JP3638980B2 - Vehicle alarm device - Google Patents

Vehicle alarm device Download PDF

Info

Publication number
JP3638980B2
JP3638980B2 JP01183795A JP1183795A JP3638980B2 JP 3638980 B2 JP3638980 B2 JP 3638980B2 JP 01183795 A JP01183795 A JP 01183795A JP 1183795 A JP1183795 A JP 1183795A JP 3638980 B2 JP3638980 B2 JP 3638980B2
Authority
JP
Japan
Prior art keywords
vehicle
driver
psychological
collision
stimulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01183795A
Other languages
Japanese (ja)
Other versions
JPH08203000A (en
Inventor
昌裕 木下
敦 池田
一真 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP01183795A priority Critical patent/JP3638980B2/en
Priority to US08/591,007 priority patent/US5642093A/en
Priority to DE19602766A priority patent/DE19602766C2/en
Publication of JPH08203000A publication Critical patent/JPH08203000A/en
Application granted granted Critical
Publication of JP3638980B2 publication Critical patent/JP3638980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車等の車両において、走行中にドライバの安全運転をアシストする警報装置に関し、詳しくは、ドライバの居眠り、衝突、車線逸脱の防止に関する。
【0002】
【従来の技術】
近年、交通事故の増大傾向に対して車の安全性の飛躍的向上を図るため、積極的に運転操作をアシストする総合的な運転支援システム(ADA、Active Drive Assist system)が開発されている。このシステムでは車両の外部環境を認識することが必要不可欠であるが、複数のカメラにより捉えた車両前方の風景や物体の画像情報を処理して、道路、交通環境を実用上充分な精度と時間で三次元的に認識することが可能になってきている。そこでADAシステムとしては、この道路、交通環境の画像データを用いて、ドライバが操作ミスをしたり、よそ見運転、単調な運転時の居眠り等を生じた場合に、衝突や車線逸脱等の可能性の有無を予測して、安全側に導くように種々の角度からアシストすることを目指している。
【0003】
ここで運転支援のあり方としては、車はあくまで人間が操縦するという考えに基づき、先ず予防安全性(最初から危険な状態に陥らない)を図る。即ち、衝突や車線逸脱等の可能性が予測される場合は、警報を鳴らしてドライバの安全運転をアシストする。そして警報を鳴らしてもドライバが適切に回避操作しない場合は、ブレーキ、スロットルまたはステアリングの運転操作系を安全側に自動的に制御して、衝突や車線逸脱等を回避したり、運転操作を一時的に代行するように直接アシストすることが提案されている。
【0004】
そこでADAシステムにおける警報は、種々の可能性を予測して予防安全性を向上する上で非常に重要である。このためいかなる状況での何に対する可能性であるかを定め、画像データの情報を有効に活用して可能性を適確に予測し、ドライバによる回避操作が可能な状態で警報を適正に鳴らすこと等が必要になる。
【0005】
ここで種々の可能性として、ドライバの覚醒度の低下による居眠り運転が考えられる。ドライバの覚醒度は、一般的にはドライバの運転操作量の少ない単調運転が長く続くと低下する。しかし直線的な道路が続いてドライバの運転操作量が少ない状況でも、ドライバに心理的刺激、例えば追い越し車や割り込み車があったり、道路の車線の幅が狭い等の心理的負担、視覚的刺激が1つでも有る場合は、ドライバの覚醒度は高い状態に保持される。従って、ドライバの覚醒度の度合いは、むしろドライバの目に映る心理的刺激に応じて検出し、これに基づいて居眠り警報することが望まれる。
【0006】
また居眠り運転の場合には、先行車等に対する衝突、車線逸脱等に遭遇する可能性が非常に高いことが知られている。そのため上述のドライバの覚醒度が低い状態において、更に衝突や車線逸脱の可能性が予測される場合は、警報のタイミングを通常より早めて、居眠りとそれによる衝突や車線逸脱等を未然に防止するように予防安全警報することが望まれる。
【0007】
従来、上記予防安全警報に関しては、例えば特公昭59−16968号公報の先行技術があり、一定区間内の運転操作回数が設定値以下のときに単調区間であると判断し、この単調区間の累積数が基準数以上になると覚醒警報することが示されている。特公昭59−16969号公報の先行技術では、ハンドル操作量やアクセル操作量が変化する頻度が設定値に達しない場合に単調走行状態を判断して警報を発することが示されている。特公昭61−53250号公報の先行技術では、ハンドル操作の状態によりドライバの意識レベルが低下する可能性のある環境を判断し、この環境下で操舵角の値を累積計算して道路状況が単調であることを判断すると、警報することが示されている。
【0008】
また警報のタイミングに関しては、例えば特開平5−162596号公報の先行技術があり、車速により安全車間距離を算出し、現車間距離が安全車間距離以下になると、追突の可能性があることを判断して警報する。この場合にブレーキ操作時における車間距離と平常運転時の車間距離平均値、標準偏差から運転者の意識レベルを評価し、この評価結果に応じて警報の出力タイミングを調整することが示されている。
【0009】
【発明が解決しようとする課題】
ところで、上記先行技術のものにあっては、いずれもドライバの運転操作のハンドル操作量やアクセル操作量が減少した操作パターンにより単調運転を判断し、更には道路状況を判断して警報するものであるから、ドライバの心理的刺激による覚醒度の度合いが検出されていないので、不必要に警報される場合が多い。また警報のタイミングを調整する場合に、ドライバの意識レベルをブレーキ操作時の車間距離に基づいて評価しているが、ブレーキ操作状態は道路、交通環境により変化するので、意識レベルを正確に評価することが難しい。
【0010】
本発明は、このような点に鑑み、ドライバの心理的刺激により覚醒度の度合いを直接且つ正確に検出し、更に居眠りとそれによる衝突や車線逸脱を確実に防止することを目的とする。
【0011】
【課題を解決するための手段】
この目的を達成するため、本発明の請求項1に係る車両の警報装置は、図1に示すように、車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段27と、画像データによる車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かについて、道路の車線の幅が設定値以下、曲率半径の変化が設定値以上、先行車に対する追突の可能性が有る、駐車車両が有る、その他の移動障害物が有るのいずれか1つでも満たす場合に心理的刺激有りを判定し、その1つも満たさない場合に心理的刺激無しと判定する心理的刺激判定手段43と、心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段44と、画像データと車速により障害物との衝突の可能性を予測する衝突予測手段46と、画像データにより車線逸脱の可能性を予測する車線逸脱予測手段47と、覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、警報タイミングをそれぞれ変化して警報を発する警報タイミング制御手段48とを備えることを特徴とする。
【0012】
請求項2に係る車両の警報装置は、警報タイミング制御手段48は、覚醒度低下時に衝突や車線逸脱を予測する場合に、衝突や車線逸脱を早めに予測するように補正して早めに警報を発することを特徴とする。
【0013】
請求項3に係る車両の警報装置は、車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、画像データによる車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かについて、少なくとも、上記道路の車線の幅が設定値以下の場合、上記道路の曲率半径の変化が設定値以上の場合、障害物又は移動物が有って、種々の運転操作が必要である場合又は視覚的刺激が存在する場合のいずれか1つでも満たす場合に心理的刺激有りと判定する心理的刺激判定手段と、心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段と、画像データと車速により障害物との衝突の可能性を予測する衝突予測手段と、画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、警報タイミングをそれぞれ変化して警報を発する警報タイミング制御手段とを備えることを特徴とする。また請求項4に係る車両の警報装置は、車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、画像データにより車線の幅、車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かを判定する心理的刺激判定手段と、心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段と、画像データと車速により障害物との衝突の可能性を予測する衝突予測手段と、画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、車線の幅を減少補正することにより警報タイミングを変化させて警報を発する警報タイミング制御手段とを備えることを特徴とする。
【0014】
【作用】
従って、本発明の請求項1にあっては、車両走行時に画像認識手段27により車両前方の道路、交通環境が常に認識され、白線や種々の障害物の位置、形状、速度等に関する画像データが得られる。そして心理的刺激判定手段43でドライバの目に映って心理的刺激になるものとして、道路の車線の幅が設定値以下、曲率半径の変化が設定値以上、先行車が有る、先行車に対する追突の可能性が有る、駐車車両が有る、その他の移動障害物が有る、の各種要素のいずれか1つでも満たすと、心理的刺激が有ってドライバの覚醒度が高いことが適切に判定され、その1つも満たさない場合に心理的刺激が無くてドライバの覚醒度が低下するおそれを招くことが適切に判定される。このため道路形状により単調な運転状態であって、更に心理的刺激が全く無い状態が設定時間継続する場合に覚醒度検出手段44で、ドライバの覚醒度が低下したことが直接且つ正確に検出される。
【0015】
また衝突予測手段46で衝突の可能性が、車線逸脱予測手段47で車線逸脱の可能性が予測される。そして警報タイミング制御手段48により覚醒度低下を検出した際に警報を発することで、ドライバの居眠りが防止される。また覚醒度低下時に衝突や車線逸脱を予測すると、警報タイミングを変化して警報を発することで、ドライバの居眠りとそれによる衝突や車線逸脱が確実に防止される。
【0016】
請求項2にあっては、覚醒度低下時に衝突や車線逸脱を予測すると、警報タイミング制御手段48でそれらを早めに予測して早めに警報を発し、これによりドライバの居眠りとそれによる衝突や車線逸脱等が確実に防止される。
【0017】
請求項3にあっては、心理的刺激判定手段は心理的刺激が有るか否かについて、少なくとも、上記道路の車線の幅が設定値以下の場合、上記道路の曲率半径の変化が設定値以上の場合、障害物又は移動物が有って、種々の運転操作が必要である場合又は視覚的刺激が存在する場合のいずれか1つでも満たす場合に心理的刺激有りと判定することにより、ドライバの目に映って心理的負担や視覚的刺激となる心理的刺激の有無を適確に判定できる。また請求項4にあっては、警報タイミング制御手段は車線の幅を減少補正して警報タイミングを変化させて警報を発することにより、車線逸脱を早めに予測するように補正するので、早めに警報を発することができ、車線逸脱を確実に防止することができる。
【0018】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。図2において、車両とADAシステムの全体の概略について説明する。先ず、車両1はエンジン2がクラッチ4、変速機5、プロペラ軸6、リヤディファレンシャル装置7、リヤ車軸8等を介して後輪9に連結し、プロペラ軸6よりセンターディファレンシャル装置17、フロントディファレンシャル装置18、フロント車軸19等を介して前輪10に連結し、前後輪9,10を駆動して走行可能に構成される。車両1の運転操作系として、アクセルペダル11がエンジン2のスロットル弁3を開閉してエンジン出力を変化するように設けられる。またブレーキ装置12が、ブレーキペダル13の操作でブレーキ圧をブレーキ管路14により前後輪9,10のホイールシリンダ側に導入して制動するように設けられる。更に、ステアリング装置15が、ハンドル16の操作で前輪10を操舵するように設けられる。
【0019】
ADAシステム20は、車両制御の種々のアクチュエータとして、スロットル弁3にスロットルアクチュエータ21が、スロットル信号によりエンジン出力を強制的に低下するように設けられる。またブレーキ装置12のブレーキ管路14中にブレーキアクチュエータ22が、ブレーキ信号によりブレーキ圧を加減圧して自動ブレーキするように設けられる。更に、ステアリング装置15にステアリングアクチュエータ23が、操舵信号により自動操舵するように設けられている。
【0020】
電子制御系について説明する。画像認識手段として車両1の例えば左右前方に配置される2台のCCDカメラ25と、ステレオイメージプロセッサの画像認識ユニット26を備える。2台のCCDカメラ25は、車両前方の風景や物体をステレオ式に撮像して捉える。画像認識ユニット26は、2台のCCDカメラ25で撮像した画像信号を、ステレオ法による三角測量法で処理して距離を算出し、画面全体が三次元の距離分布の距離画像を作る。そして距離画像から車線、先行車、障害物等を分離して検出し、車線からは左右の白線、道路の三次元形状等を認識する。また前方の物体が何であるか、先行車や障害物との相対的な距離や速度等を認識するのであり、こうして道路、交通環境の画像データを得る。
【0021】
ADA制御ユニット40は、種々の可能性を予測して警報する警報制御系、警報したにも拘らずドライバが回避操作しない場合の車両制御系等を有する。車両制御系は、画像データと他の種々のセンサ信号により、例えば先行車や道路の障害物に対して安全な距離を保つように加減速度を演算し、この加減速度に基づく適正なスロットル開度のスロットル信号をスロットルアクチュエータ21に出力してエンジン出力制御する。また加減速度に基づく適正なブレーキ圧のブレーキ信号をブレーキアクチュエータ22に出力して自動ブレーキ制御し、これによりドライバの操作ミスや回避操作しない場合に、安全車間距離に保ち、または衝突防止することが可能になっている。一方、画像上の所定距離位置の目標軌道を設定し、且つ車両が現在の走行状態のままで所定距離位置に走行した場合の予測軌道を算出し、これら目標軌道と予測軌道のずれに応じた操舵信号をステアリングアクチュエータ23に出力して自動操舵制御し、ドライバの操作ミス等の場合に、衝突回避や車線の逸脱防止することが可能になっている。
【0022】
警報制御系として、ドライバの覚醒度低下や衝突、車線逸脱に対する警報について説明する。先ず、画像データによる車両前方の道路、交通環境や、車速センサ30の車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担となったり、視覚的刺激を受ける心理的刺激を判定し、この心理的刺激の有無によりドライバの覚醒度が低下したか否かを検出する。また同時に障害物に対する衝突、車線逸脱の可能性を予測する。そして覚醒度が低下し、衝突や車線逸脱を予測した場合に、警報タイミングを変化してアラーム31で警報を発するように構成される。
【0023】
次に、警報制御について説明する。先ず、車両走行中に2台のCCDカメラ25で撮像した画像信号を画像認識ユニット26で処理して、道路、交通環境の画像データを得る(ステップS1)。この画像データにより例えば2車線の道路の場合は、図6(a)のように自車両1の位置と方位を基準とするX−Y座標において、車両前方の左右、中央の白線H1〜H3の位置や形状の座標、自車両1の走行車線の先行車M1、駐車車両M2、横断車や対向車線の対向車等の移動障害物M3の位置座標、速度ベクトルに関するデータが得られる。
【0024】
そこでドライバの心理的刺激の判定制御を、図3の機能ブロックと図4のフローチャートにより説明する。画像データは、ADA制御ユニット40の道路形状算出手段41に入力して、ドライバの目に映って適正なハンドル操作が必要な車線の幅B、車線の曲率半径の変化ΔRを算出する(ステップS2)。車線の幅Bは、図6(b)のように自車両1の車幅中心より走行車線の左右の白線H1,H2までの位置YL,YRを測定して、車線の幅Bを、B=YR−YLにより算出する。
【0025】
車線の曲率半径の変化ΔRを算出する場合は、先ず図6(c)のように車両前方の3つの分割線N1,N2,N3に対して、中心線Oの座標(x1,y1)、(x2,y2)、(x3,y3)を求め、これらデータにより車線の曲率半径Rを、R={(x−a)2 +(y−b)21/2により算出する。そして設定時間ピッチで算出した前回の曲率半径R(n−1)と今回の曲率半径R(n)の変化ΔRを、両者を減算して算出する。これら車線の幅Bと、曲率半径の変化ΔRは心理的刺激判定手段43に入力し、車線の幅Bと設定値Bsを比較し、変化ΔRも設定値Rsと比較する(ステップS3)。そして車線の幅Bが設定値Bs以下の狭い場合、変化ΔRが設定値Rs以上の変化の大きい場合に、いずれもドライバの適正なハンドル操作が必要な心理的刺激有りを判定する(ステップS8)。
【0026】
また画像データは障害物検出手段42に入力し、ドライバの目に映る移動物、障害物であって、種々の運転操作が必要であったり、視覚的刺激を受ける先行車M1、駐車車両M2、その他の移動障害物M3を検出する。先行車M1は、走行車線の障害物が前進方向で速度を有するか否かにより認識する。また自車両1と先行車M1との関係で追突の可能性を判断する。即ち、図6(d)のような自車両1と先行車M1との車間距離L1、自車速V、先行車車速V1、自車両1の設定加減速度α、先行車M1の設定加減速度α1、余裕をとるための設定時間T1により、追突の可能性を、以下の式で判定する。
L1≦(−V12 /2α1)+{(V2 /2α)+V・T1}
【0027】
駐車車両M2は、走行車線内で速度ベクトルが零の車両を駐車車両M2と認識する。その他の移動障害物M3は、図6(e)のように走行車線の白線H1,H2の範囲Bに対してその左右両側近傍に所定の範囲Aを設定し、これら範囲A,Bを加算して障害物を特定する範囲Cを定める。そしてこの範囲Cの全域で速度ベクトルを持つ対向車、追い抜き車、横断車、2輪車、歩行者等の移動障害物M3を検出する。これら検出信号も心理的刺激判定手段43に入力し、先行車M1の有無を判断し(ステップS4)、追突の可能性の有無を判断し(ステップS5)、駐車車両M2の有無を判断し(ステップS6)、その他の移動障害物M3の有無を判断する(ステップS7)。そして種々の障害物や追突の可能性が有って、ドライバの種々の操作が必要な心理的負担や視覚的刺激となる場合に心理的刺激有りを判定する。
【0028】
以上により、道路の車線の幅Bが設定値Bs以下、曲率半径の変化ΔRが設定値Rs以上、先行車M1が有る、先行車M1に対する追突の可能性が有る、駐車車両M2が有る、その他の移動障害物M3が有るのいずれか1つでも満たして、ドライバの心理的負担や視覚的刺激が存在する場合に心理的刺激有りを判定する。一方、その1つも満たさないで、ドライバの心理的負担や視覚的刺激が1つも無い場合に心理的刺激無しを判定する(ステップS9)。
【0029】
続いて、覚醒度判定と警報制御を、図3の機能ブロックと図5のフローチャートにより説明する。先ず、心理的刺激の信号は覚醒度検出手段44に入力し、心理的刺激が有るか否かを判断し(ステップS11)、1つでも心理的刺激が有る場合は、ドライバの覚醒度が高くて居眠りのおそれが無いことを検出する。また心理的刺激が全く無い場合は、タイマ45により単調運転の継続時間Tをカウントし(ステップS12)、その継続時間Tを設定時間Tsと比較し(ステップS13)、設定時間Tsを越える場合にドライバの覚醒度が低下したことを直接検出する(ステップS14)。
【0030】
これにより一般道のように車線の幅Bが狭かったり、または曲率半径の変化ΔRが大きい道路状況、更に車両前方に何らかの障害物M1〜M3が有る交通環境では、ドライバが心理的刺激が有ってその覚醒度が高いことが適切に検出される。一方、車線の幅Bが広く、曲率半径の変化ΔRが小さくてドライバの運転操作量が少ない高速道等の専用道の単調な運転状態において、更に先行車M1、対向車等の移動障害物M3が無くてドライバの心理的負担や視覚的刺激も無い状態が長時間継続すると、ドライバの覚醒度が低下し易くなるが、この場合にその覚醒度低下が確実に検出される。
【0031】
一方、画像データと車速Vは衝突予測手段46に入力し、自車両1の走行車線での障害物M4に対する衝突の可能性を予測する。即ち、図7(a)のような自車両1と障害物M4との相対的距離L2、自車速V、障害物M4の前進速度V1、自車両1の設定加減速度β、障害物M4の設定加減速度β1、余裕をとるための設定時間T2により、衝突の可能性を、以下の式で予測する。
L2≦(−V12 /2β1)+{(V2 /2β)+V・T2}
【0032】
また画像データは車線逸脱予測手段47に入力し、自車両1の走行車線からの逸脱の可能性を予測する。即ち、図7(b)のように車線の幅B、左右の白線H1,H2の位置YL,YRを測定し、これにより自車両1の車線中心線Oに対する位置Yを、Y=(B/2)−YR=(YL−YR)/2により算出する。そして自車両1のトレッドW、位置Y、車線の幅Bにより、Y≦(−B/2)−(W/2)のとき左側の車線逸脱を予測し、Y≧(B/2)−(W/2)のとき右側の車線逸脱を予測する。
【0033】
上記ドライバの覚醒度低下検出、障害物への衝突や車線逸脱の予測の信号は警報タイミング制御手段48に入力し、警報タイミング制御する。即ち、覚醒度低下の場合に、衝突の可能性を予測し(ステップS15)、その可能性が無い場合は車線逸脱の可能性を予測し(ステップS16)、車線逸脱の可能性も無い場合は覚醒度低下検出の時点で警報信号をアラーム31に出力して警報する(ステップS17)。このためドライバの覚醒度が低下した時期に警報が鳴って、ドライバの居眠りが確実に防止される。
【0034】
一方、ドライバの覚醒度低下を検出した状態において更に衝突の可能性が予測されると、上述の判定式において余裕をとるための設定時間T2を、覚醒度低下に対して設けた補正量ΔTにより、T2+ΔTに増大補正して警報する(ステップS18)。このため実際に衝突の可能性が予測される時点よりΔTの分だけ早い時点で上述の判定条件が成立して、早めに警報が鳴る。そこで警報により上述と同様に居眠り防止され、早めの警報でドライバが充分にブレーキ回避操作することができ、これにより衝突が確実に防止される。
【0035】
車線逸脱の可能性が予測されると、上述の判定式において車線の幅Bを、覚醒度低下に対して設けた補正量ΔBにより、B−ΔBに減少補正して警報する(ステップS19)。このためΔBの分だけ狭くなった車線の幅との関係で判定することになり、車線逸脱の可能性が早めに予測されて早めに警報を発する。そこで警報により上述と同様に居眠り防止され、早めの警報でドライバが充分にハンドル回避操作することができ、これにより車線逸脱が確実に防止される。
【0036】
以上、本発明の実施例について説明したが、操作パターンや車両運動パターンの基準値と計測値を実施例以外の方法で演算することもできる。また、本発明の実施例において、警報手段をアラーム34を使用して説明したが、ドライバの覚醒度を高められるものであればドライバの視野内に設けた表示装置やシートクッション、またはシートバックに内装された振動を発する振動装置などでもよい。
【0037】
【発明の効果】
以上に説明したように、本発明の請求項1に係る車両の警報装置では、車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、画像データによる車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かについて、道路の車線の幅が設定値以下、曲率半径の変化が設定値以上、先行車に対する追突の可能性が有る、駐車車両が有る、その他の移動障害物が有るのいずれか1つでも満たす場合に心理的刺激有りを判定し、その1つも満たさない場合に心理的刺激無しと判定する心理的刺激判定手段と、心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段とを備える構成であるから、ドライバの心理的刺激に基づいてその覚醒度の度合いを直接且つ正確に検出できる。このため予防安全の居眠り警報の精度が大幅に向上する。
【0038】
画像データと車速により障害物の衝突の可能性を予測する衝突予測手段と、画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、警報タイミングをそれぞれ変化して警報を発する警報タイミング制御手段とを備える構成であるから、覚醒度低下時に衝突や車線逸脱を予測すると、警報タイミングが変化してドライバの居眠りとそれによる衝突や車線逸脱を確実に防止できる。
【0039】
請求項2に係る車両の警報装置では、警報タイミング制御手段が、覚醒度低下時に衝突や車線逸脱を予測する場合に、それら衝突や車線逸脱を早めに予測するように補正するので、早めに警報を発することができる。このため居眠り警報により衝突や車線逸脱などを確実に防止できる。
【0040】
請求項3に係る車両の警報装置では、心理的刺激判定手段は心理的刺激が有るか否かについて、少なくとも、道路の車線の幅が設定値以下の場合、上記道路の曲率半径の変化が設定値以上の場合、障害物又は移動物が有って、種々の運転操作が必要である場合又は視覚的刺激が存在する場合のいずれか1つでも満たす場合に心理的刺激有りと判定することにより、ドライバの目に映って心理的負担や視覚的刺激となる心理的刺激の有無を適確に判定できる。また請求項4に係る車両の警報装置では、警報タイミング制御手段は車線の幅を減少補正して警報タイミングを変化させて警報を発することにより、車線逸脱を早めに予測するように補正するので、早めに警報を発することができ、車線逸脱を確実に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る車両の警報装置の構成を示すクレーム対応図。
【図2】車両とADAシステムの全体の概略を示す説明図である。
【図3】本発明の実施例の機能ブロック図である。
【図4】心理的刺激の判定制御のフローチャートである。
【図5】覚醒度検出と警報制御のフローチャートである。
【図6】画像データと心理的刺激を判定する場合の説明図である。
【図7】衝突と車線逸脱を予測する場合の説明図である。
【符号の説明】
27 画像認識手段
43 心理的刺激判定手段
44 覚醒度検出手段
46 衝突予測手段
47 車線逸脱予測手段
48 警報タイミング制御手段
[0001]
[Industrial application fields]
The present invention relates to an alarm device that assists a driver's safe driving while traveling in a vehicle such as an automobile, and more particularly to prevention of a driver's sleep, collision, and lane departure.
[0002]
[Prior art]
In recent years, a comprehensive driving assistance system (ADA, Active Drive Assist system) that actively assists driving operations has been developed in order to dramatically improve the safety of vehicles in response to an increasing trend of traffic accidents. In this system, it is indispensable to recognize the external environment of the vehicle, but it processes the image information of the scenery and objects in front of the vehicle captured by multiple cameras, so that the road and traffic environment have sufficient accuracy and time for practical use. It has become possible to recognize three-dimensionally. Therefore, the ADA system uses the image data of the road and traffic environment, and if the driver makes an operation mistake, looks aside, or falls asleep during monotonous driving, there is a possibility of a collision or lane departure. The aim is to assist from various angles in order to predict the presence or absence and lead to the safe side.
[0003]
Here, as a way of driving support, first, preventive safety (not falling into a dangerous state from the beginning) is aimed at based on the idea that a vehicle is operated by a human. That is, when the possibility of a collision or lane departure is predicted, an alarm is sounded to assist the driver in safe driving. If the driver does not perform the appropriate avoidance operation even when the alarm is sounded, the driving operation system of the brake, throttle or steering is automatically controlled to the safe side to avoid a collision, lane departure, etc. It has been proposed to assist directly to act as a substitute.
[0004]
Therefore, alarms in the ADA system are very important in predicting various possibilities and improving preventive safety. For this reason, it is possible to determine what is the possibility in what situation, effectively predict the possibility by effectively utilizing the information of the image data, and sound the alarm properly in a state where the avoidance operation by the driver is possible Etc. are required.
[0005]
Here, as various possibilities, a drowsy driving due to a decrease in the driver's arousal level can be considered. The driver's arousal level generally decreases when a monotonous operation with a small amount of driving operation of the driver continues for a long time. However, even if the driver's driving volume is low due to the continuous straight road, the driver has psychological stimuli, such as psychological burdens such as passing cars and interrupting cars, narrow road lanes, and visual stimuli. If there is even one, the driver's arousal level is kept high. Therefore, it is desirable that the degree of driver's arousal level is detected according to a psychological stimulus reflected in the driver's eyes, and a doze alarm is based on this.
[0006]
Further, it is known that in the case of drowsy driving, the possibility of encountering a collision with a preceding vehicle or the like, a lane departure, or the like is very high. Therefore, when the possibility of a collision or lane departure is predicted in a state where the driver's arousal level is low, the timing of the warning is advanced earlier than usual to prevent a drowsiness and a collision or lane departure due to the above. It is desirable to make a preventive safety alarm.
[0007]
Conventionally, with regard to the preventive safety alarm, for example, there is a prior art disclosed in Japanese Patent Publication No. 59-16968. When the number of driving operations in a certain section is less than a set value, it is determined that the section is a monotone section, and the accumulation of this monotonous section is performed. It is shown that a wake-up alarm is issued when the number exceeds the reference number. In the prior art disclosed in Japanese Patent Publication No. 59-16969, it is shown that a monotonous running state is judged and an alarm is issued when the frequency at which the steering wheel operation amount or the accelerator operation amount does not reach a set value. In the prior art disclosed in Japanese Patent Publication No. 61-53250, an environment in which the driver's level of consciousness may be lowered depending on the state of steering wheel operation is judged, and in this environment, the steering angle value is cumulatively calculated and the road condition is monotonous. It is shown that an alarm will be given if it is determined.
[0008]
Regarding the alarm timing, for example, there is a prior art disclosed in JP-A-5-162596, and the safe inter-vehicle distance is calculated based on the vehicle speed. If the current inter-vehicle distance is less than the safe inter-vehicle distance, it is determined that there is a possibility of a rear-end collision. Alarm. In this case, it is shown that the driver's awareness level is evaluated from the inter-vehicle distance during brake operation, the average inter-vehicle distance during normal driving, and the standard deviation, and the alarm output timing is adjusted according to the evaluation result. .
[0009]
[Problems to be solved by the invention]
By the way, in all of the above prior arts, the monotonous driving is judged by the operation pattern in which the steering wheel operation amount and the accelerator operation amount of the driving operation are reduced, and further, the road condition is judged and an alarm is given. Therefore, since the degree of arousal level due to the psychological stimulus of the driver is not detected, an alarm is often issued unnecessarily. Also, when adjusting the alarm timing, the driver's level of consciousness is evaluated based on the distance between the vehicles at the time of brake operation. However, since the brake operation state changes depending on the road and traffic environment, the level of consciousness is accurately evaluated. It is difficult.
[0010]
In view of these points, the present invention has an object to directly and accurately detect the degree of arousal by a driver's psychological stimulus, and to reliably prevent falling asleep and causing a collision or lane departure.
[0011]
[Means for Solving the Problems]
  In order to achieve this object, the vehicle alarm device according to claim 1 of the present invention, as shown in FIG. 1, is an image recognition means 27 for obtaining image data obtained by three-dimensionally recognizing the road and traffic environment ahead of the vehicle. Whether there are roads ahead of the vehicle based on the image data, moving objects, obstacles, road shapes, etc. that are visible to the driver's eyes depending on the traffic environment and vehicle speed, and there is a psychological stimulus that is a driver's psychological burden and visual stimulus The road lane width is less than the set value, the radius of curvature is greater than the set value, there is a possibility of a rear-end collision with the preceding vehicle, there is a parked vehicle, and there are other moving obstacles However, if there is at least one psychological stimulus, if there is at least one psychological stimulus, the psychological stimulus determination means 43 determines that there is no psychological stimulus.Things and psychologyAwakening degree detection means 44 for detecting that the driver's awakening degree has dropped when no state stimulus is present for a set time, and a collision prediction means for predicting the possibility of a collision with an obstacle based on image data and vehicle speed 46, lane departure prediction means 47 for predicting the possibility of lane departure from image data, and when detecting a decrease in wakefulness, when predicting a collision or lane departure when the wakefulness decreases, the warning timing is changed respectively. The alarm timing control means 48 which issues an alarm is provided.
[0012]
  The vehicle alarm device according to claim 2 is:The warning timing control means 48 is characterized in that when a collision or lane departure is predicted when the arousal level is lowered, the warning is corrected and corrected so that the collision or lane departure is predicted earlier, and the warning is issued early.
[0013]
  According to a third aspect of the present invention, there is provided an alarm device for a vehicle according to a third aspect, wherein image recognition means for obtaining image data obtained by three-dimensionally recognizing a road and traffic environment ahead of the vehicle; Whether there are moving objects, obstacles, road shapes, etc., and whether there is a psychological stimulus that is a driver's psychological burden or visual stimulus,When the width of the road lane is less than or equal to the set value, when the change in the radius of curvature of the road is greater than or equal to the set value, there are obstacles or moving objects, and various driving operations are required, or visual stimulation If there isThe psychological stimulus determination means for determining that there is a psychological stimulus when any one of them is satisfied, and the driver's arousal level is high if there is at least one psychological stimulusThings and psychologyWakefulness detection means for detecting that the driver's wakefulness has been lowered when no state stimulus continues for a set time, and collision prediction means for predicting the possibility of a collision with an obstacle based on image data and vehicle speed; Lane departure prediction means for predicting the possibility of lane departure from image data, and when detecting a decrease in wakefulness, when a collision or lane departure is predicted when the wakefulness decreases, an alarm is generated by changing the alarm timing respectively. And an alarm timing control means. According to a fourth aspect of the present invention, there is provided a vehicle alarm device comprising: an image recognition means for obtaining image data obtained by three-dimensionally recognizing a road ahead of the vehicle and a traffic environment; and the width of the lane, the road ahead of the vehicle, the traffic environment A psychological stimulus judging means for judging whether there is a psychological stimulus which is a moving object, an obstacle, a road shape, etc., which is visible to the driver's eyes according to the vehicle speed, and which is a psychological stimulus or visual stimulus for the driver; Arousal level detection means for detecting that the driver's arousal level is high when there is even one psychological stimulus and that the driver's arousal level has decreased when a state in which there is no psychological stimulus continues for a set time, image data, Collision prediction means that predicts the possibility of collision with an obstacle based on vehicle speed, lane departure prediction means that predicts the possibility of lane departure based on image data, and if a decrease in arousal level is detected, a collision or lane when the arousal level decreases When predicting the de characterized by comprising a warning timing control means for issuing an alarm by changing the alarm time by decreasing correcting the width of the lane.
[0014]
[Action]
  Accordingly, in claim 1 of the present invention, the road and traffic environment ahead of the vehicle are always recognized by the image recognition means 27 when the vehicle is traveling, and image data relating to the position, shape, speed, etc. of the white line and various obstacles is obtained. can get. And psychological stimulus determination means 43As a psychological stimulus reflected in the driver's eyes, the width of the road lane is less than the set value, the change in the radius of curvature is greater than the set value, there is a preceding vehicle, and there is a possibility of a rear-end collision with the preceding vehicle. If any one of the various elements is present, there is a psychological stimulus and the driver's arousal level is appropriately determined, and one of them is not satisfied It is appropriately determined that there is no psychological stimulus and the driver's arousal level may be reduced.For this reason, when the driving state is monotonous due to the road shape and there is no psychological stimulus at all for a set time, the arousal level detecting means 44 directly and accurately detects that the driver's arousal level has decreased. The
[0015]
The collision prediction means 46 predicts the possibility of a collision, and the lane departure prediction means 47 predicts the possibility of a lane departure. Then, when the alarm timing control means 48 detects a decrease in the arousal level, the driver is prevented from falling asleep. Also, if a collision or lane departure is predicted when the arousal level is lowered, the alarm timing is changed and a warning is issued, so that the driver's doze and the resulting collision or lane departure can be reliably prevented.
[0016]
  In claim 2,If a collision or lane departure is predicted when the degree of arousal is reduced, the warning timing control means 48 predicts them early and issues an early warning, thereby reliably preventing the driver from falling asleep and causing a collision or lane departure. .
[0017]
  According to claim 3, the psychological stimulus determination means at least determines whether or not there is a psychological stimulus,When the width of the road lane is less than or equal to the set value, when the change in the radius of curvature of the road is greater than or equal to the set value, there are obstacles or moving objects, and various driving operations are required, or visual stimulation If there isBy determining that there is a psychological stimulus when any one of them is satisfied, it is possible to accurately determine the presence or absence of a psychological stimulus that is reflected in the eyes of the driver and becomes a psychological burden or a visual stimulus. According to the fourth aspect of the present invention, the warning timing control means corrects the lane width to be reduced and changes the warning timing to issue an alarm so that the lane departure is predicted early. The lane departure can be reliably prevented.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, the outline of the entire vehicle and the ADA system will be described. First, in the vehicle 1, an engine 2 is connected to a rear wheel 9 via a clutch 4, a transmission 5, a propeller shaft 6, a rear differential device 7, a rear axle 8, and the like, and a center differential device 17 and a front differential device are connected from the propeller shaft 6. 18 is connected to the front wheel 10 via the front axle 19 and the like, and is configured to be able to travel by driving the front and rear wheels 9 and 10. As a driving operation system of the vehicle 1, an accelerator pedal 11 is provided so as to change the engine output by opening and closing the throttle valve 3 of the engine 2. Further, a brake device 12 is provided so as to introduce a brake pressure to the wheel cylinder side of the front and rear wheels 9 and 10 through a brake line 14 by an operation of the brake pedal 13 and brake the brake pressure. Further, a steering device 15 is provided to steer the front wheel 10 by operating the handle 16.
[0019]
The ADA system 20 is provided with a throttle actuator 21 in the throttle valve 3 as various actuators for vehicle control so that the engine output is forcibly reduced by a throttle signal. Further, a brake actuator 22 is provided in the brake pipe line 14 of the brake device 12 so as to automatically brake by increasing and decreasing the brake pressure by a brake signal. Further, a steering actuator 23 is provided in the steering device 15 so as to be automatically steered by a steering signal.
[0020]
The electronic control system will be described. As the image recognition means, for example, two CCD cameras 25 arranged on the left and right front of the vehicle 1 and an image recognition unit 26 of a stereo image processor are provided. The two CCD cameras 25 capture and capture a landscape and an object in front of the vehicle in a stereo manner. The image recognition unit 26 calculates the distance by processing the image signals picked up by the two CCD cameras 25 by the triangulation method by the stereo method, and creates a distance image having a three-dimensional distance distribution on the entire screen. Then, a lane, a preceding vehicle, an obstacle, and the like are separated and detected from the distance image, and the left and right white lines and the three-dimensional shape of the road are recognized from the lane. In addition, it recognizes what the object ahead is, the relative distance and speed with respect to the preceding vehicle and obstacles, and thus obtains image data of the road and traffic environment.
[0021]
The ADA control unit 40 includes an alarm control system that predicts various possibilities and gives an alarm, and a vehicle control system that is used when the driver does not perform an avoidance operation despite the alarm. The vehicle control system calculates the acceleration / deceleration based on the image data and other various sensor signals so as to maintain a safe distance from, for example, a preceding vehicle or an obstacle on the road, and an appropriate throttle opening based on this acceleration / deceleration. The throttle signal is output to the throttle actuator 21 to control the engine output. In addition, a brake signal of an appropriate brake pressure based on acceleration / deceleration is output to the brake actuator 22 to perform automatic brake control, thereby keeping a safe inter-vehicle distance or preventing a collision when a driver's operation mistake or avoidance operation is not performed. It is possible. On the other hand, a target trajectory at a predetermined distance position on the image is set, and a predicted trajectory is calculated when the vehicle has traveled to a predetermined distance position in the current traveling state, and according to a deviation between the target trajectory and the predicted trajectory A steering signal is output to the steering actuator 23 for automatic steering control, so that it is possible to avoid collision and prevent lane departure in the event of a driver's operation error or the like.
[0022]
As an alarm control system, an alarm for a driver's arousal level reduction, collision, and lane departure will be described. First, there are moving objects, obstacles, road shapes, etc. that are visible to the driver's eyes depending on the road and traffic environment in front of the vehicle based on the image data, and the vehicle speed of the vehicle speed sensor 30, which may be a psychological burden on the driver or a visual stimulus The psychological stimulus to be received is determined, and it is detected whether or not the driver's arousal level has decreased due to the presence or absence of the psychological stimulus. At the same time, the possibility of collision with obstacles and lane departure is predicted. When the awakening level is reduced and a collision or lane departure is predicted, the alarm 31 is changed and the alarm 31 is issued.
[0023]
Next, alarm control will be described. First, image signals captured by the two CCD cameras 25 while the vehicle is running are processed by the image recognition unit 26 to obtain image data of roads and traffic environments (step S1). With this image data, for example, in the case of a two-lane road, as shown in FIG. 6 (a), in the XY coordinates based on the position and direction of the host vehicle 1, the left and right and center white lines H1 to H3 in front of the vehicle are displayed. Data on position and shape coordinates, position coordinates of a moving obstacle M3 such as a preceding vehicle M1, a parked vehicle M2, a crossing vehicle or an oncoming vehicle in an oncoming lane of the host vehicle 1, and a speed vector are obtained.
[0024]
Therefore, the determination control of the psychological stimulus of the driver will be described with reference to the functional block of FIG. 3 and the flowchart of FIG. The image data is input to the road shape calculation means 41 of the ADA control unit 40 to calculate the lane width B and the lane curvature radius change ΔR that are necessary for proper steering operation as seen by the driver's eyes (step S2). ). As shown in FIG. 6B, the lane width B is determined by measuring positions YL and YR from the center of the vehicle width of the host vehicle 1 to the left and right white lines H1 and H2 of the travel lane. Calculated by YR-YL.
[0025]
When calculating the change ΔR in the curvature radius of the lane, first, as shown in FIG. 6C, the coordinates (x1, y1) and (x) of the center line O with respect to the three dividing lines N1, N2, N3 in front of the vehicle. x2, y2), (x3, y3) are obtained, and the curvature radius R of the lane is determined from these data as R = {(x−a)2 + (Y−b)2 }1/2Calculated by Then, the change ΔR of the previous curvature radius R (n−1) and the current curvature radius R (n) calculated at the set time pitch is calculated by subtracting both. The lane width B and the curvature radius change ΔR are input to the psychological stimulus determination means 43, the lane width B is compared with the set value Bs, and the change ΔR is also compared with the set value Rs (step S3). When the lane width B is narrower than the set value Bs and the change ΔR is greater than the set value Rs, it is determined that there is a psychological stimulus that requires an appropriate steering operation by the driver (step S8). .
[0026]
Further, the image data is input to the obstacle detection means 42, and is a moving object and an obstacle reflected in the eyes of the driver. Various driving operations are required, or a preceding vehicle M1, a parked vehicle M2, which receives a visual stimulus, The other moving obstacle M3 is detected. The preceding vehicle M1 recognizes whether or not the obstacle in the traveling lane has a speed in the forward direction. Further, the possibility of a rear-end collision is determined based on the relationship between the host vehicle 1 and the preceding vehicle M1. That is, the inter-vehicle distance L1 between the host vehicle 1 and the preceding vehicle M1, the host vehicle speed V, the preceding vehicle speed V1, the set acceleration / deceleration α of the host vehicle 1, the set acceleration / deceleration α1 of the preceding vehicle M1, as shown in FIG. The possibility of a rear-end collision is determined by the following equation based on the set time T1 for taking a margin.
L1 ≦ (−V12 / 2α1) + {(V2 / 2α) + V · T1}
[0027]
The parked vehicle M2 recognizes a vehicle having a speed vector of zero in the travel lane as the parked vehicle M2. For other moving obstacles M3, a predetermined range A is set near the left and right sides of the range B of the white lines H1 and H2 of the traveling lane as shown in FIG. 6E, and these ranges A and B are added. The range C for identifying the obstacle is determined. A moving obstacle M3 such as an oncoming vehicle, a passing vehicle, a crossing vehicle, a two-wheeled vehicle, or a pedestrian having a velocity vector in the entire range C is detected. These detection signals are also input to the psychological stimulus determination means 43 to determine the presence / absence of a preceding vehicle M1 (step S4), to determine the possibility of a rear-end collision (step S5), and to determine the presence / absence of a parked vehicle M2 ( In step S6), it is determined whether or not there is another moving obstacle M3 (step S7). If there is a possibility of various obstacles and rear-end collisions, and a psychological burden or visual stimulus that requires various operations of the driver is detected, the presence of a psychological stimulus is determined.
[0028]
As described above, the width B of the road lane is not more than the set value Bs, the change in curvature radius ΔR is not less than the set value Rs, there is a preceding vehicle M1, there is a possibility of a rear-end collision with the preceding vehicle M1, there is a parked vehicle M2, etc. If any one of the moving obstacles M3 is satisfied and there is a driver's psychological burden or visual stimulus, the presence of a psychological stimulus is determined. On the other hand, if none of them is satisfied and there is no psychological burden or visual stimulus of the driver, it is determined that there is no psychological stimulus (step S9).
[0029]
Next, arousal level determination and alarm control will be described with reference to the functional block of FIG. 3 and the flowchart of FIG. First, a psychological stimulus signal is input to the arousal level detection means 44 to determine whether or not there is a psychological stimulus (step S11). If there is even one psychological stimulus, the driver's arousal level is high. Detect that there is no risk of falling asleep. If there is no psychological stimulus, the duration 45 of the monotonous operation is counted by the timer 45 (step S12), the duration T is compared with the set time Ts (step S13), and the set time Ts is exceeded. It is directly detected that the driver's arousal level has decreased (step S14).
[0030]
As a result, the driver is psychologically stimulated in road conditions where the lane width B is narrow or the curvature radius change ΔR is large as in general roads, and there are some obstacles M1 to M3 ahead of the vehicle. It is properly detected that the degree of arousal is high. On the other hand, in a monotonous driving state of a dedicated road such as an expressway where the width B of the lane is wide, the change ΔR of the radius of curvature is small, and the amount of driving operation of the driver is small, a moving obstacle M3 such as a preceding vehicle M1, an oncoming vehicle, etc. If there is no driver's psychological burden and no visual stimulus continues for a long time, the driver's arousal level tends to decrease. In this case, the decrease in the arousal level is reliably detected.
[0031]
On the other hand, the image data and the vehicle speed V are input to the collision prediction means 46, and the possibility of collision with the obstacle M4 in the traveling lane of the host vehicle 1 is predicted. 7A, the relative distance L2 between the host vehicle 1 and the obstacle M4, the host vehicle speed V, the forward speed V1 of the obstacle M4, the set acceleration / deceleration β of the host vehicle 1, and the setting of the obstacle M4. The possibility of a collision is predicted by the following equation based on the acceleration / deceleration β1 and the set time T2 for taking a margin.
L2 ≦ (−V12 / 2β1) + {(V2 / 2β) + V · T2}
[0032]
Further, the image data is input to the lane departure prediction means 47 to predict the possibility of departure from the traveling lane of the host vehicle 1. That is, as shown in FIG. 7B, the width B of the lane and the positions YL and YR of the left and right white lines H1 and H2 are measured, and the position Y of the host vehicle 1 with respect to the lane centerline O is determined as Y = (B / 2) Calculate by -YR = (YL-YR) / 2. Based on the tread W of the host vehicle 1, the position Y, and the width B of the lane, when Y ≦ (−B / 2) − (W / 2), a deviation from the left lane is predicted, and Y ≧ (B / 2) − ( When W / 2), the right lane departure is predicted.
[0033]
Signals for detecting a decrease in the driver's arousal level, predicting a collision with an obstacle or a lane departure are input to the alarm timing control means 48 to perform alarm timing control. That is, when the arousal level is lowered, the possibility of a collision is predicted (step S15). When there is no possibility, the possibility of lane departure is predicted (step S16). When there is no possibility of lane departure, An alarm signal is output to the alarm 31 at the time of detection of a decrease in wakefulness level (step S17). For this reason, an alarm sounds at the time when the driver's arousal level decreases, and the driver's sleep is reliably prevented.
[0034]
On the other hand, when the possibility of a collision is further predicted in a state where the driver's arousal level is detected, the set time T2 for taking a margin in the above-described determination formula is set by the correction amount ΔT provided for the low arousal level. , T2 + ΔT is corrected to increase and alarmed (step S18). For this reason, the above-mentioned determination condition is satisfied at a time earlier by ΔT than the time when the possibility of a collision is actually predicted, and an alarm is sounded early. Thus, the alarm prevents a doze like the above, and the driver can sufficiently perform the brake avoidance operation with an early alarm, thereby reliably preventing the collision.
[0035]
When the possibility of lane departure is predicted, the lane width B is corrected to decrease to B−ΔB by the correction amount ΔB provided for the arousal level reduction in the above-described determination formula, and an alarm is given (step S19). Therefore, the determination is made in relation to the width of the lane narrowed by ΔB, and the possibility of lane departure is predicted early, and an alarm is issued early. Therefore, the alarm prevents the dozing in the same manner as described above, and the driver can sufficiently perform the steering wheel avoidance operation with the early warning, thereby reliably preventing the departure from the lane.
[0036]
Although the embodiment of the present invention has been described above, the reference value and the measured value of the operation pattern and the vehicle movement pattern can be calculated by a method other than the embodiment. In the embodiments of the present invention, the alarm means is described using the alarm 34. However, as long as the driver's arousal level can be increased, the alarm means is used in a display device, a seat cushion, or a seat back provided in the driver's field of view. An internal vibration device that emits vibration may be used.
[0037]
【The invention's effect】
  As described above, in the vehicle alarm device according to claim 1 of the present invention, the image recognition means for obtaining image data obtained by three-dimensionally identifying the road and traffic environment ahead of the vehicle, and the vehicle Whether there are moving objects, obstacles, road shapes, etc. that are visible to the driver's eyes depending on the road, traffic environment and vehicle speed, and whether there is a psychological stimulus that is a psychological burden or visual stimulus for the driver, There is psychological stimulation when the width is less than the set value, the change in the radius of curvature is greater than the set value, there is a possibility of a rear-end collision with the preceding vehicle, there is a parked vehicle, or there are other moving obstacles. If there is at least one psychological stimulus, the driver's arousal level is high.Things and psychologyAnd arousal level detection means for detecting that the driver's arousal level has decreased when no state stimulus is present for a set time, the degree of arousal level is determined based on the driver's psychological stimulus. It can be detected directly and accurately. For this reason, the accuracy of the preventive safety doze alarm is greatly improved.
[0038]
Collision prediction means that predicts the possibility of collision of obstacles based on image data and vehicle speed, lane departure prediction means that predicts the possibility of lane departure based on image data, and when a decrease in arousal level is detected, a collision occurs when the arousal level decreases When a collision or lane departure is predicted when the degree of arousal is reduced, the warning timing changes and the driver changes the warning timing. Can be reliably prevented from falling asleep and causing collisions and lane departures.
[0039]
  In the vehicle alarm device according to claim 2,When the alarm timing control means predicts a collision or a lane departure when the arousal level is reduced, the alarm timing control means corrects the collision or the lane departure so as to be predicted earlier, so that an alarm can be issued early. For this reason, collision and lane departure can be reliably prevented by the dozing alarm.
[0040]
  In the vehicle alarm device according to claim 3, the psychological stimulus determination means at least whether or not there is a psychological stimulus,When the width of the road lane is less than the set value, when the change in the radius of curvature of the road is greater than the set value, there are obstacles or moving objects and various driving operations are required, or there is a visual stimulus If presentBy determining that there is a psychological stimulus when any one of them is satisfied, it is possible to accurately determine whether there is a psychological stimulus that is reflected in the eyes of the driver and becomes a psychological burden or a visual stimulus. Further, in the vehicle alarm device according to claim 4, the alarm timing control means corrects the lane width to be corrected by decreasing the lane width and changing the alarm timing to issue an alarm, so that the lane departure is predicted early. A warning can be issued early, and lane departure can be reliably prevented.
[Brief description of the drawings]
FIG. 1 is a claim correspondence diagram showing a configuration of a vehicle alarm device according to the present invention.
FIG. 2 is an explanatory diagram showing an outline of the entire vehicle and an ADA system.
FIG. 3 is a functional block diagram of an embodiment of the present invention.
FIG. 4 is a flowchart of psychological stimulus determination control.
FIG. 5 is a flowchart of arousal level detection and alarm control.
FIG. 6 is an explanatory diagram for determining image data and psychological stimulation.
FIG. 7 is an explanatory diagram for predicting a collision and a lane departure.
[Explanation of symbols]
27 Image recognition means
43 Psychological stimulus determination means
44 Arousal level detection means
46 Collision prediction means
47 Lane departure prediction means
48 Alarm timing control means

Claims (4)

車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、
前記画像データによる車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かについて、道路の車線の幅が設定値以下、曲率半径の変化が設定値以上、先行車に対する追突の可能性が有る、駐車車両が有る、その他の移動障害物が有るのいずれか1つでも満たす場合に心理的刺激有りを判定し、その1つも満たさない場合に心理的刺激無しと判定する心理的刺激判定手段と、
前記心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび前記心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段と、
前記画像データと車速により障害物との衝突の可能性を予測する衝突予測手段と、
前記画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、
覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、警報タイミングをそれぞれ変化して警報を発する警報タイミング制御手段とを備えることを特徴とする車両の警報装置。
Image recognition means for obtaining image data obtained by three-dimensionally recognizing a road in front of the vehicle and a traffic environment;
Whether there is a road in front of the vehicle based on the image data, a moving object, an obstacle, a road shape, etc. that are visible to the driver's eyes depending on the traffic environment and vehicle speed, and whether there is a psychological stimulus that is a psychological burden or visual stimulus for the driver The road lane width is less than the set value, the change in the radius of curvature is greater than the set value, there is a possibility of rear-end collision with the preceding vehicle, there is a parked vehicle, and there are other moving obstacles Psychological stimulation determination means for determining presence of psychological stimulation when satisfied, and determining that there is no psychological stimulation when none of them is satisfied;
Arousal level detection means for detecting that the driver's arousal level is high if there is even one psychological stimulus and that the driver's awakening level has decreased when a state in which there is no psychological stimulus continues for a set time;
A collision prediction means for predicting the possibility of a collision with an obstacle based on the image data and the vehicle speed;
Lane departure prediction means for predicting the possibility of lane departure from the image data;
An alarm device for a vehicle, comprising: an alarm timing control unit that issues an alarm by changing an alarm timing when a collision or a lane departure is predicted when an arousal level is reduced.
前記警報タイミング制御手段は、覚醒度低下時に衝突や車線逸脱を予測する場合に、衝突や車線逸脱を早めに予測するように補正して早めに警報を発することを特徴とする請求項1記載の車両の警報装置。  The warning timing control means, when predicting a collision or a lane departure when the arousal level is reduced, corrects the collision or the lane departure so as to predict it earlier, and issues a warning early. Vehicle warning device. 車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、
前記画像データによる車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かについて、少なくとも、上記道路の車線の幅が設定値以下の場合、上記道路の曲率半径の変化が設定値以上の場合、障害物又は移動物が有って、種々の運転操作が必要である場合又は視覚的刺激が存在する場合のいずれか1つでも満たす場合に心理的刺激有りと判定する心理的刺激判定手段と、
前記心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび前記心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段と、
前記画像データと車速により障害物との衝突の可能性を予測する衝突予測手段と、
前記画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、
覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、警報タイミングをそれぞれ変化して警報を発する警報タイミング制御手段とを備えることを特徴とする車両の警報装置。
Image recognition means for obtaining image data obtained by three-dimensionally recognizing a road in front of the vehicle and a traffic environment;
Whether there is a road in front of the vehicle based on the image data, a moving object, an obstacle, a road shape, etc. that are visible to the driver's eyes depending on the traffic environment and vehicle speed, and whether there is a psychological stimulus that is a psychological burden or visual stimulus for the driver If at least the width of the lane of the road is less than or equal to a set value, if the change in the radius of curvature of the road is greater than or equal to the set value, there are obstacles or moving objects and various driving operations are required. A psychological stimulus determination means for determining that there is a psychological stimulus when any one of the case or the case where the visual stimulus exists is satisfied,
Arousal level detection means for detecting that the driver's arousal level is high if there is even one psychological stimulus and that the driver's awakening level has decreased when a state in which there is no psychological stimulus continues for a set time;
A collision prediction means for predicting the possibility of a collision with an obstacle based on the image data and the vehicle speed;
Lane departure prediction means for predicting the possibility of lane departure from the image data;
An alarm device for a vehicle, comprising: an alarm timing control unit that issues an alarm by changing an alarm timing when a collision or a lane departure is predicted when an arousal level is reduced.
車両前方の道路、交通環境を三次元的に認識した画像データを得る画像認識手段と、
前記画像データにより車線の幅、車両前方の道路、交通環境や車速によりドライバの目に映る移動物、障害物、道路形状等であって、ドライバの心理的負担や視覚的刺激となる心理的刺激が有るか否かを判定する心理的刺激判定手段と、
前記心理的刺激が1つでも有るとドライバの覚醒度が高いことおよび前記心理的刺激が全く無い状態が設定時間継続する場合にドライバの覚醒度が低下したことを検出する覚醒度検出手段と、
前記画像データと車速により障害物との衝突の可能性を予測する衝突予測手段と、
前記画像データにより車線逸脱の可能性を予測する車線逸脱予測手段と、
覚醒度低下を検出した場合、覚醒度低下時に衝突や車線逸脱を予測する場合に、車線の幅を減少補正することにより警報タイミングを変化させて警報を発する警報タイミング制御手段とを備えることを特徴とする車両の警報装置。
Image recognition means for obtaining image data obtained by three-dimensionally recognizing a road in front of the vehicle and a traffic environment;
The image data includes a lane width, a road ahead of the vehicle, a moving object, an obstacle, a road shape, etc. that are visible to the driver according to the traffic environment and vehicle speed, and a psychological stimulus that is a psychological burden or visual stimulus for the driver. Psychological stimulus determination means for determining whether or not there is,
Arousal level detection means for detecting that the driver's arousal level is high if there is even one psychological stimulus and that the driver's awakening level has decreased when a state in which there is no psychological stimulus continues for a set time;
A collision prediction means for predicting the possibility of a collision with an obstacle based on the image data and the vehicle speed;
Lane departure prediction means for predicting the possibility of lane departure from the image data;
An alarm timing control means for generating an alarm by changing the alarm timing by correcting the decrease in the width of the lane when a collision or a lane departure is predicted when the arousal level is decreased. Vehicle warning device.
JP01183795A 1995-01-27 1995-01-27 Vehicle alarm device Expired - Fee Related JP3638980B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP01183795A JP3638980B2 (en) 1995-01-27 1995-01-27 Vehicle alarm device
US08/591,007 US5642093A (en) 1995-01-27 1996-01-24 Warning system for vehicle
DE19602766A DE19602766C2 (en) 1995-01-27 1996-01-26 Warning system for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01183795A JP3638980B2 (en) 1995-01-27 1995-01-27 Vehicle alarm device

Publications (2)

Publication Number Publication Date
JPH08203000A JPH08203000A (en) 1996-08-09
JP3638980B2 true JP3638980B2 (en) 2005-04-13

Family

ID=11788858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01183795A Expired - Fee Related JP3638980B2 (en) 1995-01-27 1995-01-27 Vehicle alarm device

Country Status (1)

Country Link
JP (1) JP3638980B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358709B2 (en) * 1997-08-11 2002-12-24 富士重工業株式会社 Driving support device for vehicles
JP4028092B2 (en) * 1998-06-30 2007-12-26 株式会社エクォス・リサーチ Traffic division departure warning device, traffic division departure warning method and recording medium
JP3882541B2 (en) * 2001-07-09 2007-02-21 日産自動車株式会社 Driver future situation prediction device
CN1879135B (en) * 2003-11-30 2010-07-14 沃尔沃技术公司 Method and system for recognizing driver impairment
JP4466571B2 (en) 2005-05-12 2010-05-26 株式会社デンソー Driver status detection device, in-vehicle alarm device, driving support system
JP2006335174A (en) * 2005-06-01 2006-12-14 Nissan Motor Co Ltd Traveling control device for vehicle
WO2007063952A1 (en) * 2005-12-01 2007-06-07 Pioneer Corporation Vibration generation system and device
WO2007105694A1 (en) * 2006-03-13 2007-09-20 Pioneer Corporation Awakening retainer and method for retaining awakening and computer program for retaining awakening
JP4935146B2 (en) * 2006-03-29 2012-05-23 トヨタ自動車株式会社 Vehicle control device
JP4730191B2 (en) * 2006-04-27 2011-07-20 トヨタ自動車株式会社 VEHICLE DRIVE ASSISTANCE DEVICE AND WALKING STATE DETECTION DEVICE
JP4922715B2 (en) * 2006-09-28 2012-04-25 タカタ株式会社 Occupant detection system, alarm system, braking system, vehicle
JP4297155B2 (en) * 2006-10-13 2009-07-15 トヨタ自動車株式会社 In-vehicle warning device
JP4737787B2 (en) * 2007-03-26 2011-08-03 パイオニア株式会社 Awakening device and awakening method
JP5090810B2 (en) * 2007-07-13 2012-12-05 株式会社トヨタIt開発センター Vehicle driving support device
JP4946807B2 (en) * 2007-11-07 2012-06-06 トヨタ自動車株式会社 Lane departure prevention control device
JP4727688B2 (en) * 2008-04-23 2011-07-20 トヨタ自動車株式会社 Awakening level estimation device
DE102012004791A1 (en) 2012-03-07 2013-09-12 Audi Ag A method for warning the driver of a motor vehicle of an imminent danger situation as a result of unintentional drifting on an oncoming traffic lane
KR102270401B1 (en) 2014-09-26 2021-06-28 더 리젠츠 오브 더 유니버시티 오브 미시건 Real-time warning for distracted pedestrians with smartphones
US10232856B2 (en) * 2016-07-28 2019-03-19 Ford Global Technologies, Llc Vehicle user-communication system and method
WO2020008547A1 (en) * 2018-07-04 2020-01-09 日産自動車株式会社 Fatigue alleviation method and occupant assistance device

Also Published As

Publication number Publication date
JPH08203000A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
JP3638980B2 (en) Vehicle alarm device
US5642093A (en) Warning system for vehicle
JP4320045B2 (en) Vehicle support system
KR101759804B1 (en) Driving assistance device and driving assistance method
US8184008B2 (en) On-board warning apparatus and warning method
JP4400624B2 (en) Dozing prevention device and method
JP3104463B2 (en) Rear-end collision prevention device for vehicles
EP1884449B1 (en) Vehicle deviation preventing apparatus
JPH08205306A (en) Alarm device for car
US20060162985A1 (en) System for crash prediction and avoidance
JP5401961B2 (en) Steering support device
JPH07104850A (en) Operator assistance system for vehicle
US20160236681A1 (en) Vehicle driving situation determination apparatus and vehicle driving situation determination method
CN101523455A (en) On-board warning apparatus and warning method
JPH0858503A (en) Rear side danger alarm device and rear side danger judging method
JP4725254B2 (en) Armpit judging device
JP4948996B2 (en) Vehicle driving support device
JP3993316B2 (en) Vehicle travel safety device
JP2003141697A (en) Vehicle braking warning device and vehicle braking control device
US20140012491A1 (en) Traveling support apparatus and traveling support method
JP2007038911A (en) Alarm device for vehicle
JP2004249846A (en) Operation control auxiliary device for vehicle and vehicle with the device
JP7310631B2 (en) Monitoring area setting device
JPH08197977A (en) Alarm device of vehicle
JP3720117B2 (en) Vehicle alarm device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees