JPH11248622A - Urinalysis device - Google Patents

Urinalysis device

Info

Publication number
JPH11248622A
JPH11248622A JP4723798A JP4723798A JPH11248622A JP H11248622 A JPH11248622 A JP H11248622A JP 4723798 A JP4723798 A JP 4723798A JP 4723798 A JP4723798 A JP 4723798A JP H11248622 A JPH11248622 A JP H11248622A
Authority
JP
Japan
Prior art keywords
light
urine
light emitting
unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4723798A
Other languages
Japanese (ja)
Inventor
Masahiro Tsuchiya
雅弘 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP4723798A priority Critical patent/JPH11248622A/en
Publication of JPH11248622A publication Critical patent/JPH11248622A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a urinalysis device capable of highly accurate performing an urinalysis in a short time. SOLUTION: This urinalysis device is equipped with a specimen container 1 to contain urine, a light emitting part 2 to irradiate the urine in the specimen container 1 with light, a light detecting part 3 to receive transmitted light which has been permeated in the urine when the light emitting part 2 is irradiating the light and a control and measurement part 4 to measure absorbance of the transmitted light. A tip part of an optical fiber 23 in the light emitting part 2 and the light detecting part 3 are movably placed in the specimen container 1, and a distance control part 5 to control a distance between the optical fiber 23 and the light detecting part 3 is provided. In this case, the distance control part 5 control and optical path length so that it falls within the range of 1-10 cm when a measured wave length is within the range of 700-1,200 nm, and controls the optical path length so that it falls within the range of 1-5 mm when the measured wave length is within the range of 1,200-2,500 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試験紙等を用いず
に吸光光度法等の光学的方法によって尿中成分を検査す
る尿検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a urine test apparatus for testing urine components by an optical method such as an absorption spectrophotometer without using a test paper or the like.

【0002】[0002]

【従来の技術】光学的な尿検査方法としては、特開昭6
3−94158号公報や特開平2−27262号公報に
記載されているように、試験紙上に塗布した試薬と検査
尿の呈色反応を光学的に測定する方法(主に反射光測定
による比色法による)が一般的である。しかしながら、
上記方法にあっては、試薬や試験紙等の消耗品が必要に
なるといったことや、媒介反応を介した間接法であるた
めに潜在的な誤差が生じ易いといったことから、試薬や
試験紙等を使用せずに尿検査を行う方法が望まれてい
る。
2. Description of the Related Art An optical urine test method is disclosed in
As described in JP-A-3-94158 and JP-A-2-27262, a method of optically measuring the color reaction between a reagent applied on a test paper and a test urine (mainly colorimetric measurement by reflected light measurement) By the law) is common. However,
In the above method, consumables such as reagents and test papers are required, and potential errors are likely to occur due to the indirect method through the mediation reaction. There is a demand for a method for performing a urine test without using a urine.

【0003】このように、試薬や試験紙等を使用せずに
尿検査を実現する方法としては、特開平9−14560
5号公報に記載されているような検糖計の原理を応用し
た方法や、特開平9−171015号公報に記載されて
いるようなラマン分光法を用いた方法が知られている。
As described above, a method for realizing a urine test without using a reagent or a test paper is disclosed in Japanese Patent Application Laid-Open No. Hei 9-14560.
A method using the principle of a saccharimeter as described in Japanese Patent Application Laid-Open No. 5-105, and a method using Raman spectroscopy as described in Japanese Patent Application Laid-Open No. 9-171015 are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、検糖計
利用の測定法では、可視光を使用するため、透明である
水の影響を受けづらいが、ラマン分光法を用いた方法の
ように、近赤外光を利用して尿を直接測定する方法の場
合には、尿の主成分である水の吸収が検査に大きく影響
する。特に、1400nm付近や1900nm付近の波長での水の吸
収は大きく、光が尿を透過する距離を示す光路長を考慮
した計測をしなければ正確な計測結果を出すことはでき
ない。
However, in the measurement method using a saccharimeter, since visible light is used, it is hard to be affected by water which is transparent. In the case of a method of directly measuring urine using infrared light, absorption of water, which is a main component of urine, greatly affects the test. In particular, water absorption at wavelengths around 1400 nm and around 1900 nm is large, and accurate measurement results cannot be obtained unless measurement is performed in consideration of the optical path length that indicates the distance that light passes through urine.

【0005】また、分光分析装置の分野では、光源の光
を搬送する光ファイバと測定対象物での散乱や反射や透
過を介した光を受光部に搬送する光ファイバとを組み合
わせてプローブとして構成し、測定対象物の吸光度特性
を計測するものが市販されている。この分光分析装置
は、広い範囲の波長での測定を可能にして凡庸性を持た
せるために、プローブの外に白色光源や検出器等を備
え、光ファイバで光を搬送するようにしているため、機
器自体が大掛かりになり、コスト的にも不利であった。
In the field of spectroscopy, a probe is configured by combining an optical fiber for transmitting light from a light source and an optical fiber for transmitting light via scattering, reflection, or transmission of an object to be measured to a light receiving portion. Those that measure the absorbance characteristics of the object to be measured are commercially available. This spectrometer is equipped with a white light source, detector, etc. outside the probe, and transmits light through an optical fiber in order to enable measurement over a wide range of wavelengths and to provide mediocrity. However, the equipment itself becomes large and disadvantageous in terms of cost.

【0006】そこで、本発明は、上記のような問題に着
目し、短時間で高精度な尿検査を行うことを第1の目的
とし、尿検査装置の小型化ならびに簡易化を図ることを
第2の目的としている。
Accordingly, the present invention has been made in view of the above problems, and has as its first object to perform a highly accurate urine test in a short time, and to reduce the size and simplification of a urine test apparatus. It has two purposes.

【0007】[0007]

【課題を解決するための手段】例えば、近赤外域の吸光
光度法において、血液や尿等の検査を行う場合には、試
料に含まれる水の吸光による影響が大きく、試料の光路
長は測定パラメータの中でも重要な要素になる。近赤外
域における水の吸光度特性は、図7に示す通りであり、
波長1200nm付近まではほとんど吸光しない。そのため、
波長1200nm以下の波長においては、試料に含まれる物質
による吸光を強調して計測するために、光路長を長くす
るのがよい。例えば、尿のようにそのほとんどが水であ
る場合には、水の吸光がほとんどないため、1〜10cm程
度でも測定に十分な透過光が得られるため、光路長は1
〜10cmが好ましい。また、波長1400cm付近に吸光度のピ
ークがあり、それ以上の波長からは吸光度が極端に増加
していく。つまり、波長1200nm以上の波長での測定にお
いては、試料の光路長を極端に短くしなければ、試料中
を光が通り抜けることができなくなり測定ができなくな
る。よって、1200nm以上の波長帯で尿を測定するために
は、mm単位の光路長がよい。実験の結果からも、同波長
域においては、1〜5mmの光路長で測定に十分な透過光
量を得ている。特に2000nm以上の波長域については、1
mm程度が好ましい。このように、近赤外光による検査装
置においては、測定波長に応じた最適光路長で吸光度を
測定することにより、汎用性は損なうものの、短時間か
つ高精度に検査を行うことができるようになる。
For example, in the near-infrared absorption spectrophotometry, when testing blood, urine, etc., the absorption of water contained in the sample is greatly affected, and the optical path length of the sample is measured. It is an important factor in the parameters. The absorbance characteristics of water in the near infrared region are as shown in FIG.
It hardly absorbs light around the wavelength of 1200 nm. for that reason,
At a wavelength of 1200 nm or less, it is preferable to increase the optical path length in order to emphasize and measure the absorption by the substance contained in the sample. For example, when most of the water is water, as in urine, there is almost no absorption of water, so that enough transmitted light for measurement can be obtained even at about 1 to 10 cm.
~ 10 cm is preferred. In addition, there is a peak of the absorbance at a wavelength of about 1400 cm, and the absorbance extremely increases from a wavelength longer than 1400 cm. That is, in the measurement at a wavelength of 1200 nm or more, unless the optical path length of the sample is extremely short, light cannot pass through the sample and measurement cannot be performed. Therefore, in order to measure urine in a wavelength band of 1200 nm or more, the optical path length in mm is preferable. From the results of the experiment, in the same wavelength range, a sufficient amount of transmitted light for measurement is obtained with an optical path length of 1 to 5 mm. Especially for the wavelength range of 2000 nm or more, 1
mm is preferable. As described above, in the inspection device using near-infrared light, by measuring the absorbance at the optimum optical path length according to the measurement wavelength, versatility is impaired, but the inspection can be performed in a short time and with high accuracy. Become.

【0008】そこで、上記第1の目的を達成するため
に、請求項1記載の発明では、尿を入れる検査容器と、
その検査容器中の尿に2波長以上の異なる光を照射する
発光部と、前記発光部の照射時に尿を透過した透過光を
受光する受光部と、前記透過光の吸光度を計測する計測
部と、を備えている尿検査装置において、前記発光部か
ら照射した光が前記受光部に達するまでの間に検査容器
中の尿を透過する距離を示す光路長を測定波長に応じて
制御する制御手段が設けられている構成とし、請求項2
記載の発明では、請求項1記載の発明において、前記制
御手段が、測定波長 700〜1200nmの時には前記光路長を
1〜10cmにする制御を行い、測定波長1200〜2500nmの時
には前記光路長を1〜5mmにする制御を行う構成とし、
請求項3記載の発明では、請求項1または2記載の発明
において、前記発光部と前記受光部の少なくとも一方が
前記検査容器中に移動可能に配設されていて、前記発光
部と前記受光部との間の距離が前記制御手段によって制
御されている構成とし、請求項4記載の発明では、請求
項1または2記載の発明において、前記検査容器が前記
発光部ならびに前記受光部との相対位置を可変に設けら
れ、前記検査容器は、前記発光部ならびに前記受光部と
の相対位置変化により光路長が変化する形状に形成され
ており、前記検査容器と前記発光部ならびに前記受光部
との相対位置が前記制御手段によって制御されている構
成とした。
In order to achieve the first object, according to the first aspect of the present invention, there is provided an inspection container for storing urine,
A light-emitting unit that irradiates urine in the test container with different light of two or more wavelengths, a light-receiving unit that receives transmitted light transmitted through the urine when the light-emitting unit is irradiated, and a measuring unit that measures the absorbance of the transmitted light. A control means for controlling an optical path length indicating a distance that penetrates urine in a test container until light emitted from the light emitting unit reaches the light receiving unit in accordance with a measurement wavelength. Claim 2
In the invention described in claim 1, in the invention described in claim 1, the control means performs control to set the optical path length to 1 to 10 cm when the measurement wavelength is 700 to 1200 nm, and sets the optical path length to 1 cm when the measurement wavelength is 1200 to 2500 nm. And control to make it 5mm
According to a third aspect of the present invention, in the first or second aspect of the invention, at least one of the light emitting unit and the light receiving unit is movably disposed in the test container, and the light emitting unit and the light receiving unit are arranged. According to a fourth aspect of the present invention, in the invention according to the first or second aspect, a relative position between the inspection container and the light-emitting unit and the light-receiving unit is set. Variably provided, the test container is formed in a shape in which an optical path length changes according to a change in a relative position between the light emitting unit and the light receiving unit, and a relative position between the test container, the light emitting unit, and the light receiving unit. The position is controlled by the control means.

【0009】また、上記第2の目的を達成するため、請
求項5記載の発明では、光を照射する発光部と、前記発
光部が照射した光を受光する受光部と、前記透過光の吸
光度を計測する計測部と、を備え、前記発光部ならびに
前記受光部が、尿中に浸漬させる筐体内に設けられ、前
記筐体の前記発光部と受光部との間に、尿中への浸漬時
に尿で満たされる凹部が設けられている構成とし、請求
項6記載の発明では、請求項5記載の発明において、前
記発光部と前記受光部の組が複数組設けられており、各
組の発光部が異なる波長の光を発生する構成とし、請求
項7記載の発明では、請求項5記載の発明において、前
記発光部と前記受光部の組が複数組設けられており、各
組の発光部と受光部との間の距離が異なっている構成と
した。
According to another aspect of the present invention, a light emitting unit for irradiating light, a light receiving unit for receiving light emitted by the light emitting unit, and an absorbance of the transmitted light are provided. A light-emitting unit and the light-receiving unit are provided in a housing to be immersed in urine, and between the light-emitting unit and the light-receiving unit of the housing, immersion in urine. A configuration is provided in which a concave portion sometimes filled with urine is provided. In the invention according to the sixth aspect, in the invention according to the fifth aspect, a plurality of sets of the light emitting section and the light receiving section are provided, and The light emitting unit may be configured to generate light of different wavelengths. In the invention according to claim 7, in the invention according to claim 5, a plurality of sets of the light emitting unit and the light receiving unit are provided, and the light emission of each set is provided. The distance between the unit and the light receiving unit is different.

【0010】[0010]

【作用】請求項1記載の発明では、検査容器に尿を入
れ、その検査容器中の尿に発光部から光を照射すると、
その光路長が、制御手段によって測定波長に応じた最適
光路長に制御される。つまり、測定者が光路長の条件を
意識しなくても、測定波長に応じた最適光路長で吸光度
を測定することができる。請求項2記載の発明では、水
の吸光度が極めて低い測定波長 700〜1200nmの時には光
路長が1〜10cmになるので、水以外の尿中成分の吸光度
を強調して計測することができ、また、水の吸光度が大
きく増加する測定波長1200〜2500nmの時には光路長が1
〜5mmになるので、水の吸光を少なくして水以外の尿中
成分の吸光度を計測することができる。請求項3記載の
発明では、発光部と受光部との間の距離を変化させるこ
とによって光路長が制御されるので、光路長を極めて簡
単かつ正確に測定波長に応じた最適光路長に設定するこ
とができる。請求項4記載の発明では、尿を入れる検査
容器と発光部ならびに受光部との相対位置を変化させる
ことによって光路長が制御されるので、光路長を極めて
簡単かつ正確に測定波長に応じた最適光路長に設定する
ことができる。請求項5記載の発明では、発光部ならび
に受光部を、尿中に浸漬させる筐体内に設けたので、装
置の小型化ならびに簡易化を容易に図ることができる。
請求項6記載の発明では、発光部と受光部の組が複数組
設けられており、各組の発光部が異なる波長の光を発生
するようにしたので、多波長測定を行うことができる。
請求項7記載の発明では、発光部と受光部の組が複数組
設けられており、各組の発光部と受光部との間の距離が
異なっているので、測定波長に応じた最適光路長で吸光
度を測定することができる。
According to the first aspect of the present invention, when urine is placed in a test container and light is emitted from the light emitting portion to the urine in the test container,
The optical path length is controlled by the control means to an optimum optical path length according to the measured wavelength. In other words, the absorbance can be measured at the optimum optical path length according to the measurement wavelength without the user having to be aware of the conditions of the optical path length. According to the second aspect of the present invention, when the absorbance of water is extremely low at a measurement wavelength of 700 to 1200 nm, the optical path length is 1 to 10 cm, so that the absorbance of urine components other than water can be emphasized and measured. When the measurement wavelength is 1200-2500 nm, where the absorbance of water is greatly increased, the optical path length is 1
Since it is about 5 mm, the absorbance of urine components other than water can be measured by reducing the absorption of water. According to the third aspect of the present invention, since the optical path length is controlled by changing the distance between the light emitting section and the light receiving section, the optical path length can be set extremely easily and accurately to the optimum optical path length according to the measurement wavelength. be able to. According to the fourth aspect of the present invention, since the optical path length is controlled by changing the relative positions of the test container containing urine, the light emitting unit, and the light receiving unit, the optical path length can be adjusted extremely simply and accurately according to the measurement wavelength. The optical path length can be set. According to the fifth aspect of the present invention, since the light emitting unit and the light receiving unit are provided in the housing that is immersed in urine, the device can be easily reduced in size and simplified.
In the invention according to claim 6, since a plurality of sets of the light emitting unit and the light receiving unit are provided, and the light emitting units of each set generate light of different wavelengths, multi-wavelength measurement can be performed.
According to the seventh aspect of the present invention, a plurality of sets of light emitting units and light receiving units are provided, and the distance between the light emitting unit and the light receiving unit of each set is different, so that the optimum optical path length according to the measurement wavelength is set. Can be used to measure the absorbance.

【0011】[0011]

【発明の実施の形態】まず、図1に基づいて、実施の形
態1の尿検査装置について詳述する。本実施の形態1の
尿検査装置は、尿を入れるガラス製の検査容器1と、そ
の検査容器1中の尿に光を照射する発光部2と、前記発
光部2の照射時に尿を透過した透過光を検出する光検出
器3と、前記発光部2ならびに前記光検出器3を制御
し、前記透過光の吸光度を計測して糖やたんぱく質等の
尿中特定成分を計測する制御・計測部4と、を備えてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a urine test apparatus according to a first embodiment will be described in detail with reference to FIG. The urine test apparatus according to the first embodiment includes a glass test container 1 for holding urine, a light emitting unit 2 for irradiating urine in the test container 1 with light, and a urine which has passed through the light emitting unit 2 when irradiated. A photodetector 3 for detecting transmitted light, a control / measurement unit for controlling the light emitting unit 2 and the photodetector 3 and measuring the absorbance of the transmitted light to measure specific components in urine such as sugars and proteins. 4 is provided.

【0012】前記発光部2は、ハロゲンランプである光
源21と、この光源21に接続されていて前記制御・計
測部4により制御される分光器22と、この分光器22
に接続されているガラス製の光ファイバ23とで構成さ
れており、この光ファイバ23の先端から検査容器1中
の尿に、任意の波長の光を照射できるようになってい
る。また、前記光ファイバ23の先端は、前記検査容器
1内に配設されていて、検査容器1内を自在に移動でき
るようになっており、前記光検出器3は、前記検査容器
1内に前記光ファイバ23の先端部と近接ならびに離間
する方向へ移動可能に設けられている。つまり、前記光
ファイバ23の先端部と前記光検出器3との間の距離
は、それらの一方あるいは両方を移動させることによっ
て変更可能になっていて、この間の距離は、制御・計測
部4の指示に従って距離制御部5によって制御されるよ
うになっている。具体的には、前記距離制御部5は、測
定波長 700〜1200nmの時には光路長を1cmにする制御を
行い、測定波長1200〜2500nmの時には光路長を1mmにす
る制御を行うようになっている。
The light emitting section 2 includes a light source 21 which is a halogen lamp, a spectroscope 22 connected to the light source 21 and controlled by the control / measurement section 4, and a spectroscope 22.
And an optical fiber 23 made of glass, which is connected to the urine in the test container 1 from the tip of the optical fiber 23. Further, the tip of the optical fiber 23 is disposed in the inspection container 1 so as to be able to move freely in the inspection container 1, and the photodetector 3 is located in the inspection container 1. The optical fiber 23 is provided so as to be movable toward and away from the tip of the optical fiber 23. That is, the distance between the tip of the optical fiber 23 and the photodetector 3 can be changed by moving one or both of them, and the distance between them can be changed by the control / measurement unit 4. It is controlled by the distance control unit 5 according to the instruction. Specifically, the distance control unit 5 performs control to set the optical path length to 1 cm when the measurement wavelength is 700 to 1200 nm, and performs control to set the optical path length to 1 mm when the measurement wavelength is 1200 to 2500 nm. .

【0013】つまり、本実施の形態1の尿検査装置にあ
っては、検査容器1に尿を入れ、光源21からの光を分
光器22ならびに光ファイバ23を通して検査容器1中
の尿に照射すると、測定波長が 700〜1200nmの時には光
路長が1cmになり、測定波長が1200〜2500nmの時には光
路長が1mmになる。このように、水の吸光度が極めて低
い測定波長 700〜1200nmの時に光路長を1cmとすると、
水以外の尿中成分の吸光度を強調して計測することがで
きるし、また、水の吸光度が大きく増加する測定波長12
00〜2500nmの時に光路長を1mmとすると、水の吸光を少
なくして水以外の尿中成分の吸光度を計測することがで
きる。よって、計測者が光路長の条件を意識しなくて
も、測定波長に応じた最適光路長で吸光度を計測するこ
とができ、微量な尿中成分であっても高精度に検査する
ことができる。
That is, in the urine test apparatus according to the first embodiment, urine is put into the test container 1 and light from the light source 21 is applied to the urine in the test container 1 through the spectroscope 22 and the optical fiber 23. When the measurement wavelength is 700 to 1200 nm, the optical path length is 1 cm, and when the measurement wavelength is 1200 to 2500 nm, the optical path length is 1 mm. Thus, when the light path length is 1 cm when the absorbance of water is extremely low at a measurement wavelength of 700 to 1200 nm,
The measurement can be performed by emphasizing the absorbance of urine components other than water.
If the optical path length is 1 mm when the wavelength is from 00 to 2500 nm, the absorbance of urine components other than water can be measured by reducing the absorption of water. Therefore, even if the measurer is not conscious of the conditions of the optical path length, the absorbance can be measured with the optimal optical path length according to the measurement wavelength, and even a small amount of urine component can be inspected with high accuracy. .

【0014】次に、図2〜図4に基づいて実施の形態2
の尿検査装置を説明する。なお、実施の形態2を説明す
るにあたり、実施の形態1の尿検査装置と異なる構成に
ついてのみ説明する。本実施の形態2の尿検査装置は、
尿を特殊形状の検査容器6に入れた状態で計測を行うも
ので、発光部2ならびに光検出器3は、この検査容器6
の外に設けられている。
Next, a second embodiment will be described with reference to FIGS.
A urine test apparatus will be described. In describing the second embodiment, only configurations different from those of the urine test apparatus of the first embodiment will be described. The urine test apparatus according to the second embodiment includes:
The measurement is performed in a state in which urine is placed in a specially shaped test container 6. The light emitting unit 2 and the photodetector 3 are provided in the test container 6.
It is provided outside.

【0015】図3は前記検査容器6の斜視図、図4は前
記検査容器6の平面図で、この検査容器6は、発光部2
ならびに光検出器3との相対位置が可変になるように水
平方向に移動可能に設けられている。また、前記検査容
器6は、平面形状L字形に形成されていて、前記発光部
2ならびに前記光検出器3との相対位置変化により、光
路長が1mmになる短光路部61と1cmになる長光路部6
2とを備えている。また、この検査容器6の位置は、実
施の形態1の距離制御部5に代わって設けられた位置制
御部7によって制御されており、この位置制御部7で
は、測定波長 700〜1200nmの時には光路長が1cmになる
制御を行い、測定波長1200〜2500nmの時には光路長が1
mmになる制御を行うようになっている。つまり、本実施
の形態2の尿検査装置にあっては、検査容器6と発光部
2ならびに光検出器3との相対位置を変化させることに
よって光路長が制御されるので、光路長を極めて簡単か
つ正確に測定波長に応じた最適光路長に設定することが
できる。
FIG. 3 is a perspective view of the inspection container 6 and FIG. 4 is a plan view of the inspection container 6.
Further, it is provided so as to be movable in the horizontal direction so that the relative position with respect to the photodetector 3 becomes variable. In addition, the inspection container 6 is formed in an L-shape in plan view, and has a short optical path portion 61 having an optical path length of 1 mm and a length of 1 cm due to a relative position change between the light emitting portion 2 and the photodetector 3. Optical path 6
2 is provided. Further, the position of the inspection container 6 is controlled by a position control unit 7 provided in place of the distance control unit 5 of the first embodiment, and the position control unit 7 has an optical path when the measurement wavelength is 700 to 1200 nm. The length is controlled to be 1 cm, and the optical path length is 1 when the measurement wavelength is 1200 to 2500 nm.
mm is controlled. That is, in the urine test apparatus according to the second embodiment, the optical path length is controlled by changing the relative positions of the test container 6, the light emitting unit 2, and the photodetector 3, so that the optical path length is extremely simple. In addition, it is possible to accurately set the optimum optical path length according to the measurement wavelength.

【0016】図5は検査容器の変形例を示す斜視図、図
6は検査容器の変形例を示す平面図で、この検査容器8
は、平面三角形状に形成されていて、発光部ならびに光
検出器との相対位置変化により、光路長を少なくとも1
mmから1cmまでは変更できるようになっている。
FIG. 5 is a perspective view showing a modification of the inspection container, and FIG. 6 is a plan view showing a modification of the inspection container.
Is formed in a plane triangular shape, and has an optical path length of at least 1 due to a change in the relative position with respect to the light emitting portion and the photodetector.
It can be changed from mm to 1cm.

【0017】次に、図8〜図10に基づいて実施の形態
3の尿検査装置を説明する。本実施の形態3の尿検査装
置は、尿中に浸漬させる筐体9と、その筐体9とは別体
に設けられた装置本体10と、で構成され、前記筐体9
と前記装置本体10とはケーブル11で接続されてい
る。なお、前記ケーブル内には、電源ライン、信号線、
制御線が通っている。
Next, a urinalysis apparatus according to a third embodiment will be described with reference to FIGS. The urine test apparatus according to the third embodiment includes a housing 9 immersed in urine, and an apparatus main body 10 provided separately from the housing 9.
And the apparatus main body 10 are connected by a cable 11. In addition, a power supply line, a signal line,
Control line is running.

【0018】前記筐体9は、透光性を有し、尿中に浸漬
しても筐体9内部に尿が浸水せず、化学的に安定してい
て、機械的強度も必要十分な材料、例えば、ガラスで形
成されており、その内部には、2組の発光素子91a、
91bならびに受光素子92a,92bと、計測部93
と、を備えている。なお、前記2つの発光素子91に
は、近赤外光の波長に出力ピークを有するLEDまたは
LDが使用され、前記2つの受光素子92には、それぞ
れの波長域での感度を有するフォトダイオードが使用さ
れている。
The housing 9 has a light-transmitting property, the urine does not permeate into the housing 9 even when immersed in the urine, is chemically stable, and has a necessary and sufficient mechanical strength. , For example, are formed of glass, and two sets of light emitting elements 91a,
91b, light receiving elements 92a and 92b,
And An LED or LD having an output peak at the wavelength of near-infrared light is used as the two light emitting elements 91, and a photodiode having sensitivity in each wavelength region is used as the two light receiving elements 92. in use.

【0019】前記筐体9の前記発光素子91aと前記受
光素子92aとの間、ならびに、前記発光素子91bと
前記受光素子92bとの間には、筐体9を尿中に浸漬さ
せた時に尿で満たされる凹部94a,94bが設けられ
ており、前記発光素子91a,91bは、この凹部94
a,94bを満たしている尿に光を照射し、前記受光素
子92a,92bは、前記凹部94a,94bを満たし
ている尿を透過した光を受光するようになっている。ま
た、前記計測部93は、前記発光素子91a,91bや
受光素子92a,92bを制御して光計測を行うもので
ある。
Between the light emitting element 91a and the light receiving element 92a of the housing 9, and between the light emitting element 91b and the light receiving element 92b, when the housing 9 is immersed in urine, Are provided, and the light emitting elements 91a and 91b are provided with the concave portions 94a and 94b.
Light is applied to urine that fills a and 94b, and the light receiving elements 92a and 92b receive light transmitted through the urine that fills the recesses 94a and 94b. The measuring section 93 controls the light emitting elements 91a and 91b and the light receiving elements 92a and 92b to perform light measurement.

【0020】前記装置本体10は、検査結果を表示する
表示部101と、計測された結果から検査結果を算出す
る演算部102と、吸光度を求めるためにデータや検査
結果を記憶する記憶部103と、検査装置を制御する制
御部104と、で構成されている。
The apparatus main body 10 includes a display unit 101 for displaying test results, an arithmetic unit 102 for calculating test results from measured results, and a storage unit 103 for storing data and test results for obtaining absorbance. And a control unit 104 for controlling the inspection apparatus.

【0021】つまり、本実施の形態の尿検査装置にあっ
ては、図外の検査容器に尿を入れ、その検査容器内に筐
体9を入れて筐体9を尿中に浸漬させると、2組の発光
素子91a,91bと受光素子92a,92bとの間の
各凹部94a,94bが尿で満たされるので、各発光素
子91a,91bが照射した光は尿を透過して各受光素
子92a,92bによって受光される。2組の発光素子
91a,91bと受光素子92a,92bは波長域が異
なっているので、2波長の吸光度分析により尿中特定成
分の検査を行うことができる。また、本実施の形態の尿
検査装置は、発光素子91a,91bならびに受光素子
92a,92bを、尿中に浸漬させる筐体9内に設けた
ので、装置の小型化ならびに簡易化を容易に図ることが
でき、特に家庭用尿検査装置として有効利用できる。
That is, in the urine test apparatus of the present embodiment, urine is put in a test container (not shown), the housing 9 is put in the test container, and the housing 9 is immersed in the urine. Since the recesses 94a and 94b between the two sets of light emitting elements 91a and 91b and the light receiving elements 92a and 92b are filled with urine, the light emitted by each light emitting element 91a and 91b passes through the urine and passes through each light receiving element 92a. , 92b. Since the two light emitting elements 91a and 91b and the light receiving elements 92a and 92b have different wavelength ranges, it is possible to inspect a specific component in urine by two-wavelength absorbance analysis. In the urine test apparatus of the present embodiment, the light emitting elements 91a and 91b and the light receiving elements 92a and 92b are provided in the housing 9 that is immersed in urine, so that the apparatus can be easily reduced in size and simplified. It can be effectively used especially as a home urine test apparatus.

【0022】また、筐体9内に電源と制御演算部を有
し、筐体に発光部が音声発生部を有するようにすれば筐
体9を尿中に浸した時に尿が特定の吸光特性を示せば、
発光等の報知をして尿内異常の有無を容易に判断でき
る。
If the housing 9 has a power supply and a control operation unit, and the light emitting unit has a sound generating unit in the housing, when the housing 9 is immersed in urine, the urine has a specific absorption characteristic. If you show
It is possible to easily determine the presence or absence of an abnormality in the urine by informing such as light emission.

【0023】次に、実施の形態4〜6の尿検査装置を説
明する。なお、実施の形態4〜6を説明するにあたり、
実施の形態3の尿検査装置と異なる構成についてのみ説
明する。
Next, a urinalysis apparatus according to the fourth to sixth embodiments will be described. In describing Embodiments 4 to 6,
Only the configuration different from the urine test apparatus according to the third embodiment will be described.

【0024】まず、図11〜図12に基づいて実施の形
態4の尿検査装置を説明する。本実施の形態4の尿検査
装置は、筐体9内に1つの発光素子91cと2つの受光
素子92c,92dとを備えており、これら1つの発光
素子91cと2つの受光素子92c,92dとの間に凹
部94cが設けられている。そして、前記発光素子91
cは、連続スペクトル光源が使用され、前記2つの受光
素子92c,92dは、異なる波長に感度を有するフォ
トダイオードが使用されている。つまり、この尿検査装
置では、発光素子91cが1つしか設けられていないに
もかかわらず、2波長の吸光度分析により尿中特定成分
の検査を行うことができる。
First, a urinalysis apparatus according to a fourth embodiment will be described with reference to FIGS. The urine test apparatus according to the fourth embodiment includes one light emitting element 91c and two light receiving elements 92c and 92d in the housing 9, and these one light emitting element 91c, two light receiving elements 92c and 92d, and A concave portion 94c is provided between them. The light emitting device 91
For c, a continuous spectrum light source is used, and for the two light receiving elements 92c and 92d, photodiodes having sensitivity to different wavelengths are used. That is, in this urine testing apparatus, a specific component in urine can be tested by two-wavelength absorbance analysis even though only one light emitting element 91c is provided.

【0025】次に、図13〜図14に基づいて実施の形
態5の尿検査装置を説明する。本実施の形態5の尿検査
装置は、筐体9内に、単色光源が使用された1つの発光
素子91dと、2つの受光素子92e,92fとを備え
ており、これら1つの発光素子91dと2つの受光素子
92e,92fとの間に凹部94dが設けられている。
そして、前記発光素子91dと前記受光素子92e,9
2fとの間に光を分割するビームスプリッタ95が設け
られ、このビームスプリッタ95と一方の受光素子92
eとの間に非線形光学素子フィルタ96が設けられてい
る。すなわち、一方の受光素子92eには、非線形光学
素子フィルタ96を通過した光が受光され、もう一方の
受光素子92fにはビームスプリッタ95からの光が直
接受光されるので、2波長の吸光度分析により尿中特定
成分の検査を行うことができる。
Next, a urinalysis apparatus according to a fifth embodiment will be described with reference to FIGS. The urine test apparatus according to the fifth embodiment includes one light emitting element 91d using a monochromatic light source and two light receiving elements 92e and 92f in the housing 9, and the one light emitting element 91d A concave portion 94d is provided between the two light receiving elements 92e and 92f.
Then, the light emitting element 91d and the light receiving elements 92e, 9
2f, a beam splitter 95 for splitting light is provided, and this beam splitter 95 and one light receiving element 92
A non-linear optical element filter 96 is provided between the filter and the filter element e. That is, one of the light receiving elements 92e receives the light that has passed through the nonlinear optical element filter 96, and the other light receiving element 92f receives the light from the beam splitter 95 directly. Testing of specific components in urine can be performed.

【0026】次に、図15〜図16に基づいて実施の形
態6の尿検査装置を説明する。本実施の形態6の尿検査
装置は、筐体9内に2組の発光素子91e,91fと受
光素子92g,92hとが設けられており、各組の発光
素子91e,91fと受光素子92g,92hとの間の
距離、すなわち凹部94e,94fの幅が異なってい
る。具体的には、一方の組の発光素子91eと受光素子
92gとの間の距離は、光路長が1mmになるように設定
され、もう一方の組の発光素子91fと受光素子92h
との間の距離は、光路長が1cmになるように設定されて
いる。つまり、本実施の形態6の尿検査装置にあって
は、水の吸光度が極めて低い測定波長 700〜1200nmの時
には、光路長が1cmになるように設定された発光素子9
1fと受光素子92hの計測値を用いて尿中特定成分の
検査を行い、また、水の吸光度が大きく増加する測定波
長1200〜2500nmの時には、光路長を1mmになるように設
定された発光素子91eと受光素子92gの計測値を用
いて尿中特定成分の検査を行うことにより、微量な尿中
成分であっても高精度に検査することができる。
Next, a urinalysis apparatus according to the sixth embodiment will be described with reference to FIGS. In the urine test apparatus of the sixth embodiment, two sets of light emitting elements 91e, 91f and light receiving elements 92g, 92h are provided in the housing 9, and each set of light emitting elements 91e, 91f, light receiving element 92g, 92h, that is, the widths of the concave portions 94e and 94f are different. Specifically, the distance between one set of the light emitting element 91e and the light receiving element 92g is set such that the optical path length is 1 mm, and the other set of the light emitting element 91f and the light receiving element 92h is set.
Is set such that the optical path length is 1 cm. In other words, in the urine test apparatus of the sixth embodiment, when the absorbance of water is extremely low and the measurement wavelength is 700 to 1200 nm, the light emitting element 9 whose optical path length is set to 1 cm is used.
Inspection of specific components in urine using 1f and the measured value of light-receiving element 92h, and a light-emitting element set to have an optical path length of 1 mm at a measurement wavelength of 1200 to 2500 nm where the absorbance of water greatly increases. By inspecting the urine specific component using the measurement values of the light receiving element 91e and the light receiving element 92g, even a minute amount of urine component can be inspected with high accuracy.

【0027】以上、本発明の実施の形態を図面により詳
述してきたが、具体的な構成はこの実施の形態に限られ
るものではなく、本発明の要旨を逸脱しない範囲におけ
る設計の変更等があっても本発明に含まれる。例えば、
実施の形態3では、装置本体を筐体とは別体に形成した
例を示したが、装置本体は筐体内に設けてもよい。ま
た、発光素子と受光素子の組を3組以上設けて、3波長
以上の吸光度分析により尿中特定成分の検査を行うこと
ができるようにしてもよい。
Although the preferred embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this preferred embodiment, and a design change or the like may be made without departing from the gist of the present invention. Even if present, it is included in the present invention. For example,
In the third embodiment, an example in which the apparatus main body is formed separately from the housing has been described. However, the apparatus main body may be provided in the housing. In addition, three or more sets of light emitting elements and light receiving elements may be provided so that a specific component in urine can be tested by absorbance analysis of three or more wavelengths.

【0028】[0028]

【発明の効果】以上説明したように、請求項1記載の発
明にあっては、光路長を測定波長に応じて制御する制御
手段が設けられているので、計測者が光路長の条件を意
識しなくても、測定波長に応じた最適光路長で吸光度を
測定することができ、よって短時間かつ高精度に検査を
行うことができるという効果が得られる。請求項2記載
の発明にあっては、水の吸光度が極めて低い測定波長 7
00〜1200nmの時には、光路長を1〜10cmにして水以外の
尿中成分の吸光度を強調して計測し、また、水の吸光度
が大きく増加する測定波長1200〜2500nmの時には、光路
長を1〜5mmにして水の吸光を少なくして水以外の尿中
成分の吸光度を計測することができるので、高精度に検
査を行うことができるという効果が得られる。請求項3
ならびに4記載の発明では、光路長を極めて簡単かつ正
確に測定波長に応じた最適光路長に設定することができ
るという効果も得られる。また、請求項5記載の発明に
あっては、発光部ならびに受光部を、尿中に浸漬させる
筐体内に設けたので、装置の小型化ならびに簡易化を容
易に図ることができ、それによってコストの削減も図る
ことができるという効果が得られる。請求項6記載の発
明にあっては、発光部と受光部の組が複数組設けられ、
各組の発光部が異なる波長の光を発生するようにしたの
で、多波長測定を行うことができ、複雑な解析が可能と
なるという効果が得られる。請求項7記載の発明にあっ
ては、発光部と受光部の組が複数組設けられ、各組の発
光部と受光部との間の距離が異なっているので、測定波
長に応じた最適光路長で吸光度を測定することができ、
よって高精度に検査を行うことができるという効果が得
られる。
As described above, according to the first aspect of the present invention, since the control means for controlling the optical path length in accordance with the measurement wavelength is provided, the measurer is conscious of the condition of the optical path length. Even without this, it is possible to measure the absorbance at the optimum optical path length according to the measurement wavelength, and thus it is possible to obtain an effect that the inspection can be performed in a short time and with high accuracy. According to the invention of claim 2, the measurement wavelength at which the absorbance of water is extremely low
When the wavelength is from 00 to 1200 nm, the optical path length is set to 1 to 10 cm and the absorbance of urine components other than water is emphasized and measured. Since the absorbance of urine components other than water can be measured by reducing the absorbance of water by setting it to 5 mm, the effect of being able to perform a test with high accuracy is obtained. Claim 3
The invention described in (4) also has an effect that the optical path length can be set extremely easily and accurately to the optimum optical path length according to the measurement wavelength. According to the fifth aspect of the present invention, since the light-emitting unit and the light-receiving unit are provided in the housing immersed in urine, the device can be easily reduced in size and simplified, thereby reducing costs. The effect is also obtained that the reduction of the number can be achieved. In the invention according to claim 6, a plurality of sets of a light emitting unit and a light receiving unit are provided,
Since each set of light emitting units emits light of a different wavelength, it is possible to perform multi-wavelength measurement and obtain an effect that a complicated analysis becomes possible. In the invention according to claim 7, since a plurality of sets of the light emitting unit and the light receiving unit are provided, and the distance between the light emitting unit and the light receiving unit of each set is different, the optimum optical path according to the measurement wavelength is provided. Absorbance can be measured by length,
Therefore, the effect that the inspection can be performed with high accuracy is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1の尿検査装置の構成説明図であ
る。
FIG. 1 is an explanatory diagram of a configuration of a urine test apparatus according to a first embodiment.

【図2】 実施の形態2の尿検査装置を示すブロック図
である。
FIG. 2 is a block diagram showing a urine test apparatus according to a second embodiment.

【図3】 実施の形態2の尿検査装置の検査容器を示す
斜視図である。
FIG. 3 is a perspective view showing a test container of the urine test apparatus according to the second embodiment.

【図4】 実施の形態2の尿検査装置の検査容器を示す
平面図である。
FIG. 4 is a plan view showing a test container of the urine test apparatus according to the second embodiment.

【図5】 検査容器の変形例を示す斜視図である。FIG. 5 is a perspective view showing a modification of the inspection container.

【図6】 検査容器の変形例を示す平面図である。FIG. 6 is a plan view showing a modification of the inspection container.

【図7】 水の吸光度特性を示す図である。FIG. 7 is a diagram showing the absorbance characteristics of water.

【図8】 実施の形態3の尿検査装置を示す構成説明図
である。
FIG. 8 is a configuration explanatory view showing a urine test apparatus according to a third embodiment.

【図9】 実施の形態3の尿検査装置の検査容器を示す
斜視図である。
FIG. 9 is a perspective view showing a test container of the urine test apparatus according to the third embodiment.

【図10】 実施の形態3の尿検査装置の検査容器を示
す正面図である。
FIG. 10 is a front view showing a test container of the urine test apparatus according to the third embodiment.

【図11】 実施の形態4の尿検査装置の検査容器を示
す斜視図である。
FIG. 11 is a perspective view showing a test container of the urine test apparatus according to the fourth embodiment.

【図12】 実施の形態4の尿検査装置の検査容器を示
す側面図である。
FIG. 12 is a side view showing a test container of the urine test apparatus according to the fourth embodiment.

【図13】 実施の形態5の尿検査装置の検査容器を示
す斜視図である。
FIG. 13 is a perspective view showing a test container of the urine test apparatus according to the fifth embodiment.

【図14】 実施の形態5の尿検査装置の検査容器を示
す側面図である。
FIG. 14 is a side view showing a test container of the urine test apparatus according to the fifth embodiment.

【図15】 実施の形態6の尿検査装置の検査容器を示
す斜視図である。
FIG. 15 is a perspective view showing a test container of the urine test apparatus according to the sixth embodiment.

【図16】 実施の形態6の尿検査装置の検査容器を示
す正面図である。
FIG. 16 is a front view showing a test container of the urine test apparatus according to the sixth embodiment.

【符号の説明】[Explanation of symbols]

1 検査容器 2 発光部 21 光源 22 分光器 23 光ファイバ 3 光検出器(受光部) 4 制御・計測部 5 距離制御部(制御手段) 6 検査容器 7 位置制御部(制御手段) 8 検査容器 9 筐体 91a〜91f 発光素子(発光部) 92a〜92h 受光素子(受光部) 93 計測部 94a〜94f 凹部 95 ビームスプリッタ 96 非線形光学素子フィルタ 10 装置本体 101 表示部 102 演算部 103 記憶部 104 制御部 11 ケーブル Reference Signs List 1 inspection container 2 light emitting unit 21 light source 22 spectroscope 23 optical fiber 3 photodetector (light receiving unit) 4 control / measurement unit 5 distance control unit (control means) 6 inspection container 7 position control unit (control means) 8 inspection container 9 Cases 91a to 91f Light emitting elements (light emitting sections) 92a to 92h Light receiving elements (light receiving sections) 93 Measuring sections 94a to 94f Concave sections 95 Beam splitters 96 Nonlinear optical element filters 10 Main body 101 Display section 102 Calculation section 103 Storage section 104 Control section 11 Cable

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】尿を入れる検査容器と、その検査容器中の
尿に2波長以上の異なる光を照射する発光部と、前記発
光部の照射時に尿を透過した透過光を受光する受光部
と、前記透過光の吸光度を計測する計測部と、を備えて
いる尿検査装置において、 前記発光部から照射した光が前記受光部に達するまでの
間に検査容器中の尿を透過する距離を示す光路長を測定
波長に応じて制御する制御手段が設けられていることを
特徴とする尿検査装置。
1. A test container for containing urine, a light emitting unit for irradiating urine in the test container with light having two or more different wavelengths, and a light receiving unit for receiving transmitted light transmitted through urine when the light emitting unit is irradiated. A measuring unit for measuring the absorbance of the transmitted light, the urine test device comprising: a measuring unit that measures a distance through which urine in a test container passes through until light emitted from the light emitting unit reaches the light receiving unit. A urine test apparatus comprising a control unit for controlling an optical path length according to a measurement wavelength.
【請求項2】前記制御手段が、測定波長 700〜1200nmの
時には前記光路長を1〜10cmにする制御を行い、測定波
長1200〜2500nmの時には前記光路長を1〜5mmにする制
御を行う請求項1記載の尿検査装置。
2. The control means controls the optical path length to be 1 to 10 cm when the measurement wavelength is 700 to 1200 nm, and controls the optical path length to be 1 to 5 mm when the measurement wavelength is 1200 to 2500 nm. Item 7. A urine test apparatus according to Item 1.
【請求項3】前記発光部と前記受光部の少なくとも一方
が前記検査容器中に移動可能に配設されていて、前記発
光部と前記受光部との間の距離が前記制御手段によって
制御されている請求項1または2記載の尿検査装置。
3. The apparatus according to claim 2, wherein at least one of said light emitting section and said light receiving section is movably disposed in said inspection container, and a distance between said light emitting section and said light receiving section is controlled by said control means. The urine test apparatus according to claim 1 or 2, wherein
【請求項4】前記検査容器が、前記発光部ならびに前記
受光部との相対位置を可変に設けられ、前記検査容器
は、前記発光部ならびに前記受光部との相対位置変化に
より光路長が変化する形状に形成されており、前記検査
容器と前記発光部ならびに前記受光部との相対位置が前
記制御手段によって制御されている請求項1または2記
載の尿検査装置。
4. The test container has a variable position relative to the light emitting unit and the light receiving unit, and an optical path length of the test container changes according to a change in a relative position between the light emitting unit and the light receiving unit. The urine test apparatus according to claim 1, wherein the urine test apparatus is formed in a shape, and a relative position between the test container, the light emitting unit, and the light receiving unit is controlled by the control unit.
【請求項5】光を照射する発光部と、前記発光部が照射
した光を受光する受光部と、前記透過光の吸光度を計測
する計測部と、を備え、 前記発光部ならびに前記受光部が、尿中に浸漬させる筐
体内に設けられ、前記筐体の前記発光部と受光部との間
に、尿中への浸漬時に尿で満たされる凹部が設けられて
いることを特徴とする尿検査装置。
5. A light emitting unit for irradiating light, a light receiving unit for receiving light emitted by the light emitting unit, and a measuring unit for measuring absorbance of the transmitted light, wherein the light emitting unit and the light receiving unit are A urine test provided in a housing to be immersed in urine, wherein a concave portion filled with urine when immersed in urine is provided between the light emitting portion and the light receiving portion of the housing. apparatus.
【請求項6】前記発光部と前記受光部の組が複数組設け
られており、各組の発光部が異なる波長の光を発生する
請求項5記載の尿検査装置。
6. The urine test apparatus according to claim 5, wherein a plurality of sets of said light emitting section and said light receiving section are provided, and each set of light emitting sections generates light of a different wavelength.
【請求項7】前記発光部と前記受光部の組が複数組設け
られており、各組の発光部と受光部との間の距離が異な
っている請求項5記載の尿検査装置。
7. The urine test apparatus according to claim 5, wherein a plurality of sets of the light emitting section and the light receiving section are provided, and a distance between the light emitting section and the light receiving section of each set is different.
JP4723798A 1998-02-27 1998-02-27 Urinalysis device Pending JPH11248622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4723798A JPH11248622A (en) 1998-02-27 1998-02-27 Urinalysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4723798A JPH11248622A (en) 1998-02-27 1998-02-27 Urinalysis device

Publications (1)

Publication Number Publication Date
JPH11248622A true JPH11248622A (en) 1999-09-17

Family

ID=12769615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4723798A Pending JPH11248622A (en) 1998-02-27 1998-02-27 Urinalysis device

Country Status (1)

Country Link
JP (1) JPH11248622A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
JP2010101634A (en) * 2008-10-21 2010-05-06 Marcom:Kk Spectrophotometer
WO2018200070A1 (en) * 2017-04-24 2018-11-01 Baker Hughes, A Ge Company, Llc Oscillating path length spectrometer
CN110275033A (en) * 2019-07-15 2019-09-24 杭州德译医疗科技有限公司 A kind of human urine automated detection system
CN111166288A (en) * 2020-01-04 2020-05-19 山东大学齐鲁医院(青岛) Endocrine detection system based on Internet of things
WO2022209703A1 (en) * 2021-03-31 2022-10-06 テルモ株式会社 Measurement adapter, measurement system and measurement method
CN116499974A (en) * 2023-06-27 2023-07-28 江西特康科技有限公司 Chemical analysis device, analysis method and clinical examination box

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
JP4879179B2 (en) * 2004-09-07 2012-02-22 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
US8214168B2 (en) 2004-09-07 2012-07-03 Transonic Systems, Inc. Noninvasive testing of a material intermediate spaced walls
JP2010101634A (en) * 2008-10-21 2010-05-06 Marcom:Kk Spectrophotometer
GB2576448A (en) * 2017-04-24 2020-02-19 Baker Hughes A Ge Co Llc Oscillating path length spectrometer
WO2018200070A1 (en) * 2017-04-24 2018-11-01 Baker Hughes, A Ge Company, Llc Oscillating path length spectrometer
GB2576448B (en) * 2017-04-24 2021-12-29 Baker Hughes A Ge Co Llc Oscillating path length spectrometer
CN110275033A (en) * 2019-07-15 2019-09-24 杭州德译医疗科技有限公司 A kind of human urine automated detection system
CN111166288A (en) * 2020-01-04 2020-05-19 山东大学齐鲁医院(青岛) Endocrine detection system based on Internet of things
CN111166288B (en) * 2020-01-04 2022-05-13 山东大学齐鲁医院(青岛) Endocrine detecting system based on Internet of things
WO2022209703A1 (en) * 2021-03-31 2022-10-06 テルモ株式会社 Measurement adapter, measurement system and measurement method
CN116499974A (en) * 2023-06-27 2023-07-28 江西特康科技有限公司 Chemical analysis device, analysis method and clinical examination box
CN116499974B (en) * 2023-06-27 2023-09-19 江西特康科技有限公司 Chemical analysis device, analysis method and clinical examination box

Similar Documents

Publication Publication Date Title
US4882492A (en) Non-invasive near infrared measurement of blood analyte concentrations
US5748308A (en) Programmable standard for use in an apparatus and process for the noninvasive measurement of optically absorbing compounds
CA1127865A (en) Method and device for analysis with color identification test paper
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
US8872133B2 (en) Device for measuring the fluorescence of a medium
RU2007126679A (en) SYSTEM FOR SPECTROSCOPY OF PASSING FOR USE IN DETERMINING ANALYZED SUBSTANCES IN THE LIQUID OF THE ORGANISM
JPH1019885A (en) Concentration-measuring apparatus and method therefor
EP0795129B1 (en) Apparatus for analysing blood and other samples
JP4714822B2 (en) Non-destructive measuring device for light scatterers
CN101371130B (en) Optical analyzer
JPH11248622A (en) Urinalysis device
JP6230017B2 (en) Component concentration analyzer using light emitting diode
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JPH1189799A (en) Concentration measuring device for specified ingredient
JP2010515046A (en) Spectroscopic measurement
JP3422725B2 (en) An analyzer that simultaneously performs Raman spectroscopy and particle size distribution measurement
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
JP2006508354A (en) Spectrometers, especially reflective spectrometers
KR100961138B1 (en) Beam Spectrometer
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
KR20090109027A (en) Method and apparatus of multi channel fruit internal quality measurement
JP7445557B2 (en) Analysis method, analysis device that uses the analysis method, and program
JP2004045096A (en) Apparatus for determining bio-component
JP2023539429A (en) Absorption spectrometer and how to use it