JPH05288674A - Sacchari meter - Google Patents

Sacchari meter

Info

Publication number
JPH05288674A
JPH05288674A JP11526392A JP11526392A JPH05288674A JP H05288674 A JPH05288674 A JP H05288674A JP 11526392 A JP11526392 A JP 11526392A JP 11526392 A JP11526392 A JP 11526392A JP H05288674 A JPH05288674 A JP H05288674A
Authority
JP
Japan
Prior art keywords
light
wavelength
sugar content
reflectance
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11526392A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshikawa
年彦 吉川
Kosuke Nagai
耕介 永井
Masamichi Oshiro
正道 大城
Satoshi Aoyama
聡 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Minolta Co Ltd
Original Assignee
Mitsubishi Corp
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Minolta Co Ltd filed Critical Mitsubishi Corp
Priority to JP11526392A priority Critical patent/JPH05288674A/en
Publication of JPH05288674A publication Critical patent/JPH05288674A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure sugar degree accurately without damaging the body to be inspected such as vegitables and fruits. CONSTITUTION:The operating expression, which indicates the correlation of both parts for the light having the wavelength of 1,100nm or less that has the high correlation between the sugar degree and the reflectiviy for a sample to be detected, is determined beforehand. The near infrared rays having the two different wavelengths lower than the wavelength of 1,100 are cast into a body under test from LEDs 10 and 11. The reflected lights are detected with a photodiode 12. In a CPU, at first, the reflectivity is computed based on the projected light and the reflected light, and the sugar degree is farther computed based on the specified operating expression. The result is outputted into a display part 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は糖度計に関し、特に青
果物の糖度を、青果物を傷つけることなく測定できる糖
度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sugar content meter, and more particularly to a sugar content meter capable of measuring the sugar content of fruits and vegetables without damaging the fruits and vegetables.

【0002】[0002]

【従来の技術】青果物は外観ばかりでなく、食味によつ
てその品質が評価される。従来は目視によつたり、指で
触れるなどの観察によつて判断されてきたが十分でな
く、さらにサンプルを実際に試食してみるとか、サンプ
ルの一部を切り取り、その成分分析の結果により食味の
評価を行つていた。しかし、このような検査は全数検査
できないばかりでなく、検査効率が低く、また相当の検
査コストがかかるため、青果物を傷つけることなく全数
検査でき、且つ、迅速に食味の評価ができる検査手段が
求められていた。
2. Description of the Related Art The quality of fruits and vegetables is evaluated not only by appearance but also by taste. Conventionally, it has been judged by visual observation or observation by touching with a finger, but this is not sufficient, and if you actually try the sample or cut out a part of the sample and check the results of its component analysis. The taste was being evaluated. However, such an inspection cannot be 100% inspected, the inspection efficiency is low, and the inspection cost is considerable. Therefore, an inspection method that can inspect 100% without damaging the fruits and vegetables and can quickly evaluate the taste is required. It was being done.

【0003】ところで、一般的に物質の化学的性質の分
析手段として、検査すべき物体に関する光の吸収、反
射、透過特性に基づいて、その物体に含まれる各種物質
の種類とその含有量を知る検査方法が知られている。一
方、青果物の食味は、主としてその糖度の大小によつて
決定されることが経験的に知られている。そこで、青果
物に近赤外線を照射し、その反射率に基づいて青果物の
糖度を測定する青果物の品質検査方法や、その装置が提
案されている(特開昭64−28544号公報参照)。
By the way, in general, as a means for analyzing the chemical properties of a substance, the types and contents of various substances contained in the substance to be inspected are known based on the light absorption, reflection, and transmission characteristics of the substance to be inspected. The inspection method is known. On the other hand, it is empirically known that the taste of fruits and vegetables is mainly determined by the sugar content. Therefore, a quality inspection method for fruits and vegetables and a device for irradiating the fruits and vegetables with near infrared rays and measuring the sugar content of the fruits and vegetables based on the reflectance thereof have been proposed (see Japanese Patent Laid-Open No. 64-28544).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た青果物の品質検査装置では、使用する近赤外線の波長
の選択により測定精度が変化し、適切な波長の選択が求
められていた。また、近赤外線の照射手段として通常の
ハロゲンランプが使用されるが、ハロゲンランプは光の
波長域が広いため、照射に適した特定の波長域の光を得
るためにフイルタを使用する必要があるほか、大容量の
電源を必要とするから、装置が大型になり、圃場等の現
場での携帯使用には適しないものであつた。この発明は
上記課題を解決することを目的とするものである。
However, in the quality inspection apparatus for fruits and vegetables described above, the measurement accuracy changes depending on the selection of the wavelength of the near-infrared rays to be used, and it is required to select an appropriate wavelength. Further, a normal halogen lamp is used as a means for irradiating near infrared rays, but since the halogen lamp has a wide wavelength range of light, it is necessary to use a filter to obtain light of a specific wavelength range suitable for irradiation. In addition, since a large-capacity power source is required, the device becomes large in size, which makes it unsuitable for portable use in fields such as fields. The present invention is intended to solve the above problems.

【0005】[0005]

【課題を解決するための手段】この発明は上記課題を解
決するもので、被検体に光を投射する光源を有する光投
射手段と、被検体で反射した光を検出する光検出手段を
備え、少なくとも波長の異なる2波長の光の反射率に基
づいて被検体の糖度を検出する糖度計において、被検体
に投射する光が1100nm以下の波長から選択された
波長の異なる少なくとも2波長の光であることを特徴と
するもので、前記光投射手段の光源としては、発光ダイ
オ−ドあるいはキセノン放電管を使用することができ
る。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems and comprises a light projecting means having a light source for projecting light onto a subject, and a light detecting means for detecting light reflected by the subject. In a sugar content meter that detects the sugar content of a subject based on the reflectance of at least two different wavelengths of light, the light projected onto the subject is at least two different wavelengths of light selected from wavelengths of 1100 nm or less. As a light source of the light projecting means, a light emitting diode or a xenon discharge tube can be used.

【0006】[0006]

【作用】被検体に投射する光を1100nm以下の波長
の光から選択することにより、反射率と糖度とが高い相
関関係を示し、精度よく糖度を測定することができる。
また、投射光の光源として発光ダイオ−ドあるいはキセ
ノン放電管を使用することにより、電力消費を少なくで
き、装置を小型に構成できる。
By selecting the light projected onto the subject from the light having a wavelength of 1100 nm or less, the reflectance and the sugar content show a high correlation, and the sugar content can be accurately measured.
Further, by using the light emitting diode or the xenon discharge tube as the light source of the projected light, the power consumption can be reduced and the device can be made compact.

【0007】[0007]

【実施例】以下、この発明の実施例について説明する。
まず、測定原理について説明する。この発明の糖度計
は、青果物等の被検体の糖度と、被検体に照射した特定
波長の近赤外線(可視光成分を含んでいてもよい)の反
射率とが一定の相関関係を示すことを利用し、予め糖度
の分かつている被検体について特定波長の近赤外光を照
射してその反射率を求め、糖度と反射率との相関関係を
示すアルゴリズムを得ておき、次に、糖度を測定しよう
とする被検体について特定波長の近赤外線を照射してそ
の反射率を求め、その反射率を前記アルゴリズムにした
がつて処理し、糖度を求めるものである。
Embodiments of the present invention will be described below.
First, the measurement principle will be described. The sugar content meter of the present invention shows that the sugar content of a subject such as fruits and vegetables and the reflectance of near-infrared rays (which may include a visible light component) of a specific wavelength with which the subject is irradiated show a certain correlation. Utilizing this method, the near-infrared light of a specific wavelength is radiated to the subject whose sugar content has been determined in advance to obtain its reflectance, and an algorithm showing the correlation between the sugar content and the reflectance is obtained in advance. The object to be measured is irradiated with near-infrared light having a specific wavelength to determine its reflectance, and the reflectance is processed according to the above algorithm to determine the sugar content.

【0008】今、被検体(青果物)の種類に応じて予め
選択したサンプルA、B、Cから果汁を抽出し、公知の
屈折式糖度計により測定した糖度がSA、SB、SCで
あつたとする。次に、サンプルAについて照射した波長
λ1及び波長λ2の近赤外光の反射率がRA1及びRA
2、サンプルBについて照射した波長λ1及び波長λ2
の近赤外光の反射率がRB1及びRB2、サンプルCに
ついて照射した波長λ1及び波長λ2の近赤外光の反射
率がRC1及びRC2であるとすれば、サンプルA、
B、Cのそれぞれの糖度SA、SB、SCと、反射率R
A1、RA2、RB1、RB2、RC1、RC2との間
には以下の関係式(1)、(2)、(3)が成立する。
但し、a、b、cは係数とする。
It is now assumed that fruit juices are extracted from samples A, B and C selected in advance according to the type of the subject (fruit and fruit) and the sugar contents measured by a known refractometer are SA, SB and SC. .. Next, the reflectance of near-infrared light of wavelength λ1 and wavelength λ2 with respect to sample A is RA1 and RA.
2. Wavelength λ1 and wavelength λ2 irradiated for sample B
If the reflectance of near infrared light of RB1 and RB2 and the reflectance of near infrared light of wavelength λ1 and wavelength λ2 irradiated for sample C are RC1 and RC2, sample A,
Sugar content SA, SB, SC of B and C, and reflectance R
The following relational expressions (1), (2) and (3) are established between A1, RA2, RB1, RB2, RC1 and RC2.
However, a, b, and c are coefficients.

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【数3】 そこで、式(1)、(2)、(3)を係数a、b、cに
ついて解き、係数値an、bn、cnを決定する。
[Equation 3] Therefore, the equations (1), (2) and (3) are solved for the coefficients a, b and c to determine the coefficient values an, bn and cn.

【0012】次に、糖度を測定しようとする被検体(青
果物)について、波長λ1及び波長λ2の近赤外光を照
射し、その反射率がRX1及びRX2であつたとすれ
ば、その青果物の糖度SXは、以下の式(4)で表され
る。
Next, subject (fruit and fruit) whose sugar content is to be measured is irradiated with near-infrared light of wavelength λ1 and wavelength λ2, and the reflectance is RX1 and RX2. SX is represented by the following formula (4).

【0013】[0013]

【数4】 用いる波長が2種類よりも多いk種類であるときは、波
長iにおける反射率をRiとすると、糖度Sと各波長に
おける反射率との関係は以下の式(5)で表される。
[Equation 4] When the number of wavelengths to be used is k, which is more than two, and the reflectance at the wavelength i is Ri, the relationship between the sugar content S and the reflectance at each wavelength is represented by the following formula (5).

【0014】[0014]

【数5】 少なくとも、k+1個以上のサンプルについて屈折式糖
度計で糖度を測定し、各波長における反射率を測定する
ことにより係数a0 、a1 、a2 −−−ak を決定する
ことができる。これらの係数と被検体についてのk個の
波長における反射率測定値より、(5)式に基づいて被
検体の糖度が求められる。
[Equation 5] The coefficients a0, a1, and a2--ak can be determined by measuring the sugar content of at least k + 1 or more samples with a refractometer and measuring the reflectance at each wavelength. From these coefficients and the measured reflectance values at the k wavelengths of the subject, the sugar content of the subject can be obtained based on the equation (5).

【0015】照射すべき近赤外光の波長としては、各種
被検体(青果物)について実験した結果によれば、波長
600〜2500nm、特に波長600〜1100nm
が適当であることが見出だされた。
Regarding the wavelength of near infrared light to be irradiated, according to the results of experiments conducted on various types of specimens (fruits and fruits), the wavelength is 600 to 2500 nm, and particularly the wavelength is 600 to 1100 nm.
Was found to be suitable.

【0016】図1はこの発明を実施した糖度計の外観図
で、図において1は本体、2はプロ−ブ、S1は電源ス
イツチ、S2は測定スイツチ、3は糖度を5段階に識別
して表示する表示部で、LED3a〜3eからなる。ま
た、4は測定結果をデジタル信号として出力する出力端
子を示す。図2はプロ−ブ2の構造を示す断面図であ
り、10及び11はLEDで、LED10は波長λ1
の、またLED11は波長λ2の近赤外光を投射する。
12は被検体からの反射光を受光するフオトダイオ−
ド、13、14は光フアイバ−で、その一端がそれぞれ
LED10、LED11に対向し、他端はプロ−ブ2の
検出面2a内の被検体に近赤外光を投射する位置に配置
されている。15も光フアイバ−で、その一端が検出面
2a内の被検体からの反射光を受光する位置に配置さ
れ、他端はフオトダイオ−ド12に対向している。プロ
−ブ2の検出面2a内におけるこれらの光フアイバ−の
配置は、図2に示すように同心円状に配置されている
が、これに限らず測定に適した適宜の配置とすることが
できる。また、表示部は上記LEDを用いた5段階等多
段階表示のほか、デジタル表示としてもよい。
FIG. 1 is an external view of a sugar content meter embodying the present invention. In FIG. 1, 1 is a main body, 2 is a probe, S1 is a power switch, S2 is a measurement switch, and 3 is a sugar content in five levels. A display unit for displaying, which includes LEDs 3a to 3e. Reference numeral 4 denotes an output terminal that outputs the measurement result as a digital signal. FIG. 2 is a sectional view showing the structure of the probe 2, 10 and 11 are LEDs, and the LED 10 has a wavelength λ1.
In addition, the LED 11 projects near-infrared light having a wavelength λ2.
12 is a photodiode that receives the reflected light from the subject.
Reference numerals 13, 13 and 14 denote optical fibers, one end of which is opposed to the LEDs 10 and 11 respectively, and the other end of which is arranged at a position for projecting near-infrared light onto a subject inside the detection surface 2a of the probe 2. There is. Reference numeral 15 is also an optical fiber, one end of which is arranged at a position for receiving the reflected light from the subject in the detection surface 2a, and the other end of which is opposed to the photo diode 12. The arrangement of these optical fibers in the detection surface 2a of the probe 2 is concentrically arranged as shown in FIG. 2, but the arrangement is not limited to this and may be an appropriate arrangement suitable for measurement. .. Further, the display unit may be a multi-stage display such as 5 stages using the above-mentioned LED, or may be a digital display.

【0017】図3は測定回路のブロツク図である。19
はCPUで、糖度計全体の制御、及びLED10、11
の発光量とフオトダイオ−ド12で検出された反射光量
から反射率を演算し、先に説明した式(4)に基づく演
算を行つて糖度を算出して測定結果を表示部3に出力す
る。また、測定結果を出力端子4から図示しない外部の
情報処理装置に出力する。16は発光制御回路で、CP
U19から出力される制御信号に基づいてLED10、
LED11を交互に発光させる。17は増幅器、18は
A/D変換器で、フオトダイオ−ド12の出力を増幅
し、A/D変換してCPU19に入力する。20はLE
D10、LED11の発光量デ−タや、前記式(4)の
係数値an、bn、cnなどを格納したメモリ、22は
定電圧回路で、電池Eの電力を一定電圧に安定させて各
回路要素に供給する。
FIG. 3 is a block diagram of the measuring circuit. 19
Is the CPU, controls the entire sugar content meter, and LEDs 10, 11
The reflectance is calculated from the amount of emitted light and the amount of reflected light detected by the photo diode 12, the calculation based on the equation (4) described above is performed to calculate the sugar content, and the measurement result is output to the display unit 3. Further, the measurement result is output from the output terminal 4 to an external information processing device (not shown). 16 is a light emission control circuit, CP
LED10 based on the control signal output from U19,
The LEDs 11 are alternately made to emit light. Reference numeral 17 is an amplifier, and 18 is an A / D converter, which amplifies the output of the photo diode 12, A / D converts it, and inputs it to the CPU 19. 20 is LE
D10, a memory that stores the light emission amount data of the LED 11 and the coefficient values an, bn, cn of the above formula (4), and 22 is a constant voltage circuit that stabilizes the electric power of the battery E to a constant voltage. Supply to the element.

【0018】次に、上記測定回路の動作を説明する。電
源スイツチS1を投入し、測定動作の準備完了後、測定
スイツチS2を閉じると、CPU19から発光制御回路
16に制御信号が送られ、LED10、LED11は一
定周期で交互に発光し、光フアイバ−13、14を経て
被検体Mに向けて波長λ1及びλ2の近赤外光が投射さ
れる。被検体Mで反射した光は光フアイバ−15を経て
フオトダイオ−ド12で検出され、検出信号は増幅器1
7、A/D変換器18を経てCPU19に入力される。
CPU19はメモリ20に格納されているLED10、
LED11の発光量を示す定数とフオトダイオ−ド12
の出力から、波長λ1の近赤外光の反射率RX1及び波
長λ2の近赤外光の反射率RX2を演算し、さらに前記
式(4)に反射率RX1とRX2、及び係数値an、b
n、cnを代入し、糖度SXを演算する。検出され演算
された糖度は5段階に識別され、表示部3のLED3a
〜3eのいずれかを点灯して出力し、また、出力端子4
からデジタル信号として出力され、必要に応じて図示し
ない情報処理装置による処理がなされる。
Next, the operation of the measuring circuit will be described. When the power switch S1 is turned on and the measurement switch S2 is closed after the preparation for the measurement operation is completed, a control signal is sent from the CPU 19 to the light emission control circuit 16 so that the LED 10 and the LED 11 alternately emit light at a constant cycle and the optical fiber 13 , 14, near-infrared light of wavelengths λ1 and λ2 is projected toward the subject M. The light reflected by the subject M passes through the optical fiber 15 and is detected by the photo diode 12, and the detected signal is the amplifier 1
7, through the A / D converter 18 and input to the CPU 19.
The CPU 19 is the LED 10 stored in the memory 20,
A constant indicating the amount of light emitted from the LED 11 and the photo diode 12
The reflectance RX1 of near-infrared light of wavelength λ1 and the reflectance RX2 of near-infrared light of wavelength λ2 are calculated from the output of the above equation, and the reflectances RX1 and RX2 and the coefficient values an and b are added to the equation (4).
Substituting n and cn, the sugar content SX is calculated. The detected and calculated sugar content is identified in five levels, and the LED 3a of the display unit 3 is used.
~ 3e is lit to output and output terminal 4
Is output as a digital signal, and if necessary, processed by an information processing device (not shown).

【0019】上記実施例では、近赤外光の光源としてL
EDを使用しているが、LEDの発光波長はおよそ95
0nm以内に限られるので、この範囲で糖度と相関関係
のある波長を選択する必要がある。実験によれば、メロ
ンの場合、波長λ1及びλ2としてそれぞれ768nm
及び848nmを使用した場合は、相関係数0.86
1、標準偏差0.674となり、十分に使用できる結果
を得た。これらはメロンの赤道部の反射率を測定して得
られた結果であるが、花痕部を測定した方がより良い相
関及び標準偏差が得られた。
In the above embodiment, L is used as the light source of near infrared light.
ED is used, but the emission wavelength of LED is about 95
Since it is limited to within 0 nm, it is necessary to select a wavelength having a correlation with sugar content in this range. According to experiments, in the case of melon, wavelengths λ1 and λ2 are 768 nm, respectively.
And 848 nm, the correlation coefficient is 0.86
1, the standard deviation was 0.674, and the result was that it could be used sufficiently. These are the results obtained by measuring the reflectance at the equatorial part of the melon, but better correlation and standard deviation were obtained when measuring the flower scar part.

【0020】図4はこの発明の第2の実施例の測定回路
のブロツク図を示す。この実施例では、近赤外光の光源
として先の実施例で使用しているLEDに代え、キセノ
ン放電管を使用する。キセノン放電管の発光特性は広い
波長範囲にわたるから、反射光を検出する受光素子側で
波長λ1及びλ2を選択受光するように構成したもので
ある。なお、第2の実施例のプロ−ブ内の光フアイバ−
の配置等は第1実施例のものと同様であるから、説明を
省略する。
FIG. 4 is a block diagram of the measuring circuit according to the second embodiment of the present invention. In this embodiment, a xenon discharge tube is used as a light source of near infrared light instead of the LED used in the previous embodiment. Since the emission characteristics of the xenon discharge tube cover a wide wavelength range, the light receiving element side that detects the reflected light selectively receives the wavelengths λ1 and λ2. The optical fiber in the probe of the second embodiment is used.
Since the arrangement and the like are the same as those in the first embodiment, the description thereof will be omitted.

【0021】図4において、30はキセノン放電管、3
6、38はフオトダイオ−ドで、その受光面にはそれぞ
れ波長λ1及びλ2の光を選択的に透過するフイルタ3
5、37が配置されている。31はキセノン放電管から
発する投射光を被検体Mに向けて投射する光フアイバ
−、32、33は被検体Mで反射した反射光をフオトダ
イオ−ド36、38に導く光フアイバ−である。また、
40はキセノン放電管30の発光を制御する発光制御回
路、41、42は増幅器、43はマルチプレクサ、44
はA/D変換器、46はキセノン放電管30の発光量デ
−タや、前記式(4)の係数値an、bn、cnなどを
格納したメモリ、45はCPUで、糖度計全体の制御、
及びキセノン放電管30の発光量とフオトダイオ−ド3
6、38で検出された反射光量から反射率を演算し、先
に説明した式(4)に基づく演算を行つて糖度を算出し
て測定結果を表示部3に出力する。また、測定結果を出
力端子4から図示しない外部の情報処理装置に出力す
る。47は定電圧回路で、電池Eの電力を一定電圧に安
定させて各回路要素に供給する。
In FIG. 4, 30 is a xenon discharge tube, 3
Numerals 6 and 38 are photo diodes, and the light receiving surface thereof has a filter 3 for selectively transmitting light of wavelengths λ1 and λ2, respectively.
5, 37 are arranged. Reference numeral 31 is an optical fiber that projects the projection light emitted from the xenon discharge tube toward the subject M, and 32 and 33 are optical fibers that guide the reflected light reflected by the subject M to photo diodes 36 and 38. Also,
40 is a light emission control circuit for controlling light emission of the xenon discharge tube 30, 41 and 42 are amplifiers, 43 is a multiplexer, 44
Is an A / D converter, 46 is a memory that stores the light emission amount data of the xenon discharge tube 30 and the coefficient values an, bn, cn of the formula (4), and 45 is a CPU that controls the entire sugar content meter. ,
And the amount of light emitted from the xenon discharge tube 30 and the photo diode 3
The reflectance is calculated from the reflected light amounts detected in 6 and 38, the calculation based on the above-described formula (4) is performed to calculate the sugar content, and the measurement result is output to the display unit 3. Further, the measurement result is output from the output terminal 4 to an external information processing device (not shown). A constant voltage circuit 47 stabilizes the electric power of the battery E to a constant voltage and supplies it to each circuit element.

【0022】次に、上記測定回路の動作を説明する。電
源スイツチS1を投入し、測定動作の準備完了後、測定
スイツチS2を閉じると、CPU45から発光制御回路
40に制御信号が送られ、キセノン放電管30が発光
し、光フアイバ−31を経て被検体Mに向けて光を投射
する。被検体Mで反射した光は、光フアイバ−32、フ
イルタ35を経て、波長λ1の光がフオトダイオ−ド3
6で検出され、光フアイバ−33、フイルタ37を経
て、波長λ2の光がフオトダイオ−ド38で検出され
る。各検出信号は増幅器41、42で増幅され、マルチ
プレクサ43、A/D変換器44を経てCPU45に入
力される。
Next, the operation of the measuring circuit will be described. When the power switch S1 is turned on and the measurement switch S2 is closed after the preparation for the measurement operation is completed, a control signal is sent from the CPU 45 to the light emission control circuit 40, the xenon discharge tube 30 emits light, and the test object passes through the optical fiber 31. Project light toward M. The light reflected by the subject M passes through the optical fiber 32 and the filter 35, and the light of wavelength λ1 is converted into the photo diode 3
The light having the wavelength λ2 is detected by the photo diode 38 through the optical fiber 33 and the filter 37. Each detection signal is amplified by the amplifiers 41 and 42, and is input to the CPU 45 via the multiplexer 43 and the A / D converter 44.

【0023】CPU45はメモリ46に格納されている
キセノン放電管30の発光量を示す定数とフオトダイオ
−ド36、38の出力から、波長λ1の近赤外光の反射
率RX1及び波長λ2の近赤外光の反射率RX2を演算
し、さらに前記式(4)に反射率RX1とRX2、及び
係数値an、bn、cnを代入し、糖度SXを演算す
る。検出され演算された糖度は5段階に識別され、表示
部3のLED3a〜3eのいずれかを点灯して出力し、
また、出力端子4からデジタル信号として出力され、必
要に応じて図示しない情報処理装置による処理がなされ
る。
The CPU 45 uses the constant indicating the amount of light emitted from the xenon discharge tube 30 stored in the memory 46 and the outputs of the photodiodes 36 and 38 to determine the reflectance RX1 of near infrared light of wavelength λ1 and the near red of wavelength λ2. The reflectance RX2 of external light is calculated, and the reflectances RX1 and RX2 and the coefficient values an, bn, cn are further substituted into the equation (4) to calculate the sugar content SX. The calculated and calculated sugar content is identified in five stages, and one of the LEDs 3a to 3e of the display unit 3 is turned on and output,
Further, it is output as a digital signal from the output terminal 4, and is processed by an information processing device (not shown) as necessary.

【0024】図5からは図7までは、この発明の第3の
実施例を示す。この実施例も近赤外光の光源としてキセ
ノン放電管を使用するとともに、反射光の検出に際し、
積分球を使用して反射光の平均値を検出するように構成
したものである。
5 to 7 show a third embodiment of the present invention. This embodiment also uses a xenon discharge tube as a light source for near infrared light, and when detecting reflected light,
It is configured to detect the average value of reflected light using an integrating sphere.

【0025】図5はこの発明を実施した糖度計の外観図
で、図において51は本体、52はプロ−ブ、53は接
続ケ−ブル、54は糖度をデジタル表示する表示部で、
液晶表示素子で構成される。また、S1は電源スイツ
チ、S2は測定スイツチ、55は測定結果をデジタル信
号として出力する出力端子を示す。
FIG. 5 is an external view of a sugar content meter embodying the present invention. In the figure, 51 is a main body, 52 is a probe, 53 is a connection cable, and 54 is a display section for digitally displaying the sugar content.
It is composed of a liquid crystal display element. S1 is a power switch, S2 is a measurement switch, and 55 is an output terminal for outputting the measurement result as a digital signal.

【0026】図6はプロ−ブ52の構造を示す断面図で
あり、61はキセノン放電管、62は反射ミラ−、6
3、65はキセノン放電管の発光量をモニタするフオト
ダイオ−ド、64、66はフオトダイオ−ド63、65
の受光面に配置されたフイルタであつて、それぞれ波長
λ1、波長λ2の光を透過する。67は積分球、68、
70は積分球67に設けられた反射光の検出用のフオト
ダイオ−ド、69、71はフオトダイオ−ド68、70
の受光面に配置されたフイルタで、フイルタ69は波長
λ1の近赤外光を選択的に透過し、フイルタ71は波長
λ2の近赤外光を選択的に透過する特性を備えている。
FIG. 6 is a sectional view showing the structure of the probe 52. Reference numeral 61 is a xenon discharge tube, 62 is a reflection mirror, and 6 is a reflection mirror.
3 and 65 are photo diodes for monitoring the light emission amount of the xenon discharge tube, and 64 and 66 are photo diodes 63 and 65.
Of the filter, which transmits light of wavelength λ1 and wavelength λ2, respectively. 67 is an integrating sphere, 68,
Reference numeral 70 is a photo diode for detecting reflected light provided on the integrating sphere 67, and 69 and 71 are photo diodes 68 and 70.
In the filter disposed on the light receiving surface of the filter, the filter 69 has a characteristic of selectively transmitting near infrared light of wavelength λ1 and the filter 71 has a characteristic of selectively transmitting near infrared light of wavelength λ2.

【0027】図7は第3の実施例の測定回路のブロツク
図を示す。図において破線で示したプロ−ブ52の部分
は図6に示した構成であるから説明を省く。75乃至7
8はそれぞれフオトダイオ−ド63、65、68、70
の出力を増幅する増幅器、79はマルチプレクサ、80
はA/D変換器、82はキセノン放電管61の発光を制
御する発光制御回路、83は前記式(4)の係数値a
n、bn、cnなどを格納したメモリ、81はCPU
で、糖度計全体の制御、及びフオトダイオ−ド63、6
5で検出されたキセノン放電管61の発光光量、及びフ
オトダイオ−ド68、70で検出された反射光量から反
射率を演算し、先に説明した式(4)に基づく演算を行
つて糖度を算出して測定結果を表示部54に出力する。
また、測定結果を出力端子55から図示しない外部の情
報処理装置に出力する。84は定電圧回路で、電池Eの
電力を一定電圧に安定させて各回路要素に供給する。
FIG. 7 shows a block diagram of the measuring circuit of the third embodiment. Since the portion of the probe 52 shown by the broken line in the figure has the configuration shown in FIG. 6, its explanation is omitted. 75 to 7
8 are photo diodes 63, 65, 68, and 70, respectively.
, 79 is a multiplexer, 80
Is an A / D converter, 82 is a light emission control circuit for controlling the light emission of the xenon discharge tube 61, and 83 is the coefficient value a of the formula (4).
Memory storing n, bn, cn, etc., 81 is a CPU
Then, the control of the whole sugar content meter and the photo diode 63, 6
5, the reflectance is calculated from the amount of light emitted from the xenon discharge tube 61 detected in 5 and the amount of reflected light detected in the photodiodes 68 and 70, and the sugar content is calculated by performing the calculation based on the equation (4) described above. Then, the measurement result is output to the display unit 54.
In addition, the measurement result is output from the output terminal 55 to an external information processing device (not shown). A constant voltage circuit 84 stabilizes the electric power of the battery E to a constant voltage and supplies it to each circuit element.

【0028】次に、上記測定回路の動作を説明する。電
源スイツチS1を投入し、測定動作の準備完了後、測定
スイツチS2を閉じると、CPU81から発光制御回路
82に制御信号が送られ、キセノン放電管61が発光
し、積分球67を通過した被検体Mに投射される。この
とき、キセノン放電管61の発光光量はフオトダイオ−
ド63、65で検出され、それぞれ増幅器75、76、
マルチプレクサ79及びA/D変換器80を介してCP
U81に入力される。被検体Mで反射した反射光は積分
球67内で乱反射し、波長λ1の近赤外光はフイルタ6
9を透過してフオトダイオ−ド68で検出され、波長λ
2の近赤外光はフイルタ71を透過してフオトダイオ−
ド70で検出され、それぞれ増幅器77、78、マルチ
プレクサ79、A/D変換器80を経てCPU81に入
力される。
Next, the operation of the measuring circuit will be described. When the power switch S1 is turned on and the measurement switch S2 is closed after the preparation for the measurement operation is completed, a control signal is sent from the CPU 81 to the light emission control circuit 82, the xenon discharge tube 61 emits light, and the subject passes through the integrating sphere 67. It is projected on M. At this time, the amount of light emitted from the xenon discharge tube 61 is
Detected by the amplifiers 63 and 65, and the amplifiers 75 and 76,
CP via multiplexer 79 and A / D converter 80
Input to U81. The reflected light reflected by the subject M is diffusely reflected in the integrating sphere 67, and the near infrared light having the wavelength λ1 is filtered by the filter 6
9 and is detected by the photo diode 68, and the wavelength λ
The near-infrared light of No. 2 passes through the filter 71 and the photodiode-
The signal is detected by the mode 70 and is input to the CPU 81 via the amplifiers 77 and 78, the multiplexer 79, and the A / D converter 80, respectively.

【0029】CPU81はフオトダイオ−ド63、6
5、68、70の出力から、波長λ1の近赤外光の反射
率RX1及び波長λ2の近赤外光の反射率RX2を演算
し、さらに前記式(4)に反射率RX1とRX2、及び
係数値an、bn、cnを代入し、糖度SXを演算す
る。検出され演算された糖度は、表示部54に出力され
てデジタル表示され、また、出力端子55からデジタル
信号として出力され、必要に応じて図示しない情報処理
装置による処理がなされる。
The CPU 81 uses the photo diodes 63 and 6
From the outputs of 5, 68 and 70, the reflectance RX1 of the near infrared light having the wavelength λ1 and the reflectance RX2 of the near infrared light having the wavelength λ2 are calculated, and the reflectances RX1 and RX2, and The sugar values SX are calculated by substituting the coefficient values an, bn, and cn. The calculated and calculated sugar content is output to the display unit 54 and digitally displayed, and is also output as a digital signal from the output terminal 55, and is processed by an information processing device (not shown) as necessary.

【0030】光源としてキセノン放電管を使用するとき
は、キセノン放電管がLEDよりも発光波長範囲が広
く、1100nmまで使用することができるため、検出
に使用する波長の選択範囲が広くなり、より精度の高い
検出が可能となる。
When a xenon discharge tube is used as a light source, the xenon discharge tube has a wider emission wavelength range than an LED and can be used up to 1100 nm. Therefore, the selection range of the wavelength used for detection is widened and more accurate. It becomes possible to detect high.

【0031】また、ここに示した実施例では、検出光と
して波長の異なる2つの検出光を使用しているが、さら
に波長の異なる多数の検出光を使用することでより精度
の高い検出が可能となる。すなわち、メロン32個につ
いて、1個につき2か所、合計64点について近赤外光
による検出を行い、またこれと同一測定点の表皮下の果
肉から果汁を抽出し、屈折式糖度計によりを測定した糖
度との相関係数は以下の通りである。なお、波長は試行
錯誤により相関係数の高い波長を選択した。
Further, in the embodiment shown here, two detection lights having different wavelengths are used as the detection light, but by using a large number of detection lights having different wavelengths, detection with higher accuracy can be performed. Becomes In other words, for 32 melons, 2 points per 1 point, total 64 points, were detected by near-infrared light, and fruit juice was extracted from the flesh under the epidermis at the same measurement point as this and measured with a refractometer. The correlation coefficient with the measured sugar content is as follows. The wavelength selected was a wavelength with a high correlation coefficient by trial and error.

【0032】 2波長を使用した場合 波長λ1=742nm 波長λ2=750nm 相関係数=0.828 3波長を使用した場合 波長λ1=750nm 波長λ2=766nm 波長λ3=958nm 相関係数=0.848 6波長を使用した場合 波長λ1=734nm 波長λ2=830nm 波長λ3=838nm 波長λ4=910nm 波長λ5=926nm 波長λ6=1030nm 相関係数=0.924When using two wavelengths: wavelength λ1 = 742 nm, wavelength λ2 = 750 nm, correlation coefficient = 0.828 When using three wavelengths, wavelength λ1 = 750 nm, wavelength λ2 = 766 nm, wavelength λ3 = 958 nm, correlation coefficient = 0.8486 When wavelength is used: wavelength λ1 = 734 nm wavelength λ2 = 830 nm wavelength λ3 = 838 nm wavelength λ4 = 910 nm wavelength λ5 = 926 nm wavelength λ6 = 1030 nm correlation coefficient = 0.924

【0033】[0033]

【発明の効果】以上説明したとおり、この発明によれば
青果物に近赤外光を投射し、その反射率から青果物の糖
度を測定するから、青果物を傷つけることなく全数検査
することができる。この場合、近赤外光の光源として波
長600〜1100nmの近赤外光を使用するから、精
度よく糖度を測定することができる。また、光源には発
光ダイオ−ドあるいはキセノン放電管を使用するから、
装置を携帯できるように小型にすることができ、圃場な
どの現場で容易に使用することができる。
As described above, according to the present invention, since near infrared light is projected onto fruits and vegetables and the sugar content of the fruits and vegetables is measured from the reflectance, all fruits and vegetables can be inspected without damaging them. In this case, since the near-infrared light having a wavelength of 600 to 1100 nm is used as the light source of the near-infrared light, the sugar content can be accurately measured. Moreover, since a light emitting diode or a xenon discharge tube is used for the light source,
The device can be made small so that it can be carried, and can be easily used in a field such as a field.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を適用した第1実施例の外観を示す斜
視図。
FIG. 1 is a perspective view showing the outer appearance of a first embodiment to which the present invention is applied.

【図2】第1実施例のプロ−ブの構成を示す断面図。FIG. 2 is a sectional view showing the structure of the probe of the first embodiment.

【図3】第1実施例の測定回路のブロツク図。FIG. 3 is a block diagram of the measurement circuit according to the first embodiment.

【図4】第2実施例の測定回路のブロツク図。FIG. 4 is a block diagram of the measurement circuit of the second embodiment.

【図5】この発明を適用した第3実施例の外観を示す斜
視図。
FIG. 5 is a perspective view showing an appearance of a third embodiment to which the invention is applied.

【図6】第3実施例のプロ−ブの構成を示す断面図。FIG. 6 is a sectional view showing the structure of the probe of the third embodiment.

【図7】第3実施例の測定回路のブロツク図。FIG. 7 is a block diagram of the measurement circuit of the third embodiment.

【符号の説明】[Explanation of symbols]

10、11:発光ダイオ−ド 13、14、15、31、32、33:光フアイバ− 12、36、38、63、65、68、70:フオトダ
イオ−ド 30、61:キセノン放電管 35、37、64、66、69、71:フイルタ 67:積分球 3、54:表示部 M:被検体
10, 11: Light emitting diode 13, 14, 15, 31, 32, 33: Optical fiber 12, 36, 38, 63, 65, 68, 70: Photodiode 30, 61: Xenon discharge tube 35, 37 , 64, 66, 69, 71: Filter 67: Integrating sphere 3, 54: Display unit M: Subject

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 耕介 兵庫県小野市二葉町1087−188番地 (72)発明者 大城 正道 大阪市北区堂島浜一丁目1番5号 大阪三 菱ビル 三菱商事株式会社内 (72)発明者 青山 聡 大阪市中央区安土町二丁目3番13号 大阪 国際ビルミノルタカメラ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Kosuke Nagai 1087-188 Futaba-cho, Ono City, Hyogo Prefecture (72) Masamichi Oshiro 1-5 Dojimahama, Kita-ku, Osaka Osaka Sanryo Building Mitsubishi Corporation (72) Inventor Satoshi Aoyama 2-3-13 Azuchi-cho, Chuo-ku, Osaka City Osaka International Building Minolta Camera Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被検体に光を投射する光源を有する光投射
手段と、被検体で反射した光を検出する光検出手段を備
え、少なくとも波長の異なる2波長の光の反射率に基づ
いて被検体の糖度を検出する糖度計において、被検体に
投射する光が1100nm以下の波長から選択された波
長の異なる少なくとも2波長の光であることを特徴とす
る糖度計。
1. A light projecting means having a light source for projecting light onto a subject, and a light detecting means for detecting light reflected by the subject, wherein the light is projected based on the reflectance of at least two different wavelengths of light. A sugar content meter for detecting the sugar content of a sample, wherein the light projected onto the object is light having at least two wavelengths different in wavelength selected from wavelengths of 1100 nm or less.
【請求項2】請求項1記載の糖度計において、前記光投
射手段の光源は発光ダイオ−ドであることを特徴とする
糖度計。
2. The sugar content meter according to claim 1, wherein the light source of the light projection means is a light emitting diode.
【請求項3】請求項1記載の糖度計において、前記光投
射手段の光源はキセノン放電管であることを特徴とする
糖度計。
3. The sugar content meter according to claim 1, wherein the light source of the light projection means is a xenon discharge tube.
JP11526392A 1992-04-09 1992-04-09 Sacchari meter Pending JPH05288674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11526392A JPH05288674A (en) 1992-04-09 1992-04-09 Sacchari meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11526392A JPH05288674A (en) 1992-04-09 1992-04-09 Sacchari meter

Publications (1)

Publication Number Publication Date
JPH05288674A true JPH05288674A (en) 1993-11-02

Family

ID=14658345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11526392A Pending JPH05288674A (en) 1992-04-09 1992-04-09 Sacchari meter

Country Status (1)

Country Link
JP (1) JPH05288674A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708271A (en) * 1994-12-28 1998-01-13 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
US5726750A (en) * 1995-06-29 1998-03-10 Sumitomo Metal Mining Co., Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
US5844678A (en) * 1995-06-29 1998-12-01 Sumitomo Metal Mining Co. Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
GB2379818A (en) * 2001-07-25 2003-03-19 Univ Bristol Automatic surface inspection using plural different radiation sources.
WO2002088678A3 (en) * 2001-04-27 2003-12-04 S C E S R L Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
JP2010127694A (en) * 2008-11-26 2010-06-10 Rarugo:Kk Sugar content meter utilizing solar battery, tool for harvesting agricultural products and sound recorder
JP2011080959A (en) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries Agricultural product internal quality measuring device for outdoor use
WO2012005350A1 (en) * 2010-07-09 2012-01-12 千代田電子工業株式会社 Nondestructive measuring device for green grocery
JP2016537655A (en) * 2013-11-14 2016-12-01 グラインセンス オーワイGrainsense Oy Optical analysis apparatus, optical analysis method, and sample preparation apparatus
CN109211822A (en) * 2017-07-03 2019-01-15 联光学工业股份有限公司 Infrared reflection light measurement device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708271A (en) * 1994-12-28 1998-01-13 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
US5726750A (en) * 1995-06-29 1998-03-10 Sumitomo Metal Mining Co., Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
US5844678A (en) * 1995-06-29 1998-12-01 Sumitomo Metal Mining Co. Ltd. Non-destructive taste characteristics measuring apparatus and tray used in the apparatus
EP1203941A4 (en) * 2000-04-13 2006-01-04 Mitsui Mining & Smelting Co Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
US7173246B2 (en) 2001-04-27 2007-02-06 Angelo Benedetti Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
WO2002088678A3 (en) * 2001-04-27 2003-12-04 S C E S R L Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
GB2379818A (en) * 2001-07-25 2003-03-19 Univ Bristol Automatic surface inspection using plural different radiation sources.
WO2003012412A3 (en) * 2001-07-25 2003-10-30 Univ Bristol Infra-red photometric stereo
JP2010127694A (en) * 2008-11-26 2010-06-10 Rarugo:Kk Sugar content meter utilizing solar battery, tool for harvesting agricultural products and sound recorder
JP2011080959A (en) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries Agricultural product internal quality measuring device for outdoor use
WO2012005350A1 (en) * 2010-07-09 2012-01-12 千代田電子工業株式会社 Nondestructive measuring device for green grocery
JPWO2012005350A1 (en) * 2010-07-09 2013-09-05 千代田電子工業株式会社 Non-destructive measuring device for fruits and vegetables
JP2016537655A (en) * 2013-11-14 2016-12-01 グラインセンス オーワイGrainsense Oy Optical analysis apparatus, optical analysis method, and sample preparation apparatus
US10073031B2 (en) 2013-11-14 2018-09-11 Grainsense Oy Optical analyzer, optical analyzing method and sample preparation device
CN109211822A (en) * 2017-07-03 2019-01-15 联光学工业股份有限公司 Infrared reflection light measurement device

Similar Documents

Publication Publication Date Title
US5324979A (en) Method and means for generating synthetic spectra allowing quantitative measurement in near infrared measuring instruments
US4908762A (en) Oximeter with system for testing transmission path
Giovenzana et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine
US7328052B2 (en) Near infrared risk assessment of diseases
US6512577B1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
JPH07501884A (en) Using light-emitting diode harmonic wavelengths for near-infrared quantitative analysis
JP5683836B2 (en) Method for detecting contaminants in optical measurement cuvettes
US8306594B2 (en) Transmission fluorometer
JP2002529174A (en) Apparatus and method for measuring blood parameters
JP2013195433A (en) Reflected light detection type dermofluorometer
JP2003527594A (en) Apparatus and method for measuring and correlating fruit properties with visible / near infrared spectra
KR101097399B1 (en) Apparatus for diagnosis of diseases by estimation advanced glycation end products using skin autofluorescence
JPH05288674A (en) Sacchari meter
US9888855B2 (en) Reflection detection type measurement apparatus and method for skin autofluorescence
JP4714822B2 (en) Non-destructive measuring device for light scatterers
ITTO950796A1 (en) PROCEDURE AND SYSTEM FOR DETECTING CHEMICAL-PHYSICAL PARAMETERS.
WO2004010118A8 (en) Method and apparatus for investigating histology of epithelial tissue
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
CN113720825B (en) Optical instant detector and detection method and application
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
US20190228205A1 (en) Skinprint analysis method and apparatus
Wang et al. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum
JP3541291B2 (en) Egg test method and egg test device
JPH11248622A (en) Urinalysis device
KR20130106971A (en) Reflection detection type measurement apparatus for skin autofluorescence