JP2003339147A - Linear actuator - Google Patents

Linear actuator

Info

Publication number
JP2003339147A
JP2003339147A JP2002143954A JP2002143954A JP2003339147A JP 2003339147 A JP2003339147 A JP 2003339147A JP 2002143954 A JP2002143954 A JP 2002143954A JP 2002143954 A JP2002143954 A JP 2002143954A JP 2003339147 A JP2003339147 A JP 2003339147A
Authority
JP
Japan
Prior art keywords
permanent magnets
pair
mover
stator
linear actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002143954A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakagawa
洋 中川
Kazumichi Kato
一路 加藤
Toshio Miki
利夫 三木
Yutaka Maeda
豊 前田
Takashi Fukunaga
崇 福永
Kozo Furuya
浩三 古谷
Toshiya Sugimoto
俊哉 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2002143954A priority Critical patent/JP2003339147A/en
Priority to CNB02827704XA priority patent/CN100553084C/en
Priority to EP02788660A priority patent/EP1463186B8/en
Priority to PCT/JP2002/012320 priority patent/WO2003049263A1/en
Priority to US10/497,678 priority patent/US7382067B2/en
Priority to KR1020047008054A priority patent/KR100918507B1/en
Priority to TW091134850A priority patent/TWI263391B/en
Publication of JP2003339147A publication Critical patent/JP2003339147A/en
Priority to HK04108747.5A priority patent/HK1065898A1/en
Priority to US12/106,392 priority patent/US7476990B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear actuator which can enhance reliability and can easily realize performance improvement. <P>SOLUTION: This linear actuator is equipped with a stator 12; a mover 13 which is provided capably of reciprocation to the stator; a pair of first permanent magnets 14 and 15 which oppose the mover side by side in the direction of reciprocation and have their magnetic poles, arranged orthogonal to the direction of reciprocation and are provided at the stator with the sides of each other magnetic poles reversed; a pair of second permanent magnets 16 and 17 which oppose the mover 13 side by side in the direction of reciprocation and have their magnetic poles arranged orthogonally to the direction of reciprocation, being registered in the direction of reciprocation with the first permanent magnets 14 and 15 in a pair, with the sides of each other's magnetic poles being reversed; and a coil 18 which is provided in the stator 12, and for the first permanent magnets in pair and the second permanent magnets in pair, the magnetic poles opposed to the mover are reversed between the permanent magnets, whose positions are registered in the direction of reciprocation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リニアアクチュエ
ータに関し、特にその信頼性向上および性能向上に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear actuator, and more particularly to improvement of reliability and performance thereof.

【0002】[0002]

【従来の技術】リニアアクチュエータは、バネを併用し
共振させることによって少ない損失で駆動できることか
ら、コンプレッサモータ等として利用されている。そし
て、このリニアアクチュエータを用いたコンプレッサは
高効率である等優れた性能を発揮できることから、冷蔵
庫や、冷凍庫、あるいはエアコンディショナ用としての
利用が期待されている。
2. Description of the Related Art A linear actuator is used as a compressor motor or the like because it can be driven with a small loss by resonating with a spring. Since a compressor using this linear actuator can exhibit excellent performance such as high efficiency, it is expected to be used as a refrigerator, a freezer, or an air conditioner.

【0003】リニアアクチュエータとしては、ボイスコ
イルモータがある。このボイスコイルモータは、永久磁
石により作られた磁界の中でコイルに電流を流すことに
よりコイルに生じる力で駆動を行うもので、コイルを含
む可動子が動く可動コイル型とも呼ばれている。
As a linear actuator, there is a voice coil motor. This voice coil motor is driven by a force generated in a coil by passing a current through the coil in a magnetic field created by a permanent magnet, and is also called a movable coil type in which a mover including the coil moves.

【0004】また、他のリニアアクチュエータとして、
上記可動コイル型のものに対して永久磁石とコイルとを
入れ替えた構造であって、永久磁石を含む可動子が動く
可動磁石型と呼ばれるものもある。
As another linear actuator,
There is also a structure in which a permanent magnet and a coil are exchanged with respect to the above-mentioned movable coil type, and a movable element including a permanent magnet is called a movable magnet type.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記した可
動コイル型のものは、可動子にコイルが含まれることか
ら、可動子に電流を流さなければならず、このための給
電線に可動子の移動で断線を生じてしまうことがあり、
信頼性に劣るという問題があった。
By the way, in the above-mentioned movable coil type, since a coil is included in the mover, it is necessary to pass an electric current through the mover. Movement may cause disconnection,
There was a problem of poor reliability.

【0006】また、上記した可動磁石型のものは、性能
向上を図るために高い磁束密度を得ようとした場合に永
久磁石の重量が増大することになり、その結果、可動子
の重量が増加することになるため、望むように性能向上
が図れないという問題があった。
Further, in the above-mentioned movable magnet type, the weight of the permanent magnet is increased when trying to obtain a high magnetic flux density in order to improve the performance, and as a result, the weight of the mover is increased. Therefore, there is a problem that the performance cannot be improved as desired.

【0007】したがって、本発明は、信頼性を向上させ
ることができ、しかも性能向上を容易に図ることができ
るリニアアクチュエータの提供を目的とする。
Therefore, it is an object of the present invention to provide a linear actuator which can improve reliability and easily improve performance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1記載のリニアアクチュエータは、
固定子と、少なくとも一部に鉄部材を有し前記固定子に
対し往復動可能に設けられた可動子と、互いに前記往復
動の方向に隣り合った状態で前記鉄部材に対向しかつ前
記往復動の方向に直交して磁極を並べしかも互いの磁極
の並びを逆にした状態で前記固定子に設けられた第1の
一対の永久磁石と、該第1の一対の永久磁石に対し前記
往復動の方向における位置を合わせるとともに、互いに
前記往復動の方向に隣り合った状態で前記鉄部材に対向
しかつ前記往復動の方向に直交して磁極を並べしかも互
いの磁極の並びを逆にした状態で前記固定子に設けられ
た第2の一対の永久磁石と、前記固定子に設けられたコ
イルとを備え、前記第1の一対の永久磁石および前記第
2の一対の永久磁石は、前記往復動の方向に位置が合う
永久磁石同士で前記鉄部材に対向させる磁極を逆にして
いることを特徴としている。
In order to achieve the above object, a linear actuator according to claim 1 of the present invention comprises:
A stator, a mover having an iron member at least in part and provided so as to be reciprocable with respect to the stator, and facing the iron member and adjoining each other in the state of being adjacent to each other in the reciprocating direction. A pair of first permanent magnets provided on the stator in a state where the magnetic poles are arranged orthogonally to the direction of movement and the arrangement of the magnetic poles is reversed, and the reciprocating motion is performed with respect to the first pair of permanent magnets. The magnetic poles are aligned in the direction of movement, and the magnetic poles are arranged adjacent to each other in the direction of the reciprocal movement, facing the iron member and orthogonal to the direction of the reciprocal movement, and the arrangement of the magnetic poles is reversed. A second pair of permanent magnets provided on the stator in a state and a coil provided on the stator, wherein the first pair of permanent magnets and the second pair of permanent magnets are Front with permanent magnets that are aligned in the direction of reciprocation It is characterized by that a magnetic pole is opposed to the iron member reversed.

【0009】これにより、固定子側のコイルの電流が一
方向に流れた状態では、例えば、固定子、第1の一対の
永久磁石の一方の永久磁石、鉄部材、第2の一対の永久
磁石のうち往復動方向において第1の一対の永久磁石の
一方の永久磁石と位置が合う一方の永久磁石、固定子の
ループで磁束が形成され、固定子側のコイルの電流が切
り替えられ逆方向に流れた状態では、固定子、第2の一
対の永久磁石の他方の永久磁石、鉄部材、第1の一対の
永久磁石の他方の永久磁石、固定子のループで磁束が形
成されることになる。これにより、固定子側のコイルの
電流の方向を交互に切り替えると、固定子側の第1の一
対の永久磁石および第2の一対の永久磁石において鉄部
材に対し磁束を導く側を可動子の往復動の方向に交互に
切り替えることになり、鉄部材すなわち可動子を往復動
させることになる。このように、コイルと永久磁石とが
ともに固定子側に設けられるため、可動子側に給電する
必要がなくなって、移動する可動子がコイルへの給電線
に断線を生じさせてしまうことがなくなる。また、性能
向上を図るために高い磁束密度を得ようとした場合に永
久磁石の重量が増大しても、可動子の重量が増加するこ
とがない。さらに、可動子に磁石がないことから、可動
子への着磁が作業が不要となる。加えて、上記した磁束
のループで可動子を移動させることから、可動子の永久
磁石に対し反対側に固定子の一部をバックヨークとして
配置しない構成にできる。
As a result, when the current of the coil on the stator side flows in one direction, for example, the stator, one permanent magnet of the first pair of permanent magnets, the iron member, and the second pair of permanent magnets. Among the permanent magnets of the first pair of permanent magnets in the reciprocating direction, a magnetic flux is formed by one of the permanent magnets and the loop of the stator, and the current of the coil on the stator side is switched to the opposite direction. In the flowing state, magnetic flux is formed by the stator, the other permanent magnet of the second pair of permanent magnets, the iron member, the other permanent magnet of the first pair of permanent magnets, and the loop of the stator. . As a result, when the direction of the current of the coil on the stator side is switched alternately, the side of the stator side that guides the magnetic flux to the iron member in the first pair of permanent magnets and the second pair of permanent magnets of the stator side of the mover is changed. The direction of reciprocation is alternately switched, and the iron member, that is, the mover is reciprocated. Since the coil and the permanent magnet are both provided on the stator side in this manner, it is not necessary to feed power to the mover side, and the moving mover does not cause a disconnection in the feed line to the coil. . Further, even if the weight of the permanent magnet increases when trying to obtain a high magnetic flux density in order to improve the performance, the weight of the mover does not increase. Further, since the mover has no magnet, the work of magnetizing the mover becomes unnecessary. In addition, since the mover is moved by the loop of the magnetic flux described above, a part of the stator on the side opposite to the permanent magnet of the mover may not be arranged as a back yoke.

【0010】本発明の請求項2記載のリニアアクチュエ
ータは、請求項1記載のものに関して、前記第1の一対
の永久磁石および前記第2の一対の永久磁石の組が前記
往復動の方向における位置を合わせて複数組設けられて
いることを特徴としている。
A linear actuator according to a second aspect of the present invention is the linear actuator according to the first aspect, wherein the set of the first pair of permanent magnets and the second pair of permanent magnets is positioned in the reciprocating direction. The feature is that a plurality of sets are provided together.

【0011】このように、第1の一対の永久磁石および
第2の一対の永久磁石の組が可動子の往復動の方向にお
ける位置を合わせて複数組設けられているため、さらに
強力な永久磁石の磁界と電流による起磁力を得ることが
できる。
As described above, since a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided so as to be aligned in the reciprocating direction of the mover, a stronger permanent magnet is provided. The magnetomotive force due to the magnetic field and the current can be obtained.

【0012】本発明の請求項3記載のリニアアクチュエ
ータは、請求項1または2記載のものに関して、前記第
1の一対の永久磁石および前記第2の一対の永久磁石の
組が前記往復動の方向に隣り合った状態で複数組設けら
れており、前記鉄部材は、前記永久磁石の方向に突出す
る凸部が前記往復動の方向に隣り合って複数設けられて
いることを特徴としている。
According to a third aspect of the present invention, in the linear actuator according to the first or second aspect, the pair of the first pair of permanent magnets and the second pair of permanent magnets is in the reciprocating direction. A plurality of sets are provided adjacent to each other, and the iron member is characterized in that a plurality of convex portions protruding in the direction of the permanent magnet are provided adjacent to each other in the reciprocating direction.

【0013】このように、第1の一対の永久磁石および
第2の一対の永久磁石の組が可動子の往復動の方向に隣
り合った状態で複数組設けられており、これに合わせて
鉄部材には可動子の往復動の方向に隣り合って永久磁石
の方向に突出する凸部が複数設けられているため、スト
ロークは減少するが、歯数に比例して推力を増大させる
ことができる。
As described above, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided adjacent to each other in the reciprocating direction of the mover. Since the member is provided with a plurality of convex portions that are adjacent to each other in the reciprocating direction of the mover and project toward the permanent magnet, the stroke is reduced, but the thrust can be increased in proportion to the number of teeth. .

【0014】本発明の請求項4記載のリニアアクチュエ
ータは、請求項1乃至3のいずれか一項記載のものに関
して、前記固定子は前記往復動の方向に積層された積層
鋼板からなることを特徴としている。
According to a fourth aspect of the present invention, in the linear actuator according to any one of the first to third aspects, the stator is made of laminated steel plates laminated in the reciprocating direction. I am trying.

【0015】このように、固定子は可動子の往復動の方
向に積層された積層鋼板からなるため、ムク材から削り
出されて形成される場合に比して渦電流損失を低減する
ことができ、焼結や圧粉鉄心で形成される場合に比して
ヒステリシス損を低減することができる。また、特に固
定子を大型化する場合に、ムク材からの削り出しおよび
焼結に比して製造が容易となる。
As described above, since the stator is made of laminated steel plates laminated in the reciprocating direction of the mover, the eddy current loss can be reduced as compared with the case where the stator is machined from a solid material. Therefore, the hysteresis loss can be reduced as compared with the case of being formed by sintering or a dust core. In addition, especially when the size of the stator is increased, the manufacturing becomes easier as compared with the cutting and sintering from the solid material.

【0016】[0016]

【発明の実施の形態】本発明の第1実施形態のリニアア
クチュエータを図1〜図6を参照して以下に説明する。
DETAILED DESCRIPTION OF THE INVENTION A linear actuator according to a first embodiment of the present invention will be described below with reference to FIGS.

【0017】第1実施形態のリニアアクチュエータ11
は、ヨーク(固定子)12と、このヨーク12の内側に
往復動可能に設けられた可動子13と、ヨーク12に固
定された一対の永久磁石(第1の一対の永久磁石)1
4,15と、ヨーク12に固定された一対の永久磁石
(第2の一対の永久磁石)16,17と、ヨーク12に
固定された二つのコイル18とを備えている。
The linear actuator 11 of the first embodiment
Is a yoke (stator) 12, a mover 13 reciprocally provided inside the yoke 12, and a pair of permanent magnets (first pair of permanent magnets) 1 fixed to the yoke 12.
4 and 15, a pair of permanent magnets (second pair of permanent magnets) 16 and 17 fixed to the yoke 12, and two coils 18 fixed to the yoke 12.

【0018】上記ヨーク12は、その中心位置に貫通穴
21が形成されることにより全体として角筒形状をなし
ている。貫通穴21は、円筒の内周面を所定の間隔をあ
けて二カ所その軸線に平行に切断した形状をなし互いに
離間状態で対向する二カ所の円筒面部22と、各円筒面
部22のそれぞれの両端縁部から円筒面部22同士を結
ぶ方向に沿って外側に延出する平面部23と、各平面部
23のそれぞれの円筒面部22に対し反対側の端縁部か
ら平面部23と直交して外側に延出する平面部24と、
円筒面部22同士を結ぶ方向に延在して各平面部24の
対応するもの同士をそれぞれ連結させる平面状の内面部
25とを有している。ここで、二カ所の円筒面部22
は、同径同長同幅をなしており同軸に配置されている。
また、平面部23、平面部24および内面部25で、各
円筒面部22の円周方向における両側に半径方向に凹む
凹部30がそれぞれ形成されている。
The yoke 12 has a rectangular tube shape as a whole by forming a through hole 21 at the center position thereof. The through hole 21 has a shape in which the inner peripheral surface of the cylinder is cut in two places in parallel with the axis of the cylindrical face at predetermined intervals, and the two cylindrical face portions 22 facing each other in a separated state and the respective cylindrical face portions 22. A flat surface portion 23 extending outward from both end edge portions along a direction connecting the cylindrical surface portions 22 to each other, and an orthogonal edge to the flat surface portion 23 from an end edge portion on the opposite side to each cylindrical surface portion 22 of each flat surface portion 23. A flat surface portion 24 extending outward,
It has a planar inner surface portion 25 that extends in the direction connecting the cylindrical surface portions 22 and connects the corresponding ones of the respective planar portions 24. Here, the two cylindrical surface portions 22
Have the same diameter, the same length, and the same width, and are arranged coaxially.
Further, the flat surface portion 23, the flat surface portion 24, and the inner surface portion 25 are respectively formed with concave portions 30 that are recessed in the radial direction on both sides in the circumferential direction of each cylindrical surface portion 22.

【0019】なお、このヨーク12は、上記二カ所の円
筒面部22と四カ所の平面部23と四カ所の平面部24
と二カ所の内面部25とを有する形状に薄板状の鋼板を
プレスで打ち抜いて基部材27を形成し、この基部材2
7を貫通穴21の貫通方向に複数、位置を合わせながら
積層しつつ接合させた積層鋼板からなっている。また、
このヨーク12には、可動子13の内側に延出する形状
のバックヨークは設けられていない。
The yoke 12 has the two cylindrical surface portions 22, the four flat surface portions 23, and the four flat surface portions 24.
And a two-sided inner surface portion 25, a thin steel plate is punched by a press to form a base member 27.
A plurality of laminated steel sheets 7 are laminated in the through direction of the through hole 21 while being aligned and joined together. Also,
The yoke 12 is not provided with a back yoke extending inward of the mover 13.

【0020】ヨーク12においては、各内面部25と各
内面部25に平行をなしてそれぞれ近接する外面部26
との間の部分がコイル巻回部28とされており、その結
果、このようなコイル巻回部28が二カ所互いに平行に
設けられている。コイル巻回部28には内面部25の全
幅にわたってコイル18が巻き付けられ、その結果、各
コイル18はリング状をなしてヨーク12に固定されて
いる。
In the yoke 12, the inner surface portions 25 and the outer surface portions 26 which are parallel to the inner surface portions 25 and are in close proximity to each other.
A portion between and is a coil winding portion 28, and as a result, such a coil winding portion 28 is provided in two places in parallel with each other. The coils 18 are wound around the coil winding portion 28 over the entire width of the inner surface portion 25, and as a result, each coil 18 is fixed to the yoke 12 in a ring shape.

【0021】上記永久磁石14,15は、円筒を所定の
間隔をあけて二カ所その軸線に平行に切断した形状をな
す同径同長同幅のフェライト磁石からなるもので、互い
に同軸をなし円周方向の位置を合わせ軸線方向に隣り合
った状態で並べられて一方の円筒面部22に接合固定さ
れている。ここで、これら永久磁石14,15は、軸線
方向に直交する方向に磁極を並べたラジアル異方性のも
ので、互いの磁極の並びを逆にしている。具体的には、
貫通穴21の貫通方向における一側の永久磁石14は、
N極14aが外径側にS極14bが内径側に配置されて
おり、他側の永久磁石15は、N極15aが内径側にS
極15bが外径側に配置されている。なお、永久磁石1
4,15の配列方向に直交する方向の両側にヨーク12
の凹部30が配置されている。
The permanent magnets 14 and 15 are made of ferrite magnets having the same diameter, the same length, and the same width, which are formed by cutting a cylinder in two places at a predetermined interval in parallel with each other, and are coaxial with each other. They are arranged in a state where they are aligned in the circumferential direction and are adjacent to each other in the axial direction, and are joined and fixed to one cylindrical surface portion 22. Here, the permanent magnets 14 and 15 are of radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of magnetic poles is reversed. In particular,
The permanent magnet 14 on one side in the penetrating direction of the through hole 21 is
The N pole 14a is arranged on the outer diameter side, and the S pole 14b is arranged on the inner diameter side.
The pole 15b is arranged on the outer diameter side. The permanent magnet 1
The yokes 12 are provided on both sides in the direction orthogonal to the arrangement direction of 4, 15
The concave portion 30 is arranged.

【0022】上記永久磁石16,17は、円筒の内周面
を所定の間隔をあけて二カ所その軸線に平行に切断した
形状をなす同径同長同幅をなすフェライト磁石からなる
もので、互いに同軸をなし円周方向の位置を合わせ軸線
方向に隣り合った状態で並べられて他方の円筒面部22
に、上記永久磁石14,15に対し円周方向の逆側に離
間し貫通穴21の軸線方向における位置を合わせて接合
固定されている。ここで、これら永久磁石16,17
は、軸線方向に直交する方向に磁極を並べたラジアル異
方性のもので、互いの磁極の並びを逆にしている。具体
的には、貫通穴21の貫通方向における一側の永久磁石
16は、N極16aが内径側にS極16bが外径側に配
置されており、他側の永久磁石17は、N極17aが外
径側にS極17bが内径側に配置されている。なお、永
久磁石16,17の配列方向に直交する方向の両側にヨ
ーク12の凹部30が配置されている。
The permanent magnets 16 and 17 are made of ferrite magnets having the same diameter, the same length and the same width, which are formed by cutting the inner peripheral surface of the cylinder at two places at predetermined intervals in parallel to the axis thereof. The other cylindrical surface portions 22 are arranged coaxially with each other and aligned in the circumferential direction so as to be adjacent to each other in the axial direction.
Further, the permanent magnets 14 and 15 are spaced apart from each other on the opposite side in the circumferential direction, and are joined and fixed by aligning the positions of the through holes 21 in the axial direction. Here, these permanent magnets 16 and 17
Is a radial anisotropic type in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of magnetic poles is reversed. Specifically, in the permanent magnet 16 on one side in the penetrating direction of the through hole 21, the N pole 16a is arranged on the inner diameter side and the S pole 16b is arranged on the outer diameter side, and the permanent magnet 17 on the other side is the N pole. 17a is arranged on the outer diameter side and S pole 17b is arranged on the inner diameter side. The concave portions 30 of the yoke 12 are arranged on both sides in the direction orthogonal to the arrangement direction of the permanent magnets 16 and 17.

【0023】以上により、一対の永久磁石14,15お
よび一対の永久磁石16,17は、貫通穴21の貫通方
向に位置が合う永久磁石同士で内径側すなわち可動子1
3側の磁極を逆にしている。すなわち、貫通穴21の貫
通方向に位置が合う永久磁石14および永久磁石16は
互いに内径側の磁極を逆にしており、貫通穴21の貫通
方向に位置が合う永久磁石15および永久磁石17も互
いに内径側の磁極を逆にしている。
As described above, the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17 are permanent magnets positioned in the penetrating direction of the through hole 21 and are located on the inner diameter side, that is, the mover 1.
The magnetic poles on the 3 side are reversed. That is, the permanent magnets 14 and 16 that are positioned in the penetrating direction of the through hole 21 have magnetic poles on the inner diameter side that are opposite to each other, and the permanent magnet 15 and the permanent magnet 17 that are positioned in the penetrating direction of the through hole 21 are also mutually opposite. The magnetic poles on the inner diameter side are reversed.

【0024】可動子13は、中央に貫通穴31が形成さ
れることにより円筒状をなしており、その外径が永久磁
石14〜17の内径よりも若干小径とされている。この
可動子13はヨーク12の円筒面部22の内側すなわち
永久磁石14〜17の内径側に、これらと対向しつつ同
軸をなすように挿入されることによって、ヨーク12に
対して貫通穴21の貫通方向に往復動可能に設けられ
る。ここで、可動子13の軸線方向における長さは、ヨ
ーク12の貫通穴21の貫通方向における長さよりも短
くされている。
The mover 13 has a cylindrical shape with a through hole 31 formed at the center, and its outer diameter is slightly smaller than the inner diameters of the permanent magnets 14-17. The mover 13 is inserted inside the cylindrical surface portion 22 of the yoke 12, that is, on the inner diameter side of the permanent magnets 14 to 17 so as to be coaxial therewith while facing them, so that the through hole 21 penetrates the yoke 12. It is provided so as to be reciprocally movable in any direction. Here, the length of the mover 13 in the axial direction is shorter than the length of the through hole 21 of the yoke 12 in the penetrating direction.

【0025】なお、この可動子13は、薄板状の鋼板を
プレスで打ち抜いて内側に貫通穴31を有する円環状の
基部材32を形成し、この基部材32を貫通穴31の貫
通方向に複数、位置を合わせながら積層させて接合させ
た積層鋼板からなっている。これにより可動子13は全
体が鉄部材からなっている。
The mover 13 is formed by punching a thin steel plate with a press to form an annular base member 32 having a through hole 31 inside, and a plurality of the base members 32 are formed in the through direction of the through hole 31. It is composed of laminated steel plates that are laminated and joined while aligning their positions. As a result, the mover 13 is entirely made of an iron member.

【0026】上記構造のリニアアクチュエータ11にお
いては、両側のコイル18に交流電流(正弦波電流、矩
形波電流)を同期して流す。ここで、両側のコイル18
には、それぞれのコイル巻回部28よりも可動子13側
の部分に、貫通穴21の貫通方向に沿って逆向きの電流
を流すことになる。
In the linear actuator 11 having the above structure, an alternating current (sine wave current, rectangular wave current) is synchronously passed through the coils 18 on both sides. Here, the coils 18 on both sides
In this case, a current flowing in the opposite direction along the penetrating direction of the through hole 21 flows through the portion closer to the mover 13 than the respective coil winding portions 28.

【0027】なお、両側のコイル18に電流を流してい
ない状態では、一対の永久磁石14,15によって、図
2に二点鎖線で示すように、ヨーク12、永久磁石1
5、可動子13、永久磁石14およびヨーク12をこの
順に結ぶループで磁束が形成されるとともに、一対の永
久磁石16,17によって、ヨーク12、永久磁石1
6、可動子13、永久磁石17およびヨーク12をこの
順に結ぶループで磁束が形成される。このとき、可動子
13は停止状態とされる。
When no current is applied to the coils 18 on both sides, the yoke 12 and the permanent magnet 1 are made to move by the pair of permanent magnets 14 and 15 as shown by the chain double-dashed line in FIG.
5, a magnetic flux is formed by a loop connecting the mover 13, the permanent magnet 14, and the yoke 12 in this order, and the yoke 12, the permanent magnet 1 is formed by the pair of permanent magnets 16 and 17.
6, a magnetic flux is formed by a loop connecting the movable element 13, the permanent magnet 17, and the yoke 12 in this order. At this time, the mover 13 is stopped.

【0028】そして、例えば、図3に示すように、一方
(図3における左側)のコイル18に、その可動子13
側に貫通穴21の貫通方向における一方向(図3におけ
る紙面を裏から表に貫く方向)に流れるように電流を流
すと、その内側のコイル巻回部28に一方向(図3にお
ける下方向)に起磁力が生じる。すると、一対の永久磁
石14,15および一対の永久磁石16,17によっ
て、この一方のコイル18側には、図3および図4に二
点鎖線で示すように、ヨーク12、一対の永久磁石1
4,15のうちの一方(図3においては紙面奥側)の永
久磁石15、可動子13、一対の永久磁石16,17の
うちの貫通穴21の貫通方向において上記一方の永久磁
石15と位置が合う一方の永久磁石17およびヨーク1
2を、この順に結ぶループで磁束が形成されることにな
る。これと同時に、他方(図3における右側)のコイル
18に、その可動子13側に貫通穴21の貫通方向にお
ける逆方向(図3における紙面を表から裏に貫く方向)
に流れるように電流を流すと、コイル巻回部28に一方
向(図3における下方向)に起磁力が生じる。すると、
図3に二点鎖線で示すように、一対の永久磁石14,1
5および一対の永久磁石16,17によって、この他方
のコイル18側にも、ヨーク12、一対の永久磁石1
4,15の一方(図3においては紙面奥側)の永久磁石
15、可動子13、一対の永久磁石16,17のうち貫
通方向において上記一方の永久磁石15と位置が合う一
方の永久磁石17およびヨーク12をこの順に結ぶルー
プで磁束が形成されることになる。
Then, for example, as shown in FIG. 3, one of the coils 18 (on the left side in FIG. 3) is provided with a movable element 13 thereof.
When a current is flowed to one side in the penetrating direction of the through hole 21 (a direction penetrating from the back side to the front side of the paper surface in FIG. 3), the coil winding portion 28 inside the one direction (downward direction in FIG. 3). ) Generates a magnetomotive force. Then, by the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17, the yoke 12 and the pair of permanent magnets 1 are provided on the one coil 18 side as shown by the chain double-dashed lines in FIGS. 3 and 4.
The position of the permanent magnet 15 on one side (the back side of the paper in FIG. 3) of the Nos. 4 and 15 and the one of the permanent magnets 15 in the penetrating direction of the through hole 21 of the mover 13 and the pair of permanent magnets 16 and 17. One of the permanent magnets 17 and the yoke 1
A magnetic flux is formed by a loop connecting 2 in this order. At the same time, the coil 18 on the other side (the right side in FIG. 3) is provided in the direction opposite to the penetrating direction of the through hole 21 on the mover 13 side (the direction of penetrating from the front to the back in FIG. 3).
When an electric current is applied so as to flow in the direction, a magnetomotive force is generated in the coil winding portion 28 in one direction (downward in FIG. 3). Then,
As shown by the chain double-dashed line in FIG. 3, a pair of permanent magnets 14, 1
5 and the pair of permanent magnets 16 and 17, the yoke 12 and the pair of permanent magnets 1 also on the other coil 18 side.
One of the permanent magnets 15, 4 and 15 (on the back side of the paper in FIG. 3), the mover 13, and the pair of permanent magnets 16 and 17, one of which is in alignment with the one of the permanent magnets 15 in the penetrating direction. And a magnetic flux is formed by a loop connecting the yoke 12 in this order.

【0029】以上によって、可動子13が貫通穴21の
貫通方向における一方向(図3における紙面を表から裏
に貫く方向、図4における右方向)に移動する。
As described above, the mover 13 moves in one direction in the penetrating direction of the through hole 21 (the direction from the front side to the back side of the paper in FIG. 3, the right direction in FIG. 4).

【0030】次に、図5および図6に示すように、一方
(図5における左側)のコイル18に、その可動子13
側に貫通穴21の貫通方向における逆方向(図5におけ
る紙面を表から裏に貫く方向)に流れるように電流を流
すと、その内側のコイル巻回部28に一方向(図5にお
ける上方向)に起磁力が生じる。すると、図5および図
6に二点鎖線で示すように、一対の永久磁石14,15
および一対の永久磁石16,17によって、この一方の
コイル18側に、ヨーク12、一対の永久磁石14,1
5のうちの他方(図5においては紙面手前側)の永久磁
石14、可動子13、一対の永久磁石16,17のうち
の貫通穴21の貫通方向において上記他方の永久磁石1
4と位置が合う他方の永久磁石16およびヨーク12
を、この順に結ぶループで磁束が形成されることにな
る。これと同時に、他方(図5における右側)のコイル
18に、その可動子13側に貫通穴21の貫通方向にお
ける一方向(図5における紙面を裏から表に貫く方向)
に流れるように電流を流すと、その内側のコイル巻回部
28に一方向(図5における上方向)に起磁力が生じ
る。すると、図5に二点鎖線で示すように、一対の永久
磁石14,15および一対の永久磁石16,17によっ
て、この他方のコイル18側には、ヨーク12、一対の
永久磁石14,15のうちの他方(図5においては紙面
手前側)の永久磁石14、可動子13、一対の永久磁石
16,17のうちの貫通穴21の貫通方向において上記
他方の永久磁石14と位置が合う他方の永久磁石16お
よびヨーク12を、この順に結ぶループで磁束が形成さ
れることになる。
Next, as shown in FIGS. 5 and 6, one of the coils 18 (on the left side in FIG. 5) is attached to the mover 13 thereof.
When a current is applied to the side so as to flow in the direction opposite to the direction of penetration of the through-hole 21 (the direction from the front side to the back side of the paper surface in FIG. 5), the coil winding portion 28 inside the one direction (upward direction in FIG. 5) ) Generates a magnetomotive force. Then, as shown by the two-dot chain line in FIGS. 5 and 6, the pair of permanent magnets 14, 15
And the pair of permanent magnets 16 and 17, the yoke 12 and the pair of permanent magnets 14 and 1 on the one coil 18 side.
5, the other permanent magnet 1 (the front side of the drawing in FIG. 5), the mover 13, and the pair of permanent magnets 16 and 17 in the penetrating direction of the through hole 21 of the other permanent magnet 1
4, the other permanent magnet 16 and the yoke 12 which are aligned with
A magnetic flux will be formed by a loop connecting in this order. At the same time, in the coil 18 on the other side (right side in FIG. 5), one direction in the penetrating direction of the through hole 21 on the side of the mover 13 (direction of penetrating the paper surface from the back to the front in FIG. 5).
When an electric current is passed so as to flow in the direction, a magnetomotive force is generated in one direction (upward in FIG. 5) in the coil winding portion 28 inside thereof. Then, as shown by the chain double-dashed line in FIG. 5, by the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17, the yoke 12 and the pair of permanent magnets 14 and 15 are provided on the other coil 18 side. The other of the permanent magnets 14 on the other side (the front side of the paper in FIG. 5), the mover 13, and the other of the pair of permanent magnets 16 and 17 that is aligned with the other permanent magnet 14 in the penetrating direction of the through hole 21. A magnetic flux is formed by a loop connecting the permanent magnet 16 and the yoke 12 in this order.

【0031】以上によって、可動子13が貫通穴21の
貫通方向における逆方向(図5における紙面を裏から表
に貫く方向、図6における左方向)に移動する。
As a result of the above, the mover 13 moves in the direction opposite to the penetrating direction of the through hole 21 (the direction from the back side to the front side of the paper surface in FIG. 5, the left direction in FIG. 6).

【0032】そして、交流電流によって両コイル18へ
の電流の流れの方向が交互に変化することにより、以上
の作動を繰り返して、可動子13はヨーク12に対して
貫通穴21の貫通方向に所定のストロークで往復動する
ことになる。
The alternating currents alternately change the direction of the current flow to both coils 18, so that the above operation is repeated, and the mover 13 is moved in a predetermined direction in the through hole 21 with respect to the yoke 12. It will reciprocate with the stroke of.

【0033】以上に述べた第1実施形態のリニアアクチ
ュエータ11によれば、コイル18が可動子13ではな
くヨーク12に設けられるため、可動子13側に給電す
る必要がなくなって、移動する可動子13がコイル18
への給電線に断線を生じさせてしまうことがなくなる。
したがって、連続運転等に対する信頼性を向上させるこ
とができる。
According to the linear actuator 11 of the first embodiment described above, since the coil 18 is provided not on the mover 13 but on the yoke 12, it is not necessary to supply power to the mover 13 side, and the mover moves. 13 is a coil 18
There will be no breakage in the power supply line to the.
Therefore, it is possible to improve reliability for continuous operation and the like.

【0034】また、永久磁石14〜17も可動子13で
はなくヨーク12に設けられるため、性能向上を図るた
めに高い磁束密度を得ようとした場合に永久磁石14〜
17やコイル18の重量が増大しても、可動子13の重
量が増加することがない。したがって、性能向上(推力
アップ)を容易に図ることができる。
Further, since the permanent magnets 14 to 17 are also provided on the yoke 12 instead of the mover 13, the permanent magnets 14 to 17 are used when a high magnetic flux density is obtained in order to improve the performance.
Even if the weights of 17 and the coil 18 increase, the weight of the mover 13 does not increase. Therefore, it is possible to easily improve the performance (increase the thrust).

【0035】加えて、可動子13に永久磁石がないこと
から、可動子13への着磁が作業が不要となり、また、
可動子13の製造時に可動子13には吸引力が働かない
ため、可動子13の製造が容易となる。したがって、製
造が容易となってコストダウンを図ることができる。
In addition, since the mover 13 does not have a permanent magnet, it is unnecessary to magnetize the mover 13, and
Since the suction force does not act on the mover 13 when the mover 13 is manufactured, the mover 13 is easily manufactured. Therefore, manufacturing is facilitated and cost can be reduced.

【0036】加えて、上述したようなループの磁束で可
動子13を移動させることから、可動子13の永久磁石
14〜17に対し反対側すなわち内径側にヨーク12の
一部をバックヨークとして配置しない構成にできる。し
たがって、可動子13の永久磁石14〜17に対し反対
側すなわち貫通穴31側の空間を有効利用できる。具体
的には、貫通穴31内に別途のシリンダやそのピストン
等を配置する場合の設計自由度が大幅に増す。
In addition, since the mover 13 is moved by the magnetic flux of the loop as described above, a part of the yoke 12 is arranged as a back yoke on the side opposite to the permanent magnets 14 to 17 of the mover 13, that is, on the inner diameter side. It can be configured not to. Therefore, the space on the side opposite to the permanent magnets 14 to 17 of the mover 13, that is, on the side of the through hole 31 can be effectively used. Specifically, the degree of freedom in designing when disposing a separate cylinder, its piston, or the like in the through hole 31 is significantly increased.

【0037】加えて、ヨーク12は可動子13の往復動
の方向に積層された積層鋼板からなるため、ムク材から
削り出されて形成される場合に比して渦電流損失を低減
することができる一方、焼結で形成される場合に比して
ヒステリシス損を低減することができる。したがって、
性能を向上させることができる。また、特にヨーク12
を大型化する場合に、ムク材からの削り出しおよび焼結
に比して製造が容易となる。したがって、全体の大型化
に伴うヨーク12の大型化に容易に対応することができ
る。
In addition, since the yoke 12 is made of laminated steel plates laminated in the reciprocating direction of the mover 13, the eddy current loss can be reduced as compared with the case where the yoke 12 is carved out from a solid material. On the other hand, the hysteresis loss can be reduced as compared with the case of being formed by sintering. Therefore,
The performance can be improved. Also, especially the yoke 12
In the case of increasing the size, the manufacturing becomes easier as compared with the cutting and sintering from the solid material. Therefore, it is possible to easily cope with the increase in size of the yoke 12 due to the increase in size of the whole.

【0038】なお、永久磁石14〜17としては、上記
したフェライト磁石以外にも、ネオジウム、サマリウム
コバルト等の希土類系のものを用いたり、プラスチック
磁石を用いることも可能であるが、フェライト磁石を用
いるのがコスト低減の観点からより好ましい。
As the permanent magnets 14 to 17, rare earth magnets such as neodymium and samarium cobalt can be used in addition to the above ferrite magnets, or plastic magnets can be used, but ferrite magnets are used. Is more preferable from the viewpoint of cost reduction.

【0039】また、このリニアアクチュエータ11は、
可動子13にバネを組み込んだり、外部に置かれたバネ
との併用で共振させて使用されるのが一般的であるが、
勿論、このまま使用することも可能である。
Further, the linear actuator 11 is
It is common to incorporate a spring into the mover 13 or to resonate the spring together with a spring placed outside.
Of course, it can be used as it is.

【0040】また、このリニアアクチュエータ11に位
置、速度等を検出するセンサを設け、閉ループ制御を行
うことで速度や位置の制御が可能なリニアサーボアクチ
ュエータとして利用できる。
Further, the linear actuator 11 can be used as a linear servo actuator capable of controlling the speed and position by providing a sensor for detecting the position, speed and the like and performing closed loop control.

【0041】次に、本発明の第2実施形態のリニアアク
チュエータを図7および図8を参照して以下に説明す
る。
Next, a linear actuator according to a second embodiment of the present invention will be described below with reference to FIGS. 7 and 8.

【0042】第2実施形態のリニアアクチュエータ51
は、ヨーク(固定子)52と、このヨーク52の内側に
往復動可能に設けられた可動子53と、ヨーク52に固
定された四組の永久磁石(第1の一対の永久磁石)5
4,55と、ヨーク52に固定された四組の永久磁石
(第2の一対の永久磁石)56,57と、ヨーク52に
固定された八つのコイル58とを備えている。
Linear actuator 51 of the second embodiment
Is a yoke (stator) 52, a mover 53 reciprocally provided inside the yoke 52, and four sets of permanent magnets (first pair of permanent magnets) 5 fixed to the yoke 52.
4, 55, four sets of permanent magnets (second pair of permanent magnets) 56, 57 fixed to the yoke 52, and eight coils 58 fixed to the yoke 52.

【0043】上記ヨーク52は、その中心位置に貫通穴
61が形成されることにより全体として円筒形状をなし
ている。貫通穴61は、円筒の内周面を所定の間隔をあ
けて二カ所その軸線に平行に切断した形状をなし円周方
向に等間隔で配置される八カ所の円筒面部62を有して
いる。ここで、円周方向に隣り合う円筒面部62同士の
間は、半径方向外方に凹む凹部63とされており、その
結果、円周方向に隣り合う凹部63同士の間には、円筒
面部62を有する凸部64が形成されている。ここで、
八カ所の円筒面部62は、同径同長同幅をなしており同
軸に配置されている。なお、このヨーク52は、図示は
略すが、第1実施形態と同様に、上記八カ所の凹部63
および凸部64を有する形状に薄板状の鋼板をプレスで
打ち抜いて基部材を形成し、この基部材を貫通穴61の
貫通方向に複数、位置を合わせながらを積層させつつ接
合させた積層鋼板からなっている。また、このヨーク5
2には、可動子53の内側に延出する形状のバックヨー
クは設けられていない。
The yoke 52 has a cylindrical shape as a whole by forming a through hole 61 at the center thereof. The through-hole 61 has a shape in which the inner peripheral surface of the cylinder is cut at two places in parallel with the axis thereof at predetermined intervals, and has eight cylindrical surface portions 62 arranged at equal intervals in the circumferential direction. . Here, between the cylindrical surface portions 62 that are adjacent to each other in the circumferential direction, there are formed concave portions 63 that are recessed outward in the radial direction. As a result, between the concave portion 63 that are adjacent to each other in the circumferential direction, the cylindrical surface portion 62 is formed. The convex portion 64 having is formed. here,
The eight cylindrical surface portions 62 have the same diameter, the same length, and the same width, and are arranged coaxially. Although not shown in the drawings, the yoke 52 is similar to the first embodiment in that the recesses 63 at the eight locations are provided.
And a laminated steel plate in which a thin plate-shaped steel plate is punched into a shape having a convex portion 64 by a press to form a base member, and a plurality of the base members are joined in the penetrating direction of the through hole 61 while being aligned and stacked. Has become. Also, this yoke 5
2 is not provided with a back yoke having a shape extending inside the mover 53.

【0044】第2実施形態において、ヨーク52の各凸
部64には、軸線方向と円周方向とに交互に延在するよ
うにコイル58が巻き付けられ、その結果、各コイル5
8はリング状をなしてヨーク52に固定されている。
In the second embodiment, the coil 58 is wound around each convex portion 64 of the yoke 52 so as to extend alternately in the axial direction and the circumferential direction, and as a result, each coil 5 is wound.
A ring 8 is fixed to the yoke 52.

【0045】上記永久磁石54,55は、円筒を所定の
間隔をあけて二カ所その軸線に平行に切断した形状をな
す同径同長同幅のフェライト磁石からなるもので、互い
に同軸をなし円周方向の位置を合わせ軸線方向に隣り合
った状態で並べられて共通の円筒面部62に接合固定さ
れている。ここで、これら永久磁石54,55は、軸線
方向に直交する方向に磁極を並べたラジアル異方性のも
ので、互いの磁極の並びを逆にしている。具体的には、
貫通穴61の貫通方向における一側の永久磁石54は、
N極54aが外径側にS極54bが内径側に配置されて
おり、他側の永久磁石55は、N極55aが内径側にS
極55bが外径側に配置されている。そして、このよう
な一対の永久磁石54,55の組が四組、円周方向に一
つおきに配置された各円筒面部32に放射状をなすよう
に配置されている。
The permanent magnets 54, 55 are made of ferrite magnets having the same diameter, the same length, and the same width, which are formed by cutting a cylinder in two places at a predetermined interval in parallel with each other, and are coaxial with each other. The positions are aligned in the circumferential direction so as to be adjacent to each other in the axial direction, and are joined and fixed to the common cylindrical surface portion 62. Here, the permanent magnets 54 and 55 are of radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of magnetic poles is reversed. In particular,
The permanent magnet 54 on one side in the penetrating direction of the through hole 61 is
The N pole 54a is arranged on the outer diameter side and the S pole 54b is arranged on the inner diameter side.
The pole 55b is arranged on the outer diameter side. Four pairs of such a pair of permanent magnets 54 and 55 are radially arranged on each of the cylindrical surface portions 32 arranged every other one in the circumferential direction.

【0046】上記永久磁石56,57は、円筒の内周面
を所定の間隔をあけて二カ所その軸線に平行に切断した
形状をなす同径同長同幅をなすフェライト磁石からなる
もので、互いに同軸をなし円周方向の位置を合わせ軸線
方向に隣り合った状態で並べられて共通の円筒面部62
に接合固定されている。ここで、これら永久磁石56,
57は、軸線方向に直交する方向に磁極を並べたラジア
ル異方性のもので、互いの磁極の並びを逆にしている。
具体的には、貫通穴61の貫通方向における一側の永久
磁石56は、N極56aが内径側にS極56bが外径側
に配置されており、他側の永久磁石57は、N極57a
が外径側にS極57bが内径側に配置されている。そし
て、このような一対の永久磁石56,67の組が四組、
円周方向に一つおきに配置された残りの各円筒面部32
に放射状をなすように配置されている。
The permanent magnets 56 and 57 are made of ferrite magnets having the same diameter, the same length, and the same width, which are formed by cutting the inner peripheral surface of the cylinder at two places at predetermined intervals in parallel to the axis thereof. Common cylindrical surface portions 62 which are coaxial with each other and are aligned in the circumferential direction and are adjacent to each other in the axial direction.
It is fixed to the joint. Here, these permanent magnets 56,
Reference numeral 57 is of radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of magnetic poles is reversed.
Specifically, in the permanent magnet 56 on one side in the penetrating direction of the through hole 61, the N pole 56a is arranged on the inner diameter side, the S pole 56b is arranged on the outer diameter side, and the permanent magnet 57 on the other side is the N pole. 57a
Is arranged on the outer diameter side and the S pole 57b is arranged on the inner diameter side. And four pairs of such a pair of permanent magnets 56 and 67 are provided,
Remaining cylindrical surface portions 32 arranged every other in the circumferential direction
Are arranged in a radial pattern.

【0047】以上により、一対の永久磁石54,55お
よび一対の永久磁石56,57は、貫通穴61の貫通方
向に位置が合う永久磁石同士で内径側すなわち可動子5
3の磁極を逆にしている。すなわち、貫通穴61の貫通
方向に位置が合う永久磁石54および永久磁石56は互
いに内径側の磁極を逆にしており、貫通穴61の貫通方
向に位置が合う永久磁石55および永久磁石57も互い
に内径側の磁極を逆にしている。
As described above, the pair of permanent magnets 54, 55 and the pair of permanent magnets 56, 57 are permanent magnets whose positions are aligned in the penetrating direction of the through hole 61.
The magnetic pole of 3 is reversed. That is, the permanent magnets 54 and the permanent magnets 56, which are positioned in the penetrating direction of the through hole 61, have magnetic poles on the inner diameter side opposite to each other, and the permanent magnets 55 and 57, which are positioned in the penetrating direction of the through hole 61, are also mutually opposite. The magnetic poles on the inner diameter side are reversed.

【0048】ここで、円周方向に互いに離間して隣り合
う一対の永久磁石54,55と一対の永久磁石56,5
7とが組となっており、このような組が、貫通穴21の
貫通方向における位置を合わせて複数組具体的には四組
設けられている。
Here, a pair of permanent magnets 54, 55 and a pair of permanent magnets 56, 5 that are adjacent to each other and are circumferentially separated from each other are provided.
7 is a set, and a plurality of such sets, specifically, four sets are provided by aligning the positions of the through holes 21 in the penetrating direction.

【0049】可動子53は、中央に貫通穴71が形成さ
れることにより円筒状をなす鉄部材72とこの鉄部材7
2の軸線方向における一側に設けられた主部73とを有
しており、主部73は鉄部材72と同軸同径をなして隣
り合う大径円筒部75と、この大径円筒部75の鉄部材
72に対し反対側にこれよりも小径をなして同軸に設け
られた小径円筒部76とを有している。なお、鉄部材7
2および大径円筒部75の外径が永久磁石54〜57の
内径よりも若干小径とされている。この可動子53はヨ
ーク52の円筒面部62の内側すなわち永久磁石54〜
57の内径側に、これらと同軸をなすように挿入される
ことにより、ヨーク52に対して貫通穴61の貫通方向
に往復動可能に設けられる。ここで、鉄部材72の軸線
方向における長さは、ヨーク52の貫通穴61の貫通方
向における長さよりも短くされている。また、小径円筒
部76には内径側に通した軸等を固定するためのボルト
78が半径方向に螺合されている。
The mover 53 has a cylindrical iron member 72 having a through hole 71 formed in the center thereof, and the iron member 72.
2 has a main portion 73 provided on one side in the axial direction, and the main portion 73 has a large-diameter cylindrical portion 75 that is coaxial with the iron member 72 and has the same diameter and that are adjacent to each other, and the large-diameter cylindrical portion 75. On the opposite side of the iron member 72, a small diameter cylindrical portion 76 having a diameter smaller than that of the iron member 72 and coaxially provided is provided. The iron member 7
2 and the outer diameter of the large-diameter cylindrical portion 75 are slightly smaller than the inner diameters of the permanent magnets 54 to 57. The mover 53 is inside the cylindrical surface portion 62 of the yoke 52, that is, the permanent magnets 54-
By being inserted on the inner diameter side of 57 so as to be coaxial therewith, it is provided so as to be capable of reciprocating in the penetrating direction of the through hole 61 with respect to the yoke 52. Here, the length of the iron member 72 in the axial direction is shorter than the length of the through hole 61 of the yoke 52 in the penetrating direction. Further, a bolt 78 for fixing a shaft or the like passing through the inner diameter side is screwed in the small diameter cylindrical portion 76 in the radial direction.

【0050】なお、この可動子53は、主部73が非磁
性材料であるエンジニアリングプラスチック等の合成樹
脂からなっており、鉄部材72は焼結材からなってい
る。可動子53は、鉄部材72を入れ子とする合成樹脂
のインサート成形により形成されている。
The main part 73 of the mover 53 is made of a synthetic resin such as engineering plastic which is a non-magnetic material, and the iron member 72 is made of a sintered material. The mover 53 is formed by insert molding of synthetic resin having the iron member 72 as a nest.

【0051】以上に述べた第2実施形態のリニアアクチ
ュエータ51によれば、第1実施形態のリニアアクチュ
エータ11と同様の効果を発揮することができ、その上
で、一対の永久磁石54,55と一対の永久磁石56,
57との組が複数組具体的には四組に分配されているこ
とから、ヨーク厚さを薄くでき、軽量化が図れる。
According to the linear actuator 51 of the second embodiment described above, the same effect as that of the linear actuator 11 of the first embodiment can be exhibited, and on top of that, the pair of permanent magnets 54, 55 and A pair of permanent magnets 56,
Since a plurality of sets, specifically 57 sets, are distributed, the yoke thickness can be reduced and the weight can be reduced.

【0052】可動子厚さも薄くでき、可動部の軽量化が
図れることから、応答性が改善される。
Since the thickness of the mover can be reduced and the weight of the movable part can be reduced, the responsiveness is improved.

【0053】なお、第2実施形態においても第1実施形
態と同様の変更等が可能である。
The same changes and the like as in the first embodiment can be made in the second embodiment.

【0054】次に、本発明の第3実施形態のリニアアク
チュエータを図9を参照して第2実施形態との相違部分
を中心に以下に説明する。なお、第2実施形態と同様の
部分には同一の符号を付しその説明は略す。
Next, the linear actuator of the third embodiment of the present invention will be described below with reference to FIG. 9 focusing on the differences from the second embodiment. The same parts as those in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0055】第3実施形態においては、一対の永久磁石
54,55および一対の永久磁石56,57の各組に対
し、円周方向における位置を合わせ貫通穴61の貫通方
向に隣り合った状態で別の一対の永久磁石54,55お
よび一対の永久磁石56,57の組がそれぞれ設けられ
ている。すなわち、各一対の永久磁石54,55には、
円周方向における位置を合わせ貫通穴61の貫通方向に
隣り合った状態で一対の永久磁石54,55がそれぞれ
設けられており、各一対の永久磁石56,57には、円
周方向における位置を合わせ貫通穴61の貫通方向に隣
り合った状態で一対の永久磁石56,57がそれぞれ設
けられている。
In the third embodiment, the positions of the pair of permanent magnets 54, 55 and the pair of permanent magnets 56, 57 are aligned in the circumferential direction and are adjacent to each other in the penetrating direction of the through hole 61. Another pair of permanent magnets 54 and 55 and a pair of permanent magnets 56 and 57 are provided, respectively. That is, in each pair of permanent magnets 54, 55,
A pair of permanent magnets 54 and 55 are provided so that their positions in the circumferential direction are aligned and are adjacent to each other in the penetrating direction of the through hole 61. A pair of permanent magnets 56 and 57 are provided so as to be adjacent to each other in the penetrating direction of the matching through hole 61.

【0056】また、鉄部材には、永久磁石の方向すなわ
ち外径側に突出する環状の凸部80が貫通穴61の貫通
方向すなわち可動子53の往復動の方向に隣り合って複
数具体的には二カ所設けられている。ここで、貫通穴6
1の貫通方向における一側の凸部80が、貫通穴61の
貫通方向におけるこれと同側に設けられた永久磁石5
4,55および永久磁石56,57との間で磁束を導く
一方、貫通穴61の貫通方向における逆側の凸部80
が、貫通穴61の貫通方向におけるこれと同側に設けら
れた永久磁石54,55および永久磁石56,57との
間で磁束を導く。
Further, in the iron member, a plurality of annular convex portions 80 projecting in the direction of the permanent magnet, that is, the outer diameter side are adjacent to each other in the penetrating direction of the through hole 61, that is, the reciprocating direction of the mover 53, specifically, in a concrete manner. Are provided in two places. Here, through hole 6
The protrusion 80 on one side in the penetrating direction of the permanent magnet 5 is provided on the same side as the penetrating direction of the through hole 61 in the penetrating direction.
4, 55 and the permanent magnets 56, 57, while guiding the magnetic flux, the projection 80 on the opposite side in the penetrating direction of the through hole 61.
Guides magnetic flux between the permanent magnets 54, 55 and the permanent magnets 56, 57 provided on the same side of the through hole 61 in the penetrating direction.

【0057】以上に述べた第3実施形態のリニアアクチ
ュエータ51によれば、第2実施形態と同様の効果を発
揮することができ、その上で、一対の永久磁石54,5
5および一対の永久磁石56,57の組が可動子53の
往復動の方向に複数組設けられているため、さらに強力
な永久磁石の磁界と電流による起磁力を得ることができ
る。その上、鉄部材72には可動子53の往復動の方向
に隣り合って永久磁石54〜57の方向に突出する凸部
80が複数設けられているため、往復動のいずれにおい
ても凸部80の端面に効率的に吸引力を作用させること
ができ、その結果、可動子をより大きな力で駆動するこ
とができる。
According to the linear actuator 51 of the third embodiment described above, the same effect as that of the second embodiment can be exhibited, and on top of that, the pair of permanent magnets 54, 5 can be used.
Since a plurality of sets of 5 and a pair of permanent magnets 56 and 57 are provided in the reciprocating direction of the mover 53, a stronger magnetomotive force due to the magnetic field and current of the permanent magnet can be obtained. In addition, since the iron member 72 is provided with a plurality of convex portions 80 that are adjacent to each other in the reciprocating direction of the mover 53 and project toward the permanent magnets 54 to 57, the convex portion 80 is reciprocally moved. The suction force can be efficiently applied to the end surface of the movable element, and as a result, the mover can be driven with a larger force.

【0058】なお、上述したすべてのリニアアクチュエ
ータ11について、中心軸線側と外径側とで構成を反転
させるようにしても良い。例えば、図10および図11
に示すように、コイル18を含むヨーク12の外径側に
永久磁石14,15および永久磁石16,17を配置
し、永久磁石14,15および永久磁石16,17の外
径側に往復動可能に円筒状の可動子13を設けるのであ
る。このように構成すれば、全体として同じ大きさとし
た場合に、コイル18が小さくなるので、銅損失が少な
くなり、力を発生させる面積を大きくすることができ
て、効率を向上させることができる。
The configurations of all the linear actuators 11 described above may be reversed on the central axis side and the outer diameter side. For example, FIGS.
As shown in, the permanent magnets 14 and 15 and the permanent magnets 16 and 17 are arranged on the outer diameter side of the yoke 12 including the coil 18, and can be reciprocated to the outer diameter side of the permanent magnets 14 and 15 and the permanent magnets 16 and 17. The cylindrical mover 13 is provided in the. According to this structure, when the coil 18 has the same size as a whole, the coil 18 becomes smaller, so that the copper loss is reduced, the area for generating the force can be increased, and the efficiency can be improved.

【0059】[0059]

【発明の効果】以上詳述したように、本発明の請求項1
記載のリニアアクチュエータによれば、固定子側のコイ
ルの電流が一方向に流れた状態では、例えば、固定子、
第1の一対の永久磁石の一方の永久磁石、鉄部材、第2
の一対の永久磁石のうち往復動方向において第1の一対
の永久磁石の一方の永久磁石と位置が合う一方の永久磁
石、固定子のループで磁束が形成され、固定子側のコイ
ルの電流が切り替えられ逆方向に流れた状態では、固定
子、第2の一対の永久磁石の他方の永久磁石、鉄部材、
第1の一対の永久磁石の他方の永久磁石、固定子のルー
プで磁束が形成されることになる。これにより、固定子
側のコイルの電流の方向を交互に切り替えると、固定子
側の第1の一対の永久磁石および第2の一対の永久磁石
において鉄部材に対し磁束を導く側を可動子の往復動の
方向に交互に切り替えることになり、鉄部材すなわち可
動子を往復動させることになる。
As described in detail above, the first aspect of the present invention
According to the linear actuator described, in the state where the current of the coil on the stator side flows in one direction, for example, the stator,
One of the first pair of permanent magnets, the iron member, the second
Of the pair of permanent magnets, one of the first pair of permanent magnets is aligned with one of the first pair of permanent magnets in the reciprocating direction, a magnetic flux is formed by the loop of the stator, and the current of the coil on the side of the stator changes. In the state of being switched and flowing in the opposite direction, the stator, the other permanent magnet of the second pair of permanent magnets, the iron member,
A magnetic flux is formed by the other permanent magnet of the first pair of permanent magnets and the loop of the stator. As a result, when the direction of the current of the coil on the stator side is switched alternately, the side of the stator side that guides the magnetic flux to the iron member in the first pair of permanent magnets and the second pair of permanent magnets of the stator side of the mover is changed. The direction of reciprocation is alternately switched, and the iron member, that is, the mover is reciprocated.

【0060】このように、コイルと永久磁石とがともに
固定子側に設けられるため、可動子側に給電する必要が
なくなって、移動する可動子がコイルへの給電線に断線
を生じさせてしまうことがなくなる。したがって、信頼
性を向上させることができる。
As described above, since the coil and the permanent magnet are both provided on the stator side, it is not necessary to supply power to the mover side, and the moving mover causes a disconnection in the power supply line to the coil. Will disappear. Therefore, reliability can be improved.

【0061】また、性能向上を図るために高い磁束密度
を得ようとした場合に永久磁石やコイルの重量が増大し
ても、可動子の重量が増加することがない。したがっ
て、性能向上を容易に図ることができる。
Further, even if the weight of the permanent magnet or the coil increases when a high magnetic flux density is obtained in order to improve the performance, the weight of the mover does not increase. Therefore, it is possible to easily improve the performance.

【0062】さらに、可動子に磁石がないことから、可
動子への着磁が作業が不要となる。したがって、製造が
容易となってコストダウンを図ることができる。
Further, since the mover has no magnet, it is not necessary to magnetize the mover. Therefore, manufacturing is facilitated and cost can be reduced.

【0063】加えて、上記した磁束のループで可動子を
移動させることから、可動子の永久磁石に対し反対側に
固定子の一部をバックヨークとして配置しない構成にで
きる。したがって、可動子の永久磁石に対し反対側の空
間を有効利用できる。
In addition, since the mover is moved by the loop of the magnetic flux described above, a part of the stator on the side opposite to the permanent magnet of the mover may not be arranged as a back yoke. Therefore, the space on the opposite side of the permanent magnet of the mover can be effectively used.

【0064】本発明の請求項2記載のリニアアクチュエ
ータによれば、第1の一対の永久磁石および第2の一対
の永久磁石の組が可動子の往復動の方向における位置を
合わせて複数組設けられているため、さらに強力な永久
磁石の磁界と電流による起磁力を得ることができる。
According to the linear actuator of the second aspect of the present invention, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided with their positions in the reciprocating direction of the mover aligned. Therefore, a stronger magnetomotive force due to the magnetic field and current of the permanent magnet can be obtained.

【0065】本発明の請求項3記載のリニアアクチュエ
ータによれば、第1の一対の永久磁石および第2の一対
の永久磁石の組が可動子の往復動の方向に隣り合った状
態で複数組設けられており、これに合わせて鉄部材には
可動子の往復動の方向に隣り合って永久磁石の方向に突
出する凸部が複数設けられているため、さらに強力な永
久磁石の磁界と電流による起磁力を得ることができると
ともに、凸部の端面に効率的に吸引力を作用させること
ができる。
According to the linear actuator of the third aspect of the present invention, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are adjacent to each other in the reciprocating direction of the mover. In accordance with this, the iron member is provided with a plurality of convex portions that are adjacent to each other in the reciprocating direction of the mover and project in the direction of the permanent magnet. It is possible to obtain a magnetomotive force due to, and it is possible to efficiently apply a suction force to the end surface of the convex portion.

【0066】本発明の請求項4記載のリニアアクチュエ
ータによれば、固定子は可動子の往復動の方向に積層さ
れた積層鋼板からなるため、ムク材から削り出されて形
成される場合に比して渦電流損失を低減することがで
き、焼結で形成される場合に比してヒステリシス損を低
減することができる。また、特に固定子を大型化する場
合に、ムク材からの削り出しおよび焼結に比して製造が
容易となる。したがって、性能を向上させることがで
き、また、全体の大型化に伴う固定子の大型化に容易に
対応することができる。
According to the linear actuator of claim 4 of the present invention, the stator is made of laminated steel plates laminated in the reciprocating direction of the mover. As a result, the eddy current loss can be reduced, and the hysteresis loss can be reduced as compared with the case of being formed by sintering. In addition, especially when the size of the stator is increased, the manufacturing becomes easier as compared with the cutting and sintering from the solid material. Therefore, it is possible to improve the performance, and it is possible to easily cope with the increase in size of the stator accompanying the increase in size of the whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施形態のリニアアクチュエー
タを示す正断面図である。
FIG. 1 is a front sectional view showing a linear actuator according to a first embodiment of the present invention.

【図2】 本発明の第1実施形態のリニアアクチュエー
タを示す側断面図であって、コイルに電流が流れていな
いときの磁束の状態を二点鎖線で示すものである。
FIG. 2 is a side cross-sectional view showing the linear actuator according to the first embodiment of the present invention, and shows a state of magnetic flux when a current does not flow in the coil by a chain double-dashed line.

【図3】 本発明の第1実施形態のリニアアクチュエー
タを示す正断面図であって、コイルに電流が一方向に流
れているときの磁束の状態を二点鎖線で示すものであ
る。
FIG. 3 is a front cross-sectional view showing the linear actuator of the first embodiment of the present invention, showing a state of magnetic flux when a current flows through the coil in one direction by a chain double-dashed line.

【図4】 本発明の第1実施形態のリニアアクチュエー
タを示す側断面図であって、コイルに電流が一方向に流
れているときの磁束の状態を二点鎖線で示すものであ
る。
FIG. 4 is a side cross-sectional view showing the linear actuator of the first embodiment of the present invention, showing a state of magnetic flux when a current flows in one direction in a coil by a chain double-dashed line.

【図5】 本発明の第1実施形態のリニアアクチュエー
タを示す正断面図であって、コイルに電流が逆方向に流
れているときの磁束の状態を二点鎖線で示すものであ
る。
FIG. 5 is a front cross-sectional view showing the linear actuator of the first embodiment of the present invention, in which the state of magnetic flux when a current flows in the coil in the opposite direction is indicated by a chain double-dashed line.

【図6】 本発明の第1実施形態のリニアアクチュエー
タを示す側断面図であって、コイルに電流が逆方向に流
れているときの磁束の状態を二点鎖線で示すものであ
る。
FIG. 6 is a side sectional view showing the linear actuator according to the first embodiment of the present invention, and shows a state of magnetic flux when a current flows in the coil in the opposite direction by a chain double-dashed line.

【図7】 本発明の第2実施形態のリニアアクチュエー
タを示す正断面図である。
FIG. 7 is a front sectional view showing a linear actuator of a second embodiment of the present invention.

【図8】 本発明の第2実施形態のリニアアクチュエー
タを示す図7に示すX−X線に沿う断面図である。
FIG. 8 is a cross-sectional view taken along line XX shown in FIG. 7 showing a linear actuator according to a second embodiment of the present invention.

【図9】 本発明の第3実施形態のリニアアクチュエー
タを示す図7に示すX−X線に沿う断面図である。
FIG. 9 is a sectional view taken along line XX shown in FIG. 7 showing a linear actuator according to a third embodiment of the present invention.

【図10】 本発明の第1実施形態のリニアアクチュエ
ータの変形例を示す正断面図である。
FIG. 10 is a front cross-sectional view showing a modified example of the linear actuator of the first embodiment of the present invention.

【図11】 本発明の第1実施形態のリニアアクチュエ
ータの変形例を示す側断面図である。
FIG. 11 is a side sectional view showing a modified example of the linear actuator of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 リニアアクチュエータ 12 ヨーク(固定子) 13 可動子 14,15 永久磁石(第1の一対の永久磁石) 14a,15a,16a,17a N極(磁極) 14b,15b,16b,17b S極(磁極) 16,17 永久磁石(第2の一対の永久磁石) 18 コイル 51 リニアアクチュエータ 52 ヨーク(固定子) 53 可動子 54,55 永久磁石(第1の一対の永久磁石) 54a,55a,56a,57a N極(磁極) 54b,55b,56b,57b S極(磁極) 56,57 永久磁石(第2の一対の永久磁石) 58 コイル 72 鉄部材 80 凸部 11 Linear actuator 12 yoke (stator) 13 mover 14,15 Permanent magnets (first pair of permanent magnets) 14a, 15a, 16a, 17a N pole (magnetic pole) 14b, 15b, 16b, 17b S pole (magnetic pole) 16,17 Permanent magnets (second pair of permanent magnets) 18 coils 51 Linear actuator 52 Yoke (stator) 53 mover 54, 55 permanent magnets (first pair of permanent magnets) 54a, 55a, 56a, 57a N pole (magnetic pole) 54b, 55b, 56b, 57b S pole (magnetic pole) 56,57 permanent magnets (second pair of permanent magnets) 58 coils 72 Iron member 80 convex

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 利夫 三重県伊勢市竹ヶ鼻町100番地 神鋼電機 株式会社伊勢製作所内 (72)発明者 前田 豊 三重県伊勢市竹ヶ鼻町100番地 神鋼電機 株式会社伊勢製作所内 (72)発明者 福永 崇 三重県伊勢市竹ヶ鼻町100番地 神鋼電機 株式会社伊勢製作所内 (72)発明者 古谷 浩三 三重県伊勢市竹ヶ鼻町100番地 神鋼電機 株式会社伊勢製作所内 (72)発明者 杉本 俊哉 三重県伊勢市竹ヶ鼻町100番地 神鋼電機 株式会社伊勢製作所内 Fターム(参考) 5H633 BB07 GG02 GG04 HH02 HH07 HH08 HH09 HH10 HH15 HH16 HH18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshio Miki             100, Takegahana Town, Ise City, Mie Prefecture             Ise Manufacturing Co., Ltd. (72) Inventor Yutaka Maeda             100, Takegahana Town, Ise City, Mie Prefecture             Ise Manufacturing Co., Ltd. (72) Inventor Takashi Fukunaga             100, Takegahana Town, Ise City, Mie Prefecture             Ise Manufacturing Co., Ltd. (72) Inventor Kozo Furuya             100, Takegahana Town, Ise City, Mie Prefecture             Ise Manufacturing Co., Ltd. (72) Inventor Toshiya Sugimoto             100, Takegahana Town, Ise City, Mie Prefecture             Ise Manufacturing Co., Ltd. F term (reference) 5H633 BB07 GG02 GG04 HH02 HH07                       HH08 HH09 HH10 HH15 HH16                       HH18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固定子と、 少なくとも一部に鉄部材を有し前記固定子に対し往復動
可能に設けられた可動子と、 互いに前記往復動の方向に隣り合った状態で前記鉄部材
に対向しかつ前記往復動の方向に直交して磁極を並べし
かも互いの磁極の並びを逆にした状態で前記固定子に設
けられた第1の一対の永久磁石と、 該第1の一対の永久磁石に対し前記往復動の方向におけ
る位置を合わせるとともに、互いに前記往復動の方向に
隣り合った状態で前記鉄部材に対向しかつ前記往復動の
方向に直交して磁極を並べしかも互いの磁極の並びを逆
にした状態で前記固定子に設けられた第2の一対の永久
磁石と、 前記固定子に設けられたコイルとを備え、 前記第1の一対の永久磁石および前記第2の一対の永久
磁石は、前記往復動の方向に位置が合う永久磁石同士で
前記鉄部材に対向させる磁極を逆にしていることを特徴
とするリニアアクチュエータ。
1. A stator, a mover having at least a part of an iron member and capable of reciprocating with respect to the stator, wherein the iron member is adjacent to each other in the reciprocating direction. A first pair of permanent magnets provided on the stator in a state where the magnetic poles are arranged to face each other and are orthogonal to the direction of the reciprocating movement, and the arrangement of the magnetic poles is opposite to each other; The magnetic poles are aligned in the reciprocating direction with respect to the magnet, and the magnetic poles are arranged so as to face the iron member and be adjacent to each other in the reciprocating direction and orthogonal to the reciprocating direction. A first pair of permanent magnets and a second pair of permanent magnets, the second pair of permanent magnets provided on the stator in a state where the arrangement is reversed, and the coil provided on the stator. The permanent magnet is aligned in the reciprocating direction Linear actuator, characterized in that in permanent magnet to each other are reversed magnetic poles to be opposite to the iron member.
【請求項2】 前記第1の一対の永久磁石および前記第
2の一対の永久磁石の組が前記往復動の方向における位
置を合わせて複数組設けられていることを特徴とする請
求項1記載のリニアアクチュエータ。
2. A plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided with their positions in the reciprocating direction aligned. Linear actuator.
【請求項3】 前記第1の一対の永久磁石および前記第
2の一対の永久磁石の組が前記往復動の方向に隣り合っ
た状態で複数組設けられており、 前記鉄部材は、前記永久磁石の方向に突出する凸部が前
記往復動の方向に隣り合って複数設けられていることを
特徴とする請求項1または2記載のリニアアクチュエー
タ。
3. A plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided adjacent to each other in the reciprocating direction, and the iron member is provided with the permanent set. The linear actuator according to claim 1 or 2, wherein a plurality of convex portions projecting in the direction of the magnet are provided adjacent to each other in the reciprocating direction.
【請求項4】 前記固定子は前記往復動の方向に積層さ
れた積層鋼板からなることを特徴とする請求項1乃至3
のいずれか一項記載のリニアアクチュエータ。
4. The stator is made of laminated steel plates laminated in the reciprocating direction.
The linear actuator according to any one of 1.
JP2002143954A 2001-12-03 2002-05-20 Linear actuator Pending JP2003339147A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002143954A JP2003339147A (en) 2002-05-20 2002-05-20 Linear actuator
CNB02827704XA CN100553084C (en) 2001-12-03 2002-11-26 Linear actuator element
EP02788660A EP1463186B8 (en) 2001-12-03 2002-11-26 Linear actuator
PCT/JP2002/012320 WO2003049263A1 (en) 2001-12-03 2002-11-26 Linear actuator
US10/497,678 US7382067B2 (en) 2001-12-03 2002-11-26 Linear actuator
KR1020047008054A KR100918507B1 (en) 2001-12-03 2002-11-26 Linear actuator
TW091134850A TWI263391B (en) 2001-12-03 2002-11-29 Linear actuator
HK04108747.5A HK1065898A1 (en) 2001-12-03 2004-11-06 Linear actuator
US12/106,392 US7476990B2 (en) 2001-12-03 2008-04-21 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143954A JP2003339147A (en) 2002-05-20 2002-05-20 Linear actuator

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2006245840A Division JP4556930B2 (en) 2006-09-11 2006-09-11 Linear actuator
JP2008283167A Division JP2009027921A (en) 2008-11-04 2008-11-04 Linear actuator
JP2008283168A Division JP2009027922A (en) 2008-11-04 2008-11-04 Linear actuator

Publications (1)

Publication Number Publication Date
JP2003339147A true JP2003339147A (en) 2003-11-28

Family

ID=29703754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143954A Pending JP2003339147A (en) 2001-12-03 2002-05-20 Linear actuator

Country Status (1)

Country Link
JP (1) JP2003339147A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318769A (en) * 2004-04-30 2005-11-10 Shinko Electric Co Ltd Linear actuator and chip mounter
JP2005328685A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP2005328672A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP2006177524A (en) * 2004-12-24 2006-07-06 Tokai Rubber Ind Ltd Active damper using solenoid-type actuator
JP2006300318A (en) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd Vibration absorbing device
JP2006345652A (en) * 2005-06-09 2006-12-21 Shinko Electric Co Ltd Positioning control method and device of linear actuator
JP2007318859A (en) * 2006-05-24 2007-12-06 Shinko Electric Co Ltd Actuator
WO2008069282A1 (en) 2006-12-06 2008-06-12 Sinfonia Technology Co., Ltd. Vibration damping device, method of controlling vibration damping device, method of correcting offset of vibration damping device, and leaf spring
JP2011075510A (en) * 2009-10-01 2011-04-14 Shimadzu Corp Testing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318769A (en) * 2004-04-30 2005-11-10 Shinko Electric Co Ltd Linear actuator and chip mounter
JP4576875B2 (en) * 2004-04-30 2010-11-10 シンフォニアテクノロジー株式会社 Linear actuator and chip mounter
JP2005328685A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP2005328672A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP4572577B2 (en) * 2004-05-17 2010-11-04 シンフォニアテクノロジー株式会社 Linear actuator
JP4692712B2 (en) * 2004-05-17 2011-06-01 シンフォニアテクノロジー株式会社 Linear actuator
JP2006177524A (en) * 2004-12-24 2006-07-06 Tokai Rubber Ind Ltd Active damper using solenoid-type actuator
JP2006300318A (en) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd Vibration absorbing device
JP2006345652A (en) * 2005-06-09 2006-12-21 Shinko Electric Co Ltd Positioning control method and device of linear actuator
JP2007318859A (en) * 2006-05-24 2007-12-06 Shinko Electric Co Ltd Actuator
WO2008069282A1 (en) 2006-12-06 2008-06-12 Sinfonia Technology Co., Ltd. Vibration damping device, method of controlling vibration damping device, method of correcting offset of vibration damping device, and leaf spring
JP2011075510A (en) * 2009-10-01 2011-04-14 Shimadzu Corp Testing device

Similar Documents

Publication Publication Date Title
KR100918507B1 (en) Linear actuator
JP3873836B2 (en) Linear actuator
JP2001128434A (en) Linear motor
JP2007037273A (en) Vibratory linear actuator
JP5642692B2 (en) Multi-armature linear motor / alternator with magnetic spring, high output and no leakage magnetic field
JP2003339145A (en) Linear actuator
JP2000253640A (en) Linear vibration motor
JP2003339147A (en) Linear actuator
JP2007318859A (en) Actuator
JP4556930B2 (en) Linear actuator
JP3873764B2 (en) Linear actuator
JP2010158166A (en) Linear actuator
JP2009027921A (en) Linear actuator
JP2003309964A (en) Linear motor
JP3873765B2 (en) Linear actuator
JP4457598B2 (en) Linear actuator
JP3851012B2 (en) Linear vibration motor
JP4692711B2 (en) Linear actuator
JP4692713B2 (en) Linear actuator
JP2009027922A (en) Linear actuator
JP3873791B2 (en) Linear actuator
JP2003250256A (en) Linear actuator
JP7030558B2 (en) Reciprocating electric shaver
JP4572577B2 (en) Linear actuator
JP2003235232A (en) Linear actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A521 Written amendment

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A523