JP2000046560A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JP2000046560A
JP2000046560A JP10217088A JP21708898A JP2000046560A JP 2000046560 A JP2000046560 A JP 2000046560A JP 10217088 A JP10217088 A JP 10217088A JP 21708898 A JP21708898 A JP 21708898A JP 2000046560 A JP2000046560 A JP 2000046560A
Authority
JP
Japan
Prior art keywords
point
vibration
vibrators
angular velocity
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10217088A
Other languages
Japanese (ja)
Inventor
Muneyuki Toge
宗志 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10217088A priority Critical patent/JP2000046560A/en
Publication of JP2000046560A publication Critical patent/JP2000046560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the detection precision of an angular velocity by making the continuous vibration of a vibrator stable. SOLUTION: This sensor is equipped with a couple of (x) vibrators 2 and 3 at positions symmetrical about a point O, coupling beams 11 and 14 which connect with the (x) vibrators 2 and 3 and bend at least in an (x) direction, a support beam 4 which connects with the coupling beams 11 and 14 and is symmetrical about the point O between the point O and coupling beams, detecting vibrators 5 and 6 which are distant from the point O in the (x) direction and symmetrical about the point O, and reinforcing beams 7 and 8 which connect with the detection vibrators 5 and are provided in the (x) vibrators and symmetrical about the point O, and an anchor which supports the support beam 4 at the point O.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板に対して浮動
支持された振動体を備える角速度センサに関し、特に、
これに限定する意図ではないが、半導体微細加工技術を
用いて形成される浮動半導体薄膜を櫛歯電極に電圧を印
加することによって、電気的に吸引または解放して、x
方向に励振させ、振動子の変位により角速度を検出する
角速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor having a vibrating body floatingly supported on a substrate.
Although not intended to be limited to this, the floating semiconductor thin film formed using the semiconductor microfabrication technology is electrically attracted or released by applying a voltage to the comb-teeth electrode, and x
The present invention relates to an angular velocity sensor which is excited in a direction and detects an angular velocity based on a displacement of a vibrator.

【0002】[0002]

【従来の技術】この種の角速度センサの代表的なもの
は、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛
歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備
え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触
で噛み合いかつ平行な左側固定櫛歯電極および右側固定
櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電
極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に
電圧を印加することにより、浮動薄膜がx方向に振動す
る。浮動薄膜に、z軸を中心とする回転の角速度が加わ
ると、浮動薄膜にコリオリ力が加わって、その結果、浮
動薄膜はy方向にも振動し、楕円振動となる。浮動薄膜
を導体としもしくは電極が接合したものとし、浮動薄膜
のxz平面に平行な検出電極を基板上に備えておくと、
この検出電極と浮動薄膜との間の静電容量が、楕円振動
のy成分(角速度成分)に対応して振動する。この静電
容量の変化(振幅)を測定することにより、角速度を求
めることが出来る(例えば特開平5−248872号公
報,特開平7−218268号公報,特開平8−152
327号公報,特開平9−127148号公報,特開平
9−42973号公報)。
2. Description of the Related Art A typical type of angular velocity sensor has a pair of floating comb electrodes (a left floating comb electrode and a right floating comb electrode) on the left side and one set on the right side of a floating thin film. And two sets of fixed comb electrodes (a left fixed comb electrode and a right fixed comb electrode that mesh with and are parallel to each set of floating comb electrodes in a non-contact manner) as left floating comb electrodes / left fixed comb electrodes. By alternately applying a voltage between the space and the right floating comb electrode / the right fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z-axis is applied to the floating thin film, Coriolis force is applied to the floating thin film, and as a result, the floating thin film also oscillates in the y direction, resulting in elliptical vibration. If the floating thin film is used as a conductor or electrodes are joined, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate,
The capacitance between the detection electrode and the floating thin film vibrates according to the y component (angular velocity component) of the elliptical vibration. By measuring the change (amplitude) of the capacitance, the angular velocity can be obtained (for example, JP-A-5-248872, JP-A-7-218268, and JP-A-8-152).
327, JP-A-9-127148 and JP-A-9-42973).

【0003】[0003]

【発明が解決しようとする課題】従来の角速度センサで
は、アンカー部が多点にわかれており、しかも、互いに
アンカー間の距離があるため振動子を単振動させる梁バ
ネ部に温度変化等の外力が加わると、圧縮あるいは引張
りの応力がかかる。そのため共振周波数が温度とともに
変化し、ヒステリシスと不連続点をもつ特性となり、セ
ンサ精度を低下させる。
In the conventional angular velocity sensor, the anchor portion is divided into multiple points, and furthermore, since there is a distance between the anchor portions, an external force such as a temperature change is applied to the beam spring portion which makes the vibrator simple vibration. , Compressive or tensile stress is applied. As a result, the resonance frequency changes with temperature, resulting in a characteristic having hysteresis and discontinuous points, which lowers the sensor accuracy.

【0004】例えば、特開平7−218268号公報に
開示のごとき、アンカー部が多点にわかれた従来の角度
センサでは、アンカー間に距離があるため駆動時の振動
が検出側の振動にもれ、そのため精度低下となることが
考えられる。また、例えば特開平7−218268号公
報に開示のある、駆動の振動モードと検出の振動モード
の不動点が不一致のものでは、互いの振動もれと外力の
影響があると角速度検出精度が低下すると考えられる。
また、駆動の振動モードにコリオリ力による振動を低減
させる振動成分を含むと、角速度検出の出力が小さい。
従来の振動子の振幅が、+x方向と−x方向とで異なっ
て振動が不安定になるときがあり、センサとして成立し
ないときがある。
For example, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-218268, in a conventional angle sensor in which the anchor portion is divided into multiple points, the vibration at the time of driving leaks to the vibration on the detection side due to the distance between the anchors. Therefore, accuracy may be reduced. Further, for example, in the one disclosed in Japanese Patent Application Laid-Open No. 7-218268, in which the fixed points of the driving vibration mode and the detection vibration mode do not match, the angular velocity detection accuracy is reduced due to mutual vibration leakage and external force. It is thought that.
Further, if the driving vibration mode includes a vibration component that reduces vibration due to Coriolis force, the output of angular velocity detection is small.
In some cases, the amplitude of the conventional vibrator is different between the + x direction and the −x direction, and the vibration is unstable, and the vibration may not be established as a sensor.

【0005】よって、本発明は振動子の連続振動を安定
なものとし、角速度検出精度を高くすることを技術的課
題とする。
Accordingly, it is a technical object of the present invention to stabilize continuous vibration of a vibrator and to increase angular velocity detection accuracy.

【0006】[0006]

【課題を解決するための手段】(1)本発明の角速度セ
ンサは、x,y平面上の一点Oに関して対称な位置にあ
る、対のx振動子(2/3)、x,y平面に分布し、点Oに
関して対称であって、対のx振動子(2/3)のそれぞれに
連続し、少くともx方向に撓む連結梁(11,14)、連結梁
(11,14)に連続し、点Oと連結梁との間にx,y方向
に撓む可撓梁(41,42,43,44)を含む、点Oに関して対称
な支持梁(4)、点Oからx方向に離れ、点Oに関して対
称な検出振動子(5/6)、検出振動子(5/6)に連続し、x
振動子(2/3)内に設けられ、点Oに関して対称な補強
梁(7,8/17,18)、点Oにおいて支持梁(43,44)を支持する
アンカー(120)、を備える。
(1) An angular velocity sensor according to the present invention includes a pair of x vibrators (2/3) and x, y planes symmetrically positioned with respect to a point O on the x, y plane. Distributed, symmetric with respect to the point O, connected to each of the paired x-vibrators (2/3), and connected to the connecting beams (11,14) and (11,14) which bend at least in the x-direction. A support beam (4) that is continuous and symmetrical with respect to the point O, including a flexible beam (41, 42, 43, 44) that bends in the x and y directions between the point O and the connecting beam. , The detection oscillator (5/6), which is symmetrical about the point O, continues to the detection oscillator (5/6), and x
It includes a reinforcing beam (7, 8/17, 18) provided in the vibrator (2/3) and symmetrical with respect to the point O, and an anchor (120) supporting the supporting beam (43, 44) at the point O.

【0007】これによれば、一点Oのアンカー(120)
が、可撓梁(41,42,43,44)を含む支持梁(4)および連結
梁(11,14)を介して対のx振動子(2/3)を支持するので、
対のx振動子(2/3)の不動支持点および検出振動子(5/6)
の不動支持点が共に一点であってしかも同一点であるの
で、次の利点が得られる: 1.従来の複数のアンカーによる点支持では、支持環境
温度あるいはx振動子の自己発熱,外力による、アンカ
ーを支持するベースのたわみによる影響で、従来はx振
動子の梁部に応力が加っていたが、点Oの一点で支持す
る構成により、上記のような応力がx振動体を支持する
梁に加わらない。そのため外乱等による共振周波数の不
連続なずれやヒステリシスが減少する。
According to this, the anchor of one point O (120)
Supports the pair of x-vibrators (2/3) via the supporting beams (4) including the flexible beams (41, 42, 43, 44) and the connecting beams (11, 14),
Fixed support point of paired x oscillator (2/3) and detection oscillator (5/6)
Since the fixed support points are both one and the same point, the following advantages are obtained: In the conventional point support by a plurality of anchors, stress was conventionally applied to the beam portion of the x-vibrator due to the influence of the deflection of the base supporting the anchor due to the supporting environment temperature or self-heating of the x-vibrator and external force. However, the above-described stress is not applied to the beam supporting the x-vibrator due to the configuration of supporting at one point O. Therefore, discontinuous shift of resonance frequency and hysteresis due to disturbance or the like are reduced.

【0008】2.x振動子系および検出振動子系の静止
点が点Oであり、点Oのみで支持されているので、x振
動子系と検出振動子系との相互間に振動のもれが少なく
なるため、角速度検出精度が向上する。
[0008] 2. Since the stationary point of the x-vibrator system and the detection vibrator system is the point O and is supported only at the point O, the leakage of vibration between the x-vibrator system and the detection vibrator system is reduced. And the angular velocity detection accuracy is improved.

【0009】3.点Oでアンカーにて支持される支持梁
がx,y方向に撓む可撓梁を含んだ支持梁に連結梁が連
続しており、連結梁がx方向に撓み、この連結梁にx振
動子が互いに点Oを対称とした位置で設けられているの
で、対のx振動子は互いにx方向に振動し易いものとな
る。しかして、x駆動振動は単振動に近くなり、検出方
向yの振動を検出振動子に与えず、角速度の検出精度が
向上する。
3. The supporting beam supported by the anchor at the point O is continuous with the supporting beam including the flexible beam that bends in the x and y directions, the connecting beam bends in the x direction, and the connecting beam undergoes x vibration. Since the vibrators are provided at positions symmetrical with respect to the point O, the paired x vibrators are likely to vibrate in the x direction with respect to each other. Thus, the x drive vibration is close to a simple vibration, and the vibration in the detection direction y is not given to the detection vibrator, and the accuracy of detecting the angular velocity is improved.

【0010】更に、検出振動子(5/6)が、y軸からx方
向に離れているので、ねじれ振動によるそれらのy振幅
がy軸からの距離に比例して大きく、角速度の値に対す
る検出振動子(5/6)のy振動が大きくなり、角速度の検
出精度がより向上する。
Further, since the detecting vibrators (5/6) are separated from the y-axis in the x-direction, their y-amplitude due to the torsional vibration is large in proportion to the distance from the y-axis, and the detection relative to the value of the angular velocity. The y-vibration of the vibrator (5/6) is increased, and the accuracy of detecting the angular velocity is further improved.

【0011】(2)検出振動子(5/6)は、略x形状を成
し、点Oを通るx軸上で補強梁(7,8/17,18)に支持さ
れ、補強梁は検出振動子(5,6)の外周に設けられ、x
振動子(2,3)に連結されるので、点Oを通りx,y軸
に垂直なz軸廻りの角速度がセンサに加わると、x振動
子(2/3)のそれぞれのx振動が、y振動成分を有する楕
円振動になり、連結梁(11,14)がz軸廻りのねじれ振動
を生ずる。このねじれ振動によって略x形状を成す、対
の検出振動子(5,6)が補強梁(7,8/17,18)内でx振動子
(2/3)とは互いに逆向き(−y方向)に安定した状態
で振動する。
(2) The detecting oscillator (5/6) has a substantially x shape and is supported by the reinforcing beams (7, 8/17, 18) on the x axis passing through the point O, and the reinforcing beams are detected. Provided on the outer periphery of the vibrator (5, 6), x
Since it is connected to the vibrator (2, 3), when an angular velocity about the z axis passing through the point O and perpendicular to the x and y axes is applied to the sensor, each x vibration of the x vibrator (2/3) becomes Elliptical vibration having a y-vibration component occurs, and the connecting beams (11, 14) generate torsional vibration around the z-axis. The pair of detection transducers (5, 6), which form a substantially x shape due to this torsional vibration, are opposite to each other with respect to the x transducer (2/3) in the reinforcing beam (7, 8/17, 18) (−y Vibrates in a stable state.

【0012】(3)連結梁(11,14)は、点Oを中心と
した対称形状であり、連結梁(11,14)のy軸における
梁の長さLは、連結梁(11,14)から支持梁(4)を介し
てのアンカー(120)までの梁の長さLと同じであるよ
うにすれば、検出振動子(5,6)は両持ち(平衡支持)の
状態で支持されることになり、検出振動子(5,6)はy方
向単振動をし易く、y方向振動が安定し、角速度検出精
度および安定性が高くなり、上記の梁の長さを同じにす
ることで、より振動が安定なものとなる。
(3) The connecting beam (11, 14) has a symmetrical shape around the point O, and the length L of the connecting beam (11, 14) in the y-axis is equal to the connecting beam (11, 14). ), The length of the beam from the support beam (4) to the anchor (120) is the same as that of the beam, so that the detection transducers (5, 6) are supported in a double-supported (balanced support) state. The detection vibrator (5, 6) is easy to make simple vibration in the y direction, the vibration in the y direction is stable, the angular velocity detection accuracy and stability are high, and the length of the above beam is the same. This makes the vibration more stable.

【0013】(4)対のx振動子(2/3)をx方向に逆
相で振動駆動する励振手段(91,92)、検出振動子(5/
6)のy方向の振動を検出する検出手段(111、112)を
備えるようにすれば、励振手段(91,92)により対のx振
動子(2/3)を、x方向に逆相で振動駆動し、対のx振動
子(2/3)を音叉として使用することが可能となる。この
場合、支持梁(4)がy方向に撓む可撓梁(41,42)を含むの
で、連結梁(11,14)はy方向にも撓み易く、x逆相振動
によってy方向に拡縮し易くなり、対のx振動子(2,3)
の逆相x振動が容易となる。例えば、励振手段(91,92)
に電圧を印加して静電気駆動により、外力をx振動子
(2,3)に加えた時、x振動子(2,3)は逆相で共振し易くな
る。
(4) Exciting means (91, 92) for driving a pair of x vibrators (2/3) in opposite phases in the x direction, and a detecting vibrator (5 /
6) If the detecting means (111, 112) for detecting the vibration in the y-direction is provided, the pair of x-vibrators (2/3) are driven by the exciting means (91, 92) in opposite phases in the x-direction. It becomes possible to use a pair of x vibrators (2/3) as a tuning fork by vibrating drive. In this case, since the supporting beam (4) includes the flexible beams (41, 42) that bend in the y direction, the connecting beams (11, 14) are also easily bent in the y direction, and are expanded and contracted in the y direction by x-phase reverse vibration. X oscillators (2,3)
X vibration of the opposite phase becomes easier. For example, excitation means (91, 92)
External force by applying a voltage to the
When added to (2,3), the x-vibrator (2,3) tends to resonate in opposite phase.

【0014】(5)支持梁(41,42)は、対のx振動子
(2,3)が逆相で振動駆動した場合、連結梁の不動点で
支持されるようにすれば、連結梁(11,14)の振動が安
定したものとなり、角速度の検出精度が向上する。
(5) If the pair of x vibrators (2, 3) are driven to vibrate in opposite phases, the supporting beams (41, 42) can be supported at the fixed points of the connecting beams. The vibration of (11, 14) becomes stable, and the detection accuracy of the angular velocity improves.

【0015】[0015]

【発明の実施の形態】図1に、本発明の一実施形態にお
ける角速度センサ1の構成を示す。絶縁層を形成したシ
リコン基板100には、導電性とするため不純物を含む
ポリシリコン(導電性ポリシリコン)から成る、浮動体
アンカー(以下、アンカーと称す)120、点Oに対し
て対称である駆動電極91,92、駆動検出電極10
1,102、および、振動検出電極111,112が基
板上に接合している構成をとっている。これらは、シリ
コン基板100上の絶縁層の上に形成された配線を介し
て、図示しない接続電極(電極パッド)に接続されてい
る。
FIG. 1 shows a configuration of an angular velocity sensor 1 according to an embodiment of the present invention. On the silicon substrate 100 on which the insulating layer is formed, a floating body anchor (hereinafter, referred to as an anchor) 120 made of polysilicon (conductive polysilicon) containing impurities to make it conductive is symmetric with respect to a point O. Drive electrodes 91 and 92, drive detection electrode 10
1, 102, and the vibration detection electrodes 111, 112 are joined on the substrate. These are connected to connection electrodes (electrode pads) (not shown) via wires formed on the insulating layer on the silicon substrate 100.

【0016】リソグラフによる半導体プロセスを用い
て、シリコン基板100から浮かせ、アンカー120か
ら導電性ポリシリコンから成る構造体(振動体)が浮い
た構造をとる。振動体はアンカー120から点Oを通
り、x方向に撓む可撓梁43,44、および、y方向に
撓み易い長方形の可撓梁41、42を含む支持梁4によ
り支持され、可撓梁41,42に略U字形状を成す連結
梁11が支持される。この可撓梁41,42,43,4
4は、振動体を支持する支持梁4となって、アンカー1
20を中心として、x軸に対して対称に形成されてい
る。
Using a lithographic semiconductor process, a structure (vibrating body) made of conductive polysilicon is floated from the silicon substrate 100 and floated from the anchor 120. The vibrator is supported by the support beams 4 including the flexible beams 43 and 44 that bend in the x direction and the rectangular flexible beams 41 and 42 that easily bend in the y direction, passing through the point O from the anchor 120. The substantially U-shaped connecting beam 11 is supported by 41 and 42. The flexible beams 41, 42, 43, 4
Reference numeral 4 denotes a support beam 4 for supporting the vibrating body, and the anchor 1
It is formed symmetrically with respect to the x-axis with the center at 20.

【0017】略U形状を成す連結梁11の先端には、第
1のx振動子2(21,22)および第2のx振動子3
(31,32)が支持されている。これらのx振動子
2,3もシリコン基板100からx,y軸と垂直のz方
向に浮いており、同じ導電性ポリシリコンから形成され
ている。
The first x-vibrator 2 (21, 22) and the second x-vibrator 3
(31, 32) are supported. These x vibrators 2 and 3 also float from the silicon substrate 100 in the z direction perpendicular to the x and y axes, and are formed of the same conductive polysilicon.

【0018】第1のx振動子21と22は、連結梁1
1,14のy平行辺13,15に関して対称な形状とな
っており、第2のx振動子31,32も同様に、連結梁
11,14のy平行辺に関して対称であり、x軸、y
軸、および、点Oに関して対称な構造となっている。
The first x vibrators 21 and 22 are connected to the connecting beam 1
The first and second vibrators 31 and 32 are similarly symmetric with respect to the y-parallel sides of the connecting beams 11 and 14 and have x-axis and y-axis directions.
The structure is symmetric with respect to the axis and the point O.

【0019】これらのx振動子21,22/31,32
には、外枠y方向に等ピッチで分布し、x方向に突出す
る櫛歯状の可動電極23,33が外枠y平行辺に対して
両側に形成されている。また、導電性ポリシリコンの駆
動電極91,92および駆動検出電極101,102に
も、可動電極23,33のy方向分布の空間に突出する
櫛歯状の固定電極があり、y方向に分布している。
These x vibrators 21, 22/31, 32
, Comb-shaped movable electrodes 23 and 33 that are distributed at equal pitches in the outer frame y direction and protrude in the x direction are formed on both sides of the parallel side of the outer frame y. Also, the drive electrodes 91 and 92 and the drive detection electrodes 101 and 102 made of conductive polysilicon also have comb-shaped fixed electrodes protruding into the space of the movable electrodes 23 and 33 in the y direction, and are distributed in the y direction. ing.

【0020】駆動電極91,92に対して交互に、x振
動子2の電位(接地レベル)より高い電圧を印加するこ
とにより、x振動子2がx方向に電気的に静電力により
吸引され、x方向に振動する。このx振動により、x振
動子2と駆動検出電極101,102との間の静電容量
が変動し、駆動検出電極101,102に発生した容量
変化をフィードバックしてフィードバック回路bcに入
力し、その信号を基にコントローラdcで波形整形した
正確な矩形波を駆動回路acにより与えることで、x振
動子2を振動させることにより、x振動子2と駆動検出
電極101,102の静電容量が変化する。
By alternately applying a voltage higher than the potential (ground level) of the x oscillator 2 to the drive electrodes 91 and 92, the x oscillator 2 is electrically attracted in the x direction by electrostatic force, Vibrates in the x direction. Due to this x-vibration, the capacitance between the x-vibrator 2 and the drive detection electrodes 101 and 102 fluctuates, and the capacitance change generated in the drive detection electrodes 101 and 102 is fed back and input to the feedback circuit bc. The drive circuit ac provides an accurate rectangular wave whose waveform has been shaped by the controller dc based on the signal, thereby causing the vibrator 2 to vibrate, thereby changing the capacitance between the x vibrator 2 and the drive detection electrodes 101 and 102. I do.

【0021】x振動子3は、点Oを通るy軸に関してx
振動子2と対称な形状および位置にあり、このx振動子
3を駆動するためx振動子3側の駆動電極91,92
に、x振動子2駆動パルスと逆位相の駆動パルスを印加
することにより、x振動子3がx振動子2と逆位相でx
方向に振動し、x振動子3と駆動検出電極101,10
2の間の静電容量が振動する。従って、駆動パルスA〜
Dをx振動子2,3の共振周波数とすることにより、x
振動子2と3が共振して音叉振動を生じるため、エネル
ギ消費効率が高いx振動を行うことができる。
The x-vibrator 3 has an x-axis with respect to the y-axis passing through the point O.
The drive electrodes 91 and 92 on the x-vibrator 3 side for driving the x-vibrator 3 are symmetrical in shape and position to the vibrator 2.
By applying a drive pulse having a phase opposite to that of the x-vibrator 2 drive pulse,
Vibrating in the direction, the x-vibrator 3 and the drive detection electrodes 101 and 10
The capacitance between the two oscillates. Therefore, the driving pulses A to
By setting D to be the resonance frequency of the x vibrators 2 and 3, x
Since the vibrators 2 and 3 resonate to generate tuning fork vibration, x vibration with high energy consumption efficiency can be performed.

【0022】このx方向の振動により、x振動子2,3
につながる連結梁11,14のy方向辺13,15が撓
み、x振動子2と3と同じく振動する。これによって連
結梁11、14のx平行辺の左右端(y平行辺との連接
点)は、x,y軸に対して略45度方向に振動し、連結
梁11,14のx平行辺は逆相でy方向に振動する。し
かし、連結梁11,14にはy方向の振動を吸収する可
撓梁41,42がつながっており、可撓梁41,42が
y方向においてそれぞれ反対方向に撓み、 アンカー1
20は、梁43,44の両側から引っ張られ、x振動子
2,3のx励振に関して静止点となる。
The vibrations in the x direction cause the x vibrators 2, 3
, The sides 13 and 15 of the connecting beams 11 and 14 in the y direction are bent, and vibrate similarly to the x vibrators 2 and 3. As a result, the left and right ends of the x-parallel sides of the connecting beams 11 and 14 (connecting points with the y-parallel sides) vibrate in a direction substantially 45 degrees with respect to the x and y axes, and the x-parallel sides of the connecting beams 11 and 14 Vibrates in the y-direction in opposite phase. However, the connecting beams 11 and 14 are connected to flexible beams 41 and 42 for absorbing vibration in the y direction, and the flexible beams 41 and 42 bend in opposite directions in the y direction, respectively.
20 is pulled from both sides of the beams 43 and 44, and becomes a stationary point with respect to the x excitation of the x vibrators 2 and 3.

【0023】このように、x振動子2,3を励振駆動さ
せ、連結梁11,14がx,y方向に撓んで振動してい
る場合、連結梁11,14のx平行辺をy方向に延びる
2ヶ所の梁16,26を介して支持梁4を引っ張ると、
y方向の振動において不動点が2ヶ所あらわれる。そこ
で、この不動点の位置に連結梁13,14と支持梁4が
梁16,26により、つながるようにすれば、連結梁1
1,14の振動が安定したものとなる。
As described above, when the x-vibrators 2 and 3 are driven to excite and the connecting beams 11 and 14 are flexed and vibrated in the x and y directions, the x parallel sides of the connecting beams 11 and 14 are moved in the y direction. When the support beam 4 is pulled through the two extending beams 16 and 26,
Two fixed points appear in the vibration in the y direction. Therefore, if the connecting beams 13 and 14 and the supporting beam 4 are connected by the beams 16 and 26 to the position of the fixed point, the connecting beam 1
The vibrations of 1, 14 are stabilized.

【0024】x振動子2,3は外周のy平行辺に櫛歯状
の可動電極23,33を外形にもっており、略H形状を
している。x振動子2,3は連結梁11,14のy平行
辺13,15により両持ちで支持されており、x振動子
2の内側の2本のy平行辺74,84を連結するx平行
辺94の中点で連結梁11,14のU字型の端部がそれ
ぞれつながっている。この場合、連結梁11,14のy
平行辺13,15の長さは、連結梁13,14から支持
梁4を介してアンカー120まで至る梁の長さと同じ長
さLにすれば、x振動子2,3の振動が安定したものと
なり、単振動に近くなる。
Each of the x vibrators 2 and 3 has a comb-shaped movable electrode 23 or 33 on the y-parallel side of the outer periphery and has a substantially H shape. The x vibrators 2 and 3 are supported at both ends by the y parallel sides 13 and 15 of the connecting beams 11 and 14, and the x parallel sides connecting two y parallel sides 74 and 84 inside the x vibrator 2. The U-shaped ends of the connecting beams 11 and 14 are connected at the midpoint of 94. In this case, y of the connecting beams 11 and 14
If the length of the parallel sides 13 and 15 is set to the same length L as the length of the beam from the connecting beams 13 and 14 to the anchor 120 via the support beam 4, vibration of the x vibrators 2 and 3 is stabilized. And it is close to a simple vibration.

【0025】x振動子の内側の2つのy平行辺74,8
4に対して図1に示すx振動子2の枠内の上下位置から
x平行辺を介してy方向に延びる補強梁7,8が形成さ
れている。また、補強梁7,8の中点(点Oを通るx軸
上)から補強梁7,8のx平行辺が延び、x形状をした
検出振動子5の重心が位置する腹部を支持している。ま
た、x振動子3に対しても、点Oを通るy軸に対して対
称な形状および位置で検出振動子6が形成されている。
Two y-parallel sides 74, 8 inside the x-vibrator
4, reinforcing beams 7, 8 extending in the y-direction from the upper and lower positions in the frame of the x-vibrator 2 shown in FIG. The x-parallel sides of the reinforcing beams 7, 8 extend from the midpoint of the reinforcing beams 7, 8 (on the x-axis passing through the point O), and support the abdomen where the center of gravity of the x-shaped detection vibrator 5 is located. I have. Also, with respect to the x vibrator 3, the detection vibrator 6 is formed in a shape and position symmetrical with respect to the y axis passing through the point O.

【0026】この検出振動子5,6およびそれらを支持
する補強梁7,8も導電体ポリシリコンであり、アンカ
ー120と実質上同電位である。検出振動子5,6の片
51,52,61,62は略x形状となっている。その
1片において対向するy平行辺をつなぐx軸に平行な可
動検出電極用の渡し梁がy方向に略等ピッチで分布して
いるため、y方向数箇所に窓が形成される。この渡し梁
の間の各空間(窓)に、各1対の導電体ポリシリコンか
ら成り、基板上に固定された固定検出電極111,11
2がy方向に等間隔で存在し、検出電極用の各アンカー
で基板100に支持されている。
The detecting vibrators 5, 6 and the reinforcing beams 7, 8 supporting them are also made of conductive polysilicon, and have substantially the same potential as the anchor 120. The pieces 51, 52, 61, and 62 of the detection oscillators 5 and 6 have a substantially x shape. The crossovers for the movable detection electrode parallel to the x-axis connecting the opposing y-parallel sides of the piece are distributed at substantially equal pitches in the y-direction, and thus windows are formed at several places in the y-direction. In each space (window) between the bridge beams, fixed detection electrodes 111, 11 each made of a pair of conductive polysilicon and fixed on the substrate are provided.
2 exist at equal intervals in the y direction, and are supported on the substrate 100 by the anchors for the detection electrodes.

【0027】対の検出電極111,112間は絶縁され
ているが、第1の検出用振動子5のy移動を検出するた
め各対電極は差動構成で検出振動子5,6の変位信号が
検出され、検出信号が検出回路ccに入力されて、コン
トローラdcにより検出できるよう、各片51,52,
61,62間で対応位置にある複数の電極間同士、共通
接続されている。また、第2の検出用振動子6に関して
も同様にy移動を検出するため、y軸に関して対称な構
造となっている。
Although the detection electrodes 111 and 112 are insulated from each other, each of the pair of detection electrodes 111 and 112 has a differential configuration in order to detect the y-movement of the first detection transducer 5. Are detected, and a detection signal is input to the detection circuit cc, and each of the pieces 51, 52,
A plurality of electrodes at corresponding positions between 61 and 62 are commonly connected. In addition, the second detecting vibrator 6 also has a symmetric structure with respect to the y-axis in order to similarly detect the y movement.

【0028】このような構造において、図2に示すよう
にx振動子2,3を振動駆動する駆動電極91に対し、
駆動信号A,Bを駆動回路acから与えると共に、駆動
電極92に対し、駆動電極91に与える電圧の位相が1
80度ずれた駆動振動C,Dを駆動回路acからコント
ローラdcにより与えることによって、x振動子2,3
を逆相に振動させる。駆動電圧が駆動電極91,92に
それぞれ印加され、x振動子2,3が逆位相でx方向に
振動しているとき、例えば、z軸廻りの角速度が加わる
と、振動体にコリオリ力が作用する。コリオリ力が作用
すると、x振動子2,3の振動が楕円振動となり、連結
梁11,14にz軸廻りのねじれ振動が発生することか
ら、x振動子2,3はコリオリ力を受けてy方向に振動
するものとなる。また、この場合には、検出振動子5,
6もy方向に振動するが、この検出用振動子5のy振動
はx振動子2の振動と逆相となり、また、検出振動子6
のy振動はx振動子3の振動と逆相となる。
In such a structure, as shown in FIG. 2, a driving electrode 91 for driving the x vibrators 2 and 3 to vibrate is
The drive signals A and B are supplied from the drive circuit ac, and the phase of the voltage applied to the drive electrode 91 with respect to the drive electrode 92 is 1
By giving the drive vibrations C and D deviated by 80 degrees from the drive circuit ac by the controller dc, the x vibrators 2 and 3
Are vibrated in the opposite phase. When a drive voltage is applied to the drive electrodes 91 and 92, respectively, and the x vibrators 2 and 3 are vibrating in the x direction with opposite phases, for example, when an angular velocity around the z axis is applied, Coriolis force acts on the vibrator. I do. When the Coriolis force acts, the vibrations of the x vibrators 2 and 3 become elliptical vibrations, and torsional vibrations around the z-axis are generated in the connecting beams 11 and 14, so that the x vibrators 2 and 3 receive the Coriolis force and y It vibrates in the direction. Further, in this case, the detection oscillator 5,
6 also oscillates in the y-direction, but the y-vibration of the detection oscillator 5 has a phase opposite to that of the x-vibrator 2, and the detection oscillator 6
Has a phase opposite to the vibration of the x vibrator 3.

【0029】以上のことから、本発明の角速度センサ1
は音叉構造として、x振動子2,3を、x方向に逆相で
振動させる。x振動子2,3および検出振動子5,6に
角速度が加わるとx振動子2,3はx方向に振動してい
るために角速度に比例したコリオリ力を受け、振動方向
xと角速度の検出軸zに垂直なy方向に振動する。コリ
オリ力が加わったとき、x振動子2,3は、それぞれy
方向に振動し、それらのy方向変位が、角速度に比例し
て、 y変位=(角速度×振動子の速度×振動子の質量)/y
方向のバネ常数 なるy変位となる。
From the above, the angular velocity sensor 1 of the present invention
Has a tuning fork structure to vibrate the x vibrators 2 and 3 in opposite phases in the x direction. When angular velocities are applied to the x vibrators 2 and 3 and the detecting vibrators 5 and 6, the x vibrators 2 and 3 vibrate in the x direction and receive Coriolis force proportional to the angular velocity, thereby detecting the vibration direction x and the angular velocity. Vibrates in the y direction perpendicular to the axis z. When the Coriolis force is applied, the x vibrators 2 and 3 respectively become y
And their displacement in the y direction is proportional to the angular velocity: y displacement = (angular velocity × vibrator velocity × vibrator mass) / y
The spring constant in the direction is y displacement, which is a constant.

【0030】振動子2,3,5,6は、検出方向yの共
振時の振動モードがx振動子2,3が互いに逆相で、検
出振動子5,6も互いに逆相のため、y振動の中心が角
速度センサの浮動体全体の重心Oと一致する。これによ
り、x振動子2,3がコリオリ力を受けたとき、検出振
動子5,6は、x振動子2,3の動く方向とは逆のy方
向に振動するものとなる。なお、x振動子2,3の共振
周波数と検出振動子5,6の共振周波数は感度と対応性
のバランスから、x振動子2,3の共振周波数より、検
出振動子5,6の共振周波数の方が若干高く設定されて
おり、x振動子2,3の質量と検出振動子5,6の質量
とそれぞれの検出方向yのバネ常数の関係から、x振動
子2,3はy方向にほとんど変位しない構成になってい
る。そのかわり検出振動子5,6は大きく変位する。
The vibrators 2, 3, 5, and 6 have a vibration mode at resonance in the detection direction y of the x vibrators 2 and 3 opposite to each other, and the detection vibrators 5 and 6 also have opposite phases. The center of vibration coincides with the center of gravity O of the entire floating body of the angular velocity sensor. Accordingly, when the x vibrators 2 and 3 receive Coriolis force, the detection vibrators 5 and 6 vibrate in the y direction opposite to the direction in which the x vibrators 2 and 3 move. In addition, the resonance frequency of the x oscillators 2 and 3 and the resonance frequency of the detection oscillators 5 and 6 are determined by the resonance frequency of the x oscillators 2 and 3 based on the balance between sensitivity and correspondence. Is set slightly higher. From the relationship between the masses of the x oscillators 2 and 3 and the masses of the detection oscillators 5 and 6 and the spring constants in the respective detection directions y, the x oscillators 2 and 3 are set in the y direction. It has a configuration that hardly displaces. Instead, the detection oscillators 5 and 6 are displaced greatly.

【0031】以上によりこのセンサの精度(S/N)
は、x方向の駆動とy方向の検出の振動の互いの漏れ
(クロストーク)が原理上少ないため、向上できる。
From the above, the accuracy (S / N) of this sensor
Can be improved because, in principle, mutual leakage (crosstalk) of the vibration in the driving in the x direction and the vibration in the detection in the y direction is small.

【0032】また、この構造は従来構造とは違い、強制
的に振動を押さえ込む形になっていないため、応力の影
響,温度変化に強く、駆動と検出の振動の不動点がセン
サの重心にほぼ一致するため、また上記のようにコリオ
リ力を受けたときに従来と比較すると、全く回転運動を
伴わないため支持がなくても重心位置で支持点は静止し
ている。そのため外部からの振動(車両等に搭載時)が
センサの駆動振動と検出振動にほとんど影響を与えず、
従来に比べ、S/N比が向上する。また、上記のような
支持であるため温度等による熱膨張の影響が少なく温度
補正の少なくてすむ。よって従来タイプに比べS/N比
が向上する。
Also, this structure is different from the conventional structure in that the vibration is not forcibly suppressed. Therefore, the structure is resistant to the influence of stress and temperature change, and the fixed point of driving and detecting vibration is almost at the center of gravity of the sensor. Since they coincide with each other, and when they receive Coriolis force as described above, they do not involve any rotational movement, so that the support points are stationary at the center of gravity even without support. Therefore, external vibration (when mounted on a vehicle, etc.) hardly affects the driving vibration and detection vibration of the sensor.
The S / N ratio is improved as compared with the related art. In addition, since the above-described support is used, the influence of thermal expansion due to temperature or the like is small, and the temperature correction can be reduced. Therefore, the S / N ratio is improved as compared with the conventional type.

【0033】図1に示す角速度センサは、x振動子2,
3の質量中心に、バネ部である連結梁11,14が連続
して浮動支持されているので、振動質量自身の変形によ
るばね効果の変化が実質上なく、x振動子2,3のx振
動は、単振動に近くなる。
The angular velocity sensor shown in FIG.
Since the connecting beams 11 and 14, which are spring portions, are continuously and floatingly supported at the center of mass of the vibrator 3, there is substantially no change in the spring effect due to the deformation of the vibrating mass itself. Becomes closer to a simple vibration.

【0034】また、図1に示す角速度センサは、双共振
のx振動系としているため、x振動子2,3の振幅が増
幅され変化が大きく取れる。これにより、少ないエネル
ギーで駆動できるため、低コスト化できる。変位出力を
大きく取れるため、S/Nが向上する。
Since the angular velocity sensor shown in FIG. 1 employs a bi-resonant x-vibration system, the amplitudes of the x-vibrators 2 and 3 are amplified and a large change can be obtained. As a result, driving can be performed with a small amount of energy, so that cost can be reduced. Since a large displacement output can be obtained, the S / N is improved.

【0035】更に、双共振のそれぞれの振動モードの不
動点が重心Oであり、かつx振動子2,3が該重心O
(単一点)で支持されていることにより、x振動の振動
漏れが原理上発生しないため、検出振動yの増幅率を大
きく取れる。検出振動yに不要な振動を誘起しないの
で、角速度信号のS/Nが向上する。駆動振動に不要な
振動が誘起されず、単振動で駆動でき、S/Nが向上す
る。
Further, the fixed point of each vibration mode of the bi-resonance is the center of gravity O, and the x vibrators 2 and 3 are the center of gravity O
Since it is supported at (single point), vibration leakage of x vibration does not occur in principle, so that a large amplification factor of the detected vibration y can be obtained. Since unnecessary vibration is not induced in the detected vibration y, the S / N of the angular velocity signal is improved. Unnecessary vibration is not induced in the driving vibration, the driving can be performed with a single vibration, and the S / N is improved.

【0036】x振動系およびy振動系の重心が点Oであ
って、しかも、同一点であるので、温度による熱膨張の
影響によりバネ部(1,4,7,8)に応力の負荷が発
生せず、温度特性がよくなる。特に、車載等、温度変化
が大きい環境で使用する場合に、角速度検出の信頼性
(安定性)が高い。
Since the center of gravity of the x-vibration system and the y-vibration system are at the point O and at the same point, a stress load is applied to the spring portions (1, 4, 7, 8) due to thermal expansion due to temperature. It does not occur and the temperature characteristics are improved. In particular, the reliability (stability) of detecting the angular velocity is high when the device is used in an environment with a large temperature change such as a vehicle.

【0037】また、連結梁11,14には応力を緩和す
る可撓梁41,42が追加されていることにより、x駆
動振動の非線型性が改善され、単振動で振動するためS
/Nが向上する。
Further, since the connecting beams 11 and 14 are provided with the flexible beams 41 and 42 for relaxing the stress, the nonlinearity of the x-drive vibration is improved, and the vibration is caused by a single vibration.
/ N is improved.

【0038】更に、検出振動子5,6は、剛体に近い補
強梁7,8により支持されており、検出振動子5,6が
ねじれ回転のモードではなく互いに平行でかつ逆相でy
振動するため、y方向における検出振動を静電容量で検
出する場合、理想的な正弦出力がえられ、角速度信号の
S/Nが向上する。
Further, the detecting vibrators 5, 6 are supported by reinforcing beams 7, 8 which are close to rigid bodies, and the detecting vibrators 5, 6 are not in the mode of torsional rotation but in parallel with each other and in the opposite phase.
When the detection vibration in the y direction is detected by the capacitance, an ideal sine output is obtained and the S / N of the angular velocity signal is improved.

【0039】上記した角速度センサ1は、リソグラフを
用いる半導体プロセスにて、シリコンウェハー上に構成
でき従来の半導体プロセスにて製作可能なため、低コス
トで生産しうる。浮動体が1枚の膜により形成され、半
導体プロセスにて簡単に造形でき、低コストで生産でき
る。
The above-described angular velocity sensor 1 can be formed on a silicon wafer by a semiconductor process using a lithography and can be manufactured by a conventional semiconductor process, so that it can be manufactured at low cost. The floating body is formed by a single film, can be easily formed by a semiconductor process, and can be produced at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の平面図である。FIG. 1 is a plan view of one embodiment of the present invention.

【図2】 図1の駆動電極に印加する駆動電圧を示した
図である。
FIG. 2 is a diagram illustrating a driving voltage applied to a driving electrode of FIG. 1;

【符号の説明】[Explanation of symbols]

1:角速度センサ 2,3:x振動子 4:支持梁 5,6:検出振動子 7,8:補強梁 11,14:連結梁 41,42,43,44 可撓梁 91,92:駆動電極 101,102:駆動検出電極 100:基板 120:浮動体アンカー 1: angular velocity sensor 2, 3: x vibrator 4: supporting beam 5, 6: detecting vibrator 7, 8: reinforcing beam 11, 14: connecting beam 41, 42, 43, 44 flexible beam 91, 92: drive electrode 101, 102: drive detection electrode 100: substrate 120: floating body anchor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】x,y平面上の一点Oに関して対称な位置
にある、対のx振動子、 x,y平面に分布し、点Oに関して対称であって、対の
x振動子のそれぞれに連続し、少くともx方向に撓む連
結梁、 連結梁に連続し、点Oと連結梁との間にx,y方向に撓
み可撓梁を含む、点Oに関して対称な支持梁、 点Oからx方向に離れ、点Oに関して対称な検出振動
子、 検出振動子に連続し、x振動子内に設けられ、点Oに関
して対称な補強梁、 点Oにおいて支持梁を支持するアンカー、とを備えたこ
とを特徴とする角速度センサ。
1. A pair of x oscillators, which are symmetrical with respect to a point O on the x, y plane, distributed on the x, y plane, symmetric with respect to the point O, A connecting beam that is continuous and deflects at least in the x-direction, a support beam that is continuous with the connecting beam, and that includes a flexible beam that deflects in the x and y directions between point O and the connecting beam; , A detection oscillator that is distant in the x-direction, is symmetric with respect to the point O, is continuous with the detection oscillator, is provided in the x oscillator, and is a reinforcing beam that is symmetric with respect to the point O, and an anchor that supports the support beam at the point O. An angular velocity sensor comprising:
【請求項2】検出振動子は、略x形状を成し、点Oを通
るx軸上で補強梁に支持され、補強梁は検出振動子の外
周に設けられ、x振動子に連結される、請求項1に記載
の角速度センサ。
2. The detecting oscillator has a substantially x shape, is supported by a reinforcing beam on an x-axis passing through a point O, and the reinforcing beam is provided on the outer periphery of the detecting oscillator and connected to the x oscillator. The angular velocity sensor according to claim 1.
【請求項3】連結梁は、点Oを中心とした対称形状であ
り、連結梁のy軸における梁の長さは、連結梁から支持
梁を介してのアンカーまでの梁の長さと同じである、請
求項2に記載の角速度センサ。
3. The connecting beam has a symmetrical shape about a point O, and the length of the connecting beam in the y-axis is the same as the length of the connecting beam to the anchor via the supporting beam. The angular velocity sensor according to claim 2, wherein:
【請求項4】対のx振動子をx方向に逆相で振動駆動す
る励振手段、 検出振動子のy方向振動を検出する検出手段を備える、
請求項1に記載の角速度センサ。
4. Exciting means for driving a pair of x vibrators in opposite phases in the x direction, and detecting means for detecting y-direction vibration of the detecting vibrator.
The angular velocity sensor according to claim 1.
【請求項5】支持梁は、対のx振動子が逆相で振動駆動
した場合、連結梁の不動点で支持される、請求項4に記
載の角速度センサ。
5. The angular velocity sensor according to claim 4, wherein the supporting beam is supported at a fixed point of the connecting beam when the pair of x vibrators are driven to vibrate in opposite phases.
JP10217088A 1998-07-31 1998-07-31 Angular velocity sensor Pending JP2000046560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217088A JP2000046560A (en) 1998-07-31 1998-07-31 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217088A JP2000046560A (en) 1998-07-31 1998-07-31 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2000046560A true JP2000046560A (en) 2000-02-18

Family

ID=16698655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217088A Pending JP2000046560A (en) 1998-07-31 1998-07-31 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2000046560A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155489A (en) * 2005-12-05 2007-06-21 Hitachi Ltd Inertial sensor
JP2007218608A (en) * 2006-02-14 2007-08-30 Denso Corp Semiconductor dynamic quantity sensor
KR101100021B1 (en) 2003-09-25 2011-12-29 키오닉스, 인크. Z-axis angular rate sensor
JP2013145189A (en) * 2012-01-16 2013-07-25 Seiko Epson Corp Gyro sensor and electronic apparatus
JP2013213754A (en) * 2012-04-03 2013-10-17 Seiko Epson Corp Gyro sensor, and electronic apparatus using the same
CN103403495A (en) * 2010-09-18 2013-11-20 快捷半导体公司 Flexure bearing to reduce quadrature for resonating micromachined devices
JP2015021780A (en) * 2013-07-17 2015-02-02 株式会社デンソー Excitation device
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100021B1 (en) 2003-09-25 2011-12-29 키오닉스, 인크. Z-axis angular rate sensor
JP2007155489A (en) * 2005-12-05 2007-06-21 Hitachi Ltd Inertial sensor
JP2007218608A (en) * 2006-02-14 2007-08-30 Denso Corp Semiconductor dynamic quantity sensor
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
CN103403495A (en) * 2010-09-18 2013-11-20 快捷半导体公司 Flexure bearing to reduce quadrature for resonating micromachined devices
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
JP2013145189A (en) * 2012-01-16 2013-07-25 Seiko Epson Corp Gyro sensor and electronic apparatus
CN103363980A (en) * 2012-04-03 2013-10-23 精工爱普生株式会社 Gyro sensor and electronic device employing the same
JP2013213754A (en) * 2012-04-03 2013-10-17 Seiko Epson Corp Gyro sensor, and electronic apparatus using the same
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
JP2015021780A (en) * 2013-07-17 2015-02-02 株式会社デンソー Excitation device
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress

Similar Documents

Publication Publication Date Title
JP3882973B2 (en) Angular velocity sensor
JP4075022B2 (en) Angular velocity sensor
US6321598B1 (en) Angular velocity sensor device having oscillators
JP2000046560A (en) Angular velocity sensor
JP3882972B2 (en) Angular velocity sensor
JP3342496B2 (en) Rotation speed gyroscope
US7546768B2 (en) Mounting structure of angular rate sensor
KR100328532B1 (en) Angular velocity detector
JP2004518971A (en) Rotation rate sensor
JPH10239347A (en) Motion sensor
JPH11337345A (en) Vibratory microgyrometer
JPH10170275A (en) Vibratory angular velocity sensor
JPH1164002A (en) Angular velocity sensor
JP2000009475A (en) Angular velocity detection device
JPH1144541A (en) Angular velocity sensor
JP2000009470A (en) Angular velocity sensor
JP2000074673A (en) Compound movement sensor
JP2012149961A (en) Vibration gyro
JP3307130B2 (en) Angular velocity sensor
JP2001133268A (en) Angular velocity sensor
JP2000105124A (en) Electrostatic drive, electrostatic detecting type angular velocity sensor
JP2000018952A (en) Angular velocity sensor
JP2000018951A (en) Angular velocity detecting method and device thereof
JP3368723B2 (en) Vibrating gyro
JP2001264068A (en) Angular velocity sensor