JP3620798B2 - Nondestructive spectrometer - Google Patents

Nondestructive spectrometer Download PDF

Info

Publication number
JP3620798B2
JP3620798B2 JP2003185167A JP2003185167A JP3620798B2 JP 3620798 B2 JP3620798 B2 JP 3620798B2 JP 2003185167 A JP2003185167 A JP 2003185167A JP 2003185167 A JP2003185167 A JP 2003185167A JP 3620798 B2 JP3620798 B2 JP 3620798B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
temperature
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003185167A
Other languages
Japanese (ja)
Other versions
JP2005017210A (en
Inventor
澄夫 河野
和雄 佐々木
隆 渡邉
光 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTEM, INC.
Original Assignee
ASTEM, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTEM, INC. filed Critical ASTEM, INC.
Priority to JP2003185167A priority Critical patent/JP3620798B2/en
Priority to PCT/JP2004/008198 priority patent/WO2005001400A1/en
Publication of JP2005017210A publication Critical patent/JP2005017210A/en
Application granted granted Critical
Publication of JP3620798B2 publication Critical patent/JP3620798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld

Description

【0001】
【発明の属する技術分野】
本発明は、果実などにおける離散的な吸収スペクトルを測定して、非破壊で糖度などの成分を測定する近赤外分光技術を利用した非破壊分光測定器に関する。
【0002】
【従来の技術】
従来、果実糖度の非破壊測定法として、近赤外線の吸収現象を利用した分光分析が広く使われている。この非破壊分光測定法は、ハロゲンランプを光源として使い、光ファイバなどで光を誘導し、果実の表面へ照射させ、その反射光や透過光を回折格子などで分光し、果実の連続的な吸収スペクトルを測定し、その内必要な波長の吸光度を取り出し、予め用意された関係式に代入することで、糖度を測定するのが一般的である。
【0003】
また、本出願人は、小型化、低消費電力化により、圃場での持ち歩きを可能にした、ハンディ型果実成分非破壊測定器を提案した。これは、それ以前の方法に対して、LDなどの狭い半値幅を持つ光源を複数用いることが特徴である。ハロゲンランプと違い、必要とする波長の光のみを発光することから、無駄な電力を消費しないという利点を有している。また、回折格子などの分光の仕組みが不要で、小型化に適している(例えば、特許文献1参照)。
【0004】
従来、測定器の取り扱いにおける利便性の面から、小型化、低消費電力化が求められており、そのような考えから、光源にLEDやLDなどの波長域の狭い光源を採用するハンディ型果実成分非破壊測定器が提案されているが、さらなる小型化や高精度の追求、外乱光への耐性の点で改善の余地が残されている。
【0005】
光源にLEDを使用した場合、発光波長の半値幅が少なくとも20nm以上と広く、分光分析用の光源としては、精度の点で最適な光源とは言えなかった。
【0006】
また、LDは半値幅が2nm以下であるが、温度による波長変動が大きく、精密に波長変動を検出する必要があった。さらに、光ファイバの束により分岐した光の一部を、波長補正用のフィルターを透過させ、その透過量の変化によって波長の変動を検出する方法では、LD光が発光されてから果実に照射されるまでの経路において光の減衰が著しく、その結果外乱光に対する耐性が弱くなった。
【0007】
このような問題点を解決するために、本出願人らは、平成15年1月16日付けで、光誘導手段を簡素化しかつブロック化することによって、小型化の追求や高精度の要求に対応し、外乱光への耐性を向上させたLEDやLDを用いた非破壊分光測定器を提供することを目的とする非破壊分光測定器を出願している(特許文献2、参照)
【0008】
【特許文献1】
特開2002−116141号公報
【特許文献2】
特願2003−008588号
【0009】
【発明が解決しようとする課題】
上記特許文献2の出願にかかる発明は、図8および図9に示す構成を有している。すなわち、図8は前記非破壊分光測定器の全体構成を説明する概念図であり、図9は前記非破壊分光測定器の光学ユニットの構成を説明する模式的な断面図である。
【0010】
前記非破壊分光測定器1は、光学ユニット10と、演算回路部20と、表示装置30と、電源部40と、遮光フード50とを有して構成される。
【0011】
光学ユニット10は、測定対象60に精度の高い波長の光を照射し、測定対象60からの拡散反射光を受光する手段である。
【0012】
演算回路部20は、拡散反射光の強度と糖度などの成分との関係式である検量線が格納されており、測定対象60からの反射光のデータを用いて検量線を参照して測定対象60の糖度などの成分を演算し、表示装置30や図示を省略したパソコンなどの外部装置へ出力する働きと、発光素子の強度を監視して発光素子の出力強度を制御するとともに、発光素子の温度を監視して発光素子の発光波長の変化を検出し、測定対象の温度を監視して前記演算結果に対して温度補正を行う回路である。発光素子の温度と測定対象の温度は、反射光のデータと共に検量線のパラメータとして用いることも可能である。さらに、演算回路部20は、電圧制御回路を有している。
【0013】
演算回路20に格納される検量線は、外部から書き替えることも可能である。
【0014】
表示装置30は、例えばLCDを用いて構成され、測定結果などのデータを表示する手段である。
【0015】
電源部40は、例えば乾電池などの電源を有しており、光学ユニット10、演算回路部20、表示装置30へ電力を供給する手段であり、測定スイッチ41を有している。
【0016】
遮光フード50は、測定対象60からの反射光のみを受光素子へ到達させ、外光による測定誤差をなくすための遮光手段である。遮光フード50は、測定対象60に接したときに測定対象を傷つけず、かつ外乱光の侵入を阻止するように、柔軟な材料で蛇腹状に構成される。遮光フード50の光学ユニット測定面側には、測定対象60に接する緩衝兼遮光用クッション51が設けられている。
【0017】
図9に示すように、前記非破壊分光測定器1は、異なる発光波長を有する複数の測定対象照射用の発光素子15と、測定対象60に照射し測定対象内部で拡散反射した発光素子15からの光の強度を検出する反射光検出素子172と、発光素子15の光の強度を検出する発光強度検出素子171と、発光強度検出素子171が検出した発光素子15の発光強度をフィードバックして発光強度を制御する発光制御部23と、発光素子15の温度を検出する発光素子温度検出素子161と、測定対象の温度を検出する測定対象温度検出素子162と、測定対象毎の吸光度と発光素子15の温度と測定対象の温度を共にパラメータとして作成した検量線(スペクトルデータ)22と、反射光検出素子172が検出した測定対象60内部で拡散反射された各波長毎の反射光の強度と測定対象の温度を用いて検量線を参照して測定対象60の成分を演算する成分演算部21とを備え、発光素子15の温度変化に依存して変化した発光波長毎の反射光の強度を用いて検量線を参照して測定対象の成分を演算する。
【0018】
さらに、前記非破壊分光測定器1は、複数の発光素子15を固定する第1の光案内ブロック11と、発光素子15からの光を案内する光案内通路121と発光素子温度検出素子161を有する第2の光案内ブロック12と、光案内通路からの光を拡散する光拡散手段18および光拡散手段からの拡散光を案内する光通路131および光通路の光を分岐した光を案内する分岐光通路132および光通路の途中に設けた光分岐用ガラス板191ならびに発光強度検出素子171を有する第3の光案内ブロック13と、光照射窓141を有し反射光検出素子172と測定対象温度検出素子162を保持する取付手段14とからなる光学ユニット10を備えている。
【0019】
発光素子15は、発光波長の半値幅が狭く温度による波長変動の小さな近赤外線発光LEDが用いられる。
【0020】
このような構成を有する前記比破壊分光測定器1は、光誘導手段を簡素化しかつブロック化することによって、小型化の追求や高精度の要求に対応し、外乱光への耐性を向上させたLEDやLDを用いた非破壊分光測定器を提供することができるが、光拡散手段18を介して複数の発光素子15からの光を拡散しているので、ここでの減衰が生じ、測定精度を向上する上での阻害要因となる恐れがある。
【0021】
上記問題点に鑑み、本発明は、発光素子からの光の減衰を伴わずに測定対象に照射することができる非破壊分光測定器を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、円周上に該円周の中心に向けて配置した異なる波長の複数の測定対象照射用発光素子と、前記円周の中心に配置した回転ミラーと、前記回転ミラーの反射面の裏側に照射された1つの位置検出用発光素子からの光を受光する位置検出用受光素子とを備えて、回転ミラーの回転と測定対象照射用発光素子の発光とが同期するように制御することで、光の減衰を最小限に抑え、精度向上を達成した。
【0023】
【発明の実施の形態】
本発明にかかる非破壊分光測定器を果実成分測定器に適用した場合の構造を、図1〜図7を用いて説明する。図1は本発明にかかる非破壊分光測定器の全体構成を説明する概念図であり、図2は本発明にかかる非破壊分光測定器の機能構成を説明する機能構成図であり、図3は本発明にかかる非破壊分光測定器の光学ユニットの構成を説明する模式的な断面図(図中D−D側は垂直軸での断面,E−E側は水平軸での断面を示す)であり、図4は本発明にかかる光学ユニットを構成する光学ブロックの外形を示す図であり(A)左面図、(B)は面図、(C)は右面図、図5は図4の断面図であり、図6は取付板の正面図であり、図7は回転ミラー支持部材の形状を説明する図である。
【0024】
図1に示すように、本発明にかかる非破壊分光測定器1は、光学ユニット10と、演算制御部20と、表示装置30と、電源部40と、遮光フード50と、駆動ユニット80とを有して構成される。
【0025】
光学ユニット10は、測定対象60に精度の高い波長の光を照射し、測定対象60からの拡散反射光を受光する手段である。
【0026】
演算制御部20は、拡散反射光の強度と糖度などの成分との関係式である検量線が格納されており、測定対象60からの反射光のデータを用いて検量線(スペクトルデータ)を参照して測定対象60の糖度などの成分を演算し、表示装置30や図示を省略したパソコンなどの外部装置へ出力する働きと、発光素子の強度を監視して発光素子の出力強度を制御するとともに、発光素子の温度を監視して発光素子の発光波長の変化を検出し、測定対象の温度を監視して前記演算結果に対して温度補正を行う回路である。発光素子の温度と測定対象の温度は、反射光のデータと共に検量線のパラメータとして用いることも可能である。さらに、演算制御部20は、電圧制御回路を有している。
【0027】
演算制御部20に格納される検量線は、外部から書き替えることも可能である。
【0028】
表示装置30は、例えばLCDを用いて構成され、測定結果などのデータを表示する手段である。
【0029】
電源部40は、例えば乾電池などの電源を有しており、光学ユニット10、演算制御部20、表示装置30、駆動ユニット80へ電力を供給する手段であり、測定スイッチ41を有している。
【0030】
遮光フード50は、測定対象60からの反射光のみを受光素子へ到達させ、外光による測定誤差をなくすための遮光手段である。遮光フード50は、測定対象60に接したときに測定対象を傷つけず、かつ外乱光の侵入を阻止するように、柔軟な材料で蛇腹状に構成される。遮光フード50の光学ユニット測定面側には、測定対象60に接する緩衝兼遮光用クッション51が設けられている。
【0031】
図2、図3に示すように、非破壊分光測定器1は、円周上に配置され該円周の中心に向けて配置された異なる発光波長を有する複数、例えば5個の測定対象照射用発光素子153と、測定対象60に照射され測定対象内部で拡散反射した発光素子153からの光の強度を検出する反射光検出素子172と、発光素子153の光の強度を検出する発光強度検出素子171と、発光強度検出素子171が検出した発光素子153の発光強度をフィードバックして発光強度を制御する発光制御部23と、発光素子153の温度を検出する発光素子温度検出素子161と、測定対象の温度を検出する測定対象温度検出素子162と、測定対象毎の吸光度と発光素子153の温度と測定対象の温度を共にパラメータとして作成した検量線22と、反射光検出素子172が検出した測定対象内部で拡散反射された各波長毎の反射光の強度と測定対象の温度を用いて検量線を参照して測定対象の成分を演算する成分演算部21と、受光素子156で位置検出用発光素子155からの乱反射光を受光したことによって、駆動ユニットの原点を算出し以降の駆動ユニットの回転を制御する回転制御部24とを備え、発光素子の温度変化に依存して変化した発光波長毎の反射光の強度を用いて検量線を参照して測定対象の成分を演算する。
【0032】
さらに、本発明の非破壊分光測定器1は、複数の発光素子153を固定するとともに、発光素子からの光を案内する光通路131および光通路の光を分岐した光を案内する分岐光通路132および光通路の途中に設けた光分岐用ガラス板191ならびに発光強度検出素子171とを有する光学ブロック13と、光照射窓141を有し反射光検出素子172と測定対象温度検出素子162を保持する取付板14とからなる光学ユニット10を備えている。
【0033】
発光素子153は、発光波長の半値幅が狭く温度による波長変動の小さな近赤外線発光LEDであることが望ましい。
【0034】
さらに、本発明の光学ブロック13には、位置検出用発光素子155が発光素子取付穴137に、位置検出用受光素子156が受光素子取付穴138に、発光素子温度検出素子161が温度検出素子取付穴139に取り付けられている。位置検出用発光素子155と位置検出用受光素子156は、回転ミラー部70の回転軸と同じ方向に互いに近接して並べられている。
【0035】
さらに、光学ブロック13の光通路131内には、駆動ユニット80を構成するステッピングモータ81の出力軸に固定された回転ミラー部70が設けられている。回転ミラー部70は、円筒状の回転ミラー支持部材73と、該支持部材の先端に傾斜して取り付けられた鏡71とを有している。回転ミラー支持部73の長辺側にはスリット731が設けられている。
【0036】
軸受83を有するステッピングモータ81は、取付板85−1、85−2によって光学ブロック13に取り付けられている。
【0037】
図4に、光学ブロック13の外形を、図5にその断面を示す。図5(A)は図4のA−A線での、図5(B)は図4のB−B線での、図5(C)は図4のC−C線での断面図である。光学ブロック13には、複数の発光素子153と位置検出用発光素子155が取りつけられる発光素子取付穴137が中心に位置する光通路131へ向けて穿たれている。
【0038】
光学ユニット10は、光学ブロック13と、取付板14と、位置検出用発光素子155と、位置検出用受光素子156と、複数の発光素子153と、サーミスタなどの温度検出素子161と、分岐光検出素子171と反射光検出素子172−1〜172−4と、光分岐用ガラス板191と、保護ガラス板192とを有して構成される。さらに、光学ユニット10は、正面に光照射窓141と、サーモパイルなどの温度検出素子162を有している。
【0039】
光学ブロック13は、熱電導率の大きな金属例えばアルミニウムを用いて構成され、発光波長の異なる複数の発光素子153が固定され、複数の発光素子固定穴137を有している。発光素子固定穴137に発光波長の異なる例えばLEDからなる発光素子153および位置検出用発光素子155が挿入固定されている。発光素子固定穴137の周壁と発光素子153との間には熱伝導性材料例えばシリコングリスを介在させて、両者の間の熱伝導を高めている。
【0040】
また、光学ブロック13の光通路131内には、回転ミラー部70が挿入され、位置検出用発光素子155を除くそれぞれの発光素子153からの光を光分岐用ガラス板191へ導く。
【0041】
さらに、光学ブロック13は、光通路131と、光分岐通路132と、ガラス板保持溝134と、光検出素子保持穴135とを有している。光通路131は、発光素子から照射された光を、測定対象へ導く通路であり、途中に光の一部を分岐する光分岐通路132が設けられている。光分岐通路132は、発光素子からの光の一部を分岐した光を分岐光検出素子171へ導く通路であり、光通路131の光軸に直角に交差するように設けられており、一端が光通路131に開口し他端が光検出素子保持穴135に開口している。ガラス板保持溝134は、光通路131の途中に光軸に45度で交差するように設けられており、光分岐用ガラス板191を保持する。光検出素子保持穴135は、分岐光検出素子171を絶縁材を介して保持する。
【0042】
図6に示す取付板14は、絶縁性の合成樹脂である例えばPEEK材を用いて構成され、光照射窓141と、反射光検出素子172−1〜172−4を保持する光照射窓141の周囲に配置された複数の光検出素子保持穴142−1〜142−4と、測定対象検出用発光素子151を保持する測定対象検出用発光素子保持穴143と、測定対象温度検出素子162を保持する温度検出素子保持穴144とを有して構成され、光照射窓141には、保護ガラス板192が固定されている。
【0043】
取付板14に取り付けられた光照射窓141と、反射光検出素子172と、測定対象温度検出素子162と、測定対象検出用発光素子151は、測定対象へ向けて配置される。
【0044】
光源を構成する発光素子153は、測定対象に半値幅の小さな精度の高い光を照射する素子であり、発光手段として働く、この実施例では異なる発光波長を有する5本のLED153で構成され、光学ブロック13に設けた回転ミラー部70の鏡71へLEDの光が照射される角度で配置される。LED153は、例えば、発光のピーク波長が810、845、872、904、915nmのいずれかであり、半値幅が4nm以下と狭い発光ダイオードである。さらに、この発光ダイオードは、温度による波長変動が0.2nm/℃以下であることが望ましい。
【0045】
測定対象検出用発光素子151は、可視光線を発光するLEDを用いて構成され、測定対象が遮光フード50に接しているときのみ発光素子153の発光を許容して、使用者の安全を図る働きを有している。
【0046】
発光素子温度検出素子161は、例えばサーミスタを用いて構成され、光源の温度を測定する素子であり、発光手段温度検出手段として働き、温度データをパラメータとして演算回路に取り込み、演算結果の波長の変化に起因する誤差を補正するのに用いる。
【0047】
測定対象温度検出素子162は、例えばサーモパイルを用いて構成され、測定対象からの輻射熱を検出して測定対象の温度を検出する素子であり、測定対象温度検出手段として働き、測定対象の温度データをパラメータとして演算回路に取り込み、演算結果の測定対象の温度変化に起因する誤差を補正するのに用いる。
【0048】
分岐光検出素子171は、例えばフォトダイオードを用いて構成され、発光強度検出手段として働き、光分岐用ガラス板191からの分岐光を受光して光源の出力強度に関するデータを得て、当該発光素子153の出力を制御する働きを有している。
【0049】
反射光検出素子172は、例えばフォトダイオードを用いて構成され、反射光検出手段として働き、測定対象の内部で拡散反射されてきた光を受光する素子である。
【0050】
光分岐用ガラス板191は、光分岐手段として働き、光案内通路131の途中に45度の角度で設置され、LEDからの光の一部(8%程度)を反射分岐して、光通路131の側壁に設けた開口を経由して分岐項検出素子171に入射する。
【0051】
測定対象60は、例えば、りんご、なし、トマト等の果実であり、その糖度などの成分を測定することができる。また、かつおやマグロ等の魚肉を対象としその脂肪含有量を非破壊で測定することが可能である。さらに、人などの血液を採取することなく皮膚の外から糖度、コレステロールの値などの血中成分を測定することができる。
【0052】
回転ミラー部70の回転ミラー支持部材73の構造を、図7を用いて説明する。図7において、(A)は面図、(B)は面図、(C)は面図、(D)は右面図、(E)は左面図である。回転ミラー支持部材73は、中心に貫通孔734を有する円筒の先端を斜め45度に切り落とした形状に構成される。先端に形成された斜面には、鏡71を固定支持するミラー支持面732が形成され、ミラー支持面732の上下両端にはミラー支持爪733が形成される。さらに、回転ミラー支持部材73には、ミラー支持面732の裏側にスリット731が設けられている。
【0053】
貫通穴734に図の左側からステッピングモータの回転軸82が挿入され、ネジ穴735に入された3本のビスによって回転ミラー支持部材73が回転軸82に固定される。
【0054】
この構成を有する回転ミラー支持部材73は、光学ブロック13の光通路131に挿入され、鏡71が発光素子153からの光を反射する位置に配置される。位置検出用発光素子155からの光は、スリット731から貫通穴734に導入され、鏡71の裏面72で反射され、貫通穴734の内面で乱反射してスリット731を通って位置検出用受光素子156へ到達する。このことによって、回転ミラー(鏡)71の原点を決定することができる。回転ミラー71の原点が決定すると、これに基づいて回転する鏡71の位置を知ることができ、回転ミラー71の表面がいずれかの発光素子153へ向いているときに、その発光素子153が発光するように制御して、鏡71で反射された光が測定対象60へ照射される。
【0055】
次に、本発明にかかる非破壊分光測定器で、果実の糖度を測定する場合の動作手順を説明する。非破壊分光測定器1は、片手で持つことができ、もう一方の手で果実を接触部の遮光フード50に軽く当て、把持部に設けた測定スイッチ41を押すと、約1秒で糖度が算出され、表示装置30に表示される。
【0056】
測定スイッチ41が押されると電源が入り、配置されたLED153が順次発光する。発光した光は、光案内通路131へ入射して、鏡71で反射して照射窓141から果実60へ照射される。
【0057】
光通路131の途中に配置された光分岐用ガラス板191によって、LEDの入射光のうち常に一定の割合(8%)の光が反射され、分岐光検出素子171により検出される。分岐光検出素子171で受光した光の強度がフィードバックされて、光通路131から測定対象60に照射される光の強度が一定値になるようにLED153の電流が制御される。
【0058】
測定対象である果実に照射された光は、果実の内部で、拡散反射を繰り返し、その一部が、反射光検出素子172により検出される。ただし、光照射窓141から果実に照射された光のうち果実表面からの直接反射光は、緩衝兼遮光用クッション51によって遮光され、反射光検出素子172では検出されない。
【0059】
反射光検出素子172によって検出された光の強度は、温度検出素子162が得た果実の温度データと、温度検出素子161が得たLEDの温度データとともに、前もって用意された関係式に代入され、糖度が算出される。算出された糖度は表示装置30に一定時間表示された後、電源が落ち、動作を完了する。
【0060】
次に、本発明にかかる非破壊分光測定器において、反射光検出素子172の反射光強度検出データと温度検出素子161が得たLEDの温度データと測定対象温度検出素子162が得た果実の温度データから糖度を算出する関係式について説明する。本発明にかかる非破壊分光測定器は、果実の糖度を非破壊で測定する。その方法は、透過力の比較的強い短波長領域の分光された近赤外線を果実に照射し、透過光量から吸光度を得て、その吸光度に対して果実の温度による補正を行った値から甘味に関連した指標を求めるものである。
【0061】
反射光検出素子172によって得られた五つの波長(λ1〜λ5)における果実の吸光度を、それぞれL(λ1)、L(λ2)、L(λ3)、L(λ4)、L(λ5)とし、温度検出素子162が得た果実の温度データをT1、温度検出素子161が得たLEDの温度データをT2とすると、果実の糖度Cは、一般に下記(1)式で表される。
【数1】

Figure 0003620798
【0062】
本測定器1においては、下記(2)式の関係式を用いた。
【数2】
Figure 0003620798
【0063】
ここで、K0、K1、K2、…、K7は比例定数を示す。
【0064】
ただし、吸光度L(λn)は、果実の温度の変化や、LEDの温度変化による測定波長(λn)の変化によってわずかながら変化するが、以下に述べる方法でKnの最適値を求める場合、上記(2)式の右辺の最後の二つの項によって補正が可能である。
【0065】
将来、測定を想定される果実については、少なくとも100個以上の試料を関係式の作成用に用意し、吸光度L(λn)、試料の温度T1、LEDの温度T2、屈折糖度計による糖度Cなどのデータを測定した。その際、恒温槽を用いて試料の温度、LED(実際には本測定器本体)の温度を、それぞれ5℃から40℃まで5℃おきに変化させ、試料温度とLED温度のそれぞれの組み合わせにおけるデータを測定した。
【0066】
このようにして得たデータをコンピュータにより統計的に処理し、線形重回帰分析の手法を用いて、Knの最適値を得た。この結果、5℃から40℃の測定環境の下で、高精度の糖度の推定が可能となった。
【0067】
本発明による非破壊分光測定器においては、試料の温度、LEDの温度を反映する値として、温度検出素子162で得たT1,温度検出素子161で得たT2を関係式のパラメータとして用いたが、試料の温度やLEDの温度に相関の高い波長の吸光度などを関係式のパラメータとして換わりに用いることで、測定対象温度検出素子162や発光素子温度検出素子161を利用しないことも可能である。
【0068】
以上の実施の形態では、発光素子153を5個用い、それぞれの発光波長のピーク波長が810、845、872、904、915nmのいずれかであり、半値幅が4nm以下と狭い発光ダイオードであり、温度による波長変動が0.2nm/℃以下であるものを用いた例を説明したが、例えば室内のような温度変化の少ない環境で使用する場合などでは、発光波長のピーク値が810、872、904nmの3個のLEDとしても十分に精度の高い測定結果を得ることができる。
【0069】
また、本発明によれば、発光素子の温度を監視して発光素子の発光強度を制御するようにしているので、温度変化が多少大きなLDを用いても十分実用に供し得る非破壊分光測定器を提供することができる。
【0070】
光を照射して内部で拡散反射された光により測定対象の内部の糖度などの成分を測定するには、照射光が十分に内部に到達しそこで拡散反射された光の強度を検出する必要がある。そのためには、測定対象への光照射部と反射光受光部との距離を大きくする必要がある、しかしながら、光照射部と反射光受光部との距離を大きくすると、光の減衰が大きくなり精度が低下するという問題がある。上記の説明では、光の減衰に対処するために、1つの光照射部からの光を4つの受光部によって検出して精度を上げている。
【0071】
しかしながら、測定対象によっては、5個の発光素子153と1個の位置検出用発光素子155と1個の回転ミラー部70からなる1個の発光部と、1個の反射光検出素子172とから本発明の非破壊分光測定器を構成してもよい。さらに、スイカやメロンなどの外皮の厚い測定対象の場合には、1個の反射光検出素子172の周囲に、5個の発光素子153と1個の位置検出用発光素子155と1個の回転ミラー部70からなる発光部を4個配置して、照射光の強度を高め、測定精度を上げることも可能である。この場合、取付板14の光照射窓141と光検出素子保持穴142の配置を入替えればよい。
【0072】
本発明では、複数の発光素子153からの光を鏡71によって反射して測定対象60に照射しているので、拡散板を用いた先行技術に比較して、発光素子の光を効率良く用いることができ、精度高く測定することができる。
【0073】
【発明の効果】
本発明によれば、半値幅が狭く、温度に対して変動の小さな光源を使用すると、高精度の検量線の作成が可能になり、波長の変動を光源の温度を用いて補正でき、光学的経路を簡略化することができる。その結果、本発明によれば、小型で、電力消費が少なく、外乱光に強い、高精度の、圃場で使用可能な非破壊分光測定器を得ることができる。
【0074】
さらに、本発明によれば発光素子を効率良く使用して、高い精度で非破壊分光測定を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる非破壊分光測定器の概念図。
【図2】本発明の実施の形態にかかる非破壊分光測定器の機能構成図。
【図3】本発明の実施の形態にかかる非破壊分光測定器の光学ユニットの構成の概要を説明する断面図。
【図4】光学ユニットの光学ブロックの外形を示す図。
【図5】光学ブロックの断面形状を示す図。
【図6】取付板の形状を示す図。
【図7】回転ミラー支持部材の形状を示す図。
【図8】先行技術の非破壊分光測定器の概念図。
【図9】先行技術の非破壊分光測定器の機能構成図。
【符号の説明】
1 非破壊分光測定器
10 光学ユニット
13 光学ブロック
131 光通路
132 光分岐通路
134 ガラス板保持溝
135 光検出素子保持穴
137 発光素子固定用穴
138 位置検出用発光素子固定用穴
139 温度検出素子固定用穴
14 取付板
141 光照射窓
142 光検出素子保持穴
143 測定対象検出用発光素子保持穴
144 測定対象温度検出素子保持穴
151 測定対象検出用発光素子
153 発光素子
155 位置検出用発光素子
156 位置検出用受光素子
161 発光素子温度検出素子
162 測定対象温度検出素子
171 分岐光検出素子
172 反射光検出素子
191 光分岐用ガラス板
192 保護ガラス板
20 演算制御部
21 成分演算部
22 既知のスペクトルデータから得た検量線
23 発光制御部
24 回転制御部
30 表示装置
40 電源部
41 測定スイッチ
50 遮光フード
51 緩衝兼遮光用クッション
60 測定対象(果実)
70 回転ミラー部
71 鏡
72 裏面
73 回転ミラー支持部材
731 スリット
732 ミラー支持面
733 ミラー支持爪
734 貫通穴
735 ネジ穴
80 駆動ユニット
81 ステッピングモータ
82 回転軸
83 軸受
85 取付板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nondestructive spectrophotometer using a near-infrared spectroscopic technique that measures a discrete absorption spectrum in a fruit or the like and measures components such as sugar content in a nondestructive manner.
[0002]
[Prior art]
Conventionally, spectroscopic analysis using near-infrared absorption is widely used as a non-destructive measurement method for fruit sugar content. This non-destructive spectroscopic method uses a halogen lamp as a light source, induces light with an optical fiber, irradiates the surface of the fruit, and spectroscopically reflects the reflected light or transmitted light with a diffraction grating, etc. In general, the sugar content is measured by measuring an absorption spectrum, taking out absorbance at a necessary wavelength, and substituting it in a relational expression prepared in advance.
[0003]
In addition, the present applicant has proposed a handy-type fruit component nondestructive measuring instrument that can be carried in the field by downsizing and low power consumption. This is characterized in that a plurality of light sources having a narrow half-value width such as LD are used in comparison with the previous method. Unlike a halogen lamp, it emits only light having a required wavelength, and therefore has an advantage of not consuming unnecessary power. In addition, a spectroscopic mechanism such as a diffraction grating is unnecessary, and it is suitable for downsizing (for example, see Patent Document 1).
[0004]
Conventionally, miniaturization and low power consumption have been demanded from the viewpoint of convenience in the handling of measuring instruments. From such an idea, a handy fruit that uses a light source with a narrow wavelength range such as an LED or LD as the light source. Component nondestructive measuring instruments have been proposed, but there is still room for improvement in terms of further miniaturization, higher accuracy, and resistance to ambient light.
[0005]
When an LED is used as the light source, the half-value width of the emission wavelength is as wide as at least 20 nm, and it cannot be said that the light source for spectroscopic analysis is the optimum light source in terms of accuracy.
[0006]
The LD has a half-value width of 2 nm or less, but the wavelength variation due to temperature is large, and it is necessary to detect the wavelength variation precisely. Furthermore, in a method in which a part of light branched by a bundle of optical fibers is transmitted through a wavelength correction filter and a change in wavelength is detected by a change in the transmission amount, the LD light is emitted and then irradiated on the fruit. In the path up to this point, the attenuation of light was remarkable, and as a result, the resistance to disturbance light was weakened.
[0007]
In order to solve such problems, the present applicants have pursued downsizing and demanded high accuracy by simplifying and blocking the light guiding means on January 16, 2003. Correspondingly, a nondestructive spectroscopic instrument has been filed for the purpose of providing a nondestructive spectroscopic instrument using an LED or LD with improved resistance to ambient light (see Patent Document 2).
[0008]
[Patent Document 1]
JP 2002-116141 A
[Patent Document 2]
Japanese Patent Application No. 2003-008588
[0009]
[Problems to be solved by the invention]
The invention according to the application of Patent Document 2 has the configuration shown in FIGS. 8 is a conceptual diagram illustrating the overall configuration of the nondestructive spectrometer, and FIG. 9 is a schematic cross-sectional view illustrating the configuration of an optical unit of the nondestructive spectrometer.
[0010]
The nondestructive spectrometer 1 includes an optical unit 10, an arithmetic circuit unit 20, a display device 30, a power supply unit 40, and a light shielding hood 50.
[0011]
The optical unit 10 is means for irradiating the measurement target 60 with light with a wavelength with high accuracy and receiving diffuse reflection light from the measurement target 60.
[0012]
The arithmetic circuit unit 20 stores a calibration curve, which is a relational expression between the intensity of diffuse reflected light and components such as sugar content, and refers to the calibration curve using data of the reflected light from the measurement target 60 to be measured. A component such as sugar content of 60 is calculated and output to an external device such as a display device 30 or a personal computer (not shown), and the intensity of the light emitting element is monitored to control the output intensity of the light emitting element. This is a circuit that detects a change in the emission wavelength of the light emitting element by monitoring the temperature, monitors the temperature of the measurement target, and corrects the temperature of the calculation result. The temperature of the light emitting element and the temperature of the measurement object can be used as parameters of the calibration curve together with the reflected light data. Further, the arithmetic circuit unit 20 has a voltage control circuit.
[0013]
The calibration curve stored in the arithmetic circuit 20 can be rewritten from the outside.
[0014]
The display device 30 is configured using, for example, an LCD, and is a means for displaying data such as measurement results.
[0015]
The power supply unit 40 has a power supply such as a dry battery, for example, is a means for supplying power to the optical unit 10, the arithmetic circuit unit 20, and the display device 30, and has a measurement switch 41.
[0016]
The light shielding hood 50 is a light shielding means for causing only reflected light from the measurement object 60 to reach the light receiving element and eliminating a measurement error due to external light. The light shielding hood 50 is configured in a bellows shape with a flexible material so as not to damage the measurement object when in contact with the measurement object 60 and to prevent intrusion of ambient light. On the optical unit measurement surface side of the light shielding hood 50, a cushioning / light shielding cushion 51 in contact with the measurement target 60 is provided.
[0017]
As shown in FIG. 9, the nondestructive spectrometer 1 has a plurality of light emission wavelengths. For measurement object irradiation Light-emitting element 15 and light-emitting element that irradiates measurement object 60 and diffusely reflects inside measurement object 15 Reflected light detecting element 172 for detecting the intensity of light from the light source, and light emitting element 15 Emission intensity detecting element 171 for detecting the intensity of light, and emission intensity detecting element 171 Flash detected by Element 15 The light emission control unit 23 for controlling the light emission intensity by feeding back the light emission intensity of the light emitting element 15 Light emission to detect the temperature of element Temperature detection element 161, measurement target temperature detection element 162 for detecting the temperature of the measurement target, and absorbance and light emission for each measurement target Element 15 Calibration curve (spectrum data) 22 created using both the temperature of the sample and the temperature of the measurement object as parameters, and the reflected light detection element 172 Measurement target detected by 60 Measurement target with reference to the calibration curve using the intensity of the reflected light for each wavelength diffused and reflected internally and the temperature of the measurement target 60 And a component calculation unit 21 for calculating the component of 15 The component to be measured is calculated with reference to the calibration curve using the intensity of the reflected light for each emission wavelength that changes depending on the temperature change.
[0018]
Further, the nondestructive spectrometer 1 includes a first light guide block 11 for fixing a plurality of light emitting elements 15, and a light emitting element. 15 Light guide passage 121 that guides the light from and light emission element The second light guide block 12 having the temperature detecting element 161, the light diffusion means 18 for diffusing the light from the light guide path, the light path 131 for guiding the diffused light from the light diffusion means, and the light in the light path are branched. A branching light path 132 for guiding light, a light branching glass plate 191 provided in the middle of the light path, and the light emission intensity detecting element 17 1 The optical unit 10 includes the third light guide block 13 having the light irradiation window 141 and the attachment means 14 having the reflected light detection element 172 and the measurement target temperature detection element 162.
[0019]
As the light-emitting element 15, a near-infrared light-emitting LED having a narrow half-value width of the emission wavelength and a small wavelength fluctuation due to temperature is used.
[0020]
The specific destruction spectrometer 1 having such a configuration has improved the resistance to disturbance light by simplifying and blocking the light guiding means to meet the demand for miniaturization and high accuracy. Although a nondestructive spectrometer using an LED or LD can be provided, the light from the plurality of light emitting elements 15 is diffused through the light diffusing means 18, so that attenuation occurs here, and measurement accuracy is increased. It may be an obstacle to improving
[0021]
In view of the above problems, an object of the present invention is to provide a nondestructive spectrometer capable of irradiating a measurement object without attenuation of light from a light emitting element.
[0022]
[Means for Solving the Problems]
The present invention provides a plurality of different wavelengths arranged on the circumference toward the center of the circumference. For measurement object irradiation A light-emitting element, a rotating mirror disposed at the center of the circumference, and a single back side of the reflecting surface of the rotating mirror. For position detection Receiving light from the light emitting element For position detection A light receiving element, and a rotating mirror. For measurement object irradiation By controlling so that the light emission of the light emitting element is synchronized, the attenuation of light is minimized and the accuracy is improved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The structure when the nondestructive spectrometer according to the present invention is applied to a fruit component measuring instrument will be described with reference to FIGS. FIG. 1 is a conceptual diagram illustrating the overall configuration of a nondestructive spectrometer according to the present invention, FIG. 2 is a functional configuration diagram illustrating the functional configuration of the nondestructive spectrometer according to the present invention, and FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view for explaining the configuration of an optical unit of a nondestructive spectrometer according to the present invention. FIG. 4 is a view showing the outer shape of the optical block constituting the optical unit according to the present invention. (A) Left end Surface view, (B) ~ side Plan, (C) is right end FIG. 5 is a sectional view of FIG. 4, FIG. 6 is a front view of the mounting plate, and FIG. 7 is a view for explaining the shape of the rotating mirror support member.
[0024]
As shown in FIG. 1, the nondestructive spectrometer 1 according to the present invention includes an optical unit 10, an arithmetic control unit 20, a display device 30, a power supply unit 40, a light shielding hood 50, and a drive unit 80. It is configured.
[0025]
The optical unit 10 is means for irradiating the measurement target 60 with light with a wavelength with high accuracy and receiving diffuse reflection light from the measurement target 60.
[0026]
The arithmetic control unit 20 stores a calibration curve that is a relational expression between the intensity of diffuse reflected light and components such as sugar content, and refers to the calibration curve (spectral data) using the data of the reflected light from the measurement target 60. Then, a component such as sugar content of the measurement target 60 is calculated and output to an external device such as the display device 30 or a personal computer (not shown), and the intensity of the light emitting element is monitored to control the output intensity of the light emitting element. In this circuit, the temperature of the light emitting element is monitored to detect a change in the emission wavelength of the light emitting element, the temperature of the measurement target is monitored, and the temperature is corrected for the calculation result. The temperature of the light emitting element and the temperature of the measurement object can be used as parameters of the calibration curve together with the reflected light data. Further, the arithmetic control unit 20 has a voltage control circuit.
[0027]
The calibration curve stored in the arithmetic control unit 20 can be rewritten from the outside.
[0028]
The display device 30 is configured using, for example, an LCD, and is a means for displaying data such as measurement results.
[0029]
The power supply unit 40 has a power supply such as a dry battery, for example, and is a means for supplying power to the optical unit 10, the calculation control unit 20, the display device 30, and the drive unit 80, and has a measurement switch 41.
[0030]
The light shielding hood 50 is a light shielding means for causing only reflected light from the measurement object 60 to reach the light receiving element and eliminating a measurement error due to external light. The light shielding hood 50 is configured in a bellows shape with a flexible material so as not to damage the measurement object when in contact with the measurement object 60 and to prevent intrusion of ambient light. On the optical unit measurement surface side of the light shielding hood 50, a cushioning / light shielding cushion 51 in contact with the measurement target 60 is provided.
[0031]
As shown in FIG. 2 and FIG. 3, the nondestructive spectrometer 1 has a plurality of, for example, five, which are arranged on the circumference and have different emission wavelengths arranged toward the center of the circumference. For measurement object irradiation Light-emitting element 153 and light-emitting element irradiated to measurement object 60 and diffusely reflected inside measurement object 153 Reflected light detecting element 172 for detecting the intensity of light from the light source, and light emitting element 153 Emission intensity detecting element 171 for detecting the intensity of light, and emission intensity detecting element 171 Luminescence detected by Element 153 The light emission control unit 23 for controlling the light emission intensity by feeding back the light emission intensity of the light emitting element, and the light emitting element 153 Light emission to detect the temperature of element Temperature detection element 161, measurement target temperature detection element 162 for detecting the temperature of the measurement target, and absorbance and light emission for each measurement target Element 153 Calibration curve 22 created using both the temperature of the sample and the temperature of the measurement object as parameters, and the reflected light detection element 172 The light receiving element 156 includes a component calculation unit 21 that calculates the component of the measurement target with reference to the calibration curve using the intensity of the reflected light for each wavelength diffused and reflected within the measurement target detected by the sensor and the temperature of the measurement target. A rotation control unit 24 that calculates the origin of the drive unit and controls the subsequent rotation of the drive unit by receiving diffusely reflected light from the position detection light-emitting element 155 and changes depending on the temperature change of the light-emitting element. The component to be measured is calculated with reference to the calibration curve using the intensity of the reflected light for each emission wavelength.
[0032]
Further, the nondestructive spectrometer 1 of the present invention fixes the plurality of light emitting elements 153, and guides the light from the light emitting element 131 and the branched light path 132 that guides the light branched from the light in the light path. And an optical block 13 having a light branching glass plate 191 and a light emission intensity detecting element 171 provided in the middle of the light path, a reflected light detecting element 172 and a measuring object temperature detecting element 162 having a light irradiation window 141. An optical unit 10 including a mounting plate 14 is provided.
[0033]
The light-emitting element 153 is desirably a near-infrared light-emitting LED having a narrow half-value width of the emission wavelength and small wavelength fluctuation due to temperature.
[0034]
Further, in the optical block 13 of the present invention, the light emitting element 155 for position detection is placed in the light emitting element mounting hole 137, the light receiving element 156 for position detection is placed in the light receiving element mounting hole 138, and the temperature of the light emitting element is detected. element 161 is temperature detection element It is attached to the attachment hole 139. The position detection light-emitting element 155 and the position detection light-receiving element 156 are arranged close to each other in the same direction as the rotation axis of the rotary mirror unit 70.
[0035]
Further, in the optical path 131 of the optical block 13, a rotating mirror unit 70 fixed to the output shaft of the stepping motor 81 that constitutes the drive unit 80 is provided. The rotating mirror unit 70 includes a cylindrical rotating mirror support member 73 and a mirror 71 attached to the front end of the support member at an angle. A slit 731 is provided on the long side of the rotating mirror support 73.
[0036]
A stepping motor 81 having a bearing 83 is attached to the optical block 13 by mounting plates 85-1 and 85-2.
[0037]
FIG. 4 shows the outer shape of the optical block 13, and FIG. 5A is a cross-sectional view taken along line AA in FIG. 4, FIG. 5B is a cross-sectional view taken along line BB in FIG. 4, and FIG. 5C is a cross-sectional view taken along line CC in FIG. is there. In the optical block 13, a light emitting element mounting hole 137 to which a plurality of light emitting elements 153 and a position detecting light emitting element 155 are attached is bored toward the optical path 131 positioned at the center.
[0038]
The optical unit 10 includes an optical block 13, a mounting plate 14, a position detecting light emitting element 155, a position detecting light receiving element 156, a plurality of light emitting elements 153, a temperature detecting element 161 such as a thermistor, and branching light detection. It has an element 171, reflected light detection elements 172-1 to 172-4, a light branching glass plate 191, and a protective glass plate 192. Furthermore, the optical unit 10 has a light irradiation window 141 and a temperature detection element 162 such as a thermopile on the front.
[0039]
The optical block 13 is configured by using a metal having a high thermal conductivity, such as aluminum, to which a plurality of light emitting elements 153 having different emission wavelengths are fixed, and has a plurality of light emitting element fixing holes 137. In the light emitting element fixing hole 137, a light emitting element 153 made of, for example, an LED having a different emission wavelength and a position detecting light emitting element 155 are inserted and fixed. A heat conductive material such as silicon grease is interposed between the peripheral wall of the light emitting element fixing hole 137 and the light emitting element 153 to enhance heat conduction between them.
[0040]
A rotating mirror unit 70 is inserted into the optical path 131 of the optical block 13 and guides light from each light emitting element 153 except the position detecting light emitting element 155 to the light branching glass plate 191.
[0041]
Furthermore, the optical block 13 includes a light path 131, a light branch path 132, a glass plate holding groove 134, and a light detection element holding hole 135. The light path 131 is a path that guides the light emitted from the light emitting element to the measurement target, and a light branch path 132 that branches a part of the light is provided in the middle. The light branching path 132 is a path that guides light, which is a part of the light from the light emitting element, to the branched light detecting element 171, and is provided so as to intersect the optical axis of the light path 131 at a right angle. The light passage 131 is opened and the other end is opened in the light detection element holding hole 135. The glass plate holding groove 134 is provided in the middle of the optical path 131 so as to cross the optical axis at 45 degrees, and holds the glass plate 191 for light branching. The light detection element holding hole 135 holds the branched light detection element 171 via an insulating material.
[0042]
The mounting plate 14 shown in FIG. 6 is configured using, for example, a PEEK material that is an insulating synthetic resin, and includes a light irradiation window 141 and a light irradiation window 141 that holds the reflected light detection elements 172-1 to 172-4. A plurality of light detection element holding holes 142-1 to 142-4 arranged around, a measurement target detection light emitting element holding hole 143 for holding the measurement target detection light emitting element 151, and a measurement target temperature detection element 162 are held. The protective glass plate 192 is fixed to the light irradiation window 141.
[0043]
The light irradiation window 141, the reflected light detection element 172, the measurement target temperature detection element 162, and the measurement target detection light emitting element 151 attached to the mounting plate 14 are arranged toward the measurement target.
[0044]
The light emitting element 153 that constitutes the light source is an element that irradiates the measurement target with a light having a small half-value width and high accuracy. In this embodiment, the light emitting element 153 includes five LEDs 153 having different emission wavelengths, and is optical. The mirrors 71 of the rotary mirror unit 70 provided in the block 13 are arranged at an angle at which the LED light is irradiated. For example, the LED 153 is a light emitting diode having a light emission peak wavelength of 810, 845, 872, 904, or 915 nm and a narrow half-value width of 4 nm or less. Furthermore, it is desirable for this light emitting diode to have a wavelength variation of 0.2 nm / ° C. or less due to temperature.
[0045]
The measurement target detection light-emitting element 151 is configured using an LED that emits visible light, and allows the light-emitting element 153 to emit light only when the measurement target is in contact with the light-shielding hood 50 to improve the safety of the user. have.
[0046]
The light emitting element temperature detecting element 161 is configured by using, for example, a thermistor and measures the temperature of the light source. The light emitting element temperature detecting element 161 functions as a light emitting means temperature detecting means, takes temperature data into a calculation circuit as a parameter, and changes the wavelength of the calculation result. It is used to correct errors caused by.
[0047]
The measurement target temperature detection element 162 is configured using, for example, a thermopile, and is an element that detects radiant heat from the measurement target and detects the temperature of the measurement target. It is taken into the arithmetic circuit as a parameter and used to correct an error caused by a temperature change of the measurement target of the arithmetic result.
[0048]
The branched light detecting element 171 is configured by using, for example, a photodiode, functions as a light emission intensity detecting means, receives the branched light from the light branching glass plate 191 and obtains data on the output intensity of the light source, and the light emitting element. It has a function of controlling the output of 153.
[0049]
The reflected light detection element 172 is configured using, for example, a photodiode, functions as reflected light detection means, and is an element that receives light diffusely reflected inside the measurement target.
[0050]
The light branching glass plate 191 functions as a light branching means, is installed at an angle of 45 degrees in the middle of the light guide path 131, reflects and branches a part (about 8%) of the light from the LED, and the light path 131. Is incident on the branch term detecting element 171 through an opening provided on the side wall.
[0051]
The measuring object 60 is, for example, fruits such as apples, none, and tomatoes, and components such as sugar content can be measured. In addition, it is possible to measure the fat content of fish meat such as bonito and tuna in a non-destructive manner. Furthermore, blood components such as sugar content and cholesterol value can be measured from the outside of the skin without collecting blood of a person or the like.
[0052]
The structure of the rotating mirror support member 73 of the rotating mirror unit 70 will be described with reference to FIG. In FIG. 7, (A) is Up Surface view, (B) ~ side Plan, (C) is bottom Plan, (D) is right end Plan, (E) is left end FIG. The rotary mirror support member 73 is configured in a shape in which the tip of a cylinder having a through hole 734 at the center is cut off at an angle of 45 degrees. A mirror support surface 732 for fixing and supporting the mirror 71 is formed on the inclined surface formed at the tip, and mirror support claws 733 are formed on the upper and lower ends of the mirror support surface 732. Further, the rotary mirror support member 73 is provided with a slit 731 on the back side of the mirror support surface 732.
[0053]
The rotating shaft 82 of the stepping motor is inserted into the through hole 734 from the left side of the figure, and the screw hole 735 Screw The rotating mirror support member 73 is moved by three inserted screws. On the rotating shaft 82 Fixed.
[0054]
The rotating mirror support member 73 having this configuration is inserted into the light path 131 of the optical block 13, and the mirror 71 is disposed at a position where the light from the light emitting element 153 is reflected. Light from the position detection light emitting element 155 is introduced into the through hole 734 from the slit 731, reflected by the back surface 72 of the mirror 71, diffusely reflected by the inner surface of the through hole 734, and then passed through the slit 731 to detect the position detection light receiving element 156. To reach. Thus, the origin of the rotating mirror (mirror) 71 can be determined. When the origin of the rotating mirror 71 is determined, the position of the rotating mirror 71 can be known based on the origin, and when the surface of the rotating mirror 71 faces one of the light emitting elements 153, the light emitting element 153 emits light. In this manner, the light reflected by the mirror 71 is irradiated onto the measurement object 60.
[0055]
Next, the operation procedure in the case of measuring the sugar content of fruits with the nondestructive spectrometer according to the present invention will be described. The non-destructive spectrometer 1 can be held with one hand. When the fruit is lightly applied to the light shielding hood 50 of the contact part with the other hand and the measurement switch 41 provided on the grip part is pressed, the sugar content can be obtained in about 1 second. It is calculated and displayed on the display device 30.
[0056]
When the measurement switch 41 is pressed, the power is turned on, and the arranged LEDs 153 emit light sequentially. The emitted light enters the light guide path 131, is reflected by the mirror 71, and is irradiated to the fruit 60 from the irradiation window 141.
[0057]
The light branching glass plate 191 disposed in the middle of the light path 131 always reflects a certain ratio (8%) of the incident light of the LED and is detected by the branched light detecting element 171. The intensity of the light received by the branched light detecting element 171 is fed back, and the current of the LED 153 is controlled so that the intensity of the light irradiated from the optical path 131 to the measurement target 60 becomes a constant value.
[0058]
The light irradiated to the fruit to be measured repeats diffuse reflection inside the fruit, and a part of the light is detected by the reflected light detection element 172. However, the direct reflected light from the fruit surface among the light irradiated to the fruit from the light irradiation window 141 is For buffer and shading The light is shielded by the cushion 51 and is not detected by the reflected light detection element 172.
[0059]
The intensity of the light detected by the reflected light detecting element 172 is substituted into a relational expression prepared in advance together with the fruit temperature data obtained by the temperature detecting element 162 and the LED temperature data obtained by the temperature detecting element 161. Sugar content is calculated. The calculated sugar content is displayed on the display device 30 for a certain period of time, and then the power is turned off to complete the operation.
[0060]
Next, in the nondestructive spectrometer according to the present invention, the reflected light intensity detection data of the reflected light detection element 172, the LED temperature data obtained by the temperature detection element 161, and the fruit temperature obtained by the measurement target temperature detection element 162. A relational expression for calculating the sugar content from the data will be described. The nondestructive spectrometer according to the present invention measures the sugar content of a fruit nondestructively. The method irradiates fruit with near infrared light having a relatively short transmission wavelength in the short wavelength region, obtains the absorbance from the amount of transmitted light, and converts the absorbance to the sweetness from the value corrected by the temperature of the fruit. It seeks related indicators.
[0061]
The absorbances of the fruits at the five wavelengths (λ1 to λ5) obtained by the reflected light detection element 172 are L (λ1), L (λ2), L (λ3), L (λ4), and L (λ5), respectively. When the temperature data of the fruit obtained by the temperature detection element 162 is T1, and the temperature data of the LED obtained by the temperature detection element 161 is T2, the sugar content C of the fruit is generally expressed by the following equation (1).
[Expression 1]
Figure 0003620798
[0062]
In the measuring instrument 1, the following relational expression (2) is used.
[Expression 2]
Figure 0003620798
[0063]
Here, K0, K1, K2,..., K7 are proportional constants.
[0064]
However, the absorbance L (λn) slightly changes depending on the change in the temperature of the fruit or the change in the measurement wavelength (λn) due to the change in the temperature of the LED. However, when the optimum value of Kn is obtained by the method described below, 2) Correction is possible by the last two terms on the right side of the equation.
[0065]
For fruits that are expected to be measured in the future, at least 100 samples are prepared for the creation of the relational expression, absorbance L (λn), sample temperature T1, LED temperature T2, sugar content C by refractometer, etc. Data was measured. At that time, the temperature of the sample and the temperature of the LED (actually the main body of the measuring device) are changed from 5 ° C. to 40 ° C. at intervals of 5 ° C., and the combination of the sample temperature and the LED temperature is used. Data was measured.
[0066]
The data thus obtained was statistically processed by a computer, and the optimum value of Kn was obtained by using a method of linear multiple regression analysis. As a result, the sugar content can be estimated with high accuracy under a measurement environment of 5 ° C. to 40 ° C.
[0067]
In the nondestructive spectrometer according to the present invention, T1 obtained by the temperature detecting element 162 and T2 obtained by the temperature detecting element 161 are used as parameters of the relational expression as values reflecting the sample temperature and the LED temperature. By using, instead of the sample temperature or the absorbance at a wavelength highly correlated with the LED temperature as a parameter of the relational expression, it is possible not to use the measurement target temperature detection element 162 or the light emitting element temperature detection element 161.
[0068]
In the above embodiment, five light emitting elements 153 are used, the peak wavelengths of the respective emission wavelengths are any of 810, 845, 872, 904, and 915 nm, and the half value width is 4 nm or less, and the light emitting diode is narrow. Although the example using what the wavelength fluctuation by a temperature is 0.2 nm / degrees C or less was demonstrated, when using it in an environment with few temperature changes like indoors, the peak value of light emission wavelength is 810, 872, A sufficiently accurate measurement result can be obtained even with three LEDs of 904 nm.
[0069]
In addition, according to the present invention, the temperature of the light emitting element is monitored to control the light emission intensity of the light emitting element. Therefore, a nondestructive spectrometer that can be sufficiently put into practical use even with an LD having a somewhat large temperature change. Can be provided.
[0070]
In order to measure components such as sugar content inside a measurement object by irradiating light and diffusing and reflecting the light inside, it is necessary to detect the intensity of the light that is sufficiently diffused and reflected. is there. For this purpose, it is necessary to increase the distance between the light irradiating part and the reflected light receiving part to the measurement target. However, if the distance between the light irradiating part and the reflected light receiving part is increased, the light attenuation increases and the accuracy is increased. There is a problem that decreases. In the above description, in order to cope with the attenuation of light, the light from one light irradiation unit is detected by the four light receiving units to increase the accuracy.
[0071]
However, depending on the object to be measured, one light emitting unit including five light emitting elements 153, one position detecting light emitting element 155, and one rotating mirror unit 70, and one reflected light detecting element 172. You may comprise the nondestructive spectrometer of this invention. Further, in the case of a measurement object having a thick outer skin such as watermelon or melon, five light emitting elements 153, one position detecting light emitting element 155 and one rotation are provided around one reflected light detecting element 172. It is also possible to increase the intensity of irradiation light and increase the measurement accuracy by arranging four light-emitting parts composed of the mirror part 70. In this case, the arrangement of the light irradiation window 141 and the light detection element holding hole 142 of the mounting plate 14 may be switched.
[0072]
In the present invention, the light from the plurality of light emitting elements 153 is reflected by the mirror 71 and applied to the measurement object 60, so that the light from the light emitting elements can be used more efficiently than in the prior art using a diffusion plate. Can be measured with high accuracy.
[0073]
【The invention's effect】
According to the present invention, when a light source having a narrow half-value width and a small variation with respect to temperature is used, a calibration curve with high accuracy can be created, and the variation in wavelength can be corrected using the temperature of the light source. The route can be simplified. As a result, according to the present invention, it is possible to obtain a non-destructive spectrometer that is small in size, consumes less power, is resistant to ambient light, and has high accuracy and can be used in the field.
[0074]
Furthermore, according to the present invention, the non-destructive spectroscopic measurement can be performed with high accuracy by using the light emitting element efficiently.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a nondestructive spectrometer according to an embodiment of the present invention.
FIG. 2 is a functional configuration diagram of the nondestructive spectrometer according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view for explaining the outline of the configuration of the optical unit of the nondestructive spectrometer according to the embodiment of the present invention.
FIG. 4 is a diagram showing an outer shape of an optical block of an optical unit.
FIG. 5 is a diagram showing a cross-sectional shape of an optical block.
FIG. 6 is a view showing the shape of a mounting plate.
FIG. 7 is a view showing the shape of a rotating mirror support member.
FIG. 8 is a conceptual diagram of a prior art nondestructive spectrometer.
FIG. 9 is a functional configuration diagram of a prior art nondestructive spectrometer.
[Explanation of symbols]
1 Nondestructive spectrometer
10 Optical unit
13 Optical block
131 Light path
132 Light branch passage
134 Glass plate holding groove
135 Photodetector holding hole
137 Light-emitting element fixing hole
138 Light-emitting element fixing hole for position detection
139 Temperature sensor fixing hole
14 Mounting plate
141 Light irradiation window
142 Photodetecting element holding hole
143 Light-emitting element holding hole for measuring object detection
144 Measuring object temperature detection element holding hole
151 Light-Emitting Element for Measuring Object
153 Light Emitting Element
155 Light-emitting element for position detection
156 Light-receiving element for position detection
161 Light-emitting element temperature detection element
162 Measurement target temperature detection element
171 Branched light detection element
172 Reflected light detection element
191 Glass plate for light branching
192 Protective glass plate
20 Calculation control unit
21 Component calculation unit
22 Calibration curve obtained from known spectral data
23 Light emission controller
24 Rotation control unit
30 Display device
40 Power supply
41 Measurement switch
50 Shading hood
51 cushion for cushioning and shading
60 Measurement object (fruit)
70 Rotating mirror
71 mirror
72 reverse side
73 Rotating mirror support member
731 Slit
732 Mirror support surface
733 Mirror support nail
734 Through hole
735 screw holes
80 Drive unit
81 Stepping motor
82 Rotating shaft
83 Bearing
85 Mounting plate

Claims (2)

円周上に円周の中心に向けて配置された異なる発光波長を有する複数の測定対象照射用発光素子と、円周の中心に位置し前記測定対象照射用発光素子からの光を測定対象に向けて反射する鏡と、前記測定対象に照射し測定対象内部で拡散反射した測定対象照射用発光素子からの光の強度を検出する反射光検出素子とを有するとともに、前記鏡が、ステッピングモータによって駆動される回転体に取り付けられ、異なる発光波長を有する複数の前記測定対象照射用発光素子を順次発光させるようにし、前記異なる発光波長の光が前記測定対象によって吸光される吸光度から測定対象の成分の大きさを測定するようにした非破壊分光測定器において、
前記円周上に円周の中心に向けて1個の位置検出用発光素子を配置し、前記回転体には前記測定対象照射用発光素子からの光が入射する面と反対側にスリットを設け、前記位置検出用発光素子に近接して位置検出用受光素子を設け、前記スリットから回転体内部空間に導入された位置検出用発光素子からの光が内部空間で乱反射して前記スリットを経由し、前記位置検出用受光素子に到達したことを検出して前記回転体の原点を決定するようにしたことを特徴とする非破壊分光測定器。
A plurality of measurement object irradiated light-emitting elements having different emission wavelengths, which are arranged towards the circumference of the center on the circumference, the light from the measurement object irradiated light-emitting element located in the circumference of the center measured a mirror for reflecting, as well as have a reflected light detecting element for detecting the intensity of light from the measurement target illuminated light-emitting element irradiating the measurement target and diffuse reflected inside the measuring object, the previous SL mirrors, A plurality of light emitting elements for irradiating a measurement object , which are attached to a rotating body driven by a stepping motor and have different light emission wavelengths, sequentially emit light, and are measured from the absorbance at which the light of different light emission wavelengths is absorbed by the measurement object. In a non-destructive spectrometer that measures the size of the component of interest,
One position detection light emitting element is arranged on the circumference toward the center of the circumference, and the rotating body is provided with a slit on the opposite side to the surface on which light from the measurement target irradiation light emitting element is incident. A position detection light-receiving element is provided in the vicinity of the position detection light-emitting element, and light from the position detection light-emitting element introduced from the slit into the internal space of the rotating body is irregularly reflected in the internal space and passes through the slit. A nondestructive spectroscopic measuring instrument characterized by detecting the arrival of the position detecting light receiving element and determining the origin of the rotating body .
円周上に円周の中心に向けて配置された1個の位置検出用発光素子および異なる発光波長を有する複数の測定対象照射用発光素子と、円周の中心に位置し前記測定対象照射用発光素子からの光を測定対象に向けて反射する鏡とを有する光照射装置において、
前記鏡が、ステッピングモータによって駆動される円筒状の回転体に取り付けられ、前記回転体には前記測定対象照射用発光素子からの光が入射する面と反対側にスリットを設けるとともに、前記位置検出用発光素子に近接して位置検出用受光素子を設け、前記回転体のスリットから回転体内部空間に導入された位置検出用発光素子からの光が内部空間で乱反射して前記スリットを経由し、前記位置検出用受光素子に到達したことを検出して回転体の原点を決定し、異なる発光波長を有する複数の前記測定対象照射用発光素子を順次発光させるようにしたことを特徴とする光照射装置
One position-detecting light-emitting element arranged on the circumference toward the center of the circumference and a plurality of light-emitting elements for measuring object irradiation having different emission wavelengths, and the object for measuring-object irradiation located at the center of the circumference In a light irradiation apparatus having a mirror that reflects light from a light emitting element toward a measurement target,
The mirror is attached to a cylindrical rotating body driven by a stepping motor. The rotating body is provided with a slit on the side opposite to the surface on which light from the light emitting element for measurement is incident, and the position detection A light receiving element for position detection is provided in the vicinity of the light emitting element for light, and light from the light emitting element for position detection introduced into the internal space of the rotating body from the slit of the rotating body is diffusely reflected in the internal space and passes through the slit, Light irradiation characterized by detecting the arrival at the light receiving element for position detection, determining the origin of the rotating body, and sequentially emitting light from the plurality of light emitting elements for measurement object irradiation having different light emission wavelengths Equipment .
JP2003185167A 2003-06-27 2003-06-27 Nondestructive spectrometer Expired - Fee Related JP3620798B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003185167A JP3620798B2 (en) 2003-06-27 2003-06-27 Nondestructive spectrometer
PCT/JP2004/008198 WO2005001400A1 (en) 2003-06-27 2004-06-11 Non-destructive spectrometric instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185167A JP3620798B2 (en) 2003-06-27 2003-06-27 Nondestructive spectrometer

Publications (2)

Publication Number Publication Date
JP2005017210A JP2005017210A (en) 2005-01-20
JP3620798B2 true JP3620798B2 (en) 2005-02-16

Family

ID=33549646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185167A Expired - Fee Related JP3620798B2 (en) 2003-06-27 2003-06-27 Nondestructive spectrometer

Country Status (2)

Country Link
JP (1) JP3620798B2 (en)
WO (1) WO2005001400A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175794A (en) * 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
DE102011116367A1 (en) * 2011-10-19 2013-04-25 Bluepoint Medical Gmbh & Co. Kg Device for the high-resolution determination of the concentration of substances in fluid media
JP6213759B2 (en) 2012-09-21 2017-10-18 パナソニックIpマネジメント株式会社 Analysis equipment
RU2637388C2 (en) * 2012-12-07 2017-12-04 Спзх Board device and method of analysis of fluid environment in thermal engine
JP6257148B2 (en) 2013-02-20 2018-01-10 キヤノン株式会社 Image forming apparatus
KR101493838B1 (en) 2013-11-26 2015-02-17 포항공과대학교 산학협력단 Microscopy Scanning Photoluminescence.
JP6311915B2 (en) * 2013-12-18 2018-04-18 パナソニックIpマネジメント株式会社 Calorie measuring device
JP6450444B2 (en) * 2017-12-05 2019-01-09 キヤノン株式会社 Measuring apparatus and image forming apparatus
CN111222455B (en) * 2020-01-03 2022-04-01 深圳数联天下智能科技有限公司 Wavelength selection method and device, computing equipment and computer storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131151U (en) * 1988-02-29 1989-09-06
JPH07148169A (en) * 1993-11-30 1995-06-13 Technol Res Assoc Of Medical & Welfare Apparatus Optical scanner
JPH07333144A (en) * 1994-06-07 1995-12-22 Iseki & Co Ltd Near infrared spectral analysis device
JPH085548A (en) * 1994-06-22 1996-01-12 Technol Res Assoc Of Medical & Welfare Apparatus Light scanning apparatus

Also Published As

Publication number Publication date
WO2005001400A1 (en) 2005-01-06
JP2005017210A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
CA2605467C (en) Systems and methods for correcting optical reflectance measurements
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
US20180271370A1 (en) Compact spectrometer system for non-invasive measurement of absorption and transmission spectra in biological tissue samples
JP5876973B2 (en) Color measuring unit
US20100292581A1 (en) Dynamic Calibration of an Optical Spectrometer
US20090270848A1 (en) Optical Sensor and Method for Identifying the Presence of Skin and the Pigmentation of Skin
US9322756B2 (en) Nondispersive infrared micro-optics sensor for blood alcohol concentration measurements
WO2005103634A2 (en) Spectrometer system for optical reflectance measurements
DK0948284T3 (en) Monitoring of tissue analyzers with infrared radiation
KR970700859A (en) NON-INVASIVE NON-SPECTROPHOTOMETRIC INFRARED MEASUREMENT OF BLOOD ANALYTE CONCENTRATIONS
JP3620798B2 (en) Nondestructive spectrometer
JP2001299727A (en) Apparatus for measuring concentration of glucose in organism
EP2667775B1 (en) System and method for performing heater-less lead selenide-based capnometry and/or capnography
JP2008157809A (en) Laser output control device and optical measuring unit
JP2004219322A (en) Non-destructive spectrophotometric instrument
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JPH05288674A (en) Sacchari meter
JP2014240786A (en) Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode
JP2002116141A (en) Handy non-destructive measuring apparatus for component of fruit
JP2004313554A (en) Non-invasive measurement device for blood sugar level
US9784672B2 (en) Foodstuff analysis device
Wang et al. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum
JP2006508354A (en) Spectrometers, especially reflective spectrometers
US20210072262A1 (en) A method and apparatus for determining haemoglobin concentration
JPH11248622A (en) Urinalysis device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370