寄与する一方、リジッドな配線回路部101,102の位置や方向など、任意に設定できるように折り曲げ可能になっている。
【0005】
なお、上記配線板の構成においては、リジッドな配線回路部101,102の層間絶縁体を成すポリイミド樹脂フィルム103,104およびガラスエポキシ樹脂系シート105…、111…同士、あるいはこれらポリイミド樹脂フィルム103,104およびガラスエポキシ樹脂系シート105…、111…に対する配線パターンが熱硬化性接着剤層を介して接合している。また、層間接続は、スルホール型やビア型があり、これらの層間接続導体140は、導電体の埋め込みやスルホール内壁面のメッキ膜化などで行われている。さらに、図7において、151は電子部品の実装ランド、152は接続端子部である。
【0006】
この種の混成型の配線板は、次のようにして製造されている。先ず、厚さ100〜200μm程度のポリイミド樹脂フィルム103(104)の主面に、接着剤層を介して厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシートを用意する。次いで、この銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体140を形成する。その後、両面の銅箔について、フォトエッチング処理を施して配線パターン130を形成し、両面の配線パターン130間が接続されたフレキシブル性を有する配線フィルムとする。
【0007】
一方、厚さ100μm程度の半硬化状ガラス−エポキシ樹脂系シートの一主面に、接着剤層を介して厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシート複数枚を用意する。ここで、半硬化状ガラス−エポキシ樹脂系シートは、リジッドな配線回路部101,102の層間絶縁体を形成するものである。したがって、前記配線フィルムのフレキシブル領域に対応する部分が切欠かれた構成と成っている。次いで、これらの銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体140を形成する。その後、銅箔についてフォトエッチング処理を施し、配線パターンに接続する層間接続導体140を有するリジッドな配線回路部用配線シートとする。
【0008】
上記用意した、フレキシブル性を有する配線フィルム、リジッドな配線回路部用配線シート、要すればカバーシートを位置合わせし積層する。このとき、リジッドな配線回路部用配線シート同士が対接する領域面に、熱硬化性の接着剤層を介在させる。また、フレキシブル性を有する配線フィルムの露出面、換言すると、リジッドな配線回路部用配線シートの切欠部に離型性のよいダミー部材を嵌合配置し平坦面化する。
【0009】
そして、この積層配置体にプレス加圧、加熱加工を施し、リジッドな配線回路部用配線シート同士、およびフレキシブル性を有する配線フィルムとリジッドな配線回路部用配線シートとを接合、一体化させることにより、多層形のリジッドな配線回路部101,102がフレキシブル配線回路部120を介して一体化した配線板を製造している。なお、リジッドな配線回路部用配線シートとの接合、一体化は、リジッドな配線回路部用配線シート一枚ごとに、多段的に行うこともでき、また、所謂ビルドアップ方式で作成することもできる。
【0010】
また、上記リジッドな配線回路部101,102の構成を簡略する手段として、配線パターン130形成面に、厚さ250〜300μm程度の未硬化状の熱硬化性樹脂層、および所定領域面に導電性組成物や導電性金属などを素材として突起状導電体を設け厚さ15μm程度の銅箔を位置決め積層する。その後、この積層体を加熱、加圧して接合一体化して、銅箔が未硬化状の熱硬化性樹脂層を貫挿した突起状導電体で電気的に接続した回路板を製作する。この銅箔貼り回路板の銅箔をエッチング処理して配線パターン化する。この方式は、層間接続導体を容易に、また、微細に形成できるので、生産性および高密度配線パターン化に適する手段として注目されている。
【0011】
【特許文献1】
特開平8−23149号公報(図1、第7−8頁)
【0012】
【発明が解決しようとする課題】
しかし、上記リジッドな配線回路部101,102およびフレキシブル配線回路部を有する配線板は、一応のフレキシブル性を奏することから、使用する電子機器類、たとえばデジタルカメラ、携帯電話などの短小軽薄化に寄与するが、一方では、次のような不具合が認められる。すなわち、上記図7に図示する要部構成においては、各リジッドな配線回路部101、102が、これらを一体化するフレキシブル配線回路部120に較べて厚く、取扱操作に不便があり、スペースの利用効率も低下して、ときには、コンパクト化を阻害することもある。また、フレキシブル配線回路部120に求められるフレキシブル性から、ポリイミド樹脂(熱硬化性樹脂)層103の厚さにも限界があって、リジッドな配線回路部101,102間の接続用配線パターンも制約される。つまり、層間絶縁体を成すポリイミド樹脂フィルムの可撓性による厚さの限界、ポリイミド樹脂フィルム自体の電気的特性による配線密度の制約などがあって、配線板としての機能や性能において充分と言えない。
一方、製造方法においては、リジッドな配線回路部101,102の層間絶縁体フィルムの切欠き加工に加えて、位置合わせやダミー部材の嵌合配置、および一様な加圧、加熱の困難さなど、工程が煩雑化すると言う問題もある。つまり、常時、仕様が一様な、信頼性の高い配線板を歩留まりよく、量産的に製造する手段としては充分と言えない。
【0013】
本発明は、上記事情に対処してなされたもので、信頼性が高くて、よりコンパクト化が図られたリジッドな配線回路部およびフレキシブルな配線回路部を有する配線板、およびその製造方法の提供を目的とする。
【0014】
【課題を解決するための手段】
本発明は、熱可塑性樹脂系のフレキシブル絶縁体層とこのフレキシブル絶縁体層の辺側に融着され同一面を形成して一体的に延設配置された熱硬化性樹脂系のリジッド絶縁体層とを有する絶縁シートの複数シートが、前記各フレキシブル絶縁層の相互の位置合わせにより積層された積層構造をなし、層間の配線パターンが層間接続導体により接続され、前記積層構造の前記フレキシブル絶縁体層と前記リジッド絶縁体層の表面が同一面に形成されたことを特徴とする多層の配線板を提供する。
【0016】
さらに本発明は、熱可塑性樹脂の第1のフレキシブル絶縁体層と未硬化状ないし半硬化状の第1の熱硬化性樹脂層とをこれらの両層が融着可能に層辺を同一面内でつき合わせて形成した第1の絶縁シートを作製する工程と、
この第1の絶縁シートを挟んで、一主面側に突起状の層間接続導体を設けた銅箔、他主面側に銅箔を積層して積層体とする工程と、
前記積層体を積層方向に加熱、加圧して前記熱硬化性樹脂層を融かし硬化させてリジッド絶縁体層とし前記第1のフレキシブル絶縁体層と一体化し、かつ両面の銅箔同士が前記第1の絶縁シートを貫挿させた突起状の層間接続導体で電気的に接続した両面銅箔貼り板を作成する工程と、
前記両面の銅箔についてフォトエッチング処理を施して配線パターン化してコア基板を形成する工程と、
前記配線パターン面に、熱可塑性樹脂の第2のフレキシブル絶縁体層と未硬化状ないし半硬化状の第2の熱硬化性樹脂層をこれらの両層が融着可能に層辺を同一面内でつき合わせて形成した第2の絶縁シートおよびこの第2の絶縁シートの一主面側に突起状の層間接続導体を設けた銅箔とを積層して積層体とする工程と、
前記積層体を積層方向に加熱、加圧して一体化し、かつ第2の絶縁シートを貫挿させた突起状の層間接続導体が対向する前記コア基板の配線パターンに電気的に接続した多層配線素板を作製する工程と、
前記多層配線素板の銅箔をフォトエッチング処理を施し、配線パターン化する工程と、
を有することを特徴とする多層の配線板の製造方法を提供する。
【0017】
加熱時に、未硬化状ないし半硬化状の熱硬化性樹脂層が流動性を生じる場合には、フレキシブル絶縁体層と未硬化状ないし半硬化状の熱硬化性樹脂層の境界に樹脂流動阻止用の堰が設けられることが好ましい。
【0018】
また、フレキシブル絶縁体層が液晶ポリマーで形成されていることが好ましい。
【0019】
本発明は、配線板の絶縁体として、フレキシブル性の領域を熱可塑性樹脂の絶縁体層で、また、回路配置に必要な固いリジッド性を要する領域を熱硬化性樹脂で、それぞれ選択的、嵌合的に組み合わせ同一面で一体に構成した絶縁性樹脂シートを使用する。そして、このような構成の採用に伴って、フレキシブルな配線回路部およびリジッドな配線回路部を通して全体的に一様な厚さとし、短小軽薄化を達成しながら、高密度配線ないし高機能化および高信頼性の折り曲げ可能な実装用配線板を提供するものである。
【0020】
【発明の実施の形態】
以下、図1乃至図5を参照して発明の実施形態を説明する。
【0021】
図1は、第1の実施例に係る配線板の要部を拡大して示す断面図である。図1において、配線板10は厚さ25〜100μmの液晶ポリマーフィルム、たとえば融点280〜350℃のベクトランフィルムから成る熱可塑性樹脂層のフレキシブル絶縁体層11と、エポキシ樹脂をガラス布に含浸させたリジッド絶縁体層12とからなる絶縁体シート13を有している。フレキシブル絶縁体層11とリジッド絶縁体層12とは同一表面を形成するように同一面内に隣接して配置されて、対設する辺同士が突合わされその境界20が融着により接合され一体的に延設されている。この絶縁体シート13の両主面に、一体的に配線パターン14,15が配置されている。配線パターン14,15は絶縁体シート13を厚さ方向に貫挿した層間接続導体16により電気的に接続される。
【0022】
ここで、各配線パターン14,15は、配線パターン15面に突設させた突起状接続導体16のリジッド絶縁体層12中への貫挿によって、所要の電気的な接続が行われている。すなわち、絶縁体層12中を、略円錐状もしくは角錐状に印刷形成された導電性バンプ、あるいは選択的に肉盛り成長させた金属製突起などの突起状接続導体16を先端側から貫挿させ、対向する配線パターン14と電気的に接続する構成を採っている。なお、配線パターン14,15は、一般的に、銅箔などの導体層をフォトエッチング処理して形成されたものであるが、導電性ペーストのスクリーン印刷、あるいはメッキレジストを印刷してパターニングし選択的なメッキなどの手段で形成されたものでもよい。
【0023】
フレキシブル絶縁体層11はその面が配線パターン14,15とともにフレキシブル配線回路部17を形成し、リジッド絶縁体層12はその面に形成された配線パターン14,15とともにリジッド配線回路部18を形成する。
【0024】
本実施形態の特徴は、フレキシブル絶縁体層11とリジッド絶縁体層12が共通表面をもつ絶縁体シート13を形成していることである。これにより配線14,15を同時に一体パターン化することができ、後述するように製造工程を減らしてコストの削減に寄与することができる。しかもフレキシブル絶縁体層を含めて配線板を薄くできるので、機器のコンパクト化に有利である。
【0025】
図2は、第2の実施形態に係る配線板の要部を拡大して示す断面図である。この実施形態の配線板は、第1の実施形態に対して多層化した構成を有する。なお、図1と同符号の部分は同一部分を表す。すなわち、上記図1に図示した構造の絶縁体シートを2層13,13aに積層した構造であり、各シートのフレキシブル絶縁体層11,11aを位置合わせることにより、フレキシブル性を損なわない多層配線基板に形成している。各層間絶縁体シートが薄い構造であるので、多層にしても薄く、フレキシブル部は耐折曲げ性があるように十分な柔軟性を備える。
【0026】
上記各実施形態に係る配線板において、フレキシブルな配線回路部17のフレキシブル絶縁体層11を形成する熱可塑性樹脂として液晶ポリマーが適しており、たとえばキシダール(商品名.Dartco社製)、ベクトラ(商品名.Clanese社製)で代表される多軸配向の熱可塑性ポリマーである。そして、ベクトランAタイプ(融点285℃)、ベクトランCタイプ(融点325℃)、BIACフィルム(融点325℃)などが市販されている。なお、この種の液晶ポリマーは、一般的に、吸湿性がほとんどなく、誘電率が約3.0(1MHz)で高周波特性が優れているため、高速信号伝送安定性を奏する。また、熱可塑性樹脂として液晶ポリマーのほかポリエーテルイミド等各種の材料を利用することができる。
【0027】
また、リジッドな配線回路部18の絶縁体12を成す熱硬化性樹脂系は、たとえばエポキシ系、ビスマレイミドトリアジン樹脂、ポリイミド樹脂類、フェノール樹脂、シリコーン系樹脂類などの1種もしくは2種以上の混合系、さらには、これらの樹脂と絶縁性無機物などの充填剤、ガラスクロスやマット、あるいは不織布などの補強材との組み合わせが挙げられる。
【0028】
さらに、層間接続導体16は、たとえば金、銀、銅、半田などの導電性金属、あるいはこの導電性金属粉とバインダー樹脂との混合系で構成されている。ここで、バインダー樹脂としては、たとえばポリカーボネート樹脂、ポリスルホン樹脂、ポリエステル樹脂、フェノキシ樹脂、フェノール樹脂、ポリイミド樹脂などが挙げられる。
【0029】
次に、本発明の実施形態に係る配線板の製造方法を説明する。
【0030】
先ず、図3に要部構成を平面的に、また、図4に要部構成を断面的に示すような絶縁シート13を用意する。すなわち、例えば液晶ポリマー系の熱可塑性樹脂のフレキシブル絶縁体層11と、この層に並べて同一面を形成するように層間絶縁体層11の辺に機械的に突合せ接触させた未硬化状ないし半硬化状の熱硬化性樹脂層12とからなる絶縁シート13を予め用意する。ここで、絶縁シート12は、半硬化状の熱硬化性樹脂系シート、たとえばガラス−エポキシ系のプリプレグシートを打ち抜き加工し、所定領域を開口(切欠)した後、その開口(切欠)領域に、予め打ち抜き加工して置いた液晶ポリマーの絶縁体層11片を嵌め込んだものである。後工程で2段階(ステップキュア)して、加熱、加圧することにより液晶ポリマーよりも低融点のエポキシ系樹脂が融けて絶縁体層11の辺に融着して硬化し、熱硬化性樹脂層はリジッド絶縁体層12となる。これにより絶縁体層11,12が一体的で、かつ同一平坦面を呈する複合型の絶縁シートとなる。なお、図3に図示する絶縁シート13は、所謂多面取り用である。
【0031】
次に、図4に実施態様を示すように、上記絶縁シート13の一主面側に、突起状(円錐状)の層間接続導体16を設けた厚さ12〜18μmの銅箔31を、また、他主面側に単純な銅箔32を積層的に配置して積層体化する。その後、前記積層体の両銅箔31,32面に、当て板を配置して、加熱温度180℃程度、樹脂圧として4〜6Mpa程度で加熱、加圧すると、熱硬化性樹脂層12が融け、次に加熱温度300℃程度、樹脂圧として4〜6Mpa程度で加熱、加圧すると、フレキシブル絶縁体層11に融着してリジッド絶縁体層となり、同時に、銅箔31の突起状の層間接続導体16が絶縁シート30を貫挿して銅箔32に電気的に接続して両面銅箔貼り板を作製する。
【0032】
次いで、前記両面の銅箔31,32について、フォトエッチング処理を施して配線パターン化することによって、図1に示すように、フレキシブルな配線回路部17およびリジッドな配線回路部18が一体化された配線シートを得ることができる。このシートを図3に示すように、裁断線34により、配線板単位に分離することにより、図1に図示す構成の配線板を得ることができる。
【0033】
なお、この実施形態に係る配線板の製造方法において、銅箔31上の突起状(円錐状)の層間接続導体16は、たとえば次のよう手段で設ける。すなわち、銅箔31の一主面側に、たとえばステンレス薄鋼板の所定箇所0.1〜0.3mm径の孔を明けたメタルマスクを位置決め配置して導電性ペーストを印刷する。この導電性ペーストが乾燥後、同一メタルマスクを用いて同一位置に再度印刷する方法で、複数回印刷を繰り返し、山形バンプを形設する。
【0034】
上記配線板の製造方法において、絶縁シート13の半硬化状の熱硬化性樹脂系絶縁体層12領域あるいは液晶ポリマーの絶縁体層11領域の少なくともいずれか一方が、加熱、加圧成形時に、容易に流動する恐れがある場合は、ノンフロー型の熱硬化性樹脂を使用するか、図5および図6に例示するように、突起状の層間接続導体16を設けた銅箔31面、もしくは対向する銅箔32面に、熱可塑性樹脂層11と半硬化状の熱硬化性樹脂層12の境界20に対応させて樹脂流出防止用の突起33(防止堰)を設けておくことが好ましい。例えば熱硬化性樹脂を硬化させるときに熱硬化性樹脂が溶け、それよりも融点が高い熱可塑性樹脂層側に流出して境界部20を越えて層上にあふれる。このため、図6のように接続導体33を境界上に並べて堰を形成する。
【0035】
上記製造方法において、使用する層間絶縁材料、すなわち液晶ポリマーおよび熱硬化性樹脂系のシートないしフィルム類は、上記例示した樹脂類を主体としたものである。また、配線パターンの形成手段および素材なども、上記説明に準じた態様が採られる。
【0036】
さらに、図2に示す実施形態の多層配線板は、上記実施形態の配線板構造の組合わせにより簡単に製造することができる。上記実施形態の絶縁体シート13と両面の配線パターン14,15をコア基板10として用意し、これに他の絶縁体シートであるビルドアップ用配線層13aを積層し一体化する。
【0037】
すなわち、ビルドアップ用配線層として、例えば液晶ポリマー系の熱可塑性樹脂のフレキシブル絶縁体層11aに並べて同一面を形成するように絶縁体層11aの辺に機械的に突合せ接触させた未硬化状ないし半硬化状の熱硬化性樹脂層12aとからなる絶縁シート13aと、突起状(円錐状)の層間接続導体16aを設けた厚さ12〜18μmの銅箔35を用意する。
【0038】
次に絶縁シート13aと銅箔35を、銅箔の接続導体がコア基板側に対向するように、かつ絶縁シート13aがコア基板10と銅箔35間に挟まれるように積層する。
【0039】
この積層体を積層方向から2段階、加熱、加圧すると、熱硬化性樹脂層が融けて熱硬化し、次に熱可塑性樹脂が融けて銅箔の接続導体16aはシートを貫挿してコア基板の配線パターンに電気的に接続されて、コア基板にビルドアップ配線層として一体化される。
【0040】
そして、この製造方法例においては、折り曲げ自在なフレキシブルな配線回路部および電子部品の実装に適するリジッド配線回路部を有し、かつ折り曲げ繰り返し後でも剥離、損傷を招来する恐れがなく、また、信頼性の高い電気的特性を奏する配線板を歩留まりよく製作することができる。
【0041】
本発明は、上記実施例に限定されるものでなく、発明の主旨を逸脱しない範囲でいろいろの変形を採ることができる。たとえば内蔵される配線パターン数は、3層形や5層以上の多層形でもよく、また、液晶ポリマーおよび熱可塑性樹脂の組み合わせも用途などに応じて適宜選択できる。
【0042】
【発明の効果】
本発明によれば、折り曲げ自在なフレキシブルな配線回路部および電子部品の実装に適するリジッド配線回路部を有し、かつコンパクトで仕様勝手の優れた信頼性の高い配線板を提供できる。つまり、構成の簡略化が図られているだけでなく、薄形で、信頼性の高い機能を奏して小形電子機器類の回路構成に適する配線板が提供される。
【0043】
さらに本発明の製造方法によれば、構成の簡略化が図られているだけでなく、歩留まりよく量産的に、薄形で、信頼性の高い機能を奏して小形電子機器類の回路構成に適する配線板を容易に提供できる。
【図面の簡単な説明】
【図1】本発明の1実施形態の要部構成を示す断面図。
【図2】本発明の他の実施形態の要部構成を示す断面図。
【図3】本発明の1実施形態の製造方法の多面採り絶縁シートの要部構成を示す平面図。
【図4】本発明の1実施形態の製造方法を説明する断面図。
【図5】本発明の他の実施形態の製造方法を説明する断面図。
【図6】本発明の他の実施形態の製造方法の多面採り絶縁シートの要部構成を示す平面図。
【図7】従来のフレキシブルな配線回路部およびリジッドな配線回路部を有する配線板の要部構成を示す斜視図。
【図8】図7のA−A線に沿った拡大断面図。
【符号の説明】
10:配線板
11:フレキシブル絶縁体層
12:リジッド絶縁体層
13:絶縁体シート
14,15:配線パターン
16:層間接続導体
17:フレキシブル配線回路部
18: リジッド配線回路部
20:境界
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat-type multilayer wiring board having a rigid wiring circuit portion and a flexible wiring circuit portion, and a method for manufacturing the same.
[0002]
[Prior art]
For example, with respect to wiring boards that form electrical circuits, such as medical equipment such as CT scanners and catheters, and PC peripherals such as MT heads and PC cards, etc. In addition to lightening, flexibility is required. In response to such demands, the rigid configuration is shown in FIG. 7 in a perspective view, and in FIG. 8 in an enlarged sectional view along the line AA in FIG. A hybrid wiring board in which the wiring circuit units 101 and 102 and the flexible wiring circuit unit 120 are integrally combined has been developed. (For example, refer to Patent Document 1).
[0003]
7 and 8, reference numerals 101 and 102 denote rigid wiring circuit portions having a total thickness of about 100 μm. For example, polyimide resin films 103 and 104 and glass epoxy resin sheets 105, 106, 107, 108, 109, and 110 are used. , 111, 112, 113, 114, 115, 116 constitute an interlayer insulator, and necessary wiring patterns 130 are formed in multiple layers between each film layer and on the outer surface. On the other hand, the flexible wiring circuit section 120 is formed by extending a polyimide resin film 103 (104) constituting one layer of an interlayer insulator layer of the rigid wiring circuit sections 101 and 102, and wiring patterns on both surfaces using this as an interlayer insulator. 131 is formed.
[0004]
The rigid wiring circuit units 101 and 102 are configured to mount required electronic components on the outer surface thereof, while the flexible wiring circuit unit 120 is provided between the rigid wiring circuit units 101 and 102. While contributing to the connection, the positions and directions of the rigid wiring circuit portions 101 and 102 can be bent so as to be arbitrarily set.
[0005]
In the configuration of the wiring board, the polyimide resin films 103 and 104 and the glass epoxy resin sheets 105..., 111... Constituting the interlayer insulator of the rigid wiring circuit portions 101 and 102 or the polyimide resin films 103. 104 and the glass epoxy resin sheets 105... 111 are joined to each other through a thermosetting adhesive layer. The interlayer connection includes a through hole type and a via type, and these interlayer connection conductors 140 are formed by embedding a conductor or forming a plating film on the inner wall surface of the through hole. In FIG. 7 , reference numeral 151 denotes an electronic component mounting land, and 152 denotes a connection terminal portion.
[0006]
This type of mixed wiring board is manufactured as follows. First, a copper foil-bonded sheet is prepared by bonding a copper foil having a thickness of about 12 to 18 μm to the main surface of the polyimide resin film 103 (104) having a thickness of about 100 to 200 μm via an adhesive layer. Next, a predetermined region of the copper foil-bonded sheet is subjected to perforation processing to provide a through hole for interlayer connection, and then the inner wall surface of the through hole is formed into a plated conductor or filled with a conductive composition to form an interlayer connection conductor. 140 is formed. Thereafter, the copper foils on both sides are subjected to a photo-etching process to form a wiring pattern 130 to obtain a flexible wiring film in which the wiring patterns 130 on both sides are connected.
[0007]
On the other hand, a plurality of copper foil-bonded sheets prepared by bonding a copper foil having a thickness of about 12 to 18 μm to one main surface of a semi-cured glass-epoxy resin sheet having a thickness of about 100 μm via an adhesive layer is prepared. . Here, the semi-cured glass-epoxy resin-based sheet forms an interlayer insulator of the rigid wiring circuit portions 101 and 102. Therefore, the structure corresponding to the flexible region of the wiring film is cut away. Next, after drilling a predetermined region of these copper foil-bonded sheets and providing a through hole for interlayer connection, the inner wall surface of the through hole is made into a plated conductor or filled with a conductive composition to connect the interlayer. A conductor 140 is formed. Thereafter, the copper foil is subjected to a photo-etching process to obtain a rigid wiring circuit part wiring sheet having an interlayer connection conductor 140 connected to the wiring pattern.
[0008]
The prepared wiring film having flexibility, a rigid wiring circuit wiring sheet, and if necessary, a cover sheet are aligned and laminated. At this time, a thermosetting adhesive layer is interposed on a region surface where the rigid wiring circuit portion wiring sheets contact each other. Further, a dummy member having a good releasability is fitted and arranged on the exposed surface of the flexible wiring film, in other words, the notch portion of the rigid wiring circuit portion wiring sheet to flatten the surface.
[0009]
Then, the pressurizing and heating processes are performed on the stacked arrangement body to join and integrate the rigid wiring circuit part wiring sheets and the flexible wiring film and the rigid wiring circuit part wiring sheet. Thus, a wiring board in which the multilayer rigid wiring circuit portions 101 and 102 are integrated via the flexible wiring circuit portion 120 is manufactured. In addition, joining and integration with a rigid wiring circuit unit wiring sheet can be performed in multiple stages for each rigid wiring circuit unit wiring sheet, or can be created by a so-called build-up method. it can.
[0010]
Further, as means for simplifying the configuration of the rigid wiring circuit portions 101 and 102, an uncured thermosetting resin layer having a thickness of about 250 to 300 μm is formed on the surface on which the wiring pattern 130 is formed, and a predetermined region surface is electrically conductive. Protruding conductors are provided using a composition or conductive metal as a raw material, and a copper foil having a thickness of about 15 μm is positioned and laminated. Thereafter, the laminated body is heated and pressurized to be joined and integrated to produce a circuit board in which a copper foil is electrically connected by a protruding conductor through which an uncured thermosetting resin layer is inserted. The copper foil of the copper foil-clad circuit board is etched to form a wiring pattern. This method is attracting attention as a means suitable for productivity and high-density wiring patterning because the interlayer connection conductor can be easily and finely formed.
[0011]
[Patent Document 1]
JP-A-8-23149 (FIG. 1, pages 7-8)
[0012]
[Problems to be solved by the invention]
However, since the wiring board having the rigid wiring circuit portions 101 and 102 and the flexible wiring circuit portion exhibits a certain degree of flexibility, it contributes to shortening the size and thickness of electronic devices to be used, such as digital cameras and mobile phones. However, on the other hand, the following problems are recognized. That is, in the main part configuration shown in FIG. 7, the rigid wiring circuit units 101 and 102 are thicker than the flexible wiring circuit unit 120 that integrates them, which is inconvenient in handling operation and uses space. Efficiency is also reduced, and sometimes downsizing is impeded. Further, due to the flexibility required for the flexible wiring circuit portion 120, the thickness of the polyimide resin (thermosetting resin) layer 103 is also limited, and the wiring pattern for connection between the rigid wiring circuit portions 101 and 102 is also limited. Is done. In other words, there is a limit on the thickness due to the flexibility of the polyimide resin film that forms the interlayer insulator, and there is a restriction on the wiring density due to the electrical characteristics of the polyimide resin film itself, so it cannot be said that the function and performance as a wiring board are sufficient. .
On the other hand, in the manufacturing method, in addition to the notch processing of the interlayer insulator film of the rigid wiring circuit portions 101 and 102, alignment, dummy member fitting arrangement, uniform pressurization, heating difficulty, etc. There is also a problem that the process becomes complicated. That is, it cannot be said that it is sufficient as a means for mass-manufacturing a highly reliable wiring board with uniform specifications and high yield at all times.
[0013]
The present invention has been made in view of the above circumstances, and provides a rigid wiring circuit unit and a wiring board having a flexible wiring circuit unit that are highly reliable and more compact, and a method for manufacturing the same. With the goal.
[0014]
[Means for Solving the Problems]
The present invention relates to a thermoplastic resin-based flexible insulator layer and a thermosetting resin-based rigid insulator layer that is fused and formed on the side of the flexible insulator layer so as to extend integrally therewith. multiple sheets of insulating sheet having bets is the form a laminated structure are laminated by aligning the mutual each flexible insulator layer, an interlayer wiring patterns are connected by an interlayer connection conductor, the flexible insulator of the multilayer structure Provided is a multilayer wiring board in which a layer and a surface of the rigid insulator layer are formed on the same surface.
[0016]
Furthermore, the present invention provides a first flexible insulating layer made of thermoplastic resin and an uncured or semi-cured first thermosetting resin layer which can be fused together in the same side of the layer. Producing a first insulating sheet formed by joining together,
Sandwiching the first insulating sheet, a copper foil provided with a protruding interlayer connection conductor on one main surface side, a step of laminating a copper foil on the other main surface side to form a laminate, and
The laminated body is heated and pressed in the laminating direction to melt and cure the thermosetting resin layer to form a rigid insulator layer, which is integrated with the first flexible insulator layer, and the copper foils on both sides are Creating a double-sided copper foil bonded plate electrically connected with a protruding interlayer connection conductor through which the first insulating sheet is inserted;
A step of forming a core substrate by performing a photo-etching process on the copper foils on both sides to form a wiring pattern;
A second flexible insulator layer of thermoplastic resin and an uncured or semi-cured second thermosetting resin layer are bonded to the surface of the wiring pattern so that both layers can be fused together. A step of laminating a second insulating sheet formed by joining together and a copper foil provided with a protruding interlayer connection conductor on one main surface side of the second insulating sheet;
A multilayer wiring element in which the laminated body is integrated by heating and pressing in the laminating direction, and the protruding interlayer connection conductor having the second insulating sheet inserted thereinto is electrically connected to the wiring pattern of the core substrate opposed to the multilayer wiring element. Producing a plate;
The copper foil of the multilayer wiring board is subjected to a photo-etching process to form a wiring pattern,
A method for producing a multilayer wiring board is provided.
[0017]
When the uncured or semi-cured thermosetting resin layer is fluid when heated, it prevents resin flow at the boundary between the flexible insulator layer and the uncured or semi-cured thermosetting resin layer. It is preferable that a weir is provided.
[0018]
Moreover, it is preferable that the flexible insulator layer is formed of a liquid crystal polymer.
[0019]
According to the present invention, as an insulator of a wiring board, a flexible region is an insulating layer made of a thermoplastic resin, and a region requiring a rigid rigidity necessary for circuit arrangement is made of a thermosetting resin, selectively and fitted. Insulating resin sheets that are integrally configured on the same surface in combination are used. With the adoption of such a configuration, the thickness is made uniform throughout the flexible wiring circuit part and the rigid wiring circuit part, and while achieving short, small and thin, high density wiring or high functionality and high performance. A wiring board for mounting that can be bent reliably is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the invention will be described with reference to FIGS. 1 to 5.
[0021]
FIG. 1 is an enlarged cross-sectional view showing a main part of the wiring board according to the first embodiment. In FIG. 1, a wiring board 10 is obtained by impregnating a glass cloth with a flexible insulating layer 11 of a thermoplastic resin layer made of a liquid crystal polymer film having a thickness of 25 to 100 μm, for example, a Vectran film having a melting point of 280 to 350 ° C., and an epoxy resin. An insulator sheet 13 composed of a rigid insulator layer 12 is provided. The flexible insulator layer 11 and the rigid insulator layer 12 are disposed adjacent to each other in the same plane so as to form the same surface, and the opposite sides are abutted and the boundary 20 is joined by fusion to be integrated. It is extended to. Wiring patterns 14 and 15 are integrally disposed on both main surfaces of the insulating sheet 13. The wiring patterns 14 and 15 are electrically connected by an interlayer connection conductor 16 having an insulating sheet 13 inserted in the thickness direction.
[0022]
Here, each wiring pattern 14 and 15 is electrically connected by inserting a protruding connection conductor 16 protruding from the surface of the wiring pattern 15 into the rigid insulator layer 12. That is, a protruding connection conductor 16 such as a conductive bump printed in a substantially conical shape or a pyramid shape, or a metal protrusion selectively grown on the insulating layer 12 is inserted from the tip side. In this configuration, the wiring pattern 14 is electrically connected to the opposing wiring pattern 14. The wiring patterns 14 and 15 are generally formed by photo-etching a conductive layer such as copper foil, but are selected by screen printing of a conductive paste or patterning by printing a plating resist. It may be formed by means such as typical plating.
[0023]
The flexible insulator layer 11 forms a flexible wiring circuit portion 17 together with the wiring patterns 14 and 15, and the rigid insulator layer 12 forms a rigid wiring circuit portion 18 together with the wiring patterns 14 and 15 formed on the surface. .
[0024]
The feature of this embodiment is that the flexible insulator layer 11 and the rigid insulator layer 12 form an insulator sheet 13 having a common surface. As a result, the wirings 14 and 15 can be formed into an integrated pattern at the same time, and the manufacturing process can be reduced as will be described later, thereby contributing to cost reduction. Moreover, since the wiring board including the flexible insulator layer can be made thin, it is advantageous for making the device compact.
[0025]
FIG. 2 is an enlarged cross-sectional view showing a main part of the wiring board according to the second embodiment. The wiring board of this embodiment has a multi-layered configuration with respect to the first embodiment. 1 denote the same parts. That is, the insulating sheet having the structure shown in FIG. 1 is laminated on the two layers 13 and 13a, and the flexible insulating layers 11 and 11a of each sheet are aligned so that the flexibility is not impaired. Is formed. Since each interlayer insulator sheet has a thin structure, it is thin even if it has multiple layers, and the flexible portion has sufficient flexibility so that it has bending resistance.
[0026]
In the wiring board according to each of the above embodiments, a liquid crystal polymer is suitable as a thermoplastic resin for forming the flexible insulating layer 11 of the flexible wiring circuit portion 17. For example, Kisdar (trade name, manufactured by Dartco), Vectra (product) (Manufactured by Clanese), a multiaxially oriented thermoplastic polymer. Vectran A type (melting point 285 ° C.), Vectran C type (melting point 325 ° C.), BIAC film (melting point 325 ° C.) and the like are commercially available. This type of liquid crystal polymer generally has almost no hygroscopicity, has a dielectric constant of about 3.0 (1 MHz), and has excellent high frequency characteristics, and thus exhibits high-speed signal transmission stability. In addition to the liquid crystal polymer, various materials such as polyetherimide can be used as the thermoplastic resin.
[0027]
In addition, the thermosetting resin system that forms the insulator 12 of the rigid wiring circuit section 18 may be one or more of epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, silicone resin, and the like. A mixed system, and a combination of these resins and a filler such as an insulating inorganic material, a reinforcing material such as a glass cloth, a mat, or a nonwoven fabric can be used.
[0028]
Furthermore, the interlayer connection conductor 16 is composed of a conductive metal such as gold, silver, copper, or solder, or a mixed system of this conductive metal powder and a binder resin. Here, examples of the binder resin include polycarbonate resin, polysulfone resin, polyester resin, phenoxy resin, phenol resin, and polyimide resin.
[0029]
Next, the manufacturing method of the wiring board which concerns on embodiment of this invention is demonstrated.
[0030]
First, an insulating sheet 13 is prepared as shown in FIG. 3 in which the main part configuration is shown in plan and in FIG. That is, for example, a flexible insulating layer 11 made of a liquid crystal polymer-based thermoplastic resin and an uncured or semi-cured material that is mechanically butt-contacted with the side of the interlayer insulating layer 11 so as to form the same surface side by side in this layer An insulating sheet 13 made of a thermosetting resin layer 12 is prepared in advance. Here, the insulating sheet 12 is formed by punching a semi-cured thermosetting resin-based sheet, for example, a glass-epoxy prepreg sheet, opening a predetermined area (notch), and then opening the notch (notch) area. 11 pieces of insulating layers of liquid crystal polymer that have been punched in advance are fitted. In two steps (step cure) in the subsequent process, by heating and pressurizing, the epoxy resin having a lower melting point than the liquid crystal polymer melts and fuses to the side of the insulator layer 11 to cure, and the thermosetting resin layer Becomes a rigid insulator layer 12. Thus, the insulating layers 11 and 12 are integrated and become a composite insulating sheet having the same flat surface. Note that the insulating sheet 13 shown in FIG.
[0031]
Next, as shown in FIG. 4, a copper foil 31 having a thickness of 12 to 18 μm provided with a protruding (conical) interlayer connection conductor 16 on one main surface side of the insulating sheet 13, A simple copper foil 32 is laminated on the other main surface side to form a laminate. After that, when a backing plate is disposed on both the copper foils 31 and 32 of the laminate and heated and pressurized at a heating temperature of about 180 ° C. and a resin pressure of about 4 to 6 MPa, the thermosetting resin layer 12 is melted. Next, when heated and pressurized at a heating temperature of about 300 ° C. and a resin pressure of about 4 to 6 MPa, it is fused to the flexible insulating layer 11 to form a rigid insulating layer, and at the same time, the protruding interlayer connection of the copper foil 31 The conductor 16 penetrates the insulating sheet 30 and is electrically connected to the copper foil 32 to produce a double-sided copper foil-attached plate.
[0032]
Next, the copper foils 31 and 32 on both sides were subjected to a photo-etching process to form a wiring pattern, whereby the flexible wiring circuit portion 17 and the rigid wiring circuit portion 18 were integrated as shown in FIG. A wiring sheet can be obtained. As shown in FIG. 3, the wiring board having the configuration shown in FIG. 1 can be obtained by separating the sheet into wiring board units by cutting lines 34.
[0033]
In the method for manufacturing a wiring board according to this embodiment, the protruding (conical) interlayer connection conductor 16 on the copper foil 31 is provided by the following means, for example. That is, on one main surface side of the copper foil 31, for example, a conductive mask is printed by positioning and arranging a metal mask having holes of a diameter of 0.1 to 0.3 mm in a predetermined portion of a stainless steel sheet. After the conductive paste is dried, printing is repeated a plurality of times by the method of printing again at the same position using the same metal mask, thereby forming a chevron bump.
[0034]
In the method for manufacturing a wiring board, at least one of the semi-cured thermosetting resin-based insulating layer 12 region and the liquid crystal polymer insulating layer 11 region of the insulating sheet 13 is easily formed during heating and pressure molding. If there is a risk of flowing, use a non-flow type thermosetting resin, or as shown in FIGS. 5 and 6, the surface of the copper foil 31 provided with the protruding interlayer connection conductor 16 or opposite to the surface. It is preferable that a protrusion 33 (prevention weir) for preventing resin outflow is provided on the surface of the copper foil 32 so as to correspond to the boundary 20 between the thermoplastic resin layer 11 and the semi-cured thermosetting resin layer 12. For example, when the thermosetting resin is cured, the thermosetting resin melts, flows out to the thermoplastic resin layer side having a higher melting point, and overflows over the boundary layer 20. For this reason, the weir is formed by arranging the connection conductors 33 on the boundary as shown in FIG.
[0035]
In the above manufacturing method, the interlayer insulating material used, that is, the liquid crystal polymer and the thermosetting resin-based sheet or film are mainly composed of the above-exemplified resins. Further, the wiring pattern forming means, the material, and the like are also in the same manner as described above.
[0036]
Furthermore, the multilayer wiring board of the embodiment shown in FIG. 2 can be easily manufactured by combining the wiring board structures of the above-described embodiments. The insulator sheet 13 of the above embodiment and the wiring patterns 14 and 15 on both sides are prepared as the core substrate 10, and a buildup wiring layer 13 a which is another insulator sheet is laminated and integrated thereon.
[0037]
That is, as the build-up wiring layer, for example, an uncured or mechanically butt-contacted side of the insulator layer 11a so as to form the same surface side by side with the flexible insulator layer 11a of a liquid crystal polymer thermoplastic resin. A copper foil 35 having a thickness of 12 to 18 μm provided with an insulating sheet 13a composed of a semi-cured thermosetting resin layer 12a and a protruding (conical) interlayer connection conductor 16a is prepared.
[0038]
Next, the insulating sheet 13a and the copper foil 35 are laminated so that the connecting conductor of the copper foil faces the core substrate side and the insulating sheet 13a is sandwiched between the core substrate 10 and the copper foil 35.
[0039]
When this laminate is heated and pressed in two steps from the lamination direction, the thermosetting resin layer melts and thermosets, and then the thermoplastic resin melts and the copper foil connecting conductor 16a is inserted through the sheet and the core substrate. Are electrically connected to the wiring pattern and integrated with the core substrate as a build-up wiring layer.
[0040]
In this example of the manufacturing method, there is a flexible wiring circuit part that can be bent and a rigid wiring circuit part that is suitable for mounting electronic components, and there is no possibility of causing peeling or damage even after repeated bending. A wiring board exhibiting high electrical characteristics can be manufactured with high yield.
[0041]
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, the number of built-in wiring patterns may be a three-layered form or a multilayered form of five or more layers, and a combination of a liquid crystal polymer and a thermoplastic resin can be appropriately selected depending on the application.
[0042]
【The invention's effect】
According to the present invention, it is possible to provide a highly reliable wiring board that has a flexible wiring circuit part that can be bent and a rigid wiring circuit part that is suitable for mounting electronic components, and that is compact and has excellent specifications. That is, not only the configuration is simplified, but also a wiring board that is thin and has a highly reliable function and suitable for the circuit configuration of small electronic devices is provided.
[0043]
Furthermore, according to the manufacturing method of the present invention, not only the configuration is simplified, but also a mass production with a high yield, a thin, highly reliable function, and suitable for a circuit configuration of a small electronic device. A wiring board can be easily provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main configuration of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the main configuration of another embodiment of the present invention.
FIG. 3 is a plan view showing the main configuration of a multi-sided insulating sheet of the manufacturing method according to one embodiment of the present invention.
FIG. 4 is a cross-sectional view illustrating a manufacturing method according to one embodiment of the present invention.
FIG. 5 is a cross-sectional view illustrating a manufacturing method according to another embodiment of the present invention.
FIG. 6 is a plan view showing a main configuration of a multi-sided insulating sheet of a manufacturing method according to another embodiment of the present invention.
FIG. 7 is a perspective view showing a main configuration of a wiring board having a conventional flexible wiring circuit portion and a rigid wiring circuit portion.
8 is an enlarged cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
10: Wiring board 11: Flexible insulator layer 12: Rigid insulator layer 13: Insulator sheet 14, 15: Wiring pattern 16: Interlayer connection conductor 17: Flexible wiring circuit portion 18: Rigid wiring circuit portion 20: Boundary

Claims (4)

熱可塑性樹脂系のフレキシブル絶縁体層とこのフレキシブル絶縁体層の辺側に融着され同一面を形成して一体的に延設配置された熱硬化性樹脂系のリジッド絶縁体層とを有する絶縁シートの複数シートが、前記各フレキシブル絶縁層の相互の位置合わせにより積層された積層構造をなし、層間の配線パターンが層間接続導体により接続され、前記積層構造の前記フレキシブル絶縁体層と前記リジッド絶縁体層の表面が同一面に形成されたことを特徴とする多層の配線板。Insulation having a thermoplastic resin-based flexible insulating layer and a thermosetting resin-based rigid insulating layer fused and formed on the side of the flexible insulating layer to form the same surface and extend integrally multiple sheets of sheet forms a laminated structure are laminated by aligning the mutual wherein each flexible insulator layer, an interlayer wiring patterns are connected by an interlayer connection conductor, the said flexible insulator layer of said laminated structure rigid A multilayer wiring board, wherein the surface of the insulator layer is formed on the same surface . 熱可塑性樹脂の第1のフレキシブル絶縁体層と未硬化状ないし半硬化状の第1の熱硬化性樹脂層とをこれらの両層が融着可能に層辺を同一面内でつき合わせて形成した第1の絶縁シートを作製する工程と、The first flexible insulating layer of thermoplastic resin and the uncured or semi-cured first thermosetting resin layer are formed by bonding the sides of the layers in the same plane so that both layers can be fused. Producing the first insulating sheet,
この第1の絶縁シートを挟んで、一主面側に突起状の層間接続導体を設けた銅箔、他主面側に銅箔を積層して積層体とする工程と、  Sandwiching the first insulating sheet, a copper foil provided with a protruding interlayer connection conductor on one main surface side, a step of laminating a copper foil on the other main surface side to form a laminate, and
前記積層体を積層方向に加熱、加圧して前記熱硬化性樹脂層を融かし硬化させてリジッド絶縁体層とし前記第1のフレキシブル絶縁体層と一体化し、かつ両面の銅箔同士が前記第1の絶縁シートを貫挿させた突起状の層間接続導体で電気的に接続した両面銅箔貼り板を作成する工程と、  The laminated body is heated and pressed in the laminating direction to melt and cure the thermosetting resin layer to form a rigid insulator layer, which is integrated with the first flexible insulator layer, and the copper foils on both sides are A step of creating a double-sided copper foil bonded plate electrically connected by a protruding interlayer connection conductor through which the first insulating sheet is inserted;
前記両面の銅箔についてフォトエッチング処理を施して配線パターン化してコア基板を形成する工程と、  A step of forming a core substrate by performing a photo-etching process on the copper foils on both sides to form a wiring pattern;
前記配線パターン面に、熱可塑性樹脂の第2のフレキシブル絶縁体層と未硬化状ないし半硬化状の第2の熱硬化性樹脂層をこれらの両層が融着可能に層辺を同一面内でつき合わせて形成した第2の絶縁シートおよびこの第2の絶縁シートの一主面側に突起状の層間接続導体を設けた銅箔とを積層して積層体とする工程と、  A second flexible insulator layer made of thermoplastic resin and an uncured or semi-cured second thermosetting resin layer are bonded to the surface of the wiring pattern so that both the layers can be fused. A step of laminating a second insulating sheet formed by joining together and a copper foil provided with a protruding interlayer connection conductor on one main surface side of the second insulating sheet;
前記積層体を積層方向に加熱、加圧して一体化し、かつ第2の絶縁シートを貫挿させた突起状の層間接続導体が対向する前記コア基板の配線パターンに電気的に接続した多層配線素板を作製する工程と、  A multilayer wiring element in which the laminated body is integrated by heating and pressing in the laminating direction, and a protruding interlayer connection conductor having a second insulating sheet inserted thereinto is electrically connected to the wiring pattern of the core substrate opposed to the multilayer wiring element. Producing a plate;
前記多層配線素板の銅箔をフォトエッチング処理を施し、配線パターン化する工程と、  The copper foil of the multilayer wiring board is subjected to a photo-etching process to form a wiring pattern,
を有することを特徴とする多層の配線板の製造方法。A method for producing a multilayer wiring board, comprising:
フレキシブル絶縁体層と未硬化状ないし半硬化状の熱硬化性樹脂層の境界に樹脂流動阻止用の堰が設けられていることを特徴とする請求項2記載の多層の配線板の製造方法。3. The method for producing a multilayer wiring board according to claim 2, wherein a weir for preventing resin flow is provided at a boundary between the flexible insulator layer and the uncured or semi-cured thermosetting resin layer. フレキシブル絶縁体層が液晶ポリマーで形成されていることを特徴とする請求項2または請求項3に記載の多層の配線板の製造方法。The method for producing a multilayer wiring board according to claim 2 or 3, wherein the flexible insulator layer is formed of a liquid crystal polymer.
JP2002333307A 2002-11-18 2002-11-18 Multilayer wiring board and manufacturing method thereof Expired - Fee Related JP3989820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333307A JP3989820B2 (en) 2002-11-18 2002-11-18 Multilayer wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333307A JP3989820B2 (en) 2002-11-18 2002-11-18 Multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004172185A JP2004172185A (en) 2004-06-17
JP3989820B2 true JP3989820B2 (en) 2007-10-10

Family

ID=32698067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333307A Expired - Fee Related JP3989820B2 (en) 2002-11-18 2002-11-18 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3989820B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597686B2 (en) * 2004-02-24 2010-12-15 日本メクトロン株式会社 Method for manufacturing multilayer flexible circuit board
JP5717961B2 (en) 2009-12-24 2015-05-13 日本メクトロン株式会社 Method for manufacturing flexible circuit board
JP5776278B2 (en) * 2011-04-05 2015-09-09 セイコーエプソン株式会社 Manufacturing method of sensor device

Also Published As

Publication number Publication date
JP2004172185A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
KR100522385B1 (en) Multilayer wiring board assembly, multilayer wiring board assembly component and method of manufacture thereof
KR101196529B1 (en) Rigid-flexible board and manufacturing method thereof
US8178191B2 (en) Multilayer wiring board and method of making the same
US20050016764A1 (en) Wiring substrate for intermediate connection and multi-layered wiring board and their production
JP2831970B2 (en) Interlayer connection method for circuit boards
KR20070084635A (en) Multilayer printed wiring board and its manufacturing method
WO2004066697A1 (en) Multilayer printed wiring board and process for producing the same
JP2004140018A (en) Process for producing multilayer board, multilayer board, and mobile apparatus using it
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
JP4041048B2 (en) Flexible / rigid wiring board and method for manufacturing the same
JP3879158B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4574311B2 (en) Manufacturing method of rigid-flexible substrate
JP3490309B2 (en) Wiring board and method of manufacturing the same
JP3989820B2 (en) Multilayer wiring board and manufacturing method thereof
JP4728054B2 (en) Multilayer wiring substrate, multilayer wiring substrate manufacturing method, and multilayer wiring board
JP2004273575A (en) Multilayer printed wiring board and its manufacturing method
JP3850846B2 (en) Manufacturing method of multilayer wiring board
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4538513B2 (en) Manufacturing method of multilayer wiring board
JPH06252555A (en) Multilayered wiring board
JP3329756B2 (en) Multilayer wiring board and method of manufacturing the same
JP3347980B2 (en) Circuit board and method of manufacturing the same
JPH07106768A (en) Manufacture of three-dimensional printed wiring board
JP3549063B2 (en) Manufacturing method of printed wiring board
JP6387226B2 (en) Composite board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees