JP3882972B2 - Angular velocity sensor - Google Patents

Angular velocity sensor Download PDF

Info

Publication number
JP3882972B2
JP3882972B2 JP17187098A JP17187098A JP3882972B2 JP 3882972 B2 JP3882972 B2 JP 3882972B2 JP 17187098 A JP17187098 A JP 17187098A JP 17187098 A JP17187098 A JP 17187098A JP 3882972 B2 JP3882972 B2 JP 3882972B2
Authority
JP
Japan
Prior art keywords
detection
point
vibration
angular velocity
vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17187098A
Other languages
Japanese (ja)
Other versions
JP2000009471A (en
Inventor
宗 志 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP17187098A priority Critical patent/JP3882972B2/en
Publication of JP2000009471A publication Critical patent/JP2000009471A/en
Application granted granted Critical
Publication of JP3882972B2 publication Critical patent/JP3882972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板に対して浮動支持された振動体を備える角速度センサに関し、特に、これに限定する意図ではないが、半導体微細加工技術を用いて形成される浮動半導体薄膜を櫛歯電極にて電気的に吸引/解放してx方向に励振する角速度センサに関する。
【0002】
【従来の技術】
この種の角速度センサの代表的なものは、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触で噛み合いかつ平行な左側固定櫛歯電極および右側固定櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に電圧を印加することにより、浮動薄膜がx方向に振動する。浮動薄膜に、z軸を中心とする回転の角速度が加わると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、y方向にも振動する楕円振動となる。浮動薄膜を導体としもしくは電極が接合したものとし、浮動薄膜のxz平面に平行な検出電極を基板上に備えておくと、この検出電極と浮動薄膜との間の静電容量が、楕円振動のy成分(角速度成分)に対応して振動する。この静電容量の変化(振幅)を測定することにより、角速度を求めることが出来る(例えば特開平5−248872号公報,特開平7−218268号公報,特開平8−152327号公報,特開平9−127148号公報,特開平9−42973号公報)。
【0003】
【発明が解決しようとする課題】
従来の角速度センサではアンカー部が多点にわかれており、互いに距離があるため振動子を単振動させる梁バネ部に温度変化等の外力が加わると圧縮あるいは引張りの応力がかかる。そのため共振周波数が温度とともに変化し、ヒステリシスと不連続点をもつ特性となる。それはセンサの精度を低下させる。例えば特開平7−218268号公報に開示のごとき、アンカー部が多点にわかれた従来の角度センサでは、アンカー間に距離があるため駆動時の振動が検出側の振動にもれ、そのため精度低下となることが考えられる。また、例えば特開平7−218268号公報に開示のごときの、駆動の振動モードと検出の振動モードの不動点が不一致のものでは、互いの振動もれと外力の影響があると角速度検出精度が低下すると考えられる。また、駆動の振動モードにコリオリ力による振動を低減させる振動成分を含むと、角速度検出出力が小さい。従来の振動子の振幅が、+x方向と−x方向とで異なって振動が不安定になるときがあり、センサとして成立しないときがある。
【0004】
本発明は、振動子の連続振動を安定なものとし、角速度検出精度を高くすることを目的とする。
【0005】
【課題を解決するための手段】
(1)本発明の角速度センサは、x,y平面上の一点Oに関して対称な位置にある、対のx振動子(2,3);
x,y平面に分布し、点Oに関して対称であって、対のx振動子(2,3)のそれぞれに連続し、少くともx方向に撓む連結梁(1);
連結梁に連続し、かつ点Oと連結梁との間にx,y方向に撓む第1可撓梁(41,42)を含む、点Oに関して対称な第1支持梁(4);
点Oに関して対称な検出振動子(5/6);
検出振動子に連続し、かつ点Oとの間にy方向に撓む第2可撓梁(71,72/81,82)を含む、点Oに関して対称な第2支持梁(7/8);
第1可撓梁 (41,42) および第2可撓梁 (71,72/81,82) が連続する、点Oを中心とするループ (45)
点Oにおいて前記ループ (45) の中心を支持するアンカー(120);
対のx振動子(2,3)を、x方向に逆相で振動駆動する励振手段(10A,10B);および、
検出振動子(5/6)のy方向振動を検出する手段(111,112);
を備える。なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素の符号を、参考までに付記した。
【0006】
これによれば、一点Oのアンカー(120)が、第1支持梁(4)および連結梁(1)を介して、対のx振動子(2,3)を支持し、また、第2支持梁(7/8)を介して検出振動子(5/6)を支持するので、すなわち、対のx振動子(2,3)の不動支持点および検出振動子(5/6)の不動支持点が共に一点であってしかも同一点であるので、次の利点が得られる:
1.従来の複数のアンカーによる点支持では、支持環境温度あるいはx振動子の自己発熱,外力による、アンカーを支持するベースのたわみによる影響で、従来はx振動子の梁部に応力が加っていたが、本発明では上記のように一点Oで支持しているため、上述のような応力が梁に加わらない。そのため外乱等による共振周波数の不連続なずれやヒステリシスが減少する、
2.x振動子系および検出振動子系の静止点が点Oであり、そこで支持されているので、x振動子系と検出振動子系との相互間に振動のもれが少なくなるため、角速度検出精度が向上する、および、
3.点Oでアンカーにて支持される第1支持梁(4)がx,y方向に撓む第1可撓梁(41,42/43,44)を含み、この第1支持梁(4)に連結梁(1)が連続しこの連結梁がx方向に撓むものであって、対のx振動子(2,3)に連続しているので、対のx振動子(2,3)はx方向に振動し易い。しかして励振手段(10A,10B)が、点Oに関して対称な位置にある対のx振動子(2,3)をx方向に逆相で振動駆動するので、x駆動振動はほとんど単振動に近く、検出方向yの振動を検出振動子に与えず、そのため角速度検出精度向上する。
【0007】
【発明の実施の形態】
(2)検出振動子(5/6)は、それぞれがy軸からx方向に離れ、点Oに関して対称な位置にあって対をなす。点Oを通りx,y軸に垂直なz軸廻りの角速度がセンサに加わると、対のx振動子(2,3)のそれぞれのx振動が、y振動成分を有する楕円振動になって、連結梁(1)がz軸廻りのねじれ振動を生ずる。このねじれ振動が第2支持梁(7,8)に伝播し、このねじれ振動によって対の検出振動子(5,6)が第2可撓梁(71,77/81,87)を介してy方向の、互に逆向きに振動するが、各検出振動子(5,6)が、y軸からx方向に離れているので、ねじれ振動によるそれらのy振幅が、y軸からの距離に比例して大きく、角速度値に対する検出振動子(5,6)のy振動が大きく、角速度検出精度が高い。
【0008】
(3)第2支持梁(7,8)は、x,y平面上に分布する検出振動子(5,6)および第2可撓梁(71,77/81,87)を包囲し第2可撓梁に連続してアンカー(120)で支持された補強梁(74,75/84,85)を含む。この補強梁(74,75/84,85)で、第2可撓梁(71,77/81,87)を介して両持ち(平衡支持)形態で検出振動子(5,6)が支持されるので、検出振動子(5,6)はy方向単振動をし易く、かつy方向振動が安定し、角速度検出精度および安定性が高い。
【0009】
(4)連結梁(1)は、点Oをループ中心とするループ状である。これにより、ループ内(連結梁1のループ内空間)に検出振動系(又はx振動系)を配置し、ループ外にx振動系(検出振動系)を配置するなど、コンパクトにセンサ要素を配置しうる。また、励振手段(10A,10B)にて、対のx振動子(2,3)を、x方向に逆相で振動駆動するが、すなわち対のx振動子(2,3)を音叉として使用するが、第1支持梁(4)がx,y方向に撓む第1可撓梁(41,42/43,44)を含むので、連結梁(1)はy方向に撓み易く、x逆相振動によって連結梁(1)のループはy方向に拡縮し易く、対のx振動子(2,3)の逆相x振動が容易である。たとえば励振手段(10A,10B)にて静電気駆動でx駆動外力をx振動子(2,3)に加えた時、x振動子(2,3)は逆相で共振しやすい。
【0010】
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
【0011】
【実施例】
図1に、本発明の一実施例の機構要素を示す。絶縁層を形成したシリコン基板100には、導電性とするための不純物を含むポリシリコン(以下導電性ポリシリコン)の、浮動体アンカー120、ならびに、多数の駆動電極91〜94のアンカーおよび多数の検出電極111,112のアンカー、が接合しており、これらのアンカーは、シリコン基板100上の絶縁層の上に形成された配線により、図示しない接続電極に接続されている。
【0012】
リソグラフによる半導体プロセスを用いて、シリコン基板100から浮きしかも浮動体アンカー120に連続した、導電性ポリシリコンの、x方向に延びる中心x梁46およびこれに連続し、アンカー120を中心とする長方形の第1ループ45が形成されている。
【0013】
この第1ループ45の、アンカー120の中心Oを通るy軸との交点からy方向に第1支持梁4(yアーム43,44および可撓性長方形ループ41,42)が延び、ループ41,42の、y軸との交点で、長方形の第2ループ1(x平行辺11,12,y平行辺13,14)が、第1支持梁4に連続している。y平行辺13,14の、x軸との交点で、それらに連続した第1のx振動子21,22および第2のx振動子31,32が連続している。これらの要素も、シリコン基板100から浮いており、第1ループ45と同じ導電性ポリシリコンであり、中心Oにおいて、アンカー120によって支持され、基板100からは浮いている。
【0014】
第1のx振動子21と22とは、第2ループ1のy平行辺13に関して対称な形状でしかも対称な位置にあり、第2のx振動子31,32は、y軸に関して第1のx振動子21,22と対称な形状でしかも対称な位置にある。これらのx振動子21,22/31,32は、中心Oを通るx軸に関しても対称である。
【0015】
これらのx振動子21,22/31,32には、y方向に等ピッチで分布しx方向に突出する櫛歯状の可動電極23,33があり、駆動電極アンカーに連続した、導電性ポリシリコンの駆動電極10A,10B(91〜94)および駆動検出電極9A,9B(101〜104)にも、可動電極23,33のy方向分布の空間に突出する櫛歯状の固定電極がありy方向に分布している。
【0016】
駆動電極10A,10Bの91,93と92,94に交互に、x振動子2の電位(略機器ア−スレベル)より高い電圧を印加することにより、x振動子2がx方向に振動する。このx振動により、x振動子2と駆動検出電極9A,9Bの101,103との間の静電容量が振動し、かつその容量振動と逆位相でx振動子2と102,104との間の静電容量が振動する。
【0017】
x振動子3は、y軸に関してx振動子2と対称な形状および位置であり、このx振動子3を駆動するための駆動電極(y軸に関して10A,10Bと対称に位置するもの)に、x振動子2駆動パルスと逆位相の駆動パルスを印加することにより、x振動子3がx振動子2と逆位相でx方向に振動し、x振動子3と駆動検出電極(y軸に関して9A,9Bと対称に位置するもの)の間の静電容量が振動する。駆動パルスを振動子2,3の共振周波数とすることにより、x振動子2と3が共振音叉振動を生じ、エネルギ消費効率が高いx振動をする。
【0018】
このx振動により、長方形の第2ループ1のy平行辺13と14の中点がx振動子2と3と同じくx振動する。これによってx平行辺11,12の左右端(y平行辺との連接点)は、x,y軸に対して略45度方向に振動するが、x平行辺11,12の中点(y軸との交点)は、それに関してx平行辺11,12それぞれが対称であるので、x方向には振動せずy方向のみに振動する。しかし可撓性長方形ループ41,42がy振動を吸収するので、y振動はわずかしかyアーム43,44に伝播せず、第1ループ45のx平行辺は振動するにしてもy方向にわずかであり、x方向には振動しない。中心x梁46は、第1ループ45のy平行辺の中点で第1ループ45に連続するので、仮に第1ループ45のx平行辺がy方向に振動しても、中心x梁46はx方向に振動しないのは勿論、y方向にも振動しない。したがってアンカー120には、x振動は加わらない。x振動子2,3のx励振に関してアンカー120(の中心O)は静止点であり、結局、アンカー120はx振動子2,3を、静止点にて支持していることになる。
【0019】
前述の第1ループ45のy平行辺の、x振動子2,3のx励振に関してx,yいずれの方向にも振動しない中点に、検出振動子支持用の梁7のyアーム73のy方向中心が連続しており、yアーム73のy方向端部にコの字型の可撓梁71,72が連続し、これらの可撓梁71,72に第1の検出振動子5の半片51,52が連続している。これらの半片51,52は、振動子の基幹(yアーム)53で連続しており、第1の検出振動子5は、x軸に関して対称な形状である。また、基幹53に関して、可撓梁71,72およびyアーム73と対称な可撓梁77,78およびyアーム76があってこれらも半片51,52に連続している。 yアーム76のy方向中点(x軸との交点)に補強用のyアーム75が連続し、このyアーム75のy方向端部にy平行辺が連続し、このy平行辺がyアーム74に連続し、このyアーム74が第1ループ45のy平行辺に連続している。これらの補強用の部材75,74も、x軸に関して対称に存在する。
【0020】
第2の検出用振動子6および支持用の梁8が、y軸に関して、第1の検出用振動子5および支持用の梁7と対称な形状であって対称位置に存在する。これら、検出用振動子5,6および支持用の梁7,8は、中心Oに関して点対称でありまた、x,y両軸に関して対称に分布する。
【0021】
以上に説明した検出用振動子5,6およびそれらを支持する梁7,8も導電体ポリシリコンであり、アンカー120と実質上同電位である。検出振動子5,6の半片51,52/61,62は、大略で長方形ループ状であるが、その対向y平行辺をつなぐ、x軸に平行な可動電極用の渡し梁がy方向に略等ピッチで分布し、渡し梁の間の各空間に、各1対の導電体ポリシリコンの固定検出電極111,112があり、基板100上の検出電極用の各アンカーで支持されそれと電気的に連続である(電気接続関係にある)。図2に、図1のA2−A2線拡大断面を示す。
【0022】
再度図1を参照すると、対の検出電極111,112間は絶縁されているが、第1の検出用振動子5のy移動を検出するための各対電極の、各対間で対応位置にある検出電極は共通接続されている。第2の検出用振動子6のy移動を検出するための各対電極についても同様である。
【0023】
x振動子2,3が逆位相でx方向に振動しているとき、例えば、中心Oを通るz軸と平行な軸廻りの角速度が加わると、x振動子2,3の振動が、y成分も有する楕円振動となり、第2ループ1にz軸廻りのねじれ振動が現われこれによって第1ループ45にもz軸廻りのねじれ振動が現われる。これによってアーム73,76/83,86がy方向に振動し、検出用振動子5,6がy方向に振動するが、検出用振動子5と6のy振動は逆位相となる。
【0024】
図3に、図1に示す角速度センサに接続された電気回路を示す。タイミング信号発生器TSGが、x振動子2,3をx方向に共振周波数で逆相駆動する駆動パルス信号を発生して、駆動回路a1〜a4,b1〜b4に与えると共に、同期検波用の同期信号を同期検波回路e1〜e5に与える。
【0025】
図4に、駆動パルス信号に同期して駆動回路a1〜a4,b1〜b4が駆動電極(10A,10B:91〜94)に印加する電圧を示す。これにより、x振動子2,3が、x方向の逆相の音叉振動をする。
【0026】
x振動子2のx振動により、駆動検出電極(9A)の相対向するもの(101と103)の、振動子2に対する静電容量が逆相で振動する。差動増幅器c1〜c8(c1)が、これらの静電容量の振動を表わす、プリアンプが発生する静電容量信号を差動増幅し、1個のプリアンプが発生する静電容量信号の振幅を略2倍とし、ノイズを相殺した差動信号を発生し、差動増幅器d1〜d4に与える。1つの差動増幅器(d1)には、2つの差動増幅器(c1,c2)の、互に逆相関係の差動信号が与えられて、それらの差動信号を、差動増幅器(d1)が同期検波回路e1〜e4(e1)に与える。同期検波回路e1〜e4(e1)は、駆動パルス信号と同相の同期信号に同期して、差動増幅器(d1)が与える差動信号すなわちx振動を表わすx振動検出電圧を検波し、駆動パルス信号に対するx振動の位相ずれを表わす信号を発生してフィ−ドバック処理回路FCRに与える。
【0027】
フィ−ドバック処理回路FCRは、同期検波回路e1〜e4(e1)が与える位相ずれ信号レベルを設定値に合わすための移相信号を、駆動回路a1〜a4,b1〜b4(a1,b1)に与え、それを受けた駆動回路は、移相信号に対応して、駆動パルス信号に対する出力駆動電圧V1〜V8(V1,V2)の位相をシフトする。同期検波回路e1〜e4のすべての位相ずれ信号レベルが実質上設定値になった状態で、x振動子2,3の共振音叉振動は安定したものとなる。
【0028】
安定した共振音叉振動の間に、中心Oを通るz軸と平行な軸廻りの角速度が加わると、検出振動子5と6に逆相の、y振動が現われ、その振幅が角速度の絶対値に対応し、検出振動子5と6の位相差(±180度)の符号が角速度の方向に対応する。
【0029】
検出振動子5,6(5)のy振動を検出する対の検出電極(111,112)の静電容量が、y振動によって相対的に逆相で振動し、これを表わす静電容量信号をプリアンプが発生して差動増幅器c9,c10(c9)が、両信号の差動信号すなわち1個のプリアンプが発生する静電容量信号の振幅を略2倍とし、ノイズを相殺した差動信号、を発生し、差動増幅器d5に与える。
【0030】
差動増幅器d5には、2つの差動増幅器c9,c10の、互に逆相関係の差動信号が与えられて、それらの差動信号を、差動増幅器d5が同期検波回路e5に与える。同期検波回路e5は、駆動パルス信号と同相の同期信号に同期して、差動増幅器d5が与える差動信号すなわちy振動を表わすy振動検出電圧を検波し、角速度を表わす信号を発生する。この角速度信号の極性(±)は加わった角速度の方向を、信号レベルの絶対値は角速度の大きさを表わす。
【0031】
上述のようにx振動の検出(駆動フィードバック),y振動の検出(ヨーレート)には、駆動回路a1〜a4,b1〜b4が駆動電極に印加する電圧パルス原因のノイズが混入するが、駆動電極に対する検出電極の相対位置がどこでも同じであり、しかも差動増幅器c1〜c8,d1〜d5が、対称位置にある検出電極の信号の差を演算するので、x励振によるノイズに関する差動出力は、図4の最下列に示すような、駆動パルスの立上り,立下り点で現われるノイズのみとなり、同基検波回路e1〜e5で除去される。それにより、同期検波回路e1〜e4の出力であるx振動フィ−ドバック信号のS/Nが高く、同期検波回路e5の出力である角速度信号のS/Nが高い。
【0032】
図5に、図1に示す角速度センサの振動系の概要を模式的に示し、これを参照して図1に示す角速度センサの特徴を説明すると、この角速度センサは、音叉構造とし、x振動子2,3を、x方向に逆相で振動させる。この状態を図5の(a)に示す。x振動子2,3および検出振動子5,6に角速度が加わるとx振動子2,3はx方向に振動しているため角速度に比例したコリオリ力を受け振動方向xと角速度の検出軸zに垂直なy方向に振動する。検出振動子5,6は停止しているためコリオリ力は受けない。
【0033】
コリオリ力が加わったとき、x振動子2,3は、y方向に振動し、それらのy方向変位が、角速度に比例し、
y変位=(角速度×振動子の速度×振動子の質量)/y方向のバネ常数
なるy変位となる。振動子2,3/5,6は、検出方向yの共振時の振動モードがx振動子2,3が互いに逆相で、検出振動子5,6も互いに逆相のため、y振動の中心が角速度センサの浮動体全体の重心Oと一致している。これにより、x振動子2,3がコリオリ力を受けたとき、検出振動子5,6は、図5の(b)のようにy方向に振動する。なお、x振動子2,3の共振周波数と、検出振動子5,6の共振周波数は、感度と対応性のバランスから、x振動子2,3の共振周波数より、検出振動子5,6の共振周波数の方が若干高く設定されている。x振動子2,3の質量と検出振動子5,6の質量とそれぞれの検出方向yのバネ常数の関係から、x振動子2,3はy方向にほとんど変位しない構成になっている。そのかわり検出振動子5,6は大きく変位する。以上によりこのセンサの精度(S/N比)は、駆動(x)と検出(y)の振動の互いの漏れ(クロストーク)が原理上少ないため、向上できる。
【0034】
また、この構造は従来構造とは違い、強制的に振動を押さえ込む形になっていないため、応力の影響,温度変化に強い構造である。また、駆動と検出の振動の不動点がセンサの重心にほぼ一致するため、また上記のようにコリオリ力を受けたときに従来と比較し、全く回転運動を伴わないため支持がなくても重心位置で支持点は静止している。そのため外部からの振動(車両等に搭載時)がセンサの駆動振動と検出振動にほとんど影響を与えないため従来タイプに比べS/N比が向上する。また、上記のような支持であるため温度等による熱膨張の影響が少なく温度補正の少なくてすむ。よって従来タイプに比べS/N比が向上する。
【0035】
図1に示す角速度センサは、x振動子2,3の質量中心に、バネ部であるループ1が連続してそれらを浮動支持するので、振動質量(2,3)の自身の変形によるばね効果の変化が実質上なく、x振動子2,3のx振動は、単振動に近くなる。ばね(1)の長さを変えることなく全体の大きさを小さくできる。x振動子2,3に加わるx励振の駆動力がループ1との接続点(一点)に加わるため、振動のモードにねじれ等の成分が発生しにくく、x振動が単振動になる。
【0036】
また、図1に示す角速度センサは、双共振のx振動系としているため、x振動子2,3の振幅が増幅され変化が大きく取れる。これにより、少ないエネルギーで駆動できるため、低コスト化できる。変位出力を大きく取れるため、S/Nが向上する。
【0037】
更に、図1に示す角速度センサの、双共振のそれぞれの振動モードの不動点が重心Oであり、かつx振動子2,3が該重心O(単一点)で支持されている。これにより、x振動の振動漏れが原理上発生しないため、検出振動yの増幅率を大きく取れる。検出振動yに不要な振動を誘起しないので、角速度信号のS/Nが向上する。駆動振動に不要な振動が誘起されず、単振動で駆動できる。そのためS/Nが向上する。
【0038】
また、図1に示す角速度センサの、x振動系およびy振動系の重心のそれぞれが一点Oであって、同一点であるので、温度による熱膨張の影響によりバネ部(1,4,7,8)に応力の負荷が発生せず、温度特性がよくなる。特に、車載等、温度変化が大きい環境で使用する場合に、角速度検出の信頼性(安定性)が高い。
【0039】
また、図1に示す角速度センサの、バネ部(1,4,7,8)がすべて折り曲げ形状にて形成されているので、温度による熱膨張の影響によりバネ部に応力の負荷が発生せず、温度特性がよくなる。同じ共振周波数で比べると外形を小さくできるため、低コストである。
【0040】
また、x駆動振動のばねには応力緩和のばね(41,42)が追加されている。これによりx駆動振動の非線型性が改善され、単振動で振動するためS/Nが向上する。
【0041】
また、角速度が加わっていないとき、検出振動子5,6は実質上静止であり検出振動yに駆動振動xとの共振がないため、検出振動yが単振動し、角速度信号のS/Nが向上する。
【0042】
x振動子2,3の検出方向yの検出変位より、検出振動子5,6のy検出変位の方が大きく設計されている(2,3より5,6の質量の方が小さい)ので、x駆動振動へのy検出振動の影響が相対的に低減し、しかも角速度信号のS/Nが向上する。不動点Oに対する検出振動子5,6の質量中心(53,63)のx距離を大きくして、てこの原理により検出振動子5,6のy方向変位を大きくできるため、角速度検出信号のS/Nを高くすることができる。
【0043】
図1に示す角速度センサの検出振動子5,6は、y方向のばね性(可撓性)が高い可撓梁71,72を介して剛体に近いフレーム(74,75)で支持されている。検出振動子5,6がねじれ回転のモードではなく互いに平行でかつ逆相でy振動するため、検出振動yを静電容量で検出する場合、理想的な正弦出力がえられ、角速度信号のS/Nが向上する。
【0044】
図1に示す角速度センサは、リソグラフを用いる半導体プロセスにて、シリコンウェ−ハ上に構成でき従来の半導体プロセスにて製作可能なため、低コストで生産しうる。浮動体(4,1〜3/5〜8)が1枚板から形成され、半導体プロセスにて簡単に造形でき、低コストで生産しうる。
【0045】
図6に、図1に示す角速度センサの変形例の、図1のものとは異った構造部を示す。この変形例では、図1に示す浮動体アンカー120とx梁46との間に、追加のループ47とy梁48を介挿し、これらでx梁46をアンカー120に連結している。
【0046】
図7に、この変形例の振動系の概要を模式的に示す。この変形例では、ループ47を付加しているので、ねじれ振動の伝播は図1の実施例と同様に効果的に行ない、励振振動xの遮断は、図1の実施例よりも効果的である。すなわち、x振動子2,3のx振動を、検出振動子5,6や基板100に伝えない効果が高い。
【図面の簡単な説明】
【図1】 本発明の一実施例の平面図である。
【図2】 図1のA2−A2線拡大断面図である。
【図3】 図1に示す実施例を励振し角速度信号を得るための電気回路を示すブロック図である。
【図4】 図3に示す駆動回路a1〜a4,b1〜b4が、x励振用の駆動電極91〜94に印加する電圧を示すタイムチャ−トである。
【図5】 図1に示す角速度センサの振動系の構成概要を模式的に示す平面図であり、(a)は角速度が加わっていない状態を、(b)は角速度が加わっている状態を示す。
【図6】 図1に示す角速度センサの変更部を示す平面図である。
【図7】 図6に変更部を示す角速度センサの振動系の構成概要を模式的に示す平面図である。
【符号の説明】
1:第2ループ
11〜14:x,y平行辺
2,3:x振動子
21,22,31,32:x振動子
4:第1支持梁
41,42:可撓性長方形ループ
43,44:yアーム
45:第1ループ
46:x梁
47:追加のループ
48:y梁
5,6:検出振動子
51,52/61,62:半片
7,8:検出振動子支持用の梁
9A,9B,91〜94:駆動検出電極
10A,10B,101〜104:駆動電極
100:基板
120:浮動体アンカー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an angular velocity sensor including a vibrating body that is floatingly supported with respect to a substrate. In particular, although not intended to be limited to this, a floating semiconductor thin film formed by using a semiconductor microfabrication technique is formed with a comb-tooth electrode. The present invention relates to an angular velocity sensor that is electrically attracted / released and excited in the x direction.
[0002]
[Prior art]
A typical example of this type of angular velocity sensor is provided with one set of floating comb electrodes (left floating comb electrode and right floating comb electrode) on the left side and one set on the right side of the floating thin film, and fixed comb teeth. There are also two pairs of electrodes (left fixed comb electrode and right fixed comb electrode that are in contact with and in parallel with each set of floating comb electrodes) and between the left floating comb electrode / left fixed comb electrode and the right floating comb electrode. By alternately applying a voltage between the tooth electrode / right-side fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z axis is applied to the floating thin film, a Coriolis force is applied to the floating thin film, and the floating thin film becomes elliptical vibration that vibrates in the y direction. If the floating thin film is a conductor or an electrode is joined, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the electrostatic capacitance between the detection electrode and the floating thin film is reduced by elliptic vibration. It vibrates corresponding to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be obtained (for example, Japanese Patent Laid-Open Nos. 5-248882, 7-218268, 8-152327, and 9). -127148, JP-A-9-42973).
[0003]
[Problems to be solved by the invention]
In the conventional angular velocity sensor, the anchor portion is divided into multiple points, and since there is a distance between them, a compressive or tensile stress is applied when an external force such as a temperature change is applied to the beam spring portion that causes the vibrator to perform simple vibration. Therefore, the resonance frequency changes with temperature, and has a characteristic having hysteresis and discontinuity. That reduces the accuracy of the sensor. For example, such as disclosed in JP-A-7-218268, the conventional angle sensor anchor portion is divided into multiple points, vibrations during driving because of the distance between the anchors is also currently being on the vibration of the detection side, therefore the precision It is thought that it will decrease. Also, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-218268, when the fixed points of the driving vibration mode and the detection vibration mode do not match, the angular velocity detection accuracy is improved if there is an influence of mutual vibration leakage and external force. It is thought to decline. If the vibration mode of the drive includes a vibration component that reduces vibration due to Coriolis force, the angular velocity detection output is small. The amplitude of a conventional vibrator is different between the + x direction and the −x direction, and the vibration may become unstable and may not be established as a sensor.
[0004]
It is an object of the present invention to stabilize the continuous vibration of a vibrator and increase the angular velocity detection accuracy.
[0005]
[Means for Solving the Problems]
(1) The angular velocity sensor of the present invention is a pair of x oscillators (2, 3) at symmetrical positions with respect to a point O on the x, y plane;
a connecting beam (1) distributed in the x, y plane, symmetrical with respect to the point O, continuous to each of the pair of x oscillators (2,3) and bent at least in the x direction;
A first support beam (4) symmetrical to point O, including a first flexible beam (41, 42) continuous to the connecting beam and deflected in the x and y directions between point O and the connecting beam;
Detecting oscillator symmetrical about point O (5/6);
A second support beam (7/8) symmetrical to point O, including a second flexible beam (71, 72/81, 82) which is continuous with the detection vibrator and bends in the y direction between point O ;
A loop (45) about point O, in which the first flexible beam (41, 42) and the second flexible beam (71, 72/81, 82) are continuous ;
An anchor (120) supporting the center of the loop (45) at point O;
Excitation means (10A, 10B) for oscillating and driving the pair of x vibrators (2, 3) in the opposite phase in the x direction; and
Means (111, 112) for detecting the y-direction vibration of the detection vibrator (5/6);
Is provided. In addition, in order to make an understanding easy, the code | symbol of the corresponding element of the Example shown in drawing and mentioned later is added to the parenthesis for reference.
[0006]
According to this, the anchor (120) at one point O supports the pair of x vibrators (2, 3) via the first support beam (4) and the connecting beam (1), and also the second support. Since the detection vibrator (5/6) is supported via the beam (7/8), that is, the stationary support point of the pair of x vibrators (2, 3) and the stationary support of the detection vibrator (5/6) Since the points are both one and the same, the following advantages are obtained:
1. In the conventional point support with multiple anchors, stress was applied to the beam portion of the x vibrator due to the influence of the deflection of the base supporting the anchor due to the temperature of the support environment, self-heating of the x vibrator, or external force. However, in the present invention, since it is supported at one point O as described above, the stress as described above is not applied to the beam. Therefore, the discontinuous shift and hysteresis of the resonance frequency due to disturbance etc. are reduced.
2. Since the stationary point of the x oscillator system and the detection oscillator system is the point O and is supported at the point O, the vibration leakage between the x oscillator system and the detection oscillator system is reduced, so that the angular velocity is detected. Accuracy is improved, and
3. The first support beam (4) supported by the anchor at the point O includes the first flexible beam (41, 42/43, 44) which is bent in the x and y directions. The first support beam (4) includes Since the connecting beam (1) is continuous and the connecting beam is bent in the x direction and is continuous with the pair of x vibrators (2, 3), the pair of x vibrators (2, 3) is x Easy to vibrate in the direction. Thus, since the excitation means (10A, 10B) drives the pair of x vibrators (2, 3) that are symmetric with respect to the point O to vibrate in the opposite direction in the x direction, the x drive vibration is almost a single vibration. The vibration in the detection direction y is not applied to the detection vibrator, and therefore the angular velocity detection accuracy is improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
(2) The detection vibrators (5/6) are separated from each other in the x direction from the y axis and are symmetric with respect to the point O and make a pair. When an angular velocity about the z axis passing through the point O and perpendicular to the x and y axes is applied to the sensor, each x vibration of the pair of x vibrators (2, 3) becomes an elliptical vibration having a y vibration component. The connecting beam (1) generates torsional vibration around the z axis. This torsional vibration propagates to the second support beam (7, 8), and the torsional vibration causes the pair of detection vibrators (5, 6) to pass through the second flexible beam (71, 77/81, 87). Vibrates in opposite directions, but the detection transducers (5, 6) are separated from the y axis in the x direction, so their y amplitude due to torsional vibration is proportional to the distance from the y axis. Therefore, the y vibration of the detection vibrator (5, 6) with respect to the angular velocity value is large, and the angular velocity detection accuracy is high.
[0008]
(3) The second support beam (7, 8) surrounds the detection vibrator (5, 6) and the second flexible beam (71, 77/81, 87) distributed on the x, y plane and The reinforcing beam (74, 75/84, 85) is supported by the anchor (120) continuously to the flexible beam. With this reinforcing beam (74,75 / 84,85), the detection vibrator (5,6) is supported in the form of both ends (balanced support) via the second flexible beam (71,77 / 81,87). Therefore, the detection vibrator (5, 6) easily performs y-direction simple vibration, the y-direction vibration is stable, and the angular velocity detection accuracy and stability are high.
[0009]
(4) The connecting beam (1) has a loop shape with the point O as the center of the loop. As a result, sensor elements are arranged in a compact manner, such as placing the detection vibration system (or x vibration system) inside the loop (the space inside the loop of the connecting beam 1) and the x vibration system (detection vibration system) outside the loop. Yes. In addition, the excitation means (10A, 10B) drives the pair of x vibrators (2, 3) to vibrate in the opposite direction in the x direction, that is, the pair of x vibrators (2, 3) is used as a tuning fork. However, since the first support beam (4) includes the first flexible beam (41, 42/43, 44) which is bent in the x and y directions, the connecting beam (1) is easily bent in the y direction, and the x reverse The loop of the connecting beam (1) easily expands and contracts in the y direction due to the phase vibration, and the reverse phase x vibration of the pair of x vibrators (2, 3) is easy. For example, when an x driving external force is applied to the x vibrator (2, 3) by electrostatic driving by the excitation means (10A, 10B), the x vibrator (2, 3) is likely to resonate in a reverse phase.
[0010]
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
[0011]
【Example】
FIG. 1 shows a mechanism element according to an embodiment of the present invention. The silicon substrate 100 on which the insulating layer is formed has a floating anchor 120 made of polysilicon containing impurities for making it conductive (hereinafter referred to as conductive polysilicon), and anchors of a large number of drive electrodes 91 to 94 and a large number of anchors. Anchors of the detection electrodes 111 and 112 are joined, and these anchors are connected to connection electrodes (not shown) by wiring formed on the insulating layer on the silicon substrate 100.
[0012]
Using a lithographic semiconductor process, a conductive polysilicon floating x from the silicon substrate 100 and continuing to the floating anchor 120, a central x-beam 46 extending in the x-direction and a rectangular shape centered on the anchor 120 and continuous thereto. A first loop 45 is formed.
[0013]
The first support beam 4 (y arms 43 and 44 and flexible rectangular loops 41 and 42) extends in the y direction from the intersection of the first loop 45 with the y axis passing through the center O of the anchor 120, and the loop 41, The rectangular second loop 1 (x parallel sides 11 and 12 and y parallel sides 13 and 14) is continuous with the first support beam 4 at the intersection of 42 and the y axis. At the intersection of the y parallel sides 13 and 14 with the x axis, the first x vibrators 21 and 22 and the second x vibrators 31 and 32 that are continuous to them are continuous. These elements also float from the silicon substrate 100 and are the same conductive polysilicon as the first loop 45, are supported by the anchor 120 at the center O, and float from the substrate 100.
[0014]
The first x oscillators 21 and 22 are symmetrical with respect to the y parallel side 13 of the second loop 1 and are in a symmetrical position. The second x oscillators 31 and 32 are the first x oscillators 31 and 32 with respect to the y axis. It is symmetrical with the x vibrators 21 and 22 and is in a symmetrical position. These x vibrators 21, 22, 31 and 32 are also symmetric with respect to the x axis passing through the center O.
[0015]
These x vibrators 21, 22/31, 32 have comb-like movable electrodes 23, 33 distributed at equal pitches in the y direction and projecting in the x direction. The silicon drive electrodes 10A and 10B (91 to 94) and the drive detection electrodes 9A and 9B (101 to 104) also have comb-like fixed electrodes protruding into the space of the movable electrodes 23 and 33 in the y-direction distribution. Distributed in the direction.
[0016]
By alternately applying a voltage higher than the potential of the x vibrator 2 (substantially the device ground level) to the drive electrodes 10A, 10B 91, 93 and 92, 94, the x vibrator 2 vibrates in the x direction. Due to this x vibration, the electrostatic capacitance between the x vibrator 2 and the drive detection electrodes 9A, 9B 101, 103 vibrates, and between the x vibrator 2 and 102, 104 in an opposite phase to the capacitive vibration. Oscillates.
[0017]
The x vibrator 3 has a shape and position that is symmetric with respect to the x vibrator 2 with respect to the y axis, and a drive electrode for driving the x vibrator 3 (one that is symmetrical with 10A and 10B with respect to the y axis) By applying a drive pulse having a phase opposite to that of the x vibrator 2 drive pulse, the x vibrator 3 vibrates in the x direction with a phase opposite to that of the x vibrator 2, and the x vibrator 3 and the drive detection electrode (9A with respect to the y axis) , 9B, which is symmetrically located) vibrates. By setting the drive pulse to the resonance frequency of the vibrators 2 and 3, the x vibrators 2 and 3 generate resonance tuning fork vibration, and perform x vibration with high energy consumption efficiency.
[0018]
Due to this x vibration, the midpoints of the y parallel sides 13 and 14 of the rectangular second loop 1 vibrate similarly to the x vibrators 2 and 3. As a result, the left and right ends of the x parallel sides 11 and 12 (continuous contact with the y parallel side) vibrate in the direction of about 45 degrees with respect to the x and y axes, but the midpoints of the x parallel sides 11 and 12 (y axis) The x parallel sides 11 and 12 are symmetrical with respect to each other, so that the vibration does not vibrate in the x direction and vibrates only in the y direction. However, since the flexible rectangular loops 41 and 42 absorb the y vibration, the y vibration hardly propagates to the y arms 43 and 44, and the x parallel side of the first loop 45 is slightly in the y direction even if it vibrates. And does not vibrate in the x direction. Since the center x beam 46 continues to the first loop 45 at the midpoint of the y parallel side of the first loop 45, even if the x parallel side of the first loop 45 vibrates in the y direction, the center x beam 46 is It does not vibrate in the x direction and of course does not vibrate in the y direction. Therefore, no x vibration is applied to the anchor 120. Regarding the x excitation of the x oscillators 2 and 3, the anchor 120 (center O) is a stationary point. As a result, the anchor 120 supports the x oscillators 2 and 3 at the stationary point.
[0019]
The y point of the y arm 73 of the beam 7 for supporting the detection vibrator is located at the midpoint of the above-mentioned parallel side of the first loop 45 that does not vibrate in the x and y directions with respect to the x excitation of the x vibrators 2 and 3. The center of the direction is continuous, the U-shaped flexible beams 71 and 72 are continuous with the y-direction end portion of the y arm 73, and the half pieces of the first detection vibrator 5 are connected to the flexible beams 71 and 72. 51 and 52 are continuous. These half pieces 51 and 52 are continuous with a trunk (y arm) 53 of the vibrator, and the first detection vibrator 5 has a symmetrical shape with respect to the x-axis. Further, with respect to the trunk 53, there are flexible beams 77 and 78 and y arms 76 that are symmetrical to the flexible beams 71 and 72 and the y arm 73, and these are also continuous with the half pieces 51 and 52. A y-arm 75 for reinforcement is continuous with the y-direction midpoint of the y-arm 76 (intersection with the x-axis), and the y-parallel side is continuous with the y-direction end of the y-arm 75. 74, the y arm 74 is continuous with the y parallel side of the first loop 45. These reinforcing members 75 and 74 also exist symmetrically with respect to the x axis.
[0020]
The second detection vibrator 6 and the support beam 8 are symmetrical to the first detection vibrator 5 and the support beam 7 with respect to the y axis, and are present at symmetrical positions. The detection vibrators 5 and 6 and the support beams 7 and 8 are point-symmetric with respect to the center O and distributed symmetrically with respect to both the x and y axes.
[0021]
The detection vibrators 5 and 6 and the beams 7 and 8 that support them are also made of conductive polysilicon and have substantially the same potential as the anchor 120. The half pieces 51, 52/61 and 62 of the detection vibrators 5 and 6 are roughly rectangular loops, but the movable electrode connecting beam connecting the opposite y parallel sides and parallel to the x axis is substantially in the y direction. There is a pair of conductive polysilicon fixed detection electrodes 111 and 112 distributed at an equal pitch and in each space between the crossing beams, and supported by and electrically connected to the respective anchors for the detection electrodes on the substrate 100. Continuous (in electrical connection). FIG. 2 shows an enlarged cross section taken along line A2-A2 of FIG.
[0022]
Referring to FIG. 1 again, the pair of detection electrodes 111 and 112 are insulated, but each counter electrode for detecting y movement of the first detection vibrator 5 is in a corresponding position between each pair. Some detection electrodes are connected in common. The same applies to each counter electrode for detecting y movement of the second detection transducer 6.
[0023]
When the x vibrators 2 and 3 vibrate in the x direction with opposite phases, for example, when an angular velocity about an axis parallel to the z axis passing through the center O is applied, the vibrations of the x vibrators 2 and 3 become y components. The torsional vibration around the z-axis appears in the second loop 1, and the torsional vibration around the z-axis also appears in the first loop 45. As a result, the arms 73, 76/83, and 86 vibrate in the y direction, and the detection vibrators 5 and 6 vibrate in the y direction. However, the y vibrations of the detection vibrators 5 and 6 are in opposite phases.
[0024]
FIG. 3 shows an electric circuit connected to the angular velocity sensor shown in FIG. The timing signal generator TSG generates a driving pulse signal for driving the x vibrators 2 and 3 in the x direction in the opposite phase at the resonance frequency, and supplies the driving pulse signals to the driving circuits a1 to a4 and b1 to b4. The signal is given to the synchronous detection circuits e1 to e5.
[0025]
FIG. 4 shows voltages applied to the drive electrodes (10A, 10B: 91 to 94) by the drive circuits a1 to a4 and b1 to b4 in synchronization with the drive pulse signal. As a result, the x vibrators 2 and 3 perform the tuning fork vibration in the opposite phase in the x direction.
[0026]
Due to the x vibration of the x vibrator 2, the capacitance of the drive detection electrodes (9 </ b> A) opposite to each other (101 and 103) vibrates in the opposite phase. The differential amplifiers c1 to c8 (c1) differentially amplify the electrostatic capacity signal generated by the preamplifier, which represents the vibration of the electrostatic capacity, and substantially reduce the amplitude of the electrostatic capacity signal generated by one preamplifier. A differential signal that is doubled to cancel the noise is generated and applied to the differential amplifiers d1 to d4. One differential amplifier (d1) is provided with differential signals of two differential amplifiers (c1, c2) having opposite phases to each other, and these differential signals are supplied to the differential amplifier (d1). Is provided to the synchronous detection circuits e1 to e4 (e1). The synchronous detection circuits e1 to e4 (e1) detect the differential signal provided by the differential amplifier (d1), that is, the x vibration detection voltage representing the x vibration in synchronization with the synchronous signal in phase with the drive pulse signal, and drive pulse A signal representing a phase shift of x vibration with respect to the signal is generated and applied to the feedback processing circuit FCR.
[0027]
The feedback processing circuit FCR sends to the drive circuits a1 to a4, b1 to b4 (a1, b1) phase shift signals for adjusting the phase shift signal levels given by the synchronous detection circuits e1 to e4 (e1) to the set values. The drive circuit that receives the signal shifts the phases of the output drive voltages V1 to V8 (V1, V2) with respect to the drive pulse signal in response to the phase shift signal. The resonance tuning fork vibrations of the x vibrators 2 and 3 become stable in a state where all the phase shift signal levels of the synchronous detection circuits e1 to e4 are substantially set values.
[0028]
When an angular velocity about an axis parallel to the z axis passing through the center O is applied during stable resonance tuning fork vibration, a negative y vibration appears in the detection vibrators 5 and 6, and the amplitude becomes the absolute value of the angular velocity. Correspondingly, the sign of the phase difference (± 180 degrees) between the detection vibrators 5 and 6 corresponds to the direction of the angular velocity.
[0029]
The capacitance of the pair of detection electrodes (111, 112) for detecting the y vibration of the detection vibrators 5, 6 (5) vibrates in a relatively opposite phase due to the y vibration, and a capacitance signal representing this is obtained. The differential amplifiers c9 and c10 (c9) generated by the preamplifier have the differential signal of both signals, that is, the differential signal in which the amplitude of the electrostatic capacitance signal generated by one preamplifier is approximately doubled to cancel the noise, Is supplied to the differential amplifier d5.
[0030]
The differential amplifier d5 is supplied with the differential signals of the two differential amplifiers c9 and c10 having opposite phases to each other, and the differential amplifier d5 supplies the differential signals to the synchronous detection circuit e5. The synchronous detection circuit e5 detects a differential signal provided by the differential amplifier d5, that is, a y vibration detection voltage representing y vibration in synchronization with a synchronization signal in phase with the drive pulse signal, and generates a signal representing an angular velocity. The polarity (±) of the angular velocity signal indicates the direction of the added angular velocity, and the absolute value of the signal level indicates the magnitude of the angular velocity.
[0031]
As described above, detection of x vibration (drive feedback) and detection of y vibration (yaw rate) include noise caused by voltage pulses applied to the drive electrodes by the drive circuits a1 to a4 and b1 to b4. And the differential amplifiers c1 to c8 and d1 to d5 calculate the difference between the signals of the detection electrodes at symmetrical positions, so that the differential output related to noise due to x excitation is As shown in the lowermost row of FIG. 4, only the noise appearing at the rising and falling points of the drive pulse is present and is removed by the fundamental detection circuits e1 to e5. Thereby, the S / N of the x vibration feedback signal that is the output of the synchronous detection circuits e1 to e4 is high, and the S / N of the angular velocity signal that is the output of the synchronous detection circuit e5 is high.
[0032]
FIG. 5 schematically shows the outline of the vibration system of the angular velocity sensor shown in FIG. 1, and the characteristics of the angular velocity sensor shown in FIG. 1 will be described with reference to this. The angular velocity sensor has a tuning fork structure, and an x oscillator. 2 and 3 are vibrated in the opposite direction in the x direction. This state is shown in FIG. When an angular velocity is applied to the x vibrators 2 and 3 and the detection vibrators 5 and 6, the x vibrators 2 and 3 vibrate in the x direction. Vibrates in the y-direction perpendicular to. Since the detection vibrators 5 and 6 are stopped, no Coriolis force is received.
[0033]
When a Coriolis force is applied, the x vibrators 2 and 3 vibrate in the y direction, and their displacement in the y direction is proportional to the angular velocity.
y displacement = (angular velocity × oscillator velocity × oscillator mass) / y displacement which is a spring constant in the y direction. In the vibrators 2, 3/5, and 6, the vibration mode at the time of resonance in the detection direction y is that the x vibrators 2 and 3 are out of phase with each other, and the detection vibrators 5 and 6 are out of phase with each other. Coincides with the center of gravity O of the entire floating body of the angular velocity sensor. As a result, when the x vibrators 2 and 3 receive Coriolis force, the detection vibrators 5 and 6 vibrate in the y direction as shown in FIG. Note that the resonance frequency of the x vibrators 2 and 3 and the resonance frequency of the detection vibrators 5 and 6 are higher than the resonance frequency of the x vibrators 2 and 3 from the balance of sensitivity and compatibility. The resonance frequency is set slightly higher. From the relationship between the masses of the x vibrators 2 and 3, the masses of the detection vibrators 5 and 6, and the spring constants in the respective detection directions y, the x vibrators 2 and 3 are configured to be hardly displaced in the y direction. Instead, the detection vibrators 5 and 6 are greatly displaced. As described above, the accuracy (S / N ratio) of this sensor can be improved because the leakage (crosstalk) between the vibrations of the drive (x) and the detection (y) is small in principle.
[0034]
In addition, unlike the conventional structure, this structure is not designed to forcibly suppress vibrations, and is therefore a structure that is resistant to the effects of stress and temperature changes. In addition, since the fixed point of vibration for driving and detection almost coincides with the center of gravity of the sensor, and when subjected to Coriolis force as described above, it does not involve any rotational movement at all, so the center of gravity does not have any support. In position, the support point is stationary. Therefore, since external vibration (when mounted on a vehicle or the like) hardly affects the driving vibration and detection vibration of the sensor, the S / N ratio is improved as compared with the conventional type. Further, since the support is as described above, there is little influence of thermal expansion due to temperature or the like, and temperature correction can be reduced. Therefore, the S / N ratio is improved as compared with the conventional type.
[0035]
In the angular velocity sensor shown in FIG. 1, the loop 1 which is a spring portion continuously floats and supports the center of the mass of the x vibrators 2 and 3, so that the spring effect due to the deformation of the vibration mass (2, 3) itself. Is substantially unchanged, and the x vibrations of the x vibrators 2 and 3 are close to simple vibrations. The overall size can be reduced without changing the length of the spring (1). Since the driving force of x excitation applied to the x vibrators 2 and 3 is applied to the connection point (one point) with the loop 1, components such as torsion are hardly generated in the vibration mode, and the x vibration becomes a single vibration.
[0036]
Further, since the angular velocity sensor shown in FIG. 1 is a bi-resonant x vibration system, the amplitude of the x vibrators 2 and 3 is amplified and a large change can be obtained. Thereby, since it can drive with little energy, it can reduce cost. Since the displacement output can be increased, S / N is improved.
[0037]
Furthermore, the fixed point of each vibration mode of the dual resonance of the angular velocity sensor shown in FIG. 1 is the center of gravity O, and the x vibrators 2 and 3 are supported by the center of gravity O (single point). Thereby, since the vibration leakage of x vibration does not occur in principle, the amplification factor of the detected vibration y can be increased. Since unnecessary vibration is not induced in the detected vibration y, the S / N of the angular velocity signal is improved. Unnecessary vibration is not induced in the drive vibration, and the drive can be driven with a single vibration. Therefore, S / N is improved.
[0038]
In addition, since each of the gravity centers of the x vibration system and the y vibration system of the angular velocity sensor shown in FIG. 1 is one point O, which is the same point, the spring portions (1, 4, 7, 8) No stress is applied and the temperature characteristics are improved. In particular, the reliability (stability) of angular velocity detection is high when used in an environment with a large temperature change, such as in-vehicle.
[0039]
Further, since the spring portions (1, 4, 7, 8) of the angular velocity sensor shown in FIG. 1 are all formed in a bent shape, no stress load is generated on the spring portion due to the influence of thermal expansion due to temperature. The temperature characteristics are improved. Compared with the same resonance frequency, the outer shape can be reduced, so that the cost is low.
[0040]
In addition, springs (41, 42) for stress relaxation are added to the x-drive vibration springs. As a result, the non-linearity of the x drive vibration is improved, and the S / N is improved because the vibration is caused by a single vibration.
[0041]
When the angular velocity is not applied, the detection vibrators 5 and 6 are substantially stationary, and the detection vibration y does not resonate with the drive vibration x. Therefore, the detection vibration y singly vibrates and the S / N of the angular velocity signal is reduced. improves.
[0042]
Since the y detection displacement of the detection vibrators 5 and 6 is designed to be larger than the detection displacement of the detection directions y of the x vibrators 2 and 3 (the masses of 5 and 6 are smaller than those of 2 and 3), The influence of the y detection vibration on the x drive vibration is relatively reduced, and the S / N of the angular velocity signal is improved. Since the x distance of the mass centers (53, 63) of the detection vibrators 5, 6 with respect to the fixed point O can be increased, and the displacement in the y direction of the detection vibrators 5, 6 can be increased by the lever principle, the S of the angular velocity detection signal / N can be increased.
[0043]
The detection vibrators 5 and 6 of the angular velocity sensor shown in FIG. 1 are supported by frames (74 and 75) close to a rigid body via flexible beams 71 and 72 having high spring property (flexibility) in the y direction. . Since the detection vibrators 5 and 6 are not in the torsional rotation mode but are vibrated in parallel with each other and in opposite phases, an ideal sine output is obtained when the detected vibration y is detected by capacitance, and the angular velocity signal S / N is improved.
[0044]
The angular velocity sensor shown in FIG. 1 can be constructed on a silicon wafer by a semiconductor process using a lithograph and can be manufactured by a conventional semiconductor process, so that it can be produced at a low cost. A floating body (4, 1-3 / 5 to 8) is formed from a single plate, can be easily shaped by a semiconductor process, and can be produced at low cost.
[0045]
FIG. 6 shows a structure of a modification of the angular velocity sensor shown in FIG. 1 different from that shown in FIG. In this modification, an additional loop 47 and a y beam 48 are interposed between the floating anchor 120 and the x beam 46 shown in FIG. 1, and the x beam 46 is connected to the anchor 120 by these.
[0046]
FIG. 7 schematically shows the outline of the vibration system of this modification. In this modification, since the loop 47 is added, the torsional vibration is effectively propagated similarly to the embodiment of FIG. 1, and the excitation vibration x is cut off more effectively than the embodiment of FIG. . That is, the effect of not transmitting the x vibration of the x vibrators 2 and 3 to the detection vibrators 5 and 6 and the substrate 100 is high.
[Brief description of the drawings]
FIG. 1 is a plan view of an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view taken along line A2-A2 of FIG.
FIG. 3 is a block diagram showing an electric circuit for exciting the embodiment shown in FIG. 1 and obtaining an angular velocity signal.
4 is a time chart showing voltages applied to drive electrodes 91 to 94 for x excitation by drive circuits a1 to a4 and b1 to b4 shown in FIG.
5 is a plan view schematically showing a configuration outline of a vibration system of the angular velocity sensor shown in FIG. 1. FIG. 5 (a) shows a state where no angular velocity is applied, and FIG. 5 (b) shows a state where an angular velocity is added. .
6 is a plan view showing a changing portion of the angular velocity sensor shown in FIG. 1. FIG.
FIG. 7 is a plan view schematically showing a configuration outline of a vibration system of an angular velocity sensor showing a change unit in FIG. 6;
[Explanation of symbols]
1: 2nd loops 11-14: x, y parallel sides 2, 3: x vibrators 21, 22, 31, 32: x vibrators 4: first support beams 41, 42: flexible rectangular loops 43, 44 : Y arm 45: first loop 46: x beam 47: additional loop 48: y beam 5, 6: detection vibrator 51, 52/61, 62: half piece 7, 8: beam 9A for supporting the detection vibrator, 9B, 91-94: Drive detection electrodes 10A, 10B, 101-104: Drive electrode 100: Substrate 120: Floating body anchor

Claims (4)

x,y平面上の一点Oに関して対称な位置にある、対のx振動子;
x,y平面に分布し、点Oに関して対称であって、対のx振動子のそれぞれに連続し、少くともx方向に撓む連結梁;
連結梁に連続し、かつ点Oと連結梁との間にx,y方向に撓む第1可撓梁を含む、点Oに関して対称な第1支持梁;
点Oに関して対称な検出振動子;
検出振動子に連続し、かつ点Oとの間にy方向に撓む第2可撓梁を含む、点Oに関して対称な第2支持梁;
第1可撓梁および第2可撓梁が連続する、点Oを中心とするループ;
点Oにおいて前記ループの中心を支持するアンカー;
点Oにおいて第1支持梁および第2支持梁を支持するアンカー;
対のx振動子を、x方向に逆相で振動駆動する励振手段;および、
検出振動子のy方向振動を検出する手段;
を備える角速度センサ。
a pair of x oscillators at positions symmetrical about a point O on the x, y plane;
a connecting beam distributed in the x, y plane, symmetrical about the point O, continuous to each of the pair of x-vibrators and deflected at least in the x direction;
A first support beam that is symmetric with respect to point O and includes a first flexible beam continuous to the connecting beam and deflected in the x and y directions between point O and the connecting beam;
A detection oscillator symmetric with respect to point O;
A second support beam that is symmetric with respect to point O and includes a second flexible beam that is continuous with the detection transducer and that deflects in the y direction between point O and the point O;
A loop centered at point O, the first flexible beam and the second flexible beam being continuous;
An anchor supporting the center of the loop at point O;
An anchor supporting the first support beam and the second support beam at point O;
Excitation means for oscillating and driving a pair of x-oscillators in opposite directions in the x direction;
Means for detecting vibration in the y direction of the detection vibrator;
An angular velocity sensor comprising:
検出振動子は、それぞれがy軸からx方向に離れ、点Oに関して対称な位置にあって対をなすものである、請求項1記載の角速度センサ。  2. The angular velocity sensor according to claim 1, wherein the detection vibrators are separated from each other in the x direction from the y axis and are in a symmetrical position with respect to the point O and are paired. 第2支持梁は、x,y平面上に分布する検出振動子および第2可撓梁を包囲し第2可撓梁に連続してアンカーで支持された補強梁を含む、請求項1記載の角速度センサ。  The second support beam includes a detection vibrator distributed on the x, y plane and a reinforcing beam surrounding the second flexible beam and supported by an anchor continuously to the second flexible beam. Angular velocity sensor. 連結梁は、点Oをループ中心とするループ状である、請求項1,請求項2又は請求項3記載の角速度センサ。  The angular velocity sensor according to claim 1, wherein the connecting beam has a loop shape with the point O as a center of the loop.
JP17187098A 1998-06-18 1998-06-18 Angular velocity sensor Expired - Fee Related JP3882972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17187098A JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17187098A JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JP2000009471A JP2000009471A (en) 2000-01-14
JP3882972B2 true JP3882972B2 (en) 2007-02-21

Family

ID=15931328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17187098A Expired - Fee Related JP3882972B2 (en) 1998-06-18 1998-06-18 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3882972B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403495A (en) * 2010-09-18 2013-11-20 快捷半导体公司 Flexure bearing to reduce quadrature for resonating micromachined devices
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
CN103403495B (en) * 2010-09-18 2016-12-14 快捷半导体公司 Reduction for the microfabrication device that resonates turns to poor flexure support
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363786B1 (en) * 1999-05-13 2002-12-11 삼성전기주식회사 Microgyrocrope
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
FR2876180B1 (en) * 2004-10-06 2006-12-08 Commissariat Energie Atomique RESONATOR WITH OSCILLATING MASSES.
JP5070778B2 (en) 2006-09-20 2012-11-14 株式会社デンソー Mechanical quantity sensor
DE102007030120B4 (en) * 2007-06-29 2010-04-08 Litef Gmbh Yaw rate sensor
JP4631992B2 (en) * 2008-01-07 2011-02-16 株式会社村田製作所 Angular velocity sensor
JP2013145189A (en) * 2012-01-16 2013-07-25 Seiko Epson Corp Gyro sensor and electronic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263113B2 (en) * 1992-03-06 2002-03-04 株式会社東芝 Inertial sensor
JP3077077B2 (en) * 1994-01-28 2000-08-14 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド Inertial rate sensor
DE4442033C2 (en) * 1994-11-25 1997-12-18 Bosch Gmbh Robert Yaw rate sensor
JP3385759B2 (en) * 1994-11-30 2003-03-10 株式会社デンソー Semiconductor yaw rate sensor and method of manufacturing the same
JP3409520B2 (en) * 1995-08-01 2003-05-26 日産自動車株式会社 Angular velocity sensor
DE19530007C2 (en) * 1995-08-16 1998-11-26 Bosch Gmbh Robert Yaw rate sensor
JP3307200B2 (en) * 1995-11-01 2002-07-24 株式会社村田製作所 Angular velocity sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
CN103403495B (en) * 2010-09-18 2016-12-14 快捷半导体公司 Reduction for the microfabrication device that resonates turns to poor flexure support
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
CN103403495A (en) * 2010-09-18 2013-11-20 快捷半导体公司 Flexure bearing to reduce quadrature for resonating micromachined devices
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress

Also Published As

Publication number Publication date
JP2000009471A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP3882973B2 (en) Angular velocity sensor
JP3882972B2 (en) Angular velocity sensor
JP4075022B2 (en) Angular velocity sensor
JP4290986B2 (en) Rotation rate sensor
KR101166866B1 (en) Mems gyroscope with horizontally oriented drive electrodes
US6321598B1 (en) Angular velocity sensor device having oscillators
US7546768B2 (en) Mounting structure of angular rate sensor
JP3805837B2 (en) Angular velocity detector
JP2000046560A (en) Angular velocity sensor
JPH10239347A (en) Motion sensor
JPH11337345A (en) Vibratory microgyrometer
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
JP2013210283A (en) Rollover gyro sensor
JPH10170275A (en) Vibratory angular velocity sensor
WO2013094208A1 (en) Vibration-type angular velocity sensor
JP2013096801A (en) Vibrating structure gyroscope with excellent output stability
JPH1164002A (en) Angular velocity sensor
JPH1144541A (en) Angular velocity sensor
JP2000009470A (en) Angular velocity sensor
JP7166371B2 (en) Angular rate sensor and sensor element
US11846651B2 (en) Electrostatic actuator and physical quantity sensor
JP2000074673A (en) Compound movement sensor
JP2000512019A (en) Small box type vibration gyroscope
JP4635345B2 (en) Angular velocity sensor
JP2012149961A (en) Vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees