JP4574311B2 - Manufacturing method of rigid-flexible substrate - Google Patents

Manufacturing method of rigid-flexible substrate Download PDF

Info

Publication number
JP4574311B2
JP4574311B2 JP2004287147A JP2004287147A JP4574311B2 JP 4574311 B2 JP4574311 B2 JP 4574311B2 JP 2004287147 A JP2004287147 A JP 2004287147A JP 2004287147 A JP2004287147 A JP 2004287147A JP 4574311 B2 JP4574311 B2 JP 4574311B2
Authority
JP
Japan
Prior art keywords
substrate
rigid
flexible substrate
flexible
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004287147A
Other languages
Japanese (ja)
Other versions
JP2006100704A (en
Inventor
厚志 小林
和夫 梅田
隆広 佐原
進 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004287147A priority Critical patent/JP4574311B2/en
Publication of JP2006100704A publication Critical patent/JP2006100704A/en
Application granted granted Critical
Publication of JP4574311B2 publication Critical patent/JP4574311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Combinations Of Printed Boards (AREA)

Description

本発明はリジッド−フレキシブル基板の製造方法に係り、特にフレキシブル基板の主面が、リジッド基板の主面と等高又はリジッド基板の主面よりも低くなるように接続されたリジッド−フレキシブル基板の製造方法に関する。   The present invention relates to a method for manufacturing a rigid-flexible substrate, and more particularly, to manufacture a rigid-flexible substrate in which the main surface of the flexible substrate is connected to the main surface of the rigid substrate so as to be equal to or lower than the main surface of the rigid substrate. Regarding the method.

一般に、筺体内の屈曲部に跨ってリジッド基板を配設する場合には、リジッド基板を複数枚に分割し、分割されたリジッド基板間を、コネクタやフレキシブル基板で接続することが行われている。   In general, when a rigid board is disposed across a bent portion in a housing, the rigid board is divided into a plurality of pieces, and the divided rigid boards are connected with a connector or a flexible board. .

しかし、コネクタやフレキシブル基板でリジッド基板間を接続すると、コネクタやフレキシブル基板の厚さ分だけ高さが高くなって機器の薄型化の障害となるし、リジッド基板間を接続した後では複数個の基板に同時に処理や加工を施すことができなくなるため生産性が低くなる。   However, connecting rigid boards with a connector or flexible board increases the height of the connector or flexible board, resulting in an obstacle to thinning the device. After connecting rigid boards, multiple rigid boards are connected. Productivity is reduced because the substrate cannot be processed or processed simultaneously.

このため、等厚の複数枚のリジッド基板をフレキシブル基板で両基板面がほぼ等高又はフレキシブル基板の主面がリジッド基板の主面よりも低くなるように接続したリジッド−フレキシブル基板が用いられる。   For this reason, a rigid-flexible substrate is used in which a plurality of rigid substrates having the same thickness are connected to each other so that both substrate surfaces are substantially equal or the principal surface of the flexible substrate is lower than the principal surface of the rigid substrate.

このようなリジッド−フレキシブル基板を、例えば特開平7−86749号に開示された方法、すなわち、電解銅箔のような導電性金属板に突設された硬化された導電組成物からなる円錐状の導体バンプを、熱融性の合成樹脂系シートを介して他の導電性金属板と対向させ、加熱加圧により一体化して両面基板とする方法で作成すると、次のような多くの工程が必要になる。なお、以下の各図においては、それぞれ共通する部分に共通の符号を付して重複する説明を省略する。   Such a rigid-flexible substrate is formed by a method disclosed in, for example, Japanese Patent Laid-Open No. 7-86749, that is, a conical shape made of a cured conductive composition protruding from a conductive metal plate such as an electrolytic copper foil. If a conductor bump is made to face another conductive metal plate through a heat-melting synthetic resin sheet and integrated by heating and pressing to make a double-sided board, many processes are required: become. In the following drawings, common portions are denoted by common reference numerals, and redundant description is omitted.

この方法では、まず、図28に模式的に示すように、端縁部分だけカバーフィルム1が被覆されていない両面フレキシブル基板2を作成する。このフレキシブル基板2のカバーフィルム1が被覆されていない部分は、リジッド基板内に積層される部分である。なお、同図において、符号3は液晶ポリマーフィルム、4は水平配線部(導体パターン)、5は垂直配線部(導体バンプ)である。   In this method, first, as schematically shown in FIG. 28, a double-sided flexible substrate 2 in which only the edge portion is not covered with the cover film 1 is prepared. The portion of the flexible substrate 2 that is not covered with the cover film 1 is a portion that is laminated within the rigid substrate. In the figure, reference numeral 3 denotes a liquid crystal polymer film, 4 denotes a horizontal wiring portion (conductor pattern), and 5 denotes a vertical wiring portion (conductor bump).

垂直配線部5は、導体バンプを用いて、次の方法で形成される。
すなわち、後工程でパターニングにより水平配線部4となる電解銅箔上に、円錐状の導体バンプを形成し、この導体バンプを液晶ポリマーフィルム(合成樹脂系シート)3を介して他の電解銅箔と対向させ、加熱加圧によりこれらを一体化させる。このとき、導体バンプの先端は対設された電解銅箔に圧接されて、その先端が円錐台状に塑性変形し、両面の水平配線部4間を接続する垂直配線部5となる。水平配線部4は、各電解銅箔面にレジストを塗布し、マスクパターンを介して露光し、未露光部を現像により除去し電解銅箔の露出した部分にエッチング加工を施すことにより形成される。
The vertical wiring part 5 is formed by the following method using a conductor bump.
That is, a conical conductor bump is formed on the electrolytic copper foil that becomes the horizontal wiring portion 4 by patterning in a later step, and this conductive bump is connected to another electrolytic copper foil via a liquid crystal polymer film (synthetic resin sheet) 3. And these are integrated by heating and pressing. At this time, the tips of the conductor bumps are pressed against the pair of electrolytic copper foils, and the tips are plastically deformed into a truncated cone shape to form the vertical wiring portion 5 connecting the horizontal wiring portions 4 on both sides. The horizontal wiring part 4 is formed by applying a resist to each electrolytic copper foil surface, exposing through a mask pattern, removing the unexposed part by development, and etching the exposed part of the electrolytic copper foil. .

カバーフィルム1は、エッチング加工を終えた基板面にレジストを塗布し、リジッド基板と一体化する部分だけをホトリソグラフィにより除去して形成されている。   The cover film 1 is formed by applying a resist to the substrate surface after the etching process and removing only a portion integrated with the rigid substrate by photolithography.

次に、このフレキシブル基板2は、図29に模式的に示す、別に作成された導体バンプ5aを有する積層体6(符号7は離型フィルム)と加熱加圧により一体化されて積層体9となる(図30)。   Next, this flexible substrate 2 is integrated with a laminated body 6 (symbol 7 is a release film) having conductor bumps 5a separately produced, schematically shown in FIG. (FIG. 30).

積層体6は、次の方法で形成される。
すなわち、後工程でエッチング加工により水平配線部4となる電解銅箔上に円錐状の導体バンプを形成し、この導体バンプをガラス−エポキシ系のプリプレグ(合成樹脂系シート)3aを介して他の電解銅箔4aと対向配置して加熱加圧により一体化させる。このとき、導体バンプの先端は電解銅箔4aに圧接されて、その先端が円錐台状に塑性変形して、両面の電解銅箔4aを接続する垂直配線部5となる。次いで、片方の面の電解銅箔をパターニングして水平配線部4を形成する。さらに、この水平配線部4の垂直配線部5と対応する位置に導体バンプ5aを形成し、導体バンプ5a側を内側にしてガラス−エポキシ系のプリプレグ(合成樹脂系シート)3aと積層し、加熱加圧により一体化するとともに導体バンプ5aの先端を合成樹脂系シート3aから突き出させる。
The laminate 6 is formed by the following method.
That is, a conical conductor bump is formed on the electrolytic copper foil to be the horizontal wiring portion 4 by etching in a later process, and this conductor bump is passed through another glass-epoxy prepreg (synthetic resin sheet) 3a. It arrange | positions facing the electrolytic copper foil 4a, and is integrated by heating and pressurization. At this time, the front end of the conductor bump is pressed against the electrolytic copper foil 4a, and the front end is plastically deformed into a truncated cone, thereby forming the vertical wiring portion 5 that connects the electrolytic copper foils 4a on both sides. Next, the horizontal wiring portion 4 is formed by patterning the electrolytic copper foil on one side. Further, a conductor bump 5a is formed at a position corresponding to the vertical wiring portion 5 of the horizontal wiring portion 4, laminated with a glass-epoxy prepreg (synthetic resin sheet) 3a with the conductor bump 5a side inside, and heated. While being integrated by pressurization, the tip of the conductor bump 5a is protruded from the synthetic resin sheet 3a.

この積層体6とフレキシブル基板2との一体化(積層体9の作成)は、導体バンプ5aの突出した側をフレキシブル基板2の水平配線部4の露出面側(カバーフィルム1のない側)にして位置合わせし、加熱加圧することにより行われる(図30)。このとき、積層体6とフレキシブル基板2の境界部には、スリット8を形成し、フレキシブル基板2のカバーフィルム1と対接する面には、スペーサーを兼ねた離型フィルム7を介在させる。   The integration of the laminate 6 and the flexible substrate 2 (creation of the laminate 9) is such that the protruding side of the conductor bump 5a is the exposed surface side (the side without the cover film 1) of the horizontal wiring portion 4 of the flexible substrate 2. This is performed by aligning and heating and pressing (FIG. 30). At this time, a slit 8 is formed at the boundary between the laminate 6 and the flexible substrate 2, and a release film 7 that also serves as a spacer is interposed on the surface of the flexible substrate 2 that contacts the cover film 1.

さらに、この積層体9のフレキシブル基板2側を、図31に模式的に示す、別に作成した積層体10と積層して加熱加圧により一体化して積層体11とする(図32)。   Further, the flexible substrate 2 side of the laminated body 9 is laminated with a separately produced laminated body 10 schematically shown in FIG. 31 and integrated by heating and pressing to form a laminated body 11 (FIG. 32).

積層体9と積層体10の一体化は、次のようにして行われる。
すなわち、積層体10の突出する導体バンプ5aを積層体9(フレキシブル基板2)の所定の水平配線部4に当接させ、積層体9(フレキシブル基板2)のカバーフィルム1と対接する面には、スペーサーを兼ねる離型フィルム7を介在させて、積層体10と積層体9を重ね合わせ、加熱加圧することにより、図32に模式的に示す、水平配線部4が8層の積層体11が得られる。
Integration of the laminated body 9 and the laminated body 10 is performed as follows.
That is, the protruding conductor bump 5a of the laminated body 10 is brought into contact with a predetermined horizontal wiring portion 4 of the laminated body 9 (flexible substrate 2), and the surface of the laminated body 9 (flexible substrate 2) that is in contact with the cover film 1 is placed on the surface. The laminate 10 and the laminate 9 are overlapped with a release film 7 also serving as a spacer, and heated and pressed to form a laminate 11 with eight horizontal wiring portions 4 schematically shown in FIG. can get.

この後、図33に模式的に示すように、外層の水平配線部(外層パターン)4をパターニングにより形成し、レジスト等により絶縁保護被覆12を施し、最後に、図34に模式的に示すように、フレキシブル基板2を覆うカバー部分A,Bを除去してリジッド−フレキシブル基板が完成する。
特開平7−86749号公報
Thereafter, as schematically shown in FIG. 33, an outer horizontal wiring portion (outer layer pattern) 4 is formed by patterning, and an insulating protective coating 12 is applied with a resist or the like. Finally, as schematically shown in FIG. Then, the cover portions A and B covering the flexible substrate 2 are removed to complete the rigid-flexible substrate.
JP-A-7-86749

上述したように、従来のリジッド−フレキシブル基板の製造方法では、フレキシブル基板2をリジッド基板の層間に積層するために(フレキシブル基板の主面を、リジッド基板の主面と等高またはこれより低位置にするため)、非常に多くの工程を必要とする難点があった。   As described above, in the conventional rigid-flexible substrate manufacturing method, in order to laminate the flexible substrate 2 between the layers of the rigid substrate (the main surface of the flexible substrate is equal to or lower than the main surface of the rigid substrate). Therefore, there is a difficulty that requires a large number of steps.

また、この方法は、通常、大きい1枚の基板の中に複数の小さい単位基板を作りこみ、大きい基板のまま、積層されて作成されるため、リジッド基板のフレキシブル基板が配置されることになる部分やフレキシブル基板のリジッド基板が配置されることになる部分は、打ち抜かれて屑となってしまい、材料の歩留まりが低いという問題があった。   Further, in this method, a plurality of small unit substrates are usually formed in one large substrate, and the large substrate is laminated and formed, so that a rigid substrate flexible substrate is disposed. The portion where the rigid substrate of the portion or the flexible substrate is to be disposed is punched and becomes waste, and there is a problem that the yield of the material is low.

また、大きい1枚の基板中に複数の単位リジッド−フレキシブル基板が形成されるため、作成過程において合成樹脂系シートや積層体の単位基板の一つに対応する部分に不良が発生すると全体が不良となってしまい、良品率が低いという問題もあった。   In addition, since a plurality of unit rigid-flexible substrates are formed on one large substrate, if a defect occurs in a portion corresponding to one of the unit substrates of the synthetic resin sheet or the laminate in the preparation process, the whole is defective. There was also a problem that the yield rate was low.

また、フレキシブル基板は、片面又は両面の配線パターンであるため、配線密度が高くなった場合には、配線領域を広くするために幅広になって可撓性が不十分になるという問題もあった。   Moreover, since the flexible substrate is a single-sided or double-sided wiring pattern, when the wiring density is high, there is a problem that the width becomes wide to widen the wiring region and the flexibility becomes insufficient. .

また、さらに、フレキシブル基板を両面で用いた場合には、耐屈曲性が損なわれるため、高速の繰り返し屈曲に対する耐性が低下するという問題もあった。   Furthermore, when the flexible substrate is used on both sides, the bending resistance is impaired, so that there is a problem that the resistance to high-speed repeated bending is lowered.

本発明のリジッド−フレキシブル基板の製造方法は、上記の課題を解決すべくなされたもので、リジッド基板の両主面の対応位置にそれぞれフレキシブル基板が接続されたリジッド−フレキシブル基板の製造方法において、前記各フレキシブル基板が接続される領域に、前記各フレキシブル基板が接続される位置又はこれより内層側で水平配線部と接続された垂直配線部を有するリジッド基板を作成する工程と、前記リジッド基板と接続される領域に接続端子を有する第1のフレキシブル基板及び第2のフレキシブル基板を作成する工程と、前記各リジッド基板の一方の主面の前記第1のフレキシブル基板の接続される領域に、前記垂直配線部を露出させ接続端子とした前記第1のフレキシブル基板の厚さと同等かより深い第1の段部を形成する工程と、前記各リジッド基板の前記第1の段部の垂直配線部に前記第1のフレキシブル基板の端子を電気的に接続し、前記第1の段部に一体に接着する工程と、前記各リジッド基板の他方の主面の前記第2のフレキシブル基板が接続される領域に、前記垂直配線部を露出させ接続端子とした前記第2のフレキシブル基板の厚さと同等かより深い第2の段部を形成する工程と、前記各リジッド基板の前記第2の段部の垂直配線部に前記第2のフレキシブル基板の端子を電気的に接続し、前記第2の段部に一体に接着する工程とを具備して成ることを特徴とする。 The rigid-flexible substrate manufacturing method of the present invention was made to solve the above-described problems . In the rigid-flexible substrate manufacturing method, the flexible substrate is connected to the corresponding positions of both main surfaces of the rigid substrate. A step of creating a rigid substrate having a vertical wiring portion connected to a horizontal wiring portion at a position where each flexible substrate is connected or on an inner layer side thereof in a region where each flexible substrate is connected; and A step of creating a first flexible substrate and a second flexible substrate having a connection terminal in a region to be connected; and a region to which the first flexible substrate on one main surface of each rigid substrate is connected; Forming a first step portion that is equal to or deeper than the thickness of the first flexible substrate that exposes the vertical wiring portion and serves as a connection terminal Electrically connecting a terminal of the first flexible substrate to the vertical wiring portion of the first step portion of each rigid substrate, and bonding the first flexible substrate integrally to the first step portion; A second step that is equal to or deeper than the thickness of the second flexible substrate that exposes the vertical wiring portion and serves as a connection terminal in a region of the other principal surface of each rigid substrate to which the second flexible substrate is connected. Forming a portion, and electrically connecting a terminal of the second flexible substrate to the vertical wiring portion of the second step portion of each rigid substrate and integrally bonding to the second step portion It is characterized by comprising .

また、本発明のリジッド−フレキシブル基板の製造方法は、リジッド基板の両主面の対応位置にそれぞれ対応するフレキシブル基板が接続されたリジッド−フレキシブル基板の製造方法において、前記各フレキシブル基板が接続される領域に水平配線部が露出した第1及び第2の主面を有する内層リジッド基板を作成する工程と、前記内層リジッド基板と接続される領域に接続端子を有する複数の第1のフレキシブル基板及び複数の第2のフレキシブル基板を作成する工程と、前記内層リジッド基板の第1の主面上に前記第1のフレキシブル基板が接続される領域を露出させて第1の外装基板を貼着させて前記第1のフレキシブル基板の厚さと同等かより深い第1の段部を形成する工程と、前記各リジッド基板の前記第1の段部の水平配線部に前記第1のフレキシブル基板の端子を電気的に接続し、前記第1の段部に一体に接着する工程と、前記内層リジッド基板の第2の主面上に前記第2のフレキシブル基板が接続される領域を露出させて第2の外装基板を貼着させて前記第2のフレキシブル基板の厚さと同等かより深い第2の段部を形成する工程と、前記各リジッド基板の前記第2の段部の水平配線部に前記第2のフレキシブル基板の端子を電気的に接続し、前記第2の段部に一体に接着する工程とを具備して成ることを特徴とする。 The rigid-flexible board manufacturing method of the present invention is the rigid-flexible board manufacturing method in which the flexible boards corresponding to the corresponding positions of the two principal surfaces of the rigid board are connected to each other. A step of forming an inner-layer rigid substrate having first and second main surfaces in which a horizontal wiring portion is exposed in the region; a plurality of first flexible substrates having a connection terminal in the region connected to the inner-layer rigid substrate; Forming the second flexible substrate, exposing a region where the first flexible substrate is connected to the first main surface of the inner-layer rigid substrate, and attaching the first exterior substrate, A step of forming a first step portion equal to or deeper than a thickness of the first flexible substrate, and a horizontal wiring portion of the first step portion of each rigid substrate Electrically connecting the terminals of the first flexible substrate and integrally bonding to the first stepped portion; and the second flexible substrate being connected to the second main surface of the inner-layer rigid substrate. Forming a second step portion that is equal to or deeper than the thickness of the second flexible substrate by exposing a region to be exposed and adhering a second exterior substrate, and the second step of each rigid substrate And a step of electrically connecting a terminal of the second flexible substrate to a horizontal wiring portion of the portion and integrally bonding to the second step portion .

フレキシブル基板の他端を接続しないで自由端にしておく場合には、上記製造工程において、フレキシブル基板の他端を長めに製造し、片方のリジッド基板を、配線部のない絶縁基板にして保持した状態で接続すればよい。そして、接続した後の最終工程において、不要部を切断すればよい。   When the other end of the flexible substrate is left unconnected without being connected, the other end of the flexible substrate is manufactured longer in the above manufacturing process, and one rigid substrate is held as an insulating substrate without a wiring portion. Connect in a state. Then, in the final process after the connection, unnecessary portions may be cut.

リジッド基板は、必要に応じその下面に検査端子を有し、リジッド基板の段部の接続端子は金属めっき層及び/又は導電性ペーストの固化物により接続されていることが望ましい。   It is desirable that the rigid substrate has an inspection terminal on its lower surface as necessary, and the connection terminal of the step portion of the rigid substrate is connected by a metal plating layer and / or a solidified conductive paste.

また、フレキシブル基板の段部の接続端子は、金属配線、金属めっき層又は導電性ペーストの固化物から形成することができる。フレキシブル基板は両面配線板であっても、片面配線板であってもよい。   Moreover, the connection terminal of the step part of a flexible substrate can be formed from the solidified material of a metal wiring, a metal plating layer, or an electrically conductive paste. The flexible substrate may be a double-sided wiring board or a single-sided wiring board.

リジッド基板のフレキシブル基板の接続端子が接続される垂直配線部は、導体バンプを基板の厚さ方向に連接させて形成することができるが、ビアホールやスルーホールによっても形成することができる。また、フレキシブル基板のリジッド基板の垂直配線部と接続される接続端子も導体バンプで形成することができるが、他の端子、例えば高温半田や電解銅箔で構成することも可能である。   The vertical wiring portion to which the connection terminal of the flexible substrate of the rigid substrate is connected can be formed by connecting conductor bumps in the thickness direction of the substrate, but can also be formed by via holes or through holes. Further, the connection terminals connected to the vertical wiring portion of the rigid substrate of the flexible substrate can also be formed with conductor bumps, but can also be configured with other terminals such as high-temperature solder or electrolytic copper foil.

本発明でリジッド基板やフレキシブル基板の垂直配線部やフレキシブル基板の接続端子に用いられる導体バンプは、通常、導電性金属層上に形成される。このような導電性金属層としては、たとえば電解銅箔などの導電性シート(箔)が挙げられ、この導電性金属層は1枚のシートであってもよいし、パターン化されたものでもよく、その形状はとくに限定されないし、さらに導体バンプは、一方の主面だけでなく、両主面にそれぞれ形設した形のものを用いてもよい。   In the present invention, the conductor bumps used for the rigid wiring board, the vertical wiring portion of the flexible board, and the connection terminal of the flexible board are usually formed on the conductive metal layer. Examples of such a conductive metal layer include a conductive sheet (foil) such as an electrolytic copper foil. The conductive metal layer may be a single sheet or a patterned sheet. The shape is not particularly limited, and the conductor bumps may be formed not only on one main surface but also on both main surfaces.

導体バンプは、たとえば銀,金,銅,半田粉などの導電性粉末、これらの合金粉末もしくは複合(混合)金属粉末と、たとえばポリカーボネート樹脂,ポリスルホン樹脂,ポリエステル樹脂,フェノキシ樹脂,フェノール樹脂,ポリイミド樹脂などのバインダー成分とを混合して調製された導電性組成物、あるいは導電性金属などで構成される。導体バンプを導電性組成物で形成する場合、たとえば比較的厚いメタルマスクを用いた印刷法により、アスペクト比の高いバンプを形成することができる。その導体バンプの高さは一般的に、100 〜 400μm 程度が望ましく、さらに導体バンプの高さは一層の合成樹脂系シートを貫通し得る高さおよび複数層の合成樹脂系シートを貫通し得る高さとが適宜混在していてもよい。導電性金属で導体バンプを形成する手段としては、(a)ある程度形状もしくは寸法が一定の微小金属魂を、粘着剤層を予め設けておいた導電性金属層面に散布し、選択的に固着させる(このときマスクを配置して行ってもよい)、(b)電解銅箔面にめっきレジストを印刷・パターニングして、銅,錫,金,銀,半田などめっきして選択的に微小な金属柱(バンプ)を形成する、(c)導電性金属層面に半田レジストの塗布・パターニングして、半田浴に浸漬して選択的に微小な金属柱(バンプ)を形成する、(d)金属板の一部をレジストにて被覆し、エッチングして微小な金属バンプを形成する、などが挙げられる。ここで、導体バンプに相当する微小金属魂ないし微小な金属柱は、異種金属を組み合わせて成る多層構造、多層シェル構造でもよい。たとえば銅を芯にし表面を金や銀の層で被覆して耐酸化性を付与したり、銅を芯にし表面を半田層被覆して半田接合性をもたせたりしてもよい。なお、本発明において、導体バンプを導電性組成物で形成する場合には、めっき法などの手段で行う場合に較べて、さらに工程など簡略化し得るので、低コスト化の点で有効である。   Conductive bumps are, for example, conductive powders such as silver, gold, copper, solder powder, alloy powders or composite (mixed) metal powders, and polycarbonate resins, polysulfone resins, polyester resins, phenoxy resins, phenol resins, polyimide resins, etc. It is comprised with the electroconductive composition prepared by mixing binder components, such as these, or an electroconductive metal. When the conductive bump is formed of a conductive composition, the bump having a high aspect ratio can be formed by, for example, a printing method using a relatively thick metal mask. In general, the height of the conductor bump is desirably about 100 to 400 μm, and the height of the conductor bump is high enough to penetrate a single synthetic resin sheet and high enough to penetrate a plurality of synthetic resin sheets. May be mixed as appropriate. As means for forming a conductive bump with a conductive metal, (a) a fine metal soul having a certain shape or size is spread on a conductive metal layer surface on which an adhesive layer has been provided in advance, and is selectively fixed. (This may be done by placing a mask), (b) A plating resist is printed and patterned on the surface of the electrolytic copper foil, and copper, tin, gold, silver, solder, etc. are plated to selectively make a minute metal Forming columns (bumps); (c) applying and patterning a solder resist on the surface of the conductive metal layer; and dipping in a solder bath to selectively form minute metal columns (bumps); (d) metal plate A part of the film is covered with a resist and etched to form a fine metal bump. Here, the fine metal soul or the fine metal pillar corresponding to the conductor bump may have a multilayer structure or a multilayer shell structure in which different metals are combined. For example, copper may be cored and the surface may be coated with a gold or silver layer to provide oxidation resistance, or copper may be cored and the surface may be coated with a solder layer to provide solder jointability. In the present invention, when the conductive bump is formed of a conductive composition, the process can be further simplified as compared with the case where the conductive bump is formed by means such as plating, which is effective in terms of cost reduction.

本発明において、導体バンプが貫挿されるリジッド基板やフレキシブル基板の絶縁層を構成する合成樹脂系シートとしては、たとえば熱可塑性樹脂フィルム(シート)や硬化前状態に保持される熱硬化性樹脂シートが挙げられ、またその厚さは50〜300μm程度が好ましい。ここで、熱可塑性樹脂シートとしては、たとえばポリカーボネート樹脂,ポリスルホン樹脂,熱可塑性ポリイミド樹脂,4フッ化ポリエチレン樹脂,6フッ化ポリプロピレン樹脂,ポリエーテルエーテルケトン樹脂などのシート類が挙げられる。また、硬化前状態に保持される熱硬化性樹脂シートとしては、エポキシ樹脂,ビスマレイミドトリアジン樹脂,ポリイミド樹脂,フェノール樹脂,ポリエステル樹脂,メラミン樹脂,あるいはブタジエンゴム,ブチルゴム,天然ゴム,ネオプレンゴム,シリコーンゴムなどの生ゴムのシート類が挙げられる。これら合成樹脂は、単独でもよいが絶縁性無機物や有機物系の充填物を含有してもよく、さらにガラスクロスやマット、有機合成繊維布やマット、あるいは紙などの補強材と組み合わせて成るシートであってもよい。   In the present invention, as the synthetic resin-based sheet constituting the insulating layer of the rigid substrate or flexible substrate into which the conductor bumps are inserted, for example, a thermoplastic resin film (sheet) or a thermosetting resin sheet held in a state before curing is used. The thickness is preferably about 50 to 300 μm. Here, examples of the thermoplastic resin sheet include sheets such as polycarbonate resin, polysulfone resin, thermoplastic polyimide resin, tetrafluoropolyethylene resin, hexafluoropolypropylene resin, and polyetheretherketone resin. In addition, the thermosetting resin sheet held in the pre-curing state includes epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, polyester resin, melamine resin, or butadiene rubber, butyl rubber, natural rubber, neoprene rubber, silicone. Examples thereof include raw rubber sheets such as rubber. These synthetic resins may be used alone or may contain insulating inorganic or organic fillers, and sheets made of glass cloth or mat, organic synthetic fiber cloth or mat, or a sheet combined with a reinforcing material such as paper. There may be.

さらに、本発明において、リジッド基板やフレキシブル基板を形成するために導体バンプを形設した導電性金属層の主面に、合成樹脂系シート主面を対接させた構成の複数層を、積層配置して成る積層体を加熱・加圧するとき、合成樹脂系シートを載置する基台(当て板)として、寸法や変形の少ない金属板もしくは耐熱性樹脂板、たとえばステンレス板,真鍮板、ポリイミド樹脂板(シート),ポリテトラフロロエチレン樹脂板(シート)などが使用される。   Furthermore, in the present invention, a plurality of layers having a structure in which the main surface of the synthetic resin sheet is in contact with the main surface of the conductive metal layer in which the conductor bumps are formed in order to form a rigid substrate or a flexible substrate are laminated. When heating and pressurizing the laminated body, the base (pad) on which the synthetic resin sheet is placed is used as a metal plate or heat-resistant resin plate, such as stainless steel plate, brass plate, polyimide resin, with little size and deformation. A plate (sheet), a polytetrafluoroethylene resin plate (sheet), or the like is used.

本発明に係る印刷配線板の製造方法によれば、フレキシブル基板とリジッド基板とを別々に製造して両者を接続するだけの簡易な方法でリジッド−フレキシブル基板を作成し得るので、生産工程を大幅に簡略化することができる。また、リジッド基板内にはフレキシブル基板はなく、またフレキシブル基板のみの部分もリジッド基板を取り除くなどの工程がないため、材料の利用効率を向上させることができる。また、リジッド基板とフレキシブル基板のそれぞれを、接続前に、ほぼ完成された単位基板の状態で良否の判定ができるので、仮に作成過程で不良が生じてもロスを最小限にすることができる。   According to the method for manufacturing a printed wiring board according to the present invention, a rigid-flexible substrate can be created by a simple method in which a flexible substrate and a rigid substrate are separately manufactured and connected to each other, greatly increasing the production process. Can be simplified. In addition, there is no flexible substrate in the rigid substrate, and there is no process for removing the rigid substrate only in the portion of the flexible substrate, so that the material utilization efficiency can be improved. In addition, since each of the rigid substrate and the flexible substrate can be judged as good or bad in the almost completed unit substrate state before connection, loss can be minimized even if a defect occurs in the production process.

片面フレキシブル基板2枚を用いて、それぞれのフレキシブル基板の他端を他の一つのリジッド基板に接続した場合には、両面フレキシブル基板1枚で接続した場合に比べて、フレキシブル基板部の配線量を減少させずに、可撓性,屈曲性を向上させることができる。また、一つのリジッド基板に接続された2枚のフレキシブル基板の他端を、接続せずに自由端にした場合には、後に、それぞれ別個の基板や機器類に接続することも可能となるので、設計の自由度も増大する。   When two single-sided flexible boards are used and the other end of each flexible board is connected to another rigid board, the amount of wiring in the flexible board portion is smaller than when one double-sided flexible board is connected. Flexibility and flexibility can be improved without decreasing. In addition, if the other end of the two flexible boards connected to one rigid board is made a free end without being connected, it is possible to connect to separate boards and devices later. Also, the degree of freedom of design increases.

次に、本発明の実施例を図1乃至23を参照しながら説明する。なお、図1乃至23において、図24乃至30共通する部分には同一符号を付して、重複する説明は省略する。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 23, the same reference numerals are given to the portions common to FIGS. 24 to 30, and the overlapping description will be omitted.

まず、2枚の等厚のリジッド基板が、主面をほぼ平行にして配設された2枚の等長等厚のフレキシブル基板を介して接続されたリジッド−フレキシブル基板を作成した実施例1について説明する。   First, Example 1 in which a rigid-flexible substrate in which two equal-thickness rigid substrates are connected via two equal-length equal-thickness flexible substrates arranged with their main surfaces substantially parallel to each other was produced. explain.

(フレキシブル基板の作成)
まず、厚さ25μmのポリイミドフィルム3(PI)の両面に厚さ18μmの電解銅箔(4a)を貼着させ基板の所定位置にスルーホールTHを形成して両面銅張りフレキシブル基板を得た。
(Create flexible substrate)
First, an electrolytic copper foil (4a) having a thickness of 18 μm was adhered to both sides of a polyimide film 3 (PI) having a thickness of 25 μm to form a through hole TH at a predetermined position of the substrate to obtain a double-sided copper-clad flexible substrate.

この両面銅張り積層板両面の電解銅箔4aに、通常のエッチングレジストインク(商品名,PSR-4000 H,太陽インキKK)をスクリーン印刷し、導体パターン部をマスクしてから、塩化第2銅をエッチング液としてエッチング処理後、レジストマスク剥離し図1に示す、両面型のフレキシブル基板20を得た。符号4は、電解銅箔4aをエッチングによりパターニングされた水平配線部である。さらに、この両面型フレキシブル基板20のスルーホールTHの上の近傍を除いて水平配線部4上に、ホトリソグラフィによりカバーフィルム1を形成した。   A normal etching resist ink (trade name, PSR-4000 H, Taiyo Ink KK) is screen-printed on the electrolytic copper foil 4a on both sides of this double-sided copper-clad laminate, masking the conductor pattern, and then cupric chloride. After performing an etching treatment using as a etchant, the resist mask was peeled off to obtain a double-sided flexible substrate 20 shown in FIG. Reference numeral 4 denotes a horizontal wiring portion obtained by patterning the electrolytic copper foil 4a by etching. Further, the cover film 1 was formed by photolithography on the horizontal wiring portion 4 except for the vicinity of the through hole TH of the double-sided flexible substrate 20.

次に、図2に示すごとく、水平配線部4のスルーホールTHと接続する部分に、導体バンプ5aを形成し、この上に厚さ60μm のガラス−エポキシ系プリプレグ(合成樹脂系シート)3aを当接させ、アルミ箔及びゴムシートを介して、例えば100℃に保持した熱板の間に配置し、1MPaで1分ほど加熱加圧して、導体バンプ5aの先端がガラス−エポキシ系のプリプレグ(合成樹脂系シート)3aから突き出したフレキシブル基板21を作成した。   Next, as shown in FIG. 2, a conductor bump 5a is formed on the portion of the horizontal wiring portion 4 connected to the through hole TH, and a glass-epoxy prepreg (synthetic resin sheet) 3a having a thickness of 60 μm is formed thereon. Abutting and placing between an aluminum foil and a rubber sheet, for example, between hot plates kept at 100 ° C., heating and pressurizing at 1 MPa for about 1 minute, the tip of the conductor bump 5a is a glass-epoxy prepreg (synthetic resin) A flexible substrate 21 protruding from the system sheet 3a was prepared.

なお、図2に示したフレキシブル基板21は、図4に示す、2枚のリジッド基板間を接続するためのもので、リジッド基板の縁部の表側(第1の主面側)に接続されることとなる第1のフレキシブル基板と、リジッド基板の縁部の裏側(第2の主面側)に接続されることとなる第2のフレキシブル基板の両方を、等長にして、それぞれ作成した。このフレキシブル基板21は、大きい1枚の基板の中に多数枚を作り込んだものを作成し、図2の状態にまで完成したところで、個々のフレキシブル基板に分割されてリジッド基板と接続される。   The flexible substrate 21 shown in FIG. 2 is for connecting the two rigid substrates shown in FIG. 4 and is connected to the front side (first main surface side) of the edge of the rigid substrate. Both the first flexible substrate to be connected and the second flexible substrate to be connected to the back side (second main surface side) of the edge of the rigid substrate were made to be the same length. The flexible substrate 21 is formed by making a large number of substrates in a large substrate and is completed up to the state shown in FIG. 2, and then divided into individual flexible substrates and connected to the rigid substrate.

(リジッド基板の作成)
前述したポリイミドフィルム3(PI)に代えて厚さ60μm の硬化前のガラス−エポキシ系プリプレグ(合成樹脂系シート)3aを用いた点を除いて、B2it(ビー・スクエア・イット:登録商標)として知られる、たとえば特開平8―204332号公報に記載された方法で、図1と図2に示されたフレキシブル基板の場合と同様の構成の両面型のリジッド基板を用いて、図3の8層の水平配線部4を持つリジッド基板22を作成した。
(Rigid board creation)
As a B2it (B Square It: registered trademark) except that the glass-epoxy prepreg (synthetic resin sheet) 3a before curing having a thickness of 60 μm is used instead of the polyimide film 3 (PI) described above. 3 using the double-sided rigid substrate having the same structure as that of the flexible substrate shown in FIGS. 1 and 2 by a known method described in, for example, Japanese Patent Laid-Open No. 8-204332. A rigid substrate 22 having the horizontal wiring portion 4 was prepared.

このリジッド基板22は、各層の絶縁層が、全てガラス−エポキシ系プリプレグ(合成樹脂系シート)3aからなる点を除いて、図29に示された積層体11のリジッド基板部分と同一構造である。   This rigid substrate 22 has the same structure as the rigid substrate portion of the laminate 11 shown in FIG. 29, except that each insulating layer is made of glass-epoxy prepreg (synthetic resin sheet) 3a. .

図3に示したリジッド基板22も、大きい1枚の基板の中に多数枚を作り込んだものを作成し、図3の状態にまで形成したところで、又は後述する座繰り加工が済んだ後、個々のリジッド基板に分割される。   The rigid substrate 22 shown in FIG. 3 is also made by making a large number of substrates in a large single substrate and formed up to the state of FIG. 3 or after the countersink processing described later is completed. Divided into individual rigid substrates.

(第1の段部を有するリジッド基板の作成)
個々のリジッド基板に分割する前の大きい基板の状態で、各リジッド基板21のフレキシブル基板と接続される垂直配線部5の近傍に座繰り加工を施し、接続すべきフレキシブル基板20の厚さと同等かより深く座繰って垂直配線部5が露出して接続端子とした段部Sを有するリジッド基板23を作成した(図4)。
(Production of a rigid substrate having a first step)
In the state of a large substrate before being divided into individual rigid substrates, countersink processing is performed in the vicinity of the vertical wiring portion 5 connected to the flexible substrate of each rigid substrate 21, and is equal to the thickness of the flexible substrate 20 to be connected? The rigid substrate 23 having the stepped portion S, which is deeper and is exposed to expose the vertical wiring portion 5 and serve as a connection terminal, was created (FIG. 4).

(リジッド基板と第1のフレキシブル基板との接続)
次に、個々に分割された単位リジッド基板23と第1の単位フレキシブル基板21とを、枠体の中に、接続できる位置関係となるように配置する。通常、この枠体は、複数のリジッド−フレキシブル基板が組み立て可能な大きさのものとされる。
(Connection between rigid board and first flexible board)
Next, the unit rigid board | substrate 23 and the 1st unit flexible board | substrate 21 which were divided | segmented separately are arrange | positioned so that it may become the positional relationship which can be connected in a frame. Usually, the frame is of such a size that a plurality of rigid-flexible substrates can be assembled.

図5は、枠体24内に、段部Sを形成したリジッド基板23を、段部Sが互いに対向するように配置し、各リジッド基板23の対向する段部Sに跨って、第1のフレキシブル基板21を配設して仮固定した例である。この実施例では、各リジッド基板23の外周に全体の幅が枠体24の保持部の幅とほぼ同一とされた小突起25が形成されており、枠体24内に配設されたリジッド基板23は、この小突起25で枠体24の枠内に保持固定される。   In FIG. 5, the rigid substrate 23 in which the stepped portion S is formed in the frame body 24 is disposed so that the stepped portion S faces each other, and the first substrate straddles the stepped portion S of each rigid substrate 23. In this example, the flexible substrate 21 is disposed and temporarily fixed. In this embodiment, small projections 25 whose overall width is substantially the same as the width of the holding portion of the frame body 24 are formed on the outer periphery of each rigid substrate 23, and the rigid substrate disposed in the frame body 24. 23 is held and fixed in the frame 24 by the small protrusion 25.

このようにして、複数のリジッド基板23やフレキシブル基板21を、接続できる位置関係に保持した枠体24を、複数枚重ねて加熱加圧により一体化させて、図6にその断面を模式的に示すように、第1のフレキシブル基板の両端が2枚のリジッド基板の第1の段部にそれぞれ接続された状態のリジッド−フレキシブル基板が得られる。   In this way, a plurality of frames 24 holding a plurality of rigid substrates 23 and flexible substrates 21 in a connectable positional relationship are stacked and integrated by heating and pressing, and the cross section is schematically shown in FIG. As shown, a rigid-flexible substrate in which both ends of the first flexible substrate are respectively connected to the first step portions of the two rigid substrates is obtained.

(第2の段部の形成)
次に、図6の状態に接続された各リジッド−フレキシブル基板を、枠体24に固定された状態のまま、第2のフレキシブル基板を接続する位置(垂直配線部5の近傍)に、座繰り加工を施し、第2の段部Sを形成した(図7)。図8は、リジッド基板23の第1の段部Sと第2の段部Sを模式的に示した斜視図である。同図に示すように、第2の段部Sは、真上から見て第1の段部Sとほぼ同じ位置にほぼ同じ大きさになるように形成する。ただし、第1のフレキシブル基板と第2のフレキシブル基板の幅は、必要な配線の数に応じて増減させて設計することが可能である。
(リジッド基板と第2のフレキシブル基板との接続)
次に、枠体24に固定された状態のまま、図9に示すように、スペーサー31を介在させて、各リジッド基板23の対向する第2の段部Sに跨って、第2のフレキシブル基板21を配設して、加熱加圧により一体化させて、リジッド基板と第2のフレキシブル基板とを接続した。各第1のフレキシブル基板と第2のフレキシブル基板との間にスペーサー31を介在させたのは、フレキシブル基板の変形を防止するためである。
(Formation of second step)
Next, each rigid-flexible substrate connected in the state of FIG. 6 is fixed to the frame body 24 at a position (in the vicinity of the vertical wiring portion 5) where the second flexible substrate is connected. Processing was performed to form a second step S (FIG. 7). FIG. 8 is a perspective view schematically showing the first step portion S and the second step portion S of the rigid substrate 23. As shown in the drawing, the second step portion S is formed at substantially the same position and the same size as the first step portion S when viewed from directly above. However, the widths of the first flexible substrate and the second flexible substrate can be designed to be increased or decreased depending on the number of necessary wirings.
(Connection between rigid substrate and second flexible substrate)
Next, as shown in FIG. 9, the second flexible substrate is placed across the second stepped portion S of each rigid substrate 23 with the spacer 31 interposed therebetween, while being fixed to the frame body 24. 21 was disposed and integrated by heat and pressure to connect the rigid substrate and the second flexible substrate. The reason why the spacer 31 is interposed between each first flexible substrate and the second flexible substrate is to prevent deformation of the flexible substrate.

なお、図6乃至10では、第2の段部を下に示しているが、実際に加工及び接続するときには、加工及び接続しやすいように、枠体24に固定したまま、上下反転させる。   6 to 10, the second step portion is shown below. However, when actually processing and connecting, the second step portion is turned upside down while being fixed to the frame body 24 so as to be easily processed and connected.

(リジッド−フレキシブル基板の完成)
接続後、各フレキシブル基板21間のスペーサー31を除去し、各リジッド−フレキシブル基板が打ち抜かれて図10に模式的に示すリジッド−フレキシブル基板が完成する。
(Completion of rigid-flexible substrate)
After the connection, the spacers 31 between the flexible substrates 21 are removed, and the rigid-flexible substrates are punched out to complete the rigid-flexible substrate schematically shown in FIG.

なお、図では、模式的に示しているので、フレキシブル基板21が短く、スペーサー31の断面がまるで正方形であるかのように見えるが、実際には、スペーサー31の断面は線のようなものである。具体的には、フレキシブル基板21の厚さは60μm程度(前述のようにポリイミドフィルム3の厚さが25μm、水平配線部となる銅箔の厚さが18μm)であり、第1のフレキシブル基板21と第2のフレキシブル基板21との間隔は、リジッド基板の厚さにも拠るが、60〜300μm程度である。そして、フレキシブル基板21の長さは数cm程度である。また、段部の幅はたとえば1cm程度、段部の長さはたとえば3mm程度である。   In addition, in the figure, since it shows schematically, the flexible substrate 21 is short, and the cross section of the spacer 31 looks like a square, but actually, the cross section of the spacer 31 is like a line. is there. Specifically, the thickness of the flexible substrate 21 is about 60 μm (as described above, the thickness of the polyimide film 3 is 25 μm, and the thickness of the copper foil serving as the horizontal wiring portion is 18 μm). The distance between the second flexible substrate 21 and the second flexible substrate 21 is about 60 to 300 μm although it depends on the thickness of the rigid substrate. The length of the flexible substrate 21 is about several centimeters. The width of the step portion is, for example, about 1 cm, and the length of the step portion is, for example, about 3 mm.

以上のようにして、1枚のリジッド基板の両主面の対応位置にそれぞれ1枚のフレキシブル基板の一端が接続され、それぞれのフレキシブル基板の他端は他の同一のリジッド基板の両主面の対応位置に接続されたリジッド−フレキシブル基板が完成する。   As described above, one end of one flexible substrate is connected to the corresponding position of both main surfaces of one rigid substrate, and the other end of each flexible substrate is connected to both main surfaces of the other rigid substrate. A rigid-flexible substrate connected to the corresponding position is completed.

次に、2枚のフレキシブル基板のそれぞれの一端が同一のリジッド基板に接続され、他端が接続されずに自由端(フリー)となっているリジッド−フレキシブル基板を作成した実施例2について説明する。   Next, Example 2 in which a rigid-flexible substrate in which one end of each of the two flexible substrates is connected to the same rigid substrate and the other end is not connected and is a free end (free) will be described. .

一端をフリーにする場合であっても、製造工程においてはフレキシブル基板の両端を保持する必要があるため、フレキシブル基板のフリーにするほうの一端を長めに作成し、配線部のない外フレーム基板に接続する。そして、実装後に、不要部分を切断して、フリーにする。そのほかの点は、基本的には実施例1と同様である。以下、実施例2について具体的に説明する。   Even if one end is free, it is necessary to hold both ends of the flexible board in the manufacturing process, so make one end of the flexible board free to be longer, and use it as an outer frame board without wiring. Connecting. Then, after mounting, unnecessary portions are cut to make them free. Other points are basically the same as in the first embodiment. Example 2 will be specifically described below.

(フレキシブル基板の作成)
製造工程においてフレキシブル基板の両端を保持できるように、片端のポリイミドフィルム3を、製品にする長さよりも長くなるように(たとえば5mm程度長くなるように)して、実施例1と同様の方法で、フレキシブル基板21を作成した(図11)。
(Create flexible substrate)
In the manufacturing process, the polyimide film 3 at one end is made longer than the length of the product (for example, about 5 mm longer) so that both ends of the flexible substrate can be held. A flexible substrate 21 was created (FIG. 11).

(リジッド基板の作成)
実施例1と同様の方法で、水平配線部4及び垂直配線部5を有するリジッド基板23を作成した。一方、フレキシブル基板の片側を保持するために、配線部のない外フレーム基板30も作成した。外フレーム基板30は、リジッド基板23の絶縁材料と同じガラス−エポキシ系のプリプレグ(合成樹脂系シート)3aを用いて、リジッド基板23と等厚になるように作成した。
(Rigid board creation)
A rigid substrate 23 having a horizontal wiring portion 4 and a vertical wiring portion 5 was produced in the same manner as in Example 1. On the other hand, in order to hold one side of the flexible substrate, an outer frame substrate 30 without a wiring portion was also created. The outer frame substrate 30 was formed using the same glass-epoxy prepreg (synthetic resin sheet) 3 a as the insulating material of the rigid substrate 23 so as to have the same thickness as the rigid substrate 23.

(第1の段部を有するリジッド基板の作成)
実施例1と同様の方法で、座繰り加工を行い、垂直配線部5が露出した段部Sを有するリジッド基板23と、配線部のない段部Sを有する外フレーム基板30を作成した(図12)。
(Production of a rigid substrate having a first step)
Countersinking was performed in the same manner as in Example 1 to produce a rigid substrate 23 having a stepped portion S where the vertical wiring portion 5 was exposed and an outer frame substrate 30 having a stepped portion S having no wiring portion (see FIG. 12).

(リジッド基板と第1のフレキシブル基板との接続)
次に、図5に示したのと同様に、枠体24の中に、個々に分割された単位リジッド基板23と単位フレキシブル基板21と単位外フレーム基板30を、リジッド基板23と外フレーム基板30を第1の段部Sが互いに対向するようにして、フレキシブル基板21を、ポリイミドフィルム3が長いほうの端部を外フレーム基板30の段部S上に、他端部が単位リジッド基板23の段部S上になるように、それぞれ配置した。
(Connection between rigid board and first flexible board)
Next, as shown in FIG. 5, the unit rigid board 23, the unit flexible board 21, and the non-unit frame board 30 that are individually divided in the frame body 24, and the rigid board 23 and the outer frame board 30. With the first step S facing each other, the flexible substrate 21 has the longer end of the polyimide film 3 on the step S of the outer frame substrate 30 and the other end of the unit rigid substrate 23. Each was placed on the step S.

そして、この枠体24を複数枚重ねて加熱加圧により一体化させて、リジッド基板23及び外フレーム基板30と第1のフレキシブル基板21とを接続した(図13)。
(第2の段部の形成)
次に、実施例1と同様に、枠体24に固定された状態のまま、座繰り加工を行い、リジッド基板23および外フレーム基板30に第2の段部Sを作成した(図14)。
(リジッド基板と第2のフレキシブル基板との接続)
次に、第1のフレキシブル基板を接続したときと同様に、枠体24に固定された状態のまま、スペーサー31を介して、フレキシブル基板21を、ポリイミドフィルム3が長いほうの端部を外フレーム基板30の段部S上に、他端部が単位リジッド基板23の段部S上になるように、それぞれ配置した。
A plurality of the frame bodies 24 were stacked and integrated by heating and pressing, and the rigid substrate 23, the outer frame substrate 30, and the first flexible substrate 21 were connected (FIG. 13).
(Formation of second step)
Next, in the same manner as in Example 1, the countersinking process was performed while being fixed to the frame body 24 to create the second step S on the rigid board 23 and the outer frame board 30 (FIG. 14).
(Connection between rigid substrate and second flexible substrate)
Next, in the same manner as when the first flexible substrate is connected, the flexible substrate 21 is fixed to the outer frame through the spacer 31 through the spacer 31 while being fixed to the frame body 24. On the step S of the substrate 30, the other end was disposed on the step S of the unit rigid substrate 23.

そして、この枠体24を複数枚重ねて加熱加圧により一体化させて、リジッド基板23及び外フレーム基板30と第2のフレキシブル基板21とを接続した(図15)。   A plurality of the frame bodies 24 were stacked and integrated by heating and pressing, and the rigid substrate 23, the outer frame substrate 30, and the second flexible substrate 21 were connected (FIG. 15).

(リジッド−フレキシブル基板の完成)
接続後、各フレキシブル基板21間のスペーサー31を除去し、各リジッド−フレキシブル基板が打ち抜かれて、図16に模式的に示すように、2枚のフレキシブル基板21のそれぞれの一端が同一のリジッド基板に接続され、他端が外フレーム基板30に接続された状態のリジッド−フレキシブル基板が完成する。
(Completion of rigid-flexible substrate)
After the connection, the spacers 31 between the flexible substrates 21 are removed, and each rigid-flexible substrate is punched out. As shown schematically in FIG. 16, one end of each of the two flexible substrates 21 is the same rigid substrate. The rigid-flexible substrate with the other end connected to the outer frame substrate 30 is completed.

その後、各部品が実装され、図16に切り取り線32で示した位置で切断されて、フレキシブル基板21の非製品部と外フレーム基板30が除去される。   Thereafter, each component is mounted and cut at the position indicated by the cut line 32 in FIG. 16, and the non-product portion of the flexible substrate 21 and the outer frame substrate 30 are removed.

以上のようにして、1枚のリジッド基板の両主面の対応位置にそれぞれ1枚、計2枚のフレキシブル基板21の一端が接続され、それぞれの他端が接続されずにフリーのリジッド−フレキシブル基板が完成する(図17)。   As described above, one end of each of the two flexible boards 21 is connected to the corresponding positions of the two main surfaces of one rigid board, and the other end is not connected, and the rigid-flexible flexible. The substrate is completed (FIG. 17).

以上の実施例1及び2では、段部を有するリジッド基板を作成する工程において、座繰り加工を施すことにより段差形状を得たが、段差とする部分をルーター加工などにより予め除去した外層リジッド基板と、フレキシブル基板との接続部を有する内層リジッド基板とを別々に用意しておき、積層することで形成することも可能である。   In Examples 1 and 2 above, in the process of creating a rigid substrate having a stepped portion, a stepped shape was obtained by performing countersink processing, but the outer layer rigid substrate in which the stepped portion was previously removed by router processing or the like It is also possible to separately form an inner-layer rigid substrate having a connection portion with a flexible substrate and stack them.

図18〜24は、このような段部を有するリジッド基板の他の製法及びそれを用いて接続したリジッド−フレキシブル基板の製造方法の実施例3を説明するものである。   18 to 24 illustrate Example 3 of another method for manufacturing a rigid substrate having such a stepped portion and a method for manufacturing a rigid-flexible substrate connected using the same.

以下、フレキシブル基板21の作成など、実施例1と同じ部分は説明を省略し、このような段部を有するリジッド基板の他の製法を中心に説明する。   Hereinafter, the description of the same parts as those of the first embodiment such as the production of the flexible substrate 21 will be omitted, and description will be made focusing on other manufacturing methods of the rigid substrate having such stepped portions.

まず、2層のリジッド両面配線板を上記のB2it製法により作成し、段部Sとなる部分をルーター加工などにより予め除去した。これにより第1の外層リジッド基板50aを得た(図18(a))。同様にして第2の外層リジッド基板50cを得た(図18(c))。一方、4層のリジッド両面配線板を上記のB2it製法により作成し、フレキシブル基板と接続する位置に水平配線部4を露出させた内層リジッド基板50bを得た(図18(b))。   First, a two-layer rigid double-sided wiring board was prepared by the above-described B2it manufacturing method, and a portion to be the stepped portion S was previously removed by router processing or the like. Thus, a first outer layer rigid substrate 50a was obtained (FIG. 18A). Similarly, a second outer layer rigid substrate 50c was obtained (FIG. 18C). On the other hand, a four-layer rigid double-sided wiring board was prepared by the above-described B2it manufacturing method to obtain an inner-layer rigid board 50b in which the horizontal wiring portion 4 was exposed at a position where it was connected to the flexible board (FIG. 18B).

これらのリジッド基板50a,50b,50cも、大きい1枚の基板の中に多数枚を作り込んだものを作成し、図3の状態にまで形成したところで、個々のリジッド基板に分割される。   These rigid substrates 50a, 50b, and 50c are also made by making a large number of substrates into one large substrate and forming them up to the state shown in FIG. 3, and are divided into individual rigid substrates.

次に、第1の外層リジッド基板50aの、内層リジッド基板50bと接続する主面側の水平配線部4に導体バンプ5を形成し、内層リジッド基板50bの第1の主面のフレキシブル基板が接続される領域を露出させて、未硬化のプリプレグ3aを介して、位置決めして加熱加圧することにより貼着させ、第1の段部Sを有する6層のリジッド基板50を作成した(図19)。実施例1の場合には、リジッド基板の段部には垂直配線部5が露出していたが、本実施例3では、座繰り加工をせずに両面配線板を貼着させることにより段差を得ているため、水平配線部4が段部表面に露出し接続端子の役割を果たしている点が異なる。   Next, conductor bumps 5 are formed on the horizontal wiring portion 4 on the main surface side of the first outer layer rigid substrate 50a that is connected to the inner layer rigid substrate 50b, and the flexible substrate on the first main surface of the inner layer rigid substrate 50b is connected. The six-layer rigid substrate 50 having the first step S was created by exposing the region to be exposed, and positioning and heating and pressing through the uncured prepreg 3a (FIG. 19). . In the case of the first embodiment, the vertical wiring portion 5 is exposed at the step portion of the rigid substrate. However, in this third embodiment, the step is formed by attaching the double-sided wiring board without performing the countersinking process. Therefore, the difference is that the horizontal wiring part 4 is exposed on the surface of the step part and serves as a connection terminal.

次に、実施例1と同様に、第1の段部Sを有する6層のリジッド基板50と第1の単位フレキシブル基板21とを、枠体24の中に、接続できる位置関係となるように配置し、この枠体24を複数枚重ねて加熱加圧により一体化させて、図20にその断面を模式的に示すように、第1のフレキシブル基板の両端が2枚のリジッド基板の第1の段部にそれぞれ接続された状態のリジッド−フレキシブル基板が得られる(図20)。   Next, in the same manner as in Example 1, the six-layer rigid board 50 having the first step S and the first unit flexible board 21 are in a positional relationship in which the frame body 24 can be connected. A plurality of the frame bodies 24 are stacked and integrated by heating and pressurization, and as shown schematically in cross section in FIG. 20, both ends of the first flexible substrate are the first of the two rigid substrates. A rigid-flexible substrate in a state of being connected to each step is obtained (FIG. 20).

次に、図20の状態に接続された各リジッド−フレキシブル基板を枠体24に固定された状態のまま、先に作成しておいた第2の外層リジッド基板50cを、内層リジッド基板50bの第1の主面のフレキシブル基板が接続される領域を露出させて、未硬化のプリプレグ3aを介して位置決めして加熱加圧することにより貼着させ、第2の段部Sを有する8層のリジッド基板50を作成した(図21,図22)。   Next, with each rigid-flexible substrate connected in the state of FIG. 20 fixed to the frame 24, the second outer layer rigid substrate 50c previously created is replaced with the second rigid substrate 50b of the inner layer rigid substrate 50b. An 8-layer rigid substrate having a second stepped portion S is exposed by exposing a region to which a flexible substrate on one main surface is connected, positioning through uncured prepreg 3a, and heating and pressing. 50 was created (FIGS. 21 and 22).

次に、枠体24に固定された状態のまま、実施例1と同様にしてリジッド基板と第2のフレキシブル基板とを接続した(図23)。   Next, the rigid board | substrate and the 2nd flexible substrate were connected like Example 1 with the state fixed to the frame 24 (FIG. 23).

接続後、各フレキシブル基板21間のスペーサー31を除去し、各リジッド−フレキシブル基板が打ち抜かれて図24に模式的に示すリジッド−フレキシブル基板が完成する。   After the connection, the spacers 31 between the flexible substrates 21 are removed, and the rigid-flexible substrates are punched out to complete the rigid-flexible substrate schematically shown in FIG.

(他の実施例)
なお、本発明は以上の実施例に限定されるものではなく、以下のようにしてもよい。
たとえば、段部を有するリジッド基板の作成においては、座繰る部分の導体バンプは銅配線で挟む構造でもいいが、深さ方向の座繰り精度を考慮し、導体バンプ部分を表面に露出させるために座繰り部は銅配線を無くしてもよい。また、上記実施例1のように大きい基板の状態で座繰り加工した後に個々のリジッド基板に分割してもよいが、個々のリジッド基板に分割した後に、座繰り加工をしてもよい。
(Other examples)
In addition, this invention is not limited to the above Example, You may make it as follows.
For example, in the production of a rigid substrate having a stepped portion, the conductor bump of the countersink portion may be sandwiched between copper wirings, but in order to expose the conductor bump portion on the surface in consideration of the countersink accuracy in the depth direction The countersunk portion may be free of copper wiring. Moreover, although it may be divided into individual rigid substrates after being countersunk in the state of a large substrate as in the first embodiment, the countersinking may be performed after being divided into individual rigid substrates.

また、座繰り加工や接着などの工程において各単位基板を枠体24に保持させる際には(図5参照)、必要に応じて、この小突起25を枠体24内面に接着剤で仮固定するようにしてもよい。さらに、図25に示すように、リジッド基板23の縁部にT示型の突起部26を設け、枠体24の内面の対応位置に、この突起部が嵌合する凹部27を設けて、嵌め合い構造により、リジッド基板23を枠体に保持させてもよい。   Further, when each unit substrate is held on the frame body 24 in steps such as counterboring and bonding (see FIG. 5), the small protrusions 25 are temporarily fixed to the inner surface of the frame body 24 with an adhesive as necessary. You may make it do. Further, as shown in FIG. 25, a T-shaped projection 26 is provided on the edge of the rigid substrate 23, and a recess 27 is provided at the corresponding position on the inner surface of the frame 24 to fit the projection. The rigid substrate 23 may be held on the frame body by a mating structure.

また、以上の実施例では、フレキシブル基板が接続される垂直配線部を導体バンプで形成した例について説明したが、図26に示す、ビアホール28a内に導電ペースト28bを充填して形成することも可能である。また、図27に示すように、高温半田(たとえば融点200℃〜240℃程度の半田)により導体バンプ29を形成し、リジッド基板23の段部に形成した端子27(水平配線部4と実質的に同じもの)にはんだ接続するようにしてもよい。この場合、電子部品を搭載する際に使用する半田は前述高温半田よりも融点の低いものを使用することで、フレキシブル基板とリジッド基板の接続半田の再溶融を回避することができる。また、絶縁層にレーザーなどで穴明けし、そこに導電ペーストを埋め込んだ後、積層することで導通をとる方法でも可能である。   In the above embodiment, the example in which the vertical wiring portion to which the flexible substrate is connected is formed by the conductor bump has been described. However, it is also possible to fill the via hole 28a shown in FIG. 26 with the conductive paste 28b. It is. Further, as shown in FIG. 27, the conductor bumps 29 are formed by high-temperature solder (for example, solder having a melting point of about 200 ° C. to 240 ° C.), and the terminals 27 (substantially the same as the horizontal wiring portion 4) formed on the stepped portion of the rigid substrate 23. May be soldered to the same). In this case, remelting of the connecting solder between the flexible substrate and the rigid substrate can be avoided by using a solder having a melting point lower than that of the high temperature solder described above when mounting the electronic component. Alternatively, the insulating layer can be made conductive by drilling holes with a laser or the like, embedding a conductive paste in the insulating layer, and then laminating.

さらに、フレキシブル基板とリジッド基板の接続として、(a)異方性導電膜を挟み圧着することで接続する方法、(b)フレキシブル基板とリジッド基板それぞれの端子に金めっきを施し、金めっき同士を圧着接続する方法、(c)貫通孔を有する絶縁層に導電性ペーストを充填したものを挟み真空熱プレスすることで接続する方法、などでも接続は可能である。   Furthermore, as a connection between the flexible substrate and the rigid substrate, (a) a method of connecting by sandwiching an anisotropic conductive film, (b) gold plating is applied to each terminal of the flexible substrate and the rigid substrate, Connection is also possible by a method of crimping connection, (c) a method of connecting by insulating hot layers filled with a conductive paste and vacuum hot pressing.

また、以上の実施例では、フレキシブル基板を両面配線板にした例について説明したが、フレキシブル基板は、片面配線板であってもよい。リジッド基板の段部の垂直配線部5と接続できる位置に、フレキシブル基板の水平配線部4および垂直配線部5が形成されていれば片面配線であっても接続できる。   Moreover, although the above Example demonstrated the example which used the flexible substrate as the double-sided wiring board, the single-sided wiring board may be sufficient as a flexible substrate. If the horizontal wiring part 4 and the vertical wiring part 5 of the flexible substrate are formed at a position where the vertical wiring part 5 of the step portion of the rigid board can be connected, even single-sided wiring can be connected.

リジッド−フレキシブル基板の製造にあたり、リジッド基板とフレキシブル基板とを別工程で製造し両者を単位基板に分割した後、リジッド基板とフレキシブル基板とを製造できるため、生産工程を大幅に簡略化することができ、屑となる部分が少なく、材料を有効利用して歩留まりを向上させることができる。また、単位基板ごとに良否を判定して、良品のみで最終の接続工程を行うことができるので、基板の作成過程で不良が生じても屑を最小限にすることができる。また、片面フレキシブル基板2枚を用いて、それぞれのフレキシブル基板の一端を同一のリジッド基板に接続し、それぞれの他端を他の同一のリジッド基板に接続した場合には、両面フレキシブル基板1枚を介して2枚のリジッド基板間を接続した場合に比べて、フレキシブル基板部の配線量を減少させずに、可撓性,屈曲性を向上させることができる。また、同一のリジッド基板に接続された2枚のフレキシブル基板の他端を、接続せずに自由端にした場合には、後に、それぞれ別個の基板や機器類に接続することも可能となるので、設計の自由度も増大する。   When manufacturing rigid-flexible substrates, the rigid substrate and flexible substrate can be manufactured in separate processes, and after both are divided into unit substrates, the rigid substrate and flexible substrate can be manufactured, which greatly simplifies the production process. And there are few parts which become waste, and a yield can be improved by using a material effectively. In addition, since it is possible to determine pass / fail for each unit substrate and perform the final connection process using only non-defective products, it is possible to minimize waste even if a defect occurs in the substrate manufacturing process. In addition, when two single-sided flexible boards are used, one end of each flexible board is connected to the same rigid board, and the other end is connected to another same rigid board, one double-sided flexible board is attached. As compared with the case where the two rigid boards are connected via each other, flexibility and flexibility can be improved without reducing the wiring amount of the flexible board portion. In addition, if the other ends of the two flexible boards connected to the same rigid board are made free ends without being connected, they can be connected to separate boards and devices later. Also, the degree of freedom of design increases.

リジッド−フレキシブル基板の製造に用いる両面型のフレキシブル基板を模式的に示す断面図。Sectional drawing which shows typically the double-sided type flexible substrate used for manufacture of a rigid-flexible substrate. 図1のフレキシブル基板に導体バンプを設けた状態を模式的に示す断面図。Sectional drawing which shows typically the state which provided the conductor bump in the flexible substrate of FIG. リジッド−フレキシブル基板の製造に用いるリジッド基板を模式的に示す断面図。Sectional drawing which shows typically the rigid board | substrate used for manufacture of a rigid-flexible board | substrate. 図3のリジッド基板のフレキシブル基板接続部に座繰り加工を施した状態を模式的に示す断面図。Sectional drawing which shows typically the state which gave the countersink process to the flexible substrate connection part of the rigid board | substrate of FIG. 枠体に、単位リジッド基板と単位フレキシブル基板を組み込んだ状態を示す平面図。The top view which shows the state which incorporated the unit rigid board | substrate and the unit flexible board | substrate in the frame. 実施例1において、リジッド基板と第1のフレキシブル基板を接続した状態を模式的に示す断面図。Sectional drawing which shows typically the state which connected the rigid board | substrate and the 1st flexible substrate in Example 1. FIG. 図6のリジッド基板の第2のフレキシブル基板接続部に座繰り加工を施して段部Sを形成した状態を模式的に示す断面図。FIG. 7 is a cross-sectional view schematically illustrating a state in which a stepped portion is formed by performing countersink processing on a second flexible substrate connecting portion of the rigid substrate of FIG. 6. リジッド基板に設けた2つの段部を模式的に示す斜視図。The perspective view which shows typically two step parts provided in the rigid board | substrate. 図7のリジッド基板にスペーサーを介して第2のフレキシブル基板を接続した状態を模式的に示す断面図。Sectional drawing which shows typically the state which connected the 2nd flexible substrate via the spacer to the rigid board | substrate of FIG. 図8のスペーサーを除去して完成した実施例1のリジッド−フレキシブル基板を模式的に示す断面図。Sectional drawing which shows typically the rigid-flexible board | substrate of Example 1 completed by removing the spacer of FIG. 実施例2において、フレキシブル基板に導体バンプを設けた状態を模式的に示す断面図。In Example 2, sectional drawing which shows typically the state which provided the conductor bump in the flexible substrate. 実施例2において、外フレーム基板に段部Sを形成した状態を模式的に示す断面図。Sectional drawing which shows typically the state which formed the step part S in the outer frame board | substrate in Example 2. FIG. 実施例2において、リジッド基板及び外フレーム基板と第1のフレキシブル基板を接続した状態を模式的に示す断面図。Sectional drawing which shows typically the state which connected the rigid board | substrate and the outer frame board | substrate, and the 1st flexible substrate in Example 2. FIG. 図13のリジッド基板及び外フレーム基板の第2のフレキシブル基板接続部に座繰り加工を施して段部Sを形成した状態を模式的に示す断面図。FIG. 14 is a cross-sectional view schematically illustrating a state in which a stepped portion S is formed by performing countersink processing on the second flexible substrate connecting portion of the rigid substrate and the outer frame substrate of FIG. 13. 図14の基板にスペーサーを介して第2のフレキシブル基板を接続した状態を模式的に示す断面図。FIG. 15 is a cross-sectional view schematically showing a state in which a second flexible substrate is connected to the substrate of FIG. 14 via a spacer. 図15のスペーサーを除去した状態のリジッド−フレキシブル基板を模式的に示す断面図。Sectional drawing which shows typically the rigid-flexible board | substrate of the state which removed the spacer of FIG. 不要部を切断して完成した状態の実施例2のリジッド−フレキシブル基板を模式的に示す断面図。Sectional drawing which shows typically the rigid-flexible board | substrate of Example 2 of the state completed by cut | disconnecting an unnecessary part. 段部をもつリジッド基板の他の製法を説明するための模式的断面図。Schematic sectional view for explaining another method for manufacturing a rigid substrate having a stepped portion. 段部をもつリジッド基板の他の製法を説明するための模式的断面図。Schematic sectional view for explaining another method for manufacturing a rigid substrate having a stepped portion. 実施例3において、リジッド基板と第1のフレキシブル基板を接続した状態を模式的に示す断面図。Sectional drawing which shows typically the state which connected the rigid board | substrate and the 1st flexible substrate in Example 3. FIG. 段部をもつリジッド基板の他の製法を説明するための模式的断面図。Schematic sectional view for explaining another method for manufacturing a rigid substrate having a stepped portion. 図21のリジッド基板を貼着させて第2の段部を持つ基板にした状態を模式的に示す断面図。Sectional drawing which shows typically the state which stuck the rigid board | substrate of FIG. 21 and was set as the board | substrate with a 2nd step part. 図22の基板にスペーサーを介して第2のフレキシブル基板を接続した状態を模式的に示す断面図。FIG. 23 is a cross-sectional view schematically showing a state in which a second flexible substrate is connected to the substrate of FIG. 22 via a spacer. 図23のスペーサーを除去した状態のリジッド−フレキシブル基板を模式的に示す断面図。FIG. 24 is a cross-sectional view schematically showing a rigid-flexible substrate in a state where the spacer of FIG. 23 is removed. 枠体と単位リジッド基板の係合部の一部を示す平面図。The top view which shows a part of engaging part of a frame and a unit rigid board | substrate. 他の接続方法によるリジッド基板とフレキシブル基板の接続部の状態を模式的に示す断面図。Sectional drawing which shows typically the state of the connection part of the rigid board | substrate and flexible substrate by another connection method. 他の接続方法によるリジッド基板とフレキシブル基板の接続部の状態を模式的に示す断面図。Sectional drawing which shows typically the state of the connection part of the rigid board | substrate and flexible substrate by another connection method. 従来のリジッド−フレキシブル基板の製造に用いるフレキシブル基板を模式的に示す断面図。Sectional drawing which shows typically the flexible substrate used for manufacture of the conventional rigid-flexible substrate. 図28のフレキシブル基板と積層される積層体を模式的に示す断面図。Sectional drawing which shows typically the laminated body laminated | stacked with the flexible substrate of FIG. 図28のフレキシブル基板と図25の積層体とを積層させた積層体を模式的に示す断面図。FIG. 29 is a cross-sectional view schematically showing a laminate in which the flexible substrate of FIG. 28 and the laminate of FIG. 25 are laminated. 図30の積層体と積層される積層体を模式的に示す断面図。Sectional drawing which shows typically the laminated body laminated | stacked with the laminated body of FIG. 図30の積層体と図31の積層体とを積層させた積層体を模式的に示す断面図。Sectional drawing which shows typically the laminated body which laminated | stacked the laminated body of FIG. 30 and the laminated body of FIG. 図32の積層体の外層をパターニングした積層体を模式的に示す断面図。Sectional drawing which shows typically the laminated body which patterned the outer layer of the laminated body of FIG. リジッド−フレキシブル基板を模式的に示す断面図。Sectional drawing which shows a rigid-flexible board | substrate typically.

符号の説明Explanation of symbols

1…カバーフィルム、2…1が被覆されていない両面型のフレキシブル基板、3…ポリイミドフィルム、3a…ガラス−エポキシ系のプリプレグ(合成樹脂系シート)、4…水平配線部(導体パターン)、4a…電解銅箔、5…垂直配線部(導体バンプ)、5a…導体バンプ、6,9,10,11…積層体、8…スリット、12…絶縁保護被覆、20,21…フレキシブル基板、22,23…リジッド基板、24…枠体、25…小突起、26…突起部、27…凹部、28…ビアホール、29…高温半田による導体バンプ、30…外フレーム基板、31…スペーサー、32…切り取り線、TH…スルーホール。   DESCRIPTION OF SYMBOLS 1 ... Cover film, 2 ... Double-sided type flexible substrate which is not coat | covered 3 ... Polyimide film, 3a ... Glass-epoxy type prepreg (synthetic resin type sheet), 4 ... Horizontal wiring part (conductor pattern), 4a ... electrolytic copper foil, 5 ... vertical wiring part (conductor bump), 5a ... conductor bump, 6, 9, 10, 11 ... laminated body, 8 ... slit, 12 ... insulating protective coating, 20, 21 ... flexible substrate, 22, DESCRIPTION OF SYMBOLS 23 ... Rigid board | substrate, 24 ... Frame body, 25 ... Small protrusion, 26 ... Protrusion part, 27 ... Recessed part, 28 ... Via hole, 29 ... Conductor bump by high temperature solder, 30 ... Outer frame board | substrate, 31 ... Spacer, 32 ... Cut-off line , TH ... Through hole.

Claims (2)

リジッド基板の両主面の対応位置にそれぞれフレキシブル基板が接続されたリジッド−フレキシブル基板の製造方法において、In the rigid-flexible board manufacturing method in which the flexible board is connected to the corresponding positions on both main surfaces of the rigid board, respectively.
前記各フレキシブル基板が接続される領域に、前記各フレキシブル基板が接続される位置又はこれより内層側で水平配線部と接続された垂直配線部を有するリジッド基板を作成する工程と、A step of creating a rigid substrate having a vertical wiring portion connected to a horizontal wiring portion at a position where each flexible substrate is connected or an inner layer side thereof in a region where each flexible substrate is connected;
前記リジッド基板と接続される領域に接続端子を有する第1のフレキシブル基板及び第2のフレキシブル基板を作成する工程と、Creating a first flexible substrate and a second flexible substrate having connection terminals in a region connected to the rigid substrate;
前記各リジッド基板の一方の主面の前記第1のフレキシブル基板の接続される領域に、前記垂直配線部を露出させ接続端子とした前記第1のフレキシブル基板の厚さと同等かより深い第1の段部を形成する工程と、The first flexible substrate is exposed to the first flexible substrate on one main surface of each rigid substrate, and the vertical wiring portion is exposed to form a connection terminal, which is equal to or deeper than the thickness of the first flexible substrate. Forming a step, and
前記各リジッド基板の前記第1の段部の垂直配線部に前記第1のフレキシブル基板の端子を電気的に接続し、前記第1の段部に一体に接着する工程と、Electrically connecting the terminals of the first flexible substrate to the vertical wiring portion of the first step portion of each rigid substrate and bonding the first flexible substrate integrally to the first step portion;
前記各リジッド基板の他方の主面の前記第2のフレキシブル基板が接続される領域に、前記垂直配線部を露出させ接続端子とした前記第2のフレキシブル基板の厚さと同等かより深い第2の段部を形成する工程と、A second layer that is equal to or deeper than the thickness of the second flexible substrate that is used as a connection terminal by exposing the vertical wiring portion to a region of the other main surface of each rigid substrate to which the second flexible substrate is connected. Forming a step, and
前記各リジッド基板の前記第2の段部の垂直配線部に前記第2のフレキシブル基板の端子を電気的に接続し、前記第2の段部に一体に接着する工程とElectrically connecting a terminal of the second flexible substrate to a vertical wiring portion of the second step portion of each rigid substrate and integrally bonding to the second step portion;
を具備して成ることを特徴とするリジッド−フレキシブル基板の製造方法。A method of manufacturing a rigid-flexible substrate, comprising:
リジッド基板の両主面の対応位置にそれぞれ対応するフレキシブル基板が接続されたリジッド−フレキシブル基板の製造方法において、
前記各フレキシブル基板が接続される領域に水平配線部が露出した第1及び第2の主面を有する内層リジッド基板を作成する工程と、
前記内層リジッド基板と接続される領域に接続端子を有する複数の第1のフレキシブル基板及び複数の第2のフレキシブル基板を作成する工程と、
前記内層リジッド基板の第1の主面上に前記第1のフレキシブル基板が接続される領域を露出させて第1の外装基板を貼着させて前記第1のフレキシブル基板の厚さと同等かより深い第1の段部を形成する工程と、
前記各リジッド基板の前記第1の段部の水平配線部に前記第1のフレキシブル基板の端子を電気的に接続し、前記第1の段部に一体に接着する工程と、
前記内層リジッド基板の第2の主面上に前記第2のフレキシブル基板が接続される領域を露出させて第2の外装基板を貼着させて前記第2のフレキシブル基板の厚さと同等かより深い第2の段部を形成する工程と、
前記各リジッド基板の前記第2の段部の水平配線部に前記第2のフレキシブル基板の端子を電気的に接続し、前記第2の段部に一体に接着する工程と
を具備して成ることを特徴とするリジッド−フレキシブル基板の製造方法
In the rigid-flexible board manufacturing method in which the flexible boards corresponding to the corresponding positions of both main surfaces of the rigid board are connected,
Creating an inner-layer rigid substrate having first and second main surfaces in which a horizontal wiring portion is exposed in a region to which each flexible substrate is connected;
Creating a plurality of first flexible substrates and a plurality of second flexible substrates having connection terminals in a region connected to the inner layer rigid substrate;
A region to which the first flexible substrate is connected is exposed on the first main surface of the inner layer rigid substrate, and the first exterior substrate is attached to be equal to or deeper than the thickness of the first flexible substrate. Forming a first step;
Electrically connecting the terminals of the first flexible substrate to the horizontal wiring portion of the first step portion of each rigid substrate, and bonding them integrally to the first step portion;
An area to which the second flexible substrate is connected is exposed on the second main surface of the inner layer rigid substrate, and a second exterior substrate is adhered to the second flexible substrate so as to be equal to or deeper than the thickness of the second flexible substrate. Forming a second step,
Electrically connecting a terminal of the second flexible substrate to a horizontal wiring portion of the second step portion of each rigid substrate, and bonding the second flexible substrate integrally to the second step portion;
A method of manufacturing a rigid-flexible substrate, comprising:
JP2004287147A 2004-09-30 2004-09-30 Manufacturing method of rigid-flexible substrate Expired - Fee Related JP4574311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287147A JP4574311B2 (en) 2004-09-30 2004-09-30 Manufacturing method of rigid-flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287147A JP4574311B2 (en) 2004-09-30 2004-09-30 Manufacturing method of rigid-flexible substrate

Publications (2)

Publication Number Publication Date
JP2006100704A JP2006100704A (en) 2006-04-13
JP4574311B2 true JP4574311B2 (en) 2010-11-04

Family

ID=36240192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287147A Expired - Fee Related JP4574311B2 (en) 2004-09-30 2004-09-30 Manufacturing method of rigid-flexible substrate

Country Status (1)

Country Link
JP (1) JP4574311B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004289A1 (en) * 2006-07-05 2008-01-10 Fujitsu Limited Printed circuit board, printed circuit board unit, and electronic apparatus
US8071883B2 (en) 2006-10-23 2011-12-06 Ibiden Co., Ltd. Flex-rigid wiring board including flexible substrate and non-flexible substrate and method of manufacturing the same
WO2008050399A1 (en) * 2006-10-24 2008-05-02 Ibiden Co., Ltd. Flex rigid wiring board and method for manufacturing the same
CN100571492C (en) * 2006-10-30 2009-12-16 揖斐电株式会社 Rigid and flexible circuit board and manufacture method thereof
US7982135B2 (en) 2006-10-30 2011-07-19 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
KR100942626B1 (en) * 2007-07-26 2010-02-17 이비덴 가부시키가이샤 Flex-rigid wiring board and method of manufacturing the same
CN101720568B (en) * 2008-01-22 2012-01-04 索尼化学&信息部件株式会社 Method for manufacturing substrate for mounting component thereon, and substrate for mounting component thereon
CN101658081B (en) 2008-03-10 2012-05-30 揖斐电株式会社 Flexible wiring board and method of manufacturing same
JP6398244B2 (en) * 2014-03-24 2018-10-03 日本電気株式会社 WIRING BOARD, ELECTRONIC DEVICE, AND POWER SUPPLY METHOD
WO2015155859A1 (en) * 2014-04-09 2015-10-15 山一電機株式会社 Multilayer substrate and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575270A (en) * 1991-09-11 1993-03-26 Sony Chem Corp Manufacture of compound multilayer wiring board
JPH05167202A (en) * 1991-12-17 1993-07-02 Nec Corp Flexrigid substrate
JP2002232134A (en) * 2001-02-01 2002-08-16 Denso Corp Connection method of substrate
JP2004247690A (en) * 2003-02-17 2004-09-02 Sony Corp Multilayer printed circuit board and multilayer board
JP2004266236A (en) * 2003-01-09 2004-09-24 Sony Chem Corp Substrate constituent piece and composite wiring board using the piece

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575270A (en) * 1991-09-11 1993-03-26 Sony Chem Corp Manufacture of compound multilayer wiring board
JPH05167202A (en) * 1991-12-17 1993-07-02 Nec Corp Flexrigid substrate
JP2002232134A (en) * 2001-02-01 2002-08-16 Denso Corp Connection method of substrate
JP2004266236A (en) * 2003-01-09 2004-09-24 Sony Chem Corp Substrate constituent piece and composite wiring board using the piece
JP2004247690A (en) * 2003-02-17 2004-09-02 Sony Corp Multilayer printed circuit board and multilayer board

Also Published As

Publication number Publication date
JP2006100704A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4574288B2 (en) Manufacturing method of rigid-flexible substrate
US8419884B2 (en) Method for manufacturing multilayer wiring substrate
JP2005322878A (en) Assembly panel and mounting unit sheet for printed wiring board, rigid flexible board, and method for manufacturing them
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP4574311B2 (en) Manufacturing method of rigid-flexible substrate
JP2007115855A (en) Assembly panel of printed wiring board, unit sheet for mounting of printed wiring board, rigid-flexible board, and manufacturing method thereof
JPH08139450A (en) Manufacturing method of printed-wiring board
JPH06342977A (en) Manufacture of printed circuit board
JP4574310B2 (en) Manufacturing method of rigid-flexible substrate
JP3474894B2 (en) Printed wiring board and manufacturing method thereof
JP2007080858A (en) Multilayer printed wiring board and its manufacturing method
JPH0946041A (en) Manufacture of printed wiring board
JP2003017856A (en) Multilayer printed-wiring board and manufacturing method therefor
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3474896B2 (en) Printed wiring board and manufacturing method thereof
JP4723431B2 (en) Circuit board manufacturing method
JP3549063B2 (en) Manufacturing method of printed wiring board
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JP5293672B2 (en) Rigid-flexible substrate and manufacturing method thereof
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JP4292905B2 (en) Circuit board, multilayer board, method for manufacturing circuit board, and method for manufacturing multilayer board
JP2006237526A (en) Method for manufacturing film element built-in printed-wiring board, and film element built-in printed-wiring board
CN114980563A (en) Circuit board and manufacturing method thereof
JP2004111758A (en) Multilayer flexible wiring board and its production method
JP2005259730A (en) Wiring board, method of manufacturing circuit board, multilayer circuit board, and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060215

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees