JP3851012B2 - Linear vibration motor - Google Patents

Linear vibration motor Download PDF

Info

Publication number
JP3851012B2
JP3851012B2 JP04303299A JP4303299A JP3851012B2 JP 3851012 B2 JP3851012 B2 JP 3851012B2 JP 04303299 A JP04303299 A JP 04303299A JP 4303299 A JP4303299 A JP 4303299A JP 3851012 B2 JP3851012 B2 JP 3851012B2
Authority
JP
Japan
Prior art keywords
core
vibration motor
linear vibration
coil
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04303299A
Other languages
Japanese (ja)
Other versions
JP2000245126A (en
Inventor
哲司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04303299A priority Critical patent/JP3851012B2/en
Publication of JP2000245126A publication Critical patent/JP2000245126A/en
Application granted granted Critical
Publication of JP3851012B2 publication Critical patent/JP3851012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【産業上の利用分野】
この発明はリニア振動モータに関し、特にたとえばコイルを有する固定子鉄心の磁気空隙に軸方向に変位可能な可動体を配置したリニア振動モータに関する。
【0002】
【従来の技術】
例えば、従来の可動鉄心(MI)型リニア振動モータ1は図6の(a)および(b)に示す様に、円筒状の固定子積層鉄心2の内面に形成された4個の突極部2a、2b、2cおよび2dに夫々コイル3を巻装すると共に、各突極部の端面に断面が円弧状の永久磁石4、…を装着し、これらの永久磁石4、…に囲まれた磁気空隙5に中心にシャフト6を有する可動鉄心体7を軸方向に変位可能に配置して構成される。そして、各永久磁石4は複数に分割されかつ隣り合う各磁石4a,4b、4cおよび4dは径方向に逆向きに磁化されて配列している。
【0003】
このように構成されたリニア振動モータ1において、コイル3に通電する電流を変化させるとことで電流による磁束と永久磁石4による磁束からなる総磁束が変化し、可動鉄心体7は磁気空隙5を通る磁束の多い方向に引き付けられて移動する。したがって、コイル3に交流電流を通電することにより、可動鉄心体7を連続的に往復動させることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、固定子積層鉄心の内面側にコイルを巻回する突極部が形成されているために、この突極部に対するコイルの巻装作業がやり難く、コスト的にも高くなるという問題がある。
それゆえに、この発明の主たる目的は、固定子鉄心の製作が簡単で量産性に富み、しかも効率の良いリニア振動モータを提供することである。
【0005】
【課題を解決するための手段】
この発明は、コイルを有する固定子鉄心の磁気空隙に可動鉄心体を軸方向に変位可能に配置したリニア振動モータにおいて、固定鉄心は所定間隔で永久磁石を内面に装着した筒状の外側コア、および外向きに形成された突極部にコイルを巻装すると共にコイル間の外面に永久磁石を装着した柱状の内側コアとを備え、内側コアの永久磁石が外側コアの永久磁石と相対向して磁気空隙を形成するように内側コアを外側コアに挿入配置したことを特徴とする、リニア振動モータである。
【0006】
また、この発明は、コイルを有する固定子鉄心の磁気空隙に可動磁石体を軸方向に変位可能に配置したリニア振動モータにおいて、固定鉄心は筒状の外側コア、および外向きに形成された突極部にコイルを巻装した柱状の内側コアとを備え、磁気空隙を形成するように内側コアを外側コアに挿入配置し、外側コアの内面には少なくともコイルの端部を収容する軸方向の凹所を備えることを特徴とする、リニア振動モータである。
【0007】
【作用】
固定子鉄心は、突極部にコイルを巻装した柱状の内側コアを筒状の外側コアに挿入配置して磁気空隙を確保するようにしたから、例えば内側コアに外向きに形成された突極部に対するコイルの巻装および磁気空隙を形成する内外コアに対する永久磁石の装着が容易になる。
【0008】
【発明の効果】
この発明によれば、コイルを有する固定子鉄心の製作が簡単で量産性に富んだリニア振動モータを提供することができる。また、コイルの占績率を高めることが可能となりモータ効率も向上する。
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明により一層明らかとなろう。
【0009】
【実施例】
この発明の一実施例であるリニア振動モータを図1〜図5に基づいて説明する。
図1の(a)および(b)に示される可動鉄心(MI)型リニア振動モータ10は、コイル12を装着した固定子鉄心14、この固定子鉄心14の磁気空隙16に配置され軸方向に変位可能な可動鉄心体18を含む。
【0010】
固定鉄心14は、内面に断面略コ字状の溝部20を90°の間隔で軸方向に4個形成した円筒状の外側積層コア22、この外側積層コア22の内部空間に挿入配置されて磁気空隙16を形成する柱状の内側積層コア24の2分割体により構成される。この内側積層コア24は外側積層コア22の溝部20に対向して外向きに形成された4個の突極部26を有し、各突極部26に夫々ループ状に巻回されたコイル12を装着すると共に中心にシャフト挿通孔28を設けている。
【0011】
外側積層コア22および内側積層コア24は、いずれも打ち抜きにより形成された所定形状の磁性鉄板、例えば珪素鋼板を積層固定して構成される。また、外側積層コア22の溝部20を除く内面および内側積層コア24のコイル間の外面には断面が円弧状に形成された永久磁石30、…および32、…を接着剤等により固定されている。そして、これらの永久磁石30、32およびコイル12により磁気空隙16を包囲している。
【0012】
各永久磁石30および32はいずれも2分割された磁石30aと30bおよび磁石32aと32bを突き合わせて構成すると共に隣り合う磁石30aと30bおよび磁石32aと32bは径方向に対して逆向きに磁化されている。
また、固定子鉄心14の磁気空隙16を変位する可動鉄心体18は有底円筒状の可動保持体34、この可動保持体34の底部に突設されて固定子鉄心14の内側積層コア24の中心に設けられるシャフト挿通孔28を貫通するシャフト36および可動保持体34の開口周縁に形成した4個の保持片38、…に内蔵保持されて固定子鉄心14の磁気空隙16を移動する4個の円弧状の可動鉄心40、…を含む。
【0013】
この固定子鉄心14を組み立てにより製作する場合は図2に示されるように、まず、各突極部26にコイル12を巻装すると共にコイル間の外面に永久磁石32を接着固定した内側積層コア24と、溝部20を除く内面に永久磁石30を接着固定した外側積層コア22を準備する。次に内側積層コア24のコイル12を装着した各突極部26を外側積層コア22の各溝部20に案内されるように内側積層コア24を外側積層コア22の内部空間に挿入配置する。そして、内側積層コア24の各突極部26と外側積層コア22の各溝部20の両端に位置する接合部を例えばレーザー溶接により固定する。なお、固定子鉄心14を組み立てる場合、上述とは逆の手順で内側積層コア24に外側積層コア22を嵌め込む様にしてもよい。
【0014】
上述の構成におけるMI型リニア振動モータ10の動作について説明する。
まず、固定子鉄心14の各コイル12に図1の(a)に示すように突極部26を周回する方向に電流を通電すると、固定子鉄心14には図示実線矢印の方向に磁束の流れが生じる。一方、この磁束の流れにより固定子鉄心14の外側積層コア22の内面と内側積層コア24の外面に夫々装着されている永久磁石30および32の各磁石30aと30bおよび各磁石32aと32bのうち、図1の(b)において各左側の磁石30aと32aの磁束が強められ、各右側の磁石30bと32bの磁束が弱められるので、可動鉄心体18の可動鉄心40と40は左方向の推力を受けて矢印左側に移動する。
【0015】
次にコイル12に通電する電流の方向を変えると、固定子鉄心14を流れる磁束の方向は逆転し、その結果、固定子鉄心14の外側積層コア22と内側積層コア24に夫々装着されている永久磁石30および32の各磁石30aと30bおよび各磁石32aと32bのうち、右側の磁石30bと32bの磁束が強められるので、可動鉄心体18の可動鉄心40と40は右方向の推力を受けて矢印右側に移動する。
【0016】
従って、固定子鉄心14のコイル12に交流電流を通電することにより、可動鉄心体18は連続的に往復動するから、例えば可動鉄心体18のシャフト36にピストンを連結して空気や冷媒を圧縮する往復動式圧縮機を駆動できる。
図3に示す他の実施例のMI型リニア振動モータ10は、固定子鉄心14を構成する永久磁石30と30を内面に装着した外側積層コア22を円筒状に形成すると共に、この円筒状外側積層コア22の内部空間に挿入配置される一つのコイル12と永久磁石32と32を外面に装着した内側積層コア24を円柱状に形成したものである。また、各永久磁石30および32は、図1の実施例と同様に磁石30aと30bおよび磁石32aと32bに夫々分割されて径方向に対して逆向きに磁化されている。
【0017】
そして、円筒状の外側積層コア22と円柱状の内側積層コア24の間に形成される円筒状の磁気空隙16には軸方向に変位する可動鉄心体18が配置される。この可動鉄心体18はシャフト36を設けた有底円筒状の可動保持体34、この保持体34の円筒部に内蔵されるリング状磁性鋼板を積層して形成された可動鉄心40を含む。この場合には可動保持体34を合成樹脂材による一体成型で構成できる。そして、成型時に可動鉄心40を合成樹脂材に埋設される。
【0018】
この実施例においては、可動鉄心体18が円筒状に形成されるので構成が簡単となり、また、内側積層コア24に巻装されるコイル12も一つですむから、製作がさらに簡易で量産性に富む。なお、動作原理は図1の実施例と同様につきその説明は省略する。
次に、図4に示す可動磁石(MM)型リニア振動モータの実施例について説明する。なお、図1に示すMI型リニア振動モータと比較すると、永久磁石を除く固定子鉄心の構造は同じであるから、対応する部分に同じ図番を付してその説明を省略する。
【0019】
このリニア振動モータ10においては、固定子鉄心14を構成する外側積層コア22と内側積層コア24の間に形成される磁気空隙16に軸方向に変位する可動磁石体42が配置されている。この可動磁石体42は、有底円筒状の磁石保持枠44、この保持枠44の底部に突設されかつ内側積層コア24の中心に設けられているシャフト挿通孔28を貫通するシャフト36および磁石保持枠44に保持される4個の永久磁石46を含む。各永久磁石46はいずれも磁石46aと46bに2分割されしかも径方向に対して逆向きに磁化されている。
【0020】
上述の構成において、固定子鉄心14のコイル12に図示のように紙面表側から紙面裏側の方向に電流を流すと、図1の(a)に示されるパターンと同様に固定子鉄心14には図示矢印のような磁束の流れが生じる。一方、可動磁石体42に装着されている各永久磁石46は磁石46aと46bに分割されて互いに逆向きに磁化されているので、固定子鉄心14を流れる磁束により図4の(b)において左側の磁石46aの磁束が強くなり、逆に右側の磁石46bの磁束が弱くなり、可動磁石体42は左方向の推力を受けて図示矢印の左側に移動する。そして、コイル12に流す電流の方向を変えると、固定子鉄心14を流れる磁束の方向が逆転し、その結果、右側の磁石46bの磁束が左側の磁石46aの磁束より強くなり、可動磁石体42は右方向の推力を受けて図示矢印の右側に移動する。
【0021】
従って、この実施例においても、固定子鉄心14のコイル12に交流電流を通
電することにより、連続的に可動磁石体42を往復動せしめることができる。
更に、図5の(a)および(b)に示すMM型リニア振動モータ10の他の実施例は、図4の実施例と比較すると固定子鉄心14を構成する外側積層コア22を円筒状に形成すると共に、一つのコイル12を巻装した内側積層コア24を円柱状に形成している点が構成上相違するだけで、その他の構成は同じであるから、同じ図番を付して説明は省略する。そして、円筒状の外側積層コア22の内部空間に同心的に円柱状の内側積層コア24を挿入配置して両コアの間に形成される円筒状の磁気空隙16に軸方向に変位する円筒状の可動磁石体42を配置している。この可動磁石体42はシャフト36を有する有底円筒状の磁石保持枠44の開口端側に断面円弧状に形成された一対の永久磁石46と46を対向保持している。そして、各永久磁石46は軸方向で磁石46aと46bに分割され径方向に対して逆向きに磁化されている。
【0022】
なお、この実施例における動作原理も、図4の実施例と同様につきその説明は省略する。
【図面の簡単な説明】
【図1】 (a)および(b)はこの発明の一実施例である可動鉄心(MI)型リニア振動モータのA−AおよびB−Bに相当する図解図である。
【図2】 図1に示されるMI型リニア振動モータの分解斜面図である。
【図3】 (a)および(b)は図1の(a)および(b)に相当する他の実施例を示すMI型リニア振動モータの図解図である。
【図4】 (a)および(b)はこの発明の他の実施例を示す可動磁石(MM)型リニア振動モータのA−AおよびB−Bに相当する図解図である。
【図5】 (a)および(b)は図4の(a)および(b)に相当する他の実施例を示すMM型リニア振動モータの図解図である。
【図6】 (a)および(b)は図1の(a)およびb)に相当する従来例のMI型リニア振動モータの図解図である。
【符号の説明】
10 …リニア振動モータ
12 …コイル
14 …固定子鉄心
16 …磁気空間
18 …可動鉄心体
20 …コ字状の溝部
22 …外側積層コア
24 …内側積層コア
26 …突極部
30、32、46 …永久磁石
34 …可動保持体
36 …シャフト
38 …保持片
40 …可動鉄心
42 …可動磁石体
44 …磁石保持枠
[0001]
[Industrial application fields]
The present invention relates to a linear vibration motor, and more particularly to a linear vibration motor in which a movable body that can be displaced in the axial direction is arranged in a magnetic gap of a stator core having a coil.
[0002]
[Prior art]
For example, a conventional movable iron core (MI) type linear vibration motor 1 has four salient pole portions formed on the inner surface of a cylindrical stator laminated iron core 2 as shown in FIGS. 6 (a) and 6 (b). A coil 3 is wound around each of 2a, 2b, 2c, and 2d, and permanent magnets 4 are attached to the end surfaces of the salient poles, and a magnet surrounded by the permanent magnets 4 is attached. A movable iron core body 7 having a shaft 6 in the center of the gap 5 is arranged so as to be displaceable in the axial direction. Each permanent magnet 4 is divided into a plurality of magnets, and adjacent magnets 4a, 4b, 4c, and 4d are magnetized in the opposite direction in the radial direction and arranged.
[0003]
In the linear vibration motor 1 configured as described above, the total magnetic flux composed of the magnetic flux generated by the current and the magnetic flux generated by the permanent magnet 4 is changed by changing the current supplied to the coil 3. It is attracted and moved in the direction in which the passing magnetic flux is large. Therefore, the movable iron core 7 can be continuously reciprocated by energizing the coil 3 with an alternating current.
[0004]
[Problems to be solved by the invention]
However, since the salient pole part which winds a coil is formed in the inner surface side of a stator lamination iron core, winding work of the coil to this salient pole part is difficult to do, and there is a problem that it becomes expensive. .
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a linear vibration motor which is easy to manufacture a stator core, has a high productivity, and is efficient.
[0005]
[Means for Solving the Problems]
The present invention provides a linear vibration motor in which a movable iron core is disposed in a magnetic gap of a stator iron core having a coil so as to be axially displaceable, and the fixed iron core has a cylindrical outer core having permanent magnets mounted on the inner surface at predetermined intervals. And a columnar inner core in which a coil is wound around an outwardly formed salient pole portion and a permanent magnet is mounted on the outer surface between the coils, and the permanent magnet of the inner core is opposed to the permanent magnet of the outer core. Thus, the linear vibration motor is characterized in that the inner core is inserted into the outer core so as to form a magnetic gap.
[0006]
Further, according to the present invention, in the linear vibration motor in which the movable magnet body is disposed in the magnetic gap of the stator core having a coil so as to be axially displaceable, the fixed core has a cylindrical outer core and a protrusion formed outward. An inner core inserted into the outer core so as to form a magnetic air gap, and the inner surface of the outer core accommodates at least the end of the coil in the axial direction. A linear vibration motor including a recess .
[0007]
[Action]
Since the stator core has a columnar inner core with a coil wound around the salient pole portion inserted into the cylindrical outer core so as to secure a magnetic gap, for example, a protrusion formed outwardly on the inner core. The coil can be wound around the pole and the permanent magnet can be easily attached to the inner and outer cores forming the magnetic gap.
[0008]
【The invention's effect】
According to the present invention, it is possible to provide a linear vibration motor that is easy to manufacture a stator core having a coil and is rich in mass productivity. In addition, the coil occupancy rate can be increased, and the motor efficiency is improved.
The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
[0009]
【Example】
A linear vibration motor according to an embodiment of the present invention will be described with reference to FIGS.
A movable core (MI) type linear vibration motor 10 shown in FIGS. 1A and 1B is arranged in a stator core 14 having a coil 12 mounted thereon and a magnetic gap 16 of the stator core 14 and is arranged in the axial direction. A displaceable movable iron core 18 is included.
[0010]
The fixed iron core 14 has a cylindrical outer laminated core 22 in which four grooves 20 having a substantially U-shaped cross section are formed on the inner surface in the axial direction at intervals of 90 °, and is inserted into the inner space of the outer laminated core 22 to be magnetic. The columnar inner laminated core 24 that forms the gap 16 is composed of two divided bodies. The inner laminated core 24 has four salient pole portions 26 formed outward facing the groove portions 20 of the outer laminated core 22, and the coil 12 wound around each salient pole portion 26 in a loop shape. And a shaft insertion hole 28 is provided at the center.
[0011]
Each of the outer laminated core 22 and the inner laminated core 24 is configured by laminating and fixing a magnetic iron plate of a predetermined shape formed by punching, for example, a silicon steel plate. Further, permanent magnets 30,..., 32,... Having a cross-section formed in an arc shape are fixed to the inner surface excluding the groove portion 20 of the outer laminated core 22 and the outer surface between the coils of the inner laminated core 24 with an adhesive or the like. . The permanent magnets 30 and 32 and the coil 12 surround the magnetic gap 16.
[0012]
Each of the permanent magnets 30 and 32 is configured by abutting two magnets 30a and 30b and magnets 32a and 32b, and the adjacent magnets 30a and 30b and magnets 32a and 32b are magnetized in the opposite direction to the radial direction. ing.
A movable core 18 that displaces the magnetic gap 16 of the stator core 14 is provided with a bottomed cylindrical movable holder 34, and protrudes from the bottom of the movable holder 34 so that the inner laminated core 24 of the stator core 14 Four shafts that penetrate the shaft insertion hole 28 provided at the center and four holding pieces 38 formed on the periphery of the opening of the movable holding body 34, and that move in the magnetic gap 16 of the stator iron core 14. Arc-shaped movable iron cores 40...
[0013]
When the stator core 14 is manufactured by assembly, as shown in FIG. 2, first, the inner laminated core in which the coil 12 is wound around each salient pole portion 26 and the permanent magnet 32 is bonded and fixed to the outer surface between the coils. 24 and an outer laminated core 22 having a permanent magnet 30 bonded and fixed to the inner surface excluding the groove 20 are prepared. Next, the inner laminated core 24 is inserted and disposed in the inner space of the outer laminated core 22 so that each salient pole portion 26 to which the coil 12 of the inner laminated core 24 is attached is guided by each groove 20 of the outer laminated core 22. And the junction part located in the both ends of each salient pole part 26 of the inner side laminated core 24 and each groove part 20 of the outer side laminated core 22 is fixed by laser welding, for example. When the stator core 14 is assembled, the outer laminated core 22 may be fitted into the inner laminated core 24 in the reverse procedure to that described above.
[0014]
The operation of the MI type linear vibration motor 10 having the above configuration will be described.
First, when an electric current is applied to each coil 12 of the stator core 14 in a direction around the salient pole portion 26 as shown in FIG. 1A, a magnetic flux flows in the stator core 14 in the direction indicated by the solid line arrow. Occurs. On the other hand, among the magnets 30a and 30b of the permanent magnets 30 and 32 and the magnets 32a and 32b respectively attached to the inner surface of the outer laminated core 22 and the outer surface of the inner laminated core 24 of the stator core 14 by the flow of magnetic flux. 1 (b), the magnetic fluxes of the left magnets 30a and 32a are strengthened, and the magnetic fluxes of the right magnets 30b and 32b are weakened. Therefore, the movable iron cores 40 and 40 of the movable iron core 18 are thrust in the left direction. And move to the left side of the arrow.
[0015]
Next, when the direction of the current flowing through the coil 12 is changed, the direction of the magnetic flux flowing through the stator core 14 is reversed, and as a result, the outer core 22 and the inner core 24 of the stator core 14 are respectively mounted. Of the magnets 30a and 30b of the permanent magnets 30 and 32 and the magnets 32a and 32b, the magnetic flux of the right magnets 30b and 32b is strengthened, so that the movable iron cores 40 and 40 of the movable iron core 18 receive a thrust in the right direction. To the right of the arrow.
[0016]
Therefore, by applying an alternating current to the coil 12 of the stator core 14, the movable core 18 continuously reciprocates. For example, a piston is connected to the shaft 36 of the movable core 18 to compress air and refrigerant. The reciprocating compressor can be driven.
The MI type linear vibration motor 10 of another embodiment shown in FIG. 3 is formed with an outer laminated core 22 having a permanent magnet 30 and 30 constituting the stator core 14 mounted on the inner surface thereof in a cylindrical shape, and this cylindrical outer surface. The inner laminated core 24 having a single coil 12 and permanent magnets 32 and 32 inserted and disposed in the inner space of the laminated core 22 is formed in a cylindrical shape. Each permanent magnet 30 and 32 is divided into magnets 30a and 30b and magnets 32a and 32b, respectively, and is magnetized in the opposite direction to the radial direction, as in the embodiment of FIG.
[0017]
A movable iron core 18 that is displaced in the axial direction is disposed in a cylindrical magnetic gap 16 formed between the cylindrical outer laminated core 22 and the columnar inner laminated core 24. The movable iron core 18 includes a bottomed cylindrical movable holder 34 provided with a shaft 36, and a movable iron core 40 formed by laminating ring-shaped magnetic steel plates incorporated in the cylindrical portion of the holder 34. In this case, the movable holding body 34 can be formed by integral molding with a synthetic resin material. And the movable iron core 40 is embed | buried under a synthetic resin material at the time of shaping | molding.
[0018]
In this embodiment, since the movable iron core 18 is formed in a cylindrical shape, the configuration is simple, and since only one coil 12 is wound around the inner laminated core 24, the manufacturing is further simplified and the mass productivity is improved. Rich. The operation principle is the same as that of the embodiment of FIG.
Next, an embodiment of the movable magnet (MM) type linear vibration motor shown in FIG. 4 will be described. Compared with the MI-type linear vibration motor shown in FIG. 1, the structure of the stator core excluding the permanent magnet is the same. Therefore, the corresponding parts are denoted by the same reference numerals and the description thereof is omitted.
[0019]
In the linear vibration motor 10, a movable magnet body 42 that is displaced in the axial direction is disposed in the magnetic gap 16 formed between the outer laminated core 22 and the inner laminated core 24 that constitute the stator core 14. The movable magnet body 42 includes a bottomed cylindrical magnet holding frame 44, a shaft 36 projecting from the bottom of the holding frame 44 and penetrating through a shaft insertion hole 28 provided at the center of the inner laminated core 24. Four permanent magnets 46 held by the holding frame 44 are included. Each permanent magnet 46 is divided into two magnets 46a and 46b and is magnetized in the opposite direction to the radial direction.
[0020]
In the configuration described above, when a current is passed through the coil 12 of the stator core 14 from the front side to the back side as shown in the drawing, the stator core 14 is shown in the same manner as the pattern shown in FIG. Magnetic flux flows as shown by arrows. On the other hand, since each permanent magnet 46 mounted on the movable magnet body 42 is divided into magnets 46a and 46b and magnetized in opposite directions, the left side in FIG. On the contrary, the magnetic flux of the right magnet 46b is weakened, and the movable magnet body 42 receives the thrust in the left direction and moves to the left side of the illustrated arrow. When the direction of the current flowing through the coil 12 is changed, the direction of the magnetic flux flowing through the stator core 14 is reversed. As a result, the magnetic flux of the right magnet 46b becomes stronger than the magnetic flux of the left magnet 46a. Receives the thrust in the right direction and moves to the right of the illustrated arrow.
[0021]
Therefore, also in this embodiment, the movable magnet body 42 can be continuously reciprocated by supplying an alternating current to the coil 12 of the stator core 14.
Further, in another embodiment of the MM type linear vibration motor 10 shown in FIGS. 5A and 5B, the outer laminated core 22 constituting the stator core 14 is made cylindrical as compared with the embodiment of FIG. The other components are the same except that the inner laminated core 24 in which one coil 12 is wound is formed in a cylindrical shape, and the other configurations are the same. Is omitted. Then, a cylindrical inner laminated core 24 is inserted and disposed concentrically in the inner space of the cylindrical outer laminated core 22, and is displaced in the axial direction into a cylindrical magnetic gap 16 formed between the two cores. The movable magnet body 42 is arranged. The movable magnet body 42 holds a pair of permanent magnets 46 and 46 formed in a circular arc shape on the open end side of a bottomed cylindrical magnet holding frame 44 having a shaft 36. Each permanent magnet 46 is divided into magnets 46a and 46b in the axial direction and magnetized in the opposite direction to the radial direction.
[0022]
The operation principle of this embodiment is the same as that of the embodiment of FIG.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic views corresponding to AA and BB of a movable iron core (MI) type linear vibration motor according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view of the MI type linear vibration motor shown in FIG.
FIGS. 3A and 3B are schematic views of an MI type linear vibration motor showing another embodiment corresponding to FIGS. 1A and 1B. FIGS.
4A and 4B are illustrative views corresponding to AA and BB of a movable magnet (MM) type linear vibration motor showing another embodiment of the present invention. FIG.
FIGS. 5A and 5B are schematic views of an MM type linear vibration motor showing another embodiment corresponding to FIGS. 4A and 4B. FIGS.
6A and 6B are illustrative views of a conventional MI-type linear vibration motor corresponding to FIGS. 1A and 1B. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Linear vibration motor 12 ... Coil 14 ... Stator iron core 16 ... Magnetic space 18 ... Movable iron core body 20 ... U-shaped groove part 22 ... Outer laminated core 24 ... Inner laminated core 26 ... Salient pole part 30, 32, 46 ... Permanent magnet 34 ... movable holder 36 ... shaft 38 ... holding piece 40 ... movable iron core 42 ... movable magnet body 44 ... magnet holding frame

Claims (8)

コイルを有する固定子鉄心の磁気空隙に可動鉄心体を軸方向に変位可能に配置したリニア振動モータにおいて、
前記固定鉄心は所定間隔で永久磁石を内面に装着した筒状の外側コア、および
外向きに形成された突極部に前記コイルを巻装すると共に前記コイル間の外面に永久磁石を装着した柱状の内側コアとを備え、
前記内側コアの前記永久磁石が前記外側コアの前記永久磁石と相対向して前記磁気空隙を形成するように前記内側コアを前記外側コアに挿入配置したことを特徴とする、リニア振動モータ。
In a linear vibration motor in which a movable iron core is disposed so as to be axially displaceable in a magnetic gap of a stator iron core having a coil,
The fixed iron core is a cylindrical outer core having permanent magnets mounted on the inner surface at predetermined intervals, and a columnar shape in which the coils are wound around salient poles formed outward and the permanent magnets are mounted on the outer surfaces between the coils. With an inner core,
The linear vibration motor, wherein the inner core is inserted and arranged in the outer core so that the permanent magnet of the inner core faces the permanent magnet of the outer core to form the magnetic gap.
前記外側コアに装着される前記永久磁石および前記内側コアに装着される前記永久磁石は共に分割されて径方向に逆向きに磁化されている、請求項1記載のリニア振動モータ。  The linear vibration motor according to claim 1, wherein the permanent magnet attached to the outer core and the permanent magnet attached to the inner core are both divided and magnetized in the opposite radial direction. 前記外側コアの内面には少なくとも前記コイルの端部を収容する軸方向の凹所を備える、請求項1または2記載のリニア振動モータ。  3. The linear vibration motor according to claim 1, wherein the inner surface of the outer core includes an axial recess that accommodates at least an end of the coil. 前記凹所は溝部を含む、請求項3記載のリニア振動モータ。  The linear vibration motor according to claim 3, wherein the recess includes a groove. 前記永久磁石を含む前記外側コアを円筒状とし、前記永久磁石および前記コイルを含む前記内側コアを円柱状とし、前記外側コアと前記内側コアにより形成される前記磁気空隙に円筒状に積層された前記可動鉄心体を配置してなる、請求項1または2記載のリニア振動モータ。  The outer core including the permanent magnet has a cylindrical shape, the inner core including the permanent magnet and the coil has a cylindrical shape, and is stacked in a cylindrical shape in the magnetic gap formed by the outer core and the inner core. The linear vibration motor according to claim 1, wherein the movable iron core is disposed. コイルを有する固定子鉄心の磁気空隙に可動磁石体を軸方向に変位可能に配置したリニア振動モータにおいて、
前記固定鉄心は筒状の外側コア、および外向きに形成された突極部に前記コイルを巻装した柱状の内側コアとを備え、
前記磁気空隙を形成するように前記内側コアを前記外側コアに挿入配置し、
前記外側コアの内面には少なくとも前記コイルの端部を収容する軸方向の凹所を備えることを特徴とするリニア振動モータ。
In a linear vibration motor in which a movable magnet body is arranged to be axially displaceable in a magnetic gap of a stator core having a coil,
The fixed iron core includes a cylindrical outer core, and a columnar inner core in which the coil is wound around a salient pole portion formed outwardly,
Inserting and arranging the inner core into the outer core so as to form the magnetic gap;
The linear vibration motor according to claim 1, wherein an inner surface of the outer core includes an axial recess that accommodates at least an end of the coil.
前記凹所は溝部を含む、請求項6記載のリニア振動モータ。The linear vibration motor according to claim 6, wherein the recess includes a groove. 前記可動磁石体は分割された永久磁石を含み、かつ前記永久磁石は径方向に逆向きに磁化されている請求項6又は請求項7のいずれかに記載のリニア振動モータ。The linear vibration motor according to claim 6, wherein the movable magnet body includes a divided permanent magnet, and the permanent magnet is magnetized in the opposite direction in the radial direction.
JP04303299A 1999-02-22 1999-02-22 Linear vibration motor Expired - Fee Related JP3851012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04303299A JP3851012B2 (en) 1999-02-22 1999-02-22 Linear vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04303299A JP3851012B2 (en) 1999-02-22 1999-02-22 Linear vibration motor

Publications (2)

Publication Number Publication Date
JP2000245126A JP2000245126A (en) 2000-09-08
JP3851012B2 true JP3851012B2 (en) 2006-11-29

Family

ID=12652603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04303299A Expired - Fee Related JP3851012B2 (en) 1999-02-22 1999-02-22 Linear vibration motor

Country Status (1)

Country Link
JP (1) JP3851012B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283920C (en) * 2001-12-10 2006-11-08 Lg电子株式会社 Reliability-improving structure of reciprocating compressor
DE102005017483B4 (en) * 2005-04-15 2007-04-05 Compact Dynamics Gmbh Linear actuator in an electric impact tool
US20060267415A1 (en) 2005-05-31 2006-11-30 Infinia Corporation Dual linear electrodynamic system and method
CN107834737A (en) * 2017-12-14 2018-03-23 四川安和精密电子电器有限公司 A kind of vibration component and linear vibration motor

Also Published As

Publication number Publication date
JP2000245126A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US7049925B2 (en) Linear actuator
JP3873836B2 (en) Linear actuator
KR100421388B1 (en) Stator laminating structure and method in reciprocating motor
JP2000253640A (en) Linear vibration motor
JP3945916B2 (en) Movable iron core type linear motor
US6980072B2 (en) Linear actuator, and pump and compressor devices using the actuator
JP3851012B2 (en) Linear vibration motor
JP3789671B2 (en) Linear motor stator and manufacturing method thereof
JPS61106058A (en) Ultrafine displacement linear electromagnetic actuator
US6741008B2 (en) Stator for reciprocating motor
JP3754404B2 (en) Structure of reciprocating motor and manufacturing method thereof
JP3602818B2 (en) Stator structure of reciprocating motor
JP2003339147A (en) Linear actuator
JP3873764B2 (en) Linear actuator
JP2002034225A (en) Magnet-movable liner motor
JP2000116105A (en) Linear motor
JP2002034224A (en) Magnet-movable linear motor
KR100518780B1 (en) Mover for linear oscillatory actuator
JP3750127B2 (en) Voice coil linear motor
JP4556930B2 (en) Linear actuator
JP4572577B2 (en) Linear actuator
KR100438951B1 (en) Structure for laminating stator in reciprocating motor
KR100360255B1 (en) Structure for reducing loss in linear motor
KR100865143B1 (en) Moving parts for reciprocating motor
KR100378809B1 (en) Multi type linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

LAPS Cancellation because of no payment of annual fees