JP3586955B2 - Electric vehicle charging system - Google Patents

Electric vehicle charging system Download PDF

Info

Publication number
JP3586955B2
JP3586955B2 JP01748696A JP1748696A JP3586955B2 JP 3586955 B2 JP3586955 B2 JP 3586955B2 JP 01748696 A JP01748696 A JP 01748696A JP 1748696 A JP1748696 A JP 1748696A JP 3586955 B2 JP3586955 B2 JP 3586955B2
Authority
JP
Japan
Prior art keywords
coil
primary coil
secondary coil
electric vehicle
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01748696A
Other languages
Japanese (ja)
Other versions
JPH09215211A (en
Inventor
邦彦 渡辺
収一 金川
努 田中
正 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP01748696A priority Critical patent/JP3586955B2/en
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to DE69711963T priority patent/DE69711963T2/en
Priority to EP97101385A priority patent/EP0788211B1/en
Priority to DE69714879T priority patent/DE69714879T2/en
Priority to EP00114922A priority patent/EP1061631A1/en
Priority to EP97101386A priority patent/EP0788212B1/en
Priority to US08/791,110 priority patent/US5821731A/en
Priority to US08/791,109 priority patent/US5850135A/en
Publication of JPH09215211A publication Critical patent/JPH09215211A/en
Application granted granted Critical
Publication of JP3586955B2 publication Critical patent/JP3586955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/30Preventing theft during charging
    • B60L2270/32Preventing theft during charging of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気自動車に充電するための充電システムに関する。
【0002】
【従来の技術】
従来、この種の充電システムとして実用化されている構成は図28に示すようである。電気自動車1の車体には動力用バッテリーに接続された車両側コネクタ2が設けられ、ここに車外から給電コネクタ3が接続される。その給電コネクタ3は車両外に設置された充電用電源4からのケーブル5先端に設けられており、充電用電源4からの電力は両コネクタ2,3を通して動力用バッテリーに供給されて充電が行われる。
【0003】
【発明が解決しようとする課題】
上述の充電システムでは、給電コネクタ3を充電設備から取り出し、これをケーブル5を引き出しながら自動車1側まで運び、そして車体のコネクタ蓋1aを開けて車両側コネクタ2に接続するという作業が必要で、相当に面倒である。
しかも、従来の充電コネクタは端子を相互に嵌合接触させて通電路を確立する構成であるから、その嵌合操作の抵抗が大きく、比較的大きな力でコネクタの嵌合操作を行う必要があり、さらには、雨水等の水滴による電流リークの防止機能を施さなければならないという問題があった。
【0004】
本発明は上記事情に鑑みてなされ、その目的は、簡単に電気自動車の充電をすることができる電気自動車の充電システムを提供することにある。
【0005】
【課題を解決するための手段及び作用・効果】
<請求項1の発明>
上記目的を達成するため、請求項1に係る発明は、外部電源に連なる一次コイルを、電気自動車の動力用蓄電装置に連なる二次コイルに電磁結合させてこの動力用蓄電装置を充電するシステムであって、一次コイルと二次コイルとの位置関係を検出するコイル位置検出手段と、駆動部を具備し、前記一次コイル及び二次コイルの両コイルのうちの少なくとも一方のコイルを任意の位置に移動するコイル移動手段と、前記コイル位置検出手段の検出結果に基づいて上記コイル移動手段の駆動部を制御して上記両コイルを磁気的に結合する位置に案内する制御手段とを備え、前記コイル位置検出手段は、3つの磁気センサが前記一次コイル側において当該一次コイルを囲む円を三等分するように配設され、前記二次コイルを励磁し、前記3つの磁気センサにより検出した磁界強度の比較結果に基づき前記一次コイルと前記二次コイルとの位置関係を検出する構成であることを特徴とする。
【0006】
かかる構成とすると、コイルの位置を検出しつつ、コイルを電磁結合位置に案内するので、コイル同士がズレた状態で電磁結合されることがない。よって、エネルギ伝達効率がよい充電作業を行える。
このような構成とすると、本来、電力伝送用として設けられている二次コイルを利用して両コイルの位置関係を検出することができるから、部品数を削減してコストを下げることができる。
【0008】
このような構成では、3つの磁気センサが一次コイル側において当該一次コイルを囲む円を三等分するように配設されているので、各磁気センサにより検出される磁界強度の検出結果は両コイル間の距離や方向に応じて異なることとなる。従って、この異なった検出結果と磁気センサ同士の位置関係とから、演算により二次コイルとの間の位置関係を検出することができる。
<請求項の発明>
請求項に係る発明は、上記請求項1記載の電気自動車用充電システムにおいて、前記コイル移動手段は、駐車床面に設置されて一次コイルを支持するボディと、同ボディを所定の方向に直線移動させるX軸駆動手段と、同ボディを前記X軸駆動手段と直交する方向に直線移動させるY軸駆動手段とを備え、前記3つの磁気センサのうち、2つの磁気センサは前記コイル移動手段における2つの直線移動方向の一方の方向に沿って並び、残りの1つの磁気センサは前記2つの直線移動方向の他方の方向に沿いかつ前記2つの磁気センサの中間位置を通過する直線上に配置されていることを特徴とする。
【0009】
上記請求項の構成とすると、2種類の駆動手段によって一次コイルを所要箇所に自由に移動させることができ、さらに直交座標形を構成するので、これらの駆動手段の制御手段における演算処理が容易である。
<請求項の発明>
請求項に係る発明は、上記請求項1記載の電気自動車用充電システムにおいて、前記コイル移動手段は、一次コイルを支持するボディと、このボディに設けられて同ボディを駐車床面上に走行させる同心状の1対の走行車輪と、前記制御手段によって制御され前記1対の走行車輪それぞれを駆動する1対の駆動機構とを備え、前記1対の走行車輪が同じように駆動されたときは直進し、違うように駆動すれば向きが変わるように構成され、前記3つの磁気センサのうち、2つの磁気センサは前記1対の走行車輪の配列方向に沿って並び、残りの1つの磁気センサは前記直進方向に沿いかつ前記2つの磁気センサの中間位置を通過する直線上に配置されいることを特徴とする。
【0010】
さらに、請求項の構成とすると、一次コイルを備えたボディが駐車床面上を二次コイルに向かって走行する。従って、既設の駐車施設に大掛かりな改造することなく採用することができる。
<請求項4の発明>
請求項4に係る発明は、外部電源に連なる一次コイルを、電気自動車の動力用蓄電装置に連なる二次コイルに電磁結合させてこの動力用蓄電装置を充電するシステムであって、一次コイルと二次コイルとの位置関係を検出するコイル位置検出手段と、駆動部を具備し、前記一次コイル及び二次コイルの両コイルのうちの少なくとも一方のコイルを任意の位置に移動するコイル移動手段と、前記コイル位置検出手段の検出結果に基づいて上記コイル移動手段の駆動部を制御して上記両コイルを磁気的に結合する位置に案内する制御手段とを備え、前記コイル位置検出手段は、前記1次コイルを所定周波数で励磁し、前記二次コイルとの相互誘導作用による、前記一次コイルの負荷電流と励磁電圧との位相差に基づき前記一次コイルと前記二次コイルとの位置関係を検出する構成であることを特徴とする電気自動車用充電システム。
請求項4の構成によれば、一次コイルを励磁すると、二次コイルとの間の磁気的結合度に応じて一次コイルに流れる電流位相が相違するから、励磁電圧と励磁電流との位相差を測定することで一次及び二次の各コイルの距離を検出することができる。
【0011】
【発明の実施の形態】
<第1実施形態>
以下、図1ないし図14を参照して本発明の第1実施形態を説明する。
図1は、本発明にかかる充電システムを備えた駐車場に、電気自動車Eを進入させるところを示したものである。
この電気自動車Eは、動力用蓄電装置であるバッテリ21を主電力供給源とし、これから電力を供給されて走行用モータや各種電気機器が機能する。このバッテリ21には充電用回路22を介して二次コイル20が接続されており、その二次コイル20に誘導された交流を整流に変換して充電されるようになっている。
【0012】
二次コイル20は、例えばフェライト製の磁芯に電線を巻回してなる偏平な円盤板状に形成され、例えば合成樹材料製の保護ケース内に収容されており、図2に示すように、磁芯の軸方向を垂直方向に向けて車体底部において地面に面するように取り付けてある。また、この二次コイル20は、電気自動車Eに備えた操作部の操作に基づき所定の周波数で励磁されて位置検出用の交番磁界を形成するようになっている。
一方、駐車場の床面には、凹所Aが形成され、その内部には一次コイル10を移動可能に支持するコイル移動装置30(コイル移動手段)が設けられている。この凹所Aは、幅においては、上記電気自動車Eの左右両輪が跨ぐ程度の大きさで、長さにおいては、電気自動車Eの概ね半分ぐらいとなっている。
【0013】
同凹所A内のコイル移動装置30は、図3に示すように、偏平箱状のボディ40を駆動する方向が直交する二つのスライド駆動ユニット31にて移動させるいわゆるX−Yテーブルを構成している。
以下、符号(31ないし37)にx,yを添えることにより、上記二つのスライド駆動ユニットを区別し、x,yを添えない場合には両者を総称するものとしてその構成について説明をする。
スライド駆動ユニット31は、平行となるように支持された一対のレール32と、それぞれのレール32上で低摩擦で直線移動するスライダ33とを具備している。一対のレール32の間には、それと平行となるようにボールネジ機構が設けられ、その雌ねじ部34を上記スライダ33にて支持された対象物に取付けるとともに、雄ねじ部35をモータ36の回転軸に連結させてある。また、モータ36のハウジングは上記レール32を支持する側に固定してあり、その駆動力は、上記スライダ33に支持された対象物をレール32に沿ってスライド移動させるように作用する。
【0014】
前記コイル移動装置30においては、一つのスライド駆動ユニットのレール32xを凹所A内の底面に固定してX軸駆動ユニット31xとし、それと直交するようにもう一つのスライド駆動ユニットのレール32yを上記X軸駆動ユニット31xのスライダ33xに支持してY軸駆動ユニット31yとしてある。このY軸駆動ユニット31yのスライダ33yには薄箱状ボディ40が支持されており、両駆動ユニット31x,31yを動かすことによって同ボディ40を駐車場の床面に対して任意の位置に移動できるようになっている。なお、このX軸駆動ユニット31xの駆動方向は、図1に示すように、駐車場においては、電気自動車Eが進入する方向となっている(ここにおいて、便宜上、各駆動ユニットの方向を単にX方向、Y方向と呼ぶこととする)。
【0015】
このボディ40は、図4に示すように、上面に円形開口41を備えてその内側には一次コイル10を設け、周縁には三つの磁気センサ50(コイル位置検出手段)を配設してある。また、ボディ40の内部には図5に示したモータ42の駆動により伸縮可能なパンタグラフ43が備えられ、その一端をボディ40の底面に、他端を一次コイル10の下面に取付け、図6に示すように、一次コイル10を上下に移動可能としている。
一次コイル10は、例えばフェライト製の磁芯に電線を巻回してなる偏平板状に形成され、例えば合成樹材料製の円形の保護ケース内に収容されている。この保護ケースの外径は、上記開口41内に若干の隙間を設けて丁度収まる程度の大きさとなっている。すなわち、一次コイル10と開口41及び磁気センサを配設してある円は同心円となっている。また、後述詳細の三つの磁気センサ50を結ぶ円(図3、図5中のL1)も開口41と同心円を三等分するように配設してある。
【0016】
前記パンタグラフ43は、ギヤ44,45を一部に設けて左右対称に動くようにすることで、上下方向に伸縮可能とし、モータ42をギヤの一つ連結させてその駆動力を伝える構成となっている。このモータ42には、減速機42aが備えられていて適度な駆動力を発生できるようになっている。なお、本実施形態では、一次コイル10の上下移動にパンタグラフ43を用いたが、ボールネジを用いたものや、エアー駆動シリンダであってもよい。
前記三つの磁気センサ50は、例えば、電線を巻回した小型コイルを合成樹脂材料でモールドしてなり、同小型コイルに誘導される起電力により磁界強さを検出できる。磁気センサ50の一つは、一次コイル10の中心を通るY方向の線(図3,図5中のL2)上に設けるようにして上述の通り、開口41の周縁に三等分に配設してある。(以下、線L2上に位置するものを磁気センサ50a、同磁気センサ50aから時計回りに残りの二つを磁気センサ50b,50cと呼ぶこととする。)
このコイル位置検出の基本原理は以下のようである。
【0017】
図7の模式図に示すように、電気自動車Eを駐車場に止め、その二次コイル20を励磁して磁界を発生させると、二次コイル20からの距離(図示R1,R2)が異なる磁気センサ(図示S1,S2)の間では検出する磁界強度が異なる。強く磁界強度を検出した磁気センサS1の方向にボディ40を移動していくと、図8に示すように、各磁気センサS1,S2が二次コイル20から均等距離(R1=R2)の位置にし、検出する磁界強度が一致する。これを、本実施形態の三つの磁気センサ50a,50b,50cの間に適用すると、各センサの磁界強度が一致したとき、同三つの磁気センサを結ぶ円と同心円の一次コイル10と二次コイル20とが正対することとなる。
【0018】
なお、磁気センサとしては上述したコイル形のものに限らず、ホール素子、磁気抵抗素子等を利用することもできる。
以上説明してきた一次コイル10、三つの磁気センサ50及び各部位のモータ(36x,36y,42)の信号線または動力線は、図9のブロック図に示すように、前記外部電源装置11内の主制御装置12(制御手段)又は電源13a〜13eに連なっており(磁気センサはアンプ14を介している)、磁気センサ50が検出した信号を主制御装置12で処理して各部位を動作せる。この主制御装置12内におけるデータ処理のアルゴリズムを本実施形態の充電手順と併せて以下説明する。
【0019】
電気自動車Eを駐車場に進入させ(図1)、凹所Aを左右の車輪で跨ぐようにして駐車し(図10)、電気自動車Eの操作部にて二次コイル20を充電準備状態に切り替える。
すると、二次コイル20が励磁されて駐車場内に所定の交番磁界が形成される。ここで、二次コイル20と一次コイル10とが正確に対面していなければ、三つの磁気センサ50a,50b,50cから二次コイル20までの距離Ra,Rb,Rcが異なり、磁気センサ50が検知する磁界強度も異なることとなる。
この異なった検出結果は、主制御装置12内で次のように比較され、その比較結果に基づきコイル移動装置30が駆動される。
まず両コイルのX方向のズレを是正すべく、X方向に並んだ磁気センサ50b,50c間の比較がなされる。両磁気センサのうち、磁界強度を強く検出した磁気センサ50cの方向に、その検出結果の差が無くなるまで一次コイル10をX軸駆動ユニット31xにて動かす。すると、図11に示すように、一次コイル10と二次コイル20とが同じY方向に線上に位置したとき、すなわちX方向にズレがなくなったとき、両磁気センサ50b,50cは二次コイル20から同じ距離(Rb=Rc)となり、X軸駆動ユニット31xが停止する。
【0020】
次に、Y方向のズレを是正すべく、上記磁気センサ50b(50cでもよい)と磁気センサ50aとの検出結果を比較し、上記方法と同様にしてY軸駆動ユニット31yを駆動する。すると、図12に示すように、一次コイル10と二次コイル20とが対面した位置で両磁気センサと二次コイル20との距離が等しくなり、Y軸駆動ユニット31yが停止する。
この位置で、三つのセンサの検出結果が等しいことを主制御装置が確認したら(等しくない場合は再度位置合わせする)、図13及び図14に示すように、モータ42を駆動してパンタグラフ43を上方に延ばし、両コイルの保護ケース同士を当接させる。この際、モータ42の電流値を主制御装置12にフィードバックすることで、コイル同士の無理な押しつけがなされないようにする。また、この電流値のフィードバックにより、コイル同士の当接を認識したら一次コイル10を励磁させる。電気自動車E側では一次コイル10の磁界により二次コイル20に発生した電圧から、充電準備が完了したことを充電用回路22にて認識し、二次コイル20の励磁を止めてバッテリ21への充電がなされる。
【0021】
バッテリ21の充電が終了したら、再度二次コイル20を励磁して磁界を発生させる。一次コイル10側ではそれによる磁界の変化を上記センサ50で感知し、励磁を終了すると共に一次コイル10を下げ、以上をもって一台の電気自動車Eの充電作業を終了する。
続いて、他の電気自動車が駐車場に止められたら、同じようにして一次コイル10と二次コイル20とを電磁結合させて充電する。この際、磁気センサ50が二次コイル20の場所を検出するので、人手を介さず、あらゆる電気自動車に対応することができるため、例えば、充電用の駐車場を無人で運営することもできる。
【0022】
<第2実施形態>
この実施形態は、コイル移動手段として一次コイルを搭載した自走車60を用い、同一次コイルを二次コイルと電磁的に結合する位置に案内するシステムである。以下、その内容を図15ないし図25を参照して説明する。
図15は、上記システムを備えた駐車場に電気自動車Eを進入させるところを示した示したものである。
上記駐車場の床面には、外部電源装置11に連なる自走車60が待機している。同自走車60は、偏平箱形のカーボディ61の下面側に、四つの車輪を設けて駐車床面上を走行できるようにしたものである。この四つの車輪は、図16、図17に示すように、大きめの前輪62,62と小さめの後輪63,63とからなり、前輪62,62においては、図18に示すように、それぞれ別々に駆動できるようにモータ64,64が減速器64a,64aを介して連結され、後輪63,63においては、自由に方向を変えられるように、キャスタが用いられている。従って、左右の前輪62,62を同じように駆動すれば自走車60は直進し、違うように駆動すれば自走車60は向きを変えることができる。
【0023】
カーボディ61上面には、図19に示すように、開口65が形成され、その中には一次コイル10が、その周縁には三つの磁気センサ50が三等分に配設されている。この一次コイル10と磁気センサ50の配置は、図17に示すように、前記車輪の幅方向に中心線上(図示M)に対して左右対称に配置しており、三つの磁気センサ50のうちの一つ(磁気センサ50a)はその中心線上におけるカーボディ61前方に位置している。また、カーボディ61内には、第1実施形態と同様にパンタグラフ43及びその駆動モータ42が備えられ、一次コイル10を上下に移動できるようになっている。
【0024】
以上述べた、走行用モータ64,64、パンタグラフ43の駆動用モータ42及び一次コイル10の動力線又は信号線は、カーボディ61の背面から一束にまとめられて前記外部電源装置11まで延びている。
なお、その他の構造に関しては、第1実施形態と同様であり、同一部位については同一符号を付すことで重複した説明は省略し、続いて上記充電システムの動作を説明する。
電気自動車Eを駐車場に進入させ、その奥の駐車床面に待機させてある自走車60の手前当たりの適当な位置に駐車する(図20,図23)。そして、電気自動車Eの操作部にて二次コイル20を充電準備状態に切り替えて位置検出用の交番磁界を形成させる。
【0025】
すると、自走車60に備えた三つの磁気センサ50にも磁界が及び、それぞれが磁界の強度を検出する。この検出結果を主制御装置12内で次のように比較し、その結果に基づきコイル移動装置30が駆動する。
まず自走車60を前進させる方向を決めるべく、カーボディ61後方に並んだ二つの磁気センサ50b,50c(磁気センサ50aから時計回りに磁気センサ50b,50cとする)の検出結果が比較される。そして、両センサのうち磁界強度を弱く検出した磁気センサ50bの方の駆動輪である前輪64をその強度差が無くなるまで前転させる。すると、図21に示すように、自走車60が二次コイル20の方向に向いて止まる。
【0026】
次に、磁気センサ50aとカーボディ61後方の磁気センサ50b(50cでもよい)との検出結果を比較し、両者の検出結果に差がなくなるまで左右の駆動輪を前転させて自走車60を前進させる。すると、図22、図24に示すように、一次コイル10と二次コイル20とが対面する位置で止まる。
この位置で、パンタグラフ43を上方に延ばして両コイルの保護ケース同士を当接させ(図25)、以下前述した充電作業を行う。充電作業を終了したら、上述の逆順序をたどって駆動モータ64,64を動かし、自走車60を元の場所に待機させる。続いて、他の電気自動車が駐車場に止められたら、同じようにして一次コイルと二次コイルとを電磁結合させて充電する。
【0027】
このように、本実施形態では、電気自動車Eを自走車60の手前当たりに止めればよく、駐車する際の制約が少ないため、駐車が容易となる。また、充電作業をしないときは、自走車60を待機位置に下げることができ、充電設備にスペースを取られることがない。さらに、既設の駐車施設に大掛かりな改造することなく採用することができる。
<他の実施形態>
本発明は、前記両実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)コイル位置検出手段
上述したコイル位置検出手段は、磁気センサを用いてコイルの位置を検出しているが、例えば、二次コイル側に光源を設けると共に、一次コイル側には複数の光センサを設けて二次コイルの位置を検出するものであってもよい。あるいは、二次コイル側に電波の発信源を設けてそれに基づいてコイルの位置を検出するものでもよい。但し、磁界を用いたものであれば、充電用のコイルを利用して位置検出用の磁界を形成することができるので、新たに光源や電波の発信源等を設けずに済み、コストの削減ができる。
【0028】
また、次に説明するように、磁気センサは複数に限らず、1個のみでも一次コイルを二次コイルとの結合位置に案内することができる。すなわち、磁気センサにより検出される磁界強度は二次コイルとの距離に反比例する。そこで、一次コイルを予め定めた方向に試験的に所定距離移動させ、その結果、磁気センサにより検出される磁界強度が弱くなれば180度反転させた方向に移動させ、強くなればその方向に移動させることで常に磁界強度が強くなる方向に移動させる。次に、90度向きを変えた方向に試験的に移動させて上述のように磁界強度が強くなる方向を見つけてその方向に移動させることを繰り返せば、一次コイルはジグザグ状に二次コイルに接近して行き、ついには二次コイルとの結合位置に到達する。
【0029】
さらに、次のようにすれば、一次コイルを位置検出用の磁気センサとして利用することも可能である。すなわち、電気自動車が駐車したところで、二次コイルを所定周波数で励磁して位置検出用の交番磁界を発生させる。この磁界が一次コイルに及ぶことにより、一次コイルには同一周波数の起電力が誘導され、その強さは二次コイルの一次コイルからの距離に反比例する。従って、一次コイルに誘導される誘導起電力を測定することにより二次コイルが形成する磁界強度を測定することができ、ひいては二次コイルからの距離を測定することができる。
また、次のようにすれば、二次コイルによって位置検出用の交番磁界を発生させることを省略することもできる。電気自動車が駐車したところで、一次コイルを所定周波数で励磁する。すると、一次コイルからの磁束が二次コイルに鎖交するから、二次コイルに誘導起電力を発生させる。このとき二次コイルに適当な負荷が接続してあれば、二次コイルに負荷電流が流れ、それに応じて相互誘導作用によって一次コイルにも負荷電流が流れる。この一次側負荷電流と励磁電圧との位相差は両コイルの結合度、すなわち両コイル間の距離によって異なり、両コイル間の距離が近くなるほど磁気結合度が高くなるから、一次側負荷電流と一次コイルの励磁電圧との位相差は少なくなる。従って、上記位相差を測定することにより両コイル間の距離が測定できるのである。
(2)コイル移動手段
上述したコイル移動手段の他に、例えば図26に示すように、マニピュレータ70を用い、その先端に一次コイル10および磁気センサ50等を設けてもよい。このようなものであれば、電気自動車E側の二次コイルが車体の側面や天井面に設けられているものでも、マニピュレータの取付け位置を変えて対応することができる。又、マニピュレータ自体の駆動軸数を増やせば、取付け位置を変えずに対応することもできる。
【0030】
また、コイル移動手段では必ずしも一次コイル側のみを移動する構成でなくてもよい。例えば、図27に示すように、電気自動車E側の二次コイル20にもコイル移動手段である回動レバー80を設けて、同二次コイル20を移動させつつ、かつ、一次コイル10も移動する用にしてもよい。さらに、大きな位置ズレは電気自動車E側のコイル移動手段にて行い、微妙な位置合わせは駐車場側のコイル移動手段で行うようなものなども考えられる。
(3)制御手段
上述した制御手段は、三つのセンサを二つづつ比較して、二段階(第1実施形態ではX,Yの二方向のズレ、第2実施形態では向きと距離)に分けて上記コイル移動手段を制御しているが、例えば、二段階に分けずに三つのセンサを一度に比較して連続的に制御したり、センサの移動とともに変化する検出結果に基づき、目的位置への最短経路を演算して位置決めするようなものであってもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す斜視図である。
【図2】電気自動車における二次コイルの取付状態を示す一部破断側面図である。
【図3】第1実施形態のコイル移動手段を示す斜視図である。
【図4】図3の IV−IV断面における断面図である。
【図5】図4の V−V断面における断面図である。
【図6】パンタグラフを延ばして一次コイルを上昇させた状態を示す斜視図である。
【図7】異なる距離に磁気センサa,bが位置した状態を示す模式図である。
【図8】同じ距離に磁気センサa,bが位置した状態を示す模式図である。
【図9】第1実施形態のシステム構成を示すブロック図である。
【図10】コイル移動手段の一次コイルと電気自動車の二次コイルとが離れた状態を示す平面図である。
【図11】同一次コイルと二次コイルとのX方向にズレを無くした状態を示す平面図である。
【図12】同一次コイルと二次コイルとのY方向にズレを無くした状態を示す平面図である。
【図13】同一次コイルと二次コイルとを当接させた状態を示す斜視図である。
【図14】同一次コイルと二次コイルとを当接させた状態を示す側面図である。
【図15】本発明の第2実施形態を示す斜視図である。
【図16】コイル移動手段である自走車を示す側面図である。
【図17】同自走車を示す平面図である。
【図18】図16における XVIII−XVIII断面図である。
【図19】図16における XVIIII−XVIIII断面図である。
【図20】自走車の一次コイルと電気自動車の二次コイルとが離れた状態を示す平面図である。
【図21】自走車の向きを二次コイル側に向けた状態を示す平面図である。
【図22】自走車を前進させて二次コイルの下方に一次コイルを移動した状態を示す平面図である。
【図23】自走車の一次コイルと電気自動車の二次コイルとが離れた状態を示す側面図である。
【図24】自走車を前進させて二次コイルの下方に一次コイルを移動した状態を示す側面図である。
【図25】一次コイルと二次コイルとを当接させた状態を示す側面図である。
【図26】他の実施形態としてコイル移動手段の第1変形例を示す斜視図である。
【図27】他の実施形態としてコイル移動手段の第2変形例を示す斜視図である。
【図28】従来の充電システムを示す側面図である。
【符号の説明】
10…一次コイル
11…外部電源装置
12…主制御装置
20…二次コイル
21…バッテリ
30…コイル移動装置
31x…X軸駆動ユニット
31y…Y軸駆動ユニット
40…ボディ
50…磁気センサ
50a,50b,50c…磁気センサ
60…自走車
61…カーボディ
62…前輪
63…後輪
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging system for charging an electric vehicle.
[0002]
[Prior art]
Conventionally, a configuration practically used as this type of charging system is as shown in FIG. The vehicle body of the electric vehicle 1 is provided with a vehicle-side connector 2 connected to a power battery, to which a power supply connector 3 is connected from outside the vehicle. The power supply connector 3 is provided at the end of a cable 5 from a charging power supply 4 installed outside the vehicle. Electric power from the charging power supply 4 is supplied to the power battery through both connectors 2 and 3 to perform charging. Be done.
[0003]
[Problems to be solved by the invention]
In the above-described charging system, it is necessary to take out the power supply connector 3 from the charging facility, carry it out to the automobile 1 while pulling out the cable 5, open the connector cover 1a of the vehicle body, and connect it to the vehicle-side connector 2. It is quite troublesome.
In addition, since the conventional charging connector has a configuration in which terminals are fitted to each other to establish an energizing path, the resistance of the fitting operation is large, and it is necessary to perform the fitting operation of the connector with a relatively large force. Further, there is a problem that a function of preventing a current leak due to water droplets such as rainwater must be provided.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electric vehicle charging system that can easily charge an electric vehicle.
[0005]
[Means for Solving the Problems and Functions / Effects]
<Invention of claim 1>
In order to achieve the above object, the invention according to claim 1 is a system for charging a power storage device by electromagnetically coupling a primary coil connected to an external power supply to a secondary coil connected to a power storage device of an electric vehicle. A coil position detecting means for detecting a positional relationship between the primary coil and the secondary coil, and a driving unit, wherein at least one of the primary coil and the secondary coil is at an arbitrary position. A coil moving unit that moves, and a control unit that controls a drive unit of the coil moving unit based on a detection result of the coil position detecting unit to guide the two coils to a position where they are magnetically coupled.The coil position detecting means is arranged such that three magnetic sensors divide a circle surrounding the primary coil into three on the primary coil side, excites the secondary coil, and detects the three magnetic sensors. The positional relationship between the primary coil and the secondary coil is detected based on the result of the comparison of the magnetic field strengths.
[0006]
With such a configuration, the coil is guided to the electromagnetic coupling position while detecting the position of the coil, so that the coils are not electromagnetically coupled in a displaced state. Therefore, charging operation with good energy transmission efficiency can be performed.
With such a configuration, it is originally provided for power transmissionSecondary coilCan be used to detect the positional relationship between the two coils, so that the number of components can be reduced and the cost can be reduced.
[0008]
In such a configuration,Three magnetic sensors are arranged on the primary coil side so as to divide a circle surrounding the primary coil into three equal parts.Therefore, the detection result of the magnetic field strength detected by each magnetic sensor differs depending on the distance and direction between both coils. Therefore, from the different detection results and the positional relationship between the magnetic sensors, the positional relationship with the secondary coil can be detected by calculation.
<Claim2Invention>
Claim2The invention according to the aboveClaim 1In the electric vehicle charging system ofThe coil moving means includes a body installed on a parking floor and supporting a primary coil, an X-axis driving means for linearly moving the body in a predetermined direction, and moving the body in a direction orthogonal to the X-axis driving means. Y-axis driving means for linearly moving, wherein two magnetic sensors among the three magnetic sensors are arranged along one of two linear moving directions in the coil moving means, and the remaining one magnetic sensor is It is characterized by being arranged on a straight line along the other of the two linear movement directions and passing through an intermediate position between the two magnetic sensors.
[0009]
Claims above2With this configuration, the primary coil can be freely moved to a required position by the two types of driving means, and the rectangular coordinates are formed. Therefore, arithmetic processing in the control means of these driving means is easy.
<Claim3Invention>
Claim3The invention according to the aboveClaim 1In the electric vehicle charging system ofThe coil moving means includes a body for supporting a primary coil, a pair of concentric running wheels provided on the body for running the body on a parking floor, and a pair of concentric running wheels controlled by the control means. A pair of drive mechanisms for driving each of the running wheels, wherein when the pair of running wheels are driven in the same manner, they go straight, and when they are driven differently, the directions change. Of the magnetic sensors, two magnetic sensors are arranged along the arrangement direction of the pair of traveling wheels, and the other magnetic sensor is arranged on a straight line along the straight traveling direction and passing an intermediate position between the two magnetic sensors. It is characterized by being arranged in.
[0010]
Claims3With this configuration, the body provided with the primary coil travels on the parking floor toward the secondary coil. Therefore, the present invention can be adopted without extensive modification to existing parking facilities.
<Invention of Claim 4>
The invention according to claim 4 is a system for charging a power storage device by electromagnetically coupling a primary coil connected to an external power supply to a secondary coil connected to a power storage device of an electric vehicle, wherein the primary coil and the secondary coil are connected to each other. Coil position detecting means for detecting the positional relationship with the next coil, and a coil moving means, comprising a driving unit, to move at least one of the two coils of the primary coil and the secondary coil to an arbitrary position, Control means for controlling a drive unit of the coil moving means based on the detection result of the coil position detecting means to guide the two coils to a position where the coils are magnetically coupled, wherein the coil position detecting means comprises: A primary coil is excited at a predetermined frequency, and the primary coil and the secondary coil are excited based on a phase difference between a load current of the primary coil and an excitation voltage due to a mutual induction action with the secondary coil. Electrical charging system for a motor vehicle, characterized in that the arrangement for detecting the positional relationship between Le.
According to the configuration of claim 4, when the primary coil is excited, the phase of the current flowing in the primary coil differs according to the degree of magnetic coupling between the primary coil and the secondary coil. By measuring, the distance between the primary and secondary coils can be detected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
<First embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a state where an electric vehicle E enters a parking lot provided with a charging system according to the present invention.
In the electric vehicle E, a battery 21 as a power storage device is used as a main power supply source, and power is supplied from the battery 21 so that a driving motor and various electric devices function. A secondary coil 20 is connected to the battery 21 via a charging circuit 22. The battery 21 is charged by converting an alternating current induced in the secondary coil 20 into rectification.
[0012]
The secondary coil 20 is formed in a flat disk shape formed by winding an electric wire around a magnetic core made of, for example, ferrite, and is housed in a protective case made of, for example, a synthetic resin material. As shown in FIG. The magnetic core is mounted so as to face the ground at the bottom of the vehicle body with the axial direction of the magnetic core oriented vertically. The secondary coil 20 is excited at a predetermined frequency based on the operation of an operation unit provided in the electric vehicle E to form an alternating magnetic field for position detection.
On the other hand, a recess A is formed on the floor of the parking lot, and a coil moving device 30 (coil moving means) for movably supporting the primary coil 10 is provided inside the recess A. The width of the recess A is such that the left and right wheels of the electric vehicle E are straddled, and the length of the recess A is approximately half of the length of the electric vehicle E.
[0013]
As shown in FIG. 3, the coil moving device 30 in the recess A forms a so-called XY table that is moved by two slide drive units 31 in which the direction of driving the flat box-shaped body 40 is orthogonal. ing.
Hereinafter, the two slide drive units will be distinguished from each other by adding x and y to the reference numerals (31 to 37), and when x and y are not added, the two will be generically referred to and their configurations will be described.
The slide drive unit 31 includes a pair of rails 32 supported so as to be parallel, and a slider 33 that linearly moves on each rail 32 with low friction. A ball screw mechanism is provided between the pair of rails 32 so as to be parallel to the rail 32. The female screw portion 34 is attached to the object supported by the slider 33, and the male screw portion 35 is attached to the rotating shaft of the motor 36. It is connected. The housing of the motor 36 is fixed to the side supporting the rail 32, and the driving force acts to slide the object supported by the slider 33 along the rail 32.
[0014]
In the coil moving device 30, the rail 32x of one slide drive unit is fixed to the bottom surface in the recess A to form an X-axis drive unit 31x, and the rail 32y of another slide drive unit is perpendicular to the X-axis drive unit 31x. The Y-axis drive unit 31y is supported by the slider 33x of the X-axis drive unit 31x. A thin box-shaped body 40 is supported on the slider 33y of the Y-axis drive unit 31y, and the body 40 can be moved to an arbitrary position with respect to the floor of the parking lot by moving both drive units 31x and 31y. It has become. The driving direction of the X-axis drive unit 31x is a direction in which the electric vehicle E enters in the parking lot as shown in FIG. 1 (here, for convenience, the direction of each drive unit is simply X. Direction, Y direction).
[0015]
As shown in FIG. 4, the body 40 has a circular opening 41 on the upper surface, the primary coil 10 is provided inside the circular opening 41, and three magnetic sensors 50 (coil position detecting means) are provided on the periphery. . In addition, a pantograph 43 that can be expanded and contracted by driving the motor 42 shown in FIG. 5 is provided inside the body 40, one end of which is attached to the bottom surface of the body 40 and the other end is attached to the lower surface of the primary coil 10, and FIG. As shown, the primary coil 10 can be moved up and down.
The primary coil 10 is formed in a flat plate shape formed by winding an electric wire around a ferrite core, for example, and is housed in a circular protective case made of a synthetic resin material, for example. The outer diameter of this protective case is so large that it is just fitted with a slight gap in the opening 41. That is, the circle in which the primary coil 10, the opening 41, and the magnetic sensor are provided is concentric. A circle (L1 in FIGS. 3 and 5) connecting three magnetic sensors 50, which will be described in detail later, is also arranged so as to divide the concentric circle from the opening 41 into three equal parts.
[0016]
The pantograph 43 has a structure in which gears 44 and 45 are provided in a part thereof so as to be symmetrically movable, so that the pantograph 43 can expand and contract in the vertical direction, and the motor 42 is connected to one of the gears to transmit the driving force. ing. The motor 42 is provided with a speed reducer 42a so that an appropriate driving force can be generated. In this embodiment, the pantograph 43 is used to move the primary coil 10 up and down. However, a pantograph using a ball screw or an air-driven cylinder may be used.
For example, the three magnetic sensors 50 are formed by molding a small coil around which an electric wire is wound with a synthetic resin material, and can detect the magnetic field strength by an electromotive force induced in the small coil. One of the magnetic sensors 50 is provided on a line in the Y direction (L2 in FIGS. 3 and 5) passing through the center of the primary coil 10 and is divided into three equal parts on the periphery of the opening 41 as described above. I have. (Hereinafter, the one located on the line L2 will be referred to as the magnetic sensor 50a, and the other two clockwise from the magnetic sensor 50a will be referred to as the magnetic sensors 50b and 50c.)
The basic principle of this coil position detection is as follows.
[0017]
As shown in the schematic diagram of FIG. 7, when the electric vehicle E is stopped in a parking lot and its secondary coil 20 is excited to generate a magnetic field, the distance (R1, R2 shown) from the secondary coil 20 differs. The detected magnetic field strength differs between the sensors (S1, S2 in the figure). When the body 40 is moved in the direction of the magnetic sensor S1 that has strongly detected the magnetic field strength, as shown in FIG. 8, the magnetic sensors S1 and S2 are positioned at an equal distance (R1 = R2) from the secondary coil 20. , The detected magnetic field strengths match. When this is applied between the three magnetic sensors 50a, 50b, and 50c of the present embodiment, when the magnetic field intensities of the respective sensors match, a circle connecting the three magnetic sensors and a concentric circular primary coil 10 and secondary coil 20 will face directly.
[0018]
The magnetic sensor is not limited to the coil type described above, but may be a Hall element, a magnetoresistive element, or the like.
As described above, the primary coil 10, the three magnetic sensors 50, and the signal lines or power lines of the motors (36x, 36y, 42) of the respective parts are arranged inside the external power supply 11 as shown in the block diagram of FIG. The main controller 12 (control means) or power supplies 13a to 13e are connected (the magnetic sensor is via the amplifier 14), and the signals detected by the magnetic sensor 50 are processed by the main controller 12 to operate each part. . The algorithm of the data processing in the main controller 12 will be described below together with the charging procedure of the present embodiment.
[0019]
The electric vehicle E enters the parking lot (FIG. 1), parks so as to straddle the recess A with left and right wheels (FIG. 10), and puts the secondary coil 20 in a state ready for charging at the operation unit of the electric vehicle E. Switch.
Then, the secondary coil 20 is excited, and a predetermined alternating magnetic field is formed in the parking lot. Here, if the secondary coil 20 and the primary coil 10 do not correctly face each other, the distances Ra, Rb, Rc from the three magnetic sensors 50a, 50b, 50c to the secondary coil 20 are different, and the magnetic sensor 50 The detected magnetic field intensity will also be different.
The different detection results are compared in main controller 12 as follows, and coil moving device 30 is driven based on the comparison result.
First, a comparison is made between the magnetic sensors 50b and 50c arranged in the X direction in order to correct the displacement of both coils in the X direction. The primary coil 10 is moved by the X-axis drive unit 31x in the direction of the magnetic sensor 50c, which has detected the magnetic field strength strongly, until there is no difference between the detection results. Then, as shown in FIG. 11, when the primary coil 10 and the secondary coil 20 are located on the same line in the Y direction, that is, when there is no displacement in the X direction, the two magnetic sensors 50b and 50c , The same distance (Rb = Rc), and the X-axis drive unit 31x stops.
[0020]
Next, in order to correct the displacement in the Y direction, the detection results of the magnetic sensor 50b (or 50c) and the magnetic sensor 50a are compared, and the Y-axis drive unit 31y is driven in the same manner as described above. Then, as shown in FIG. 12, the distance between the two magnetic sensors and the secondary coil 20 becomes equal at the position where the primary coil 10 and the secondary coil 20 face each other, and the Y-axis drive unit 31y stops.
At this position, when the main controller confirms that the detection results of the three sensors are equal (if not equal, the position is re-aligned), the motor 42 is driven to change the pantograph 43 as shown in FIGS. Extend it upward and bring the protective cases of both coils into contact with each other. At this time, the current value of the motor 42 is fed back to the main controller 12 to prevent the coils from being forcibly pressed. When the contact between the coils is recognized by the feedback of the current value, the primary coil 10 is excited. On the side of the electric vehicle E, the charging circuit 22 recognizes from the voltage generated in the secondary coil 20 by the magnetic field of the primary coil 10 that the charging preparation has been completed. Charging is done.
[0021]
When the charging of the battery 21 is completed, the secondary coil 20 is excited again to generate a magnetic field. On the primary coil 10 side, the change in the magnetic field caused by the change is sensed by the sensor 50, the excitation is terminated, and the primary coil 10 is lowered. Thus, the charging operation of one electric vehicle E is terminated.
Subsequently, when another electric vehicle is stopped in the parking lot, the primary coil 10 and the secondary coil 20 are electromagnetically coupled and charged in the same manner. At this time, since the magnetic sensor 50 detects the location of the secondary coil 20, it is possible to cope with any electric vehicle without human intervention. For example, a parking lot for charging can be operated unattended.
[0022]
<Second embodiment>
This embodiment is a system in which a self-propelled vehicle 60 equipped with a primary coil is used as a coil moving unit, and guides the same primary coil to a position where it is electromagnetically coupled to a secondary coil. Hereinafter, the contents will be described with reference to FIGS.
FIG. 15 shows a state in which the electric vehicle E enters a parking lot provided with the above system.
A self-propelled vehicle 60 connected to the external power supply device 11 is on standby on the floor of the parking lot. The self-propelled vehicle 60 is provided with four wheels on the lower surface side of a flat box-shaped car body 61 so as to be able to travel on a parking floor. These four wheels are composed of large front wheels 62, 62 and small rear wheels 63, 63, as shown in FIGS. 16 and 17, and the front wheels 62, 62 are separately provided as shown in FIG. Motors 64, 64 are connected via speed reducers 64a, 64a so that the wheels can be freely changed in direction. Therefore, if the left and right front wheels 62, 62 are driven in the same manner, the self-propelled vehicle 60 can go straight, and if they are driven differently, the self-propelled vehicle 60 can change direction.
[0023]
As shown in FIG. 19, an opening 65 is formed on the upper surface of the car body 61, in which the primary coil 10 is arranged, and three magnetic sensors 50 are arranged in three parts on the periphery thereof. As shown in FIG. 17, the primary coil 10 and the magnetic sensor 50 are arranged symmetrically with respect to the center line (M in the drawing) in the width direction of the wheel. One (magnetic sensor 50a) is located in front of the car body 61 on its center line. Further, a pantograph 43 and a drive motor 42 thereof are provided in the car body 61 similarly to the first embodiment, so that the primary coil 10 can be moved up and down.
[0024]
The driving motors 64, 64, the driving motor 42 of the pantograph 43, and the power lines or signal lines of the primary coil 10 described above are bundled together from the back of the car body 61 and extend to the external power supply 11. I have.
The remaining structure is the same as that of the first embodiment, and the same portions are denoted by the same reference numerals, without redundant description, and the operation of the charging system will be described.
The electric vehicle E enters the parking lot, and is parked at an appropriate position in front of the self-propelled vehicle 60 waiting on the parking floor behind (FIGS. 20, 23). Then, the secondary coil 20 is switched to the charging preparation state by the operation unit of the electric vehicle E to form an alternating magnetic field for position detection.
[0025]
Then, a magnetic field is also applied to the three magnetic sensors 50 provided in the self-propelled vehicle 60, and each detects the strength of the magnetic field. The detection result is compared in the main controller 12 as follows, and the coil moving device 30 is driven based on the result.
First, in order to determine the direction in which the self-propelled vehicle 60 moves forward, the detection results of the two magnetic sensors 50b and 50c arranged in the rear of the car body 61 (the magnetic sensors 50b and 50c are clockwise from the magnetic sensor 50a) are compared. . Then, the front wheel 64, which is the drive wheel for the magnetic sensor 50b which has detected the magnetic field intensity weakly, is rotated forward until the difference in the intensity disappears. Then, the self-propelled vehicle 60 stops in the direction of the secondary coil 20 as shown in FIG.
[0026]
Next, the detection results of the magnetic sensor 50a and the magnetic sensor 50b (or 50c may be 50c) behind the car body 61 are compared, and the left and right drive wheels are rotated forward until the difference between the two detection results is eliminated. To move forward. Then, as shown in FIGS. 22 and 24, the primary coil 10 and the secondary coil 20 stop at a position where they face each other.
At this position, the pantograph 43 is extended upward to bring the protective cases of both coils into contact with each other (FIG. 25), and the charging operation described above is performed. When the charging operation is completed, the drive motors 64, 64 are moved in the reverse order to move the self-propelled vehicle 60 to the original position. Subsequently, when another electric vehicle is stopped at the parking lot, the primary coil and the secondary coil are similarly electromagnetically coupled and charged.
[0027]
As described above, in the present embodiment, the electric vehicle E may be stopped just before the self-propelled vehicle 60, and there are few restrictions on parking, so that parking becomes easy. In addition, when the charging operation is not performed, the self-propelled vehicle 60 can be lowered to the standby position, and no space is required for the charging equipment. Further, the present invention can be adopted without major modifications to existing parking facilities.
<Other embodiments>
The present invention is not limited to the above-described embodiments, and, for example, the following embodiments are also included in the technical scope of the present invention. Various modifications can be made.
(1) Coil position detecting means
The above-described coil position detecting means detects the position of the coil using a magnetic sensor. For example, a light source is provided on the secondary coil side, and a plurality of optical sensors are provided on the primary coil side. May be detected. Alternatively, a source of a radio wave may be provided on the secondary coil side, and the position of the coil may be detected based on the source. However, if a magnetic field is used, a position detection magnetic field can be formed using a charging coil, so that a new light source and a radio wave transmission source need not be provided, thereby reducing costs. Can be.
[0028]
In addition, as described below, the number of magnetic sensors is not limited to a plurality, and even a single magnetic sensor can guide a primary coil to a coupling position with a secondary coil. That is, the magnetic field strength detected by the magnetic sensor is inversely proportional to the distance from the secondary coil. Therefore, the primary coil is experimentally moved a predetermined distance in a predetermined direction, and as a result, if the magnetic field intensity detected by the magnetic sensor is weak, the primary coil is moved in a direction inverted by 180 degrees, and if the magnetic field strength is strong, the primary coil is moved in that direction. By doing so, the magnetic field is always moved in the direction in which the magnetic field intensity becomes strong. Next, by repeatedly moving the test coil in the direction changed by 90 degrees, finding the direction in which the magnetic field intensity becomes stronger as described above, and moving in that direction, the primary coil becomes a zigzag secondary coil. They approach each other and finally reach the position of connection with the secondary coil.
[0029]
Further, the primary coil can be used as a magnetic sensor for position detection in the following manner. That is, when the electric vehicle is parked, the secondary coil is excited at a predetermined frequency to generate an alternating magnetic field for position detection. When this magnetic field reaches the primary coil, an electromotive force of the same frequency is induced in the primary coil, and the intensity is inversely proportional to the distance from the primary coil of the secondary coil. Therefore, the intensity of the magnetic field formed by the secondary coil can be measured by measuring the induced electromotive force induced in the primary coil, and thus the distance from the secondary coil can be measured.
Further, in the following manner, the generation of the alternating magnetic field for position detection by the secondary coil can be omitted. When the electric vehicle is parked, the primary coil is excited at a predetermined frequency. Then, since the magnetic flux from the primary coil links to the secondary coil, an induced electromotive force is generated in the secondary coil. At this time, if an appropriate load is connected to the secondary coil, the load current flows through the secondary coil, and accordingly, the load current also flows through the primary coil by the mutual induction action. The phase difference between the primary load current and the excitation voltage depends on the degree of coupling between the two coils, that is, the distance between the two coils. The closer the distance between the two coils, the higher the degree of magnetic coupling. The phase difference between the coil and the excitation voltage is reduced. Therefore, the distance between both coils can be measured by measuring the phase difference.
(2) Coil moving means
In addition to the above-described coil moving means, for example, as shown in FIG. 26, a manipulator 70 may be used, and the primary coil 10 and the magnetic sensor 50 may be provided at the tip thereof. With such a configuration, even if the secondary coil on the side of the electric vehicle E is provided on the side surface or the ceiling surface of the vehicle body, it can be handled by changing the mounting position of the manipulator. Further, if the number of drive shafts of the manipulator itself is increased, it is possible to cope without changing the mounting position.
[0030]
Further, the coil moving means does not necessarily have to be configured to move only the primary coil side. For example, as shown in FIG. 27, the secondary coil 20 on the side of the electric vehicle E is also provided with a rotating lever 80 as a coil moving means, so that the secondary coil 20 is moved and the primary coil 10 is also moved. May be used. Further, a large displacement may be performed by the coil moving means on the electric vehicle E side, and fine positioning may be performed by the coil moving means on the parking lot side.
(3) Control means
The above-mentioned control means compares the three sensors two by two and separates the coil movement means into two stages (shift in two directions of X and Y in the first embodiment, direction and distance in the second embodiment). For example, instead of dividing it into two stages, three sensors can be compared at once and continuously controlled, or the shortest path to the target position can be calculated based on the detection result that changes as the sensors move. The positioning may be performed as follows.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention.
FIG. 2 is a partially cutaway side view showing an attached state of a secondary coil in the electric vehicle.
FIG. 3 is a perspective view showing a coil moving unit of the first embodiment.
FIG. 4 is a sectional view taken along a line IV-IV in FIG. 3;
FIG. 5 is a sectional view taken along a line VV in FIG. 4;
FIG. 6 is a perspective view showing a state where a pantograph is extended and a primary coil is raised.
FIG. 7 is a schematic diagram showing a state where magnetic sensors a and b are located at different distances.
FIG. 8 is a schematic diagram showing a state where magnetic sensors a and b are located at the same distance.
FIG. 9 is a block diagram illustrating a system configuration according to the first embodiment.
FIG. 10 is a plan view showing a state in which a primary coil of the coil moving means is separated from a secondary coil of the electric vehicle.
FIG. 11 is a plan view showing a state in which the same primary coil and the secondary coil are not displaced in the X direction.
FIG. 12 is a plan view showing a state in which the same primary coil and the secondary coil are not displaced in the Y direction.
FIG. 13 is a perspective view showing a state where the same primary coil and the secondary coil are in contact with each other.
FIG. 14 is a side view showing a state where the same primary coil and the secondary coil are in contact with each other.
FIG. 15 is a perspective view showing a second embodiment of the present invention.
FIG. 16 is a side view showing a self-propelled vehicle as a coil moving means.
FIG. 17 is a plan view showing the self-propelled vehicle.
18 is a sectional view taken along line XVIII-XVIII in FIG.
19 is a sectional view taken along the line XVIIII-XVIIII in FIG. 16;
FIG. 20 is a plan view showing a state in which a primary coil of the self-propelled vehicle is separated from a secondary coil of the electric vehicle.
FIG. 21 is a plan view showing a state in which the direction of the self-propelled vehicle is directed to the secondary coil side.
FIG. 22 is a plan view showing a state where the primary vehicle is moved below the secondary coil by moving the self-propelled vehicle forward.
FIG. 23 is a side view showing a state in which a primary coil of the self-propelled vehicle is separated from a secondary coil of the electric vehicle.
FIG. 24 is a side view showing a state where the primary vehicle is moved below the secondary coil by moving the self-propelled vehicle forward.
FIG. 25 is a side view showing a state where the primary coil and the secondary coil are in contact with each other.
FIG. 26 is a perspective view showing a first modification of the coil moving means as another embodiment.
FIG. 27 is a perspective view showing a second modification of the coil moving means as another embodiment.
FIG. 28 is a side view showing a conventional charging system.
[Explanation of symbols]
10 ... primary coil
11 External power supply
12 Main controller
20 Secondary coil
21 ... Battery
30 ... Coil moving device
31x ... X-axis drive unit
31y ... Y-axis drive unit
40 ... body
50 ... magnetic sensor
50a, 50b, 50c ... magnetic sensor
60… Self-propelled car
61 ... Car body
62 ... front wheel
63 ... rear wheel

Claims (4)

外部電源に連なる一次コイルを、電気自動車の動力用蓄電装置に連なる二次コイルに電磁結合させてこの動力用蓄電装置を充電するシステムであって、
一次コイルと二次コイルとの位置関係を検出するコイル位置検出手段と、
駆動部を具備し、前記一次コイル及び二次コイルの両コイルのうちの少なくとも一方のコイルを任意の位置に移動するコイル移動手段と、
前記コイル位置検出手段の検出結果に基づいて上記コイル移動手段の駆動部を制御して上記両コイルを磁気的に結合する位置に案内する制御手段とを備え
前記コイル位置検出手段は、3つの磁気センサが前記一次コイル側において当該一次コイルを囲む円を三等分するように配設され、
前記二次コイルを励磁し、前記3つの磁気センサにより検出した磁界強度の比較結果に基づき前記一次コイルと前記二次コイルとの位置関係を検出する構成であることを特徴とする電気自動車用充電システム。
A system for charging a power storage device by electromagnetically coupling a primary coil connected to an external power source to a secondary coil connected to a power storage device for an electric vehicle,
Coil position detecting means for detecting a positional relationship between the primary coil and the secondary coil,
A coil moving unit that includes a driving unit and moves at least one of the primary coil and the secondary coil to an arbitrary position.
Control means for controlling a driving unit of the coil moving means based on the detection result of the coil position detecting means to guide the two coils to a position where they are magnetically coupled ,
The coil position detecting means is disposed such that three magnetic sensors divide a circle surrounding the primary coil into three on the primary coil side,
A charging device for an electric vehicle, wherein the secondary coil is excited, and a positional relationship between the primary coil and the secondary coil is detected based on a comparison result of magnetic field strengths detected by the three magnetic sensors. system.
前記コイル移動手段は、駐車床面に設置されて一次コイルを支持するボディと、同ボディを所定の方向に直線移動させるX軸駆動手段と、同ボディを前記X軸駆動手段と直交する方向に直線移動させるY軸駆動手段とを備え、The coil moving means includes a body installed on a parking floor and supporting a primary coil, an X-axis driving means for linearly moving the body in a predetermined direction, and moving the body in a direction orthogonal to the X-axis driving means. Y-axis driving means for linearly moving,
前記3つの磁気センサのうち、2つの磁気センサは前記コイル移動手段における2つの直線移動方向の一方の方向に沿って並び、残りの1つの磁気センサは前記2つの直線移動方向の他方の方向に沿いかつ前記2つの磁気センサの中間位置を通過する直線上に配置されていることを特徴とする請求項1記載の電気自動車用充電システム。  Of the three magnetic sensors, two magnetic sensors are arranged along one of two linear moving directions in the coil moving unit, and the other magnetic sensor is arranged in the other direction of the two linear moving directions. The charging system for an electric vehicle according to claim 1, wherein the charging system is arranged along a straight line that passes along an intermediate position between the two magnetic sensors.
前記コイル移動手段は、一次コイルを支持するボディと、このボディに設けられて同ボディを駐車床面上に走行させる同心状の1対の走行車輪と、前記制御手段によって制御され前記1対の走行車輪それぞれを駆動する1対の駆動機構とを備え、前記1対の走行車輪が同じように駆動されたときは直進し、違うように駆動すれば向きが変わるように構成され、The coil moving means includes a body for supporting a primary coil, a pair of concentric running wheels provided on the body for running the body on a parking floor, and a pair of concentric running wheels controlled by the control means. A pair of drive mechanisms for driving each of the traveling wheels, wherein the pair of traveling wheels are driven in the same manner, go straight, and are driven in different directions to change directions,
前記3つの磁気センサのうち、2つの磁気センサは前記1対の走行車輪の配列方向に沿って並び、残りの1つの磁気センサは前記直進方向に沿いかつ前記2つの磁気センサの中間位置を通過する直線上に配置されいることを特徴とする請求項1記載の電気自動車用充電システム。  Of the three magnetic sensors, two magnetic sensors are arranged along the arrangement direction of the pair of traveling wheels, and the other one is along the straight traveling direction and passes an intermediate position between the two magnetic sensors. The charging system for an electric vehicle according to claim 1, wherein the charging system is arranged on a straight line.
外部電源に連なる一次コイルを、電気自動車の動力用蓄電装置に連なる二次コイルに電磁結合させてこの動力用蓄電装置を充電するシステムであって、A system for charging a power storage device by electromagnetically coupling a primary coil connected to an external power source to a secondary coil connected to a power storage device for an electric vehicle,
一次コイルと二次コイルとの位置関係を検出するコイル位置検出手段と、  Coil position detecting means for detecting a positional relationship between the primary coil and the secondary coil,
駆動部を具備し、前記一次コイル及び二次コイルの両コイルのうちの少なくとも一方のコイルを任意の位置に移動するコイル移動手段と、  A coil moving unit that includes a driving unit and moves at least one of the primary coil and the secondary coil to an arbitrary position.
前記コイル位置検出手段の検出結果に基づいて上記コイル移動手段の駆動部を制御して上記両コイルを磁気的に結合する位置に案内する制御手段とを備え、  Control means for controlling a driving unit of the coil moving means based on a detection result of the coil position detecting means to guide the two coils to a position where they are magnetically coupled,
前記コイル位置検出手段は、前記1次コイルを所定周波数で励磁し、前記二次コイルとの相互誘導作用による、前記一次コイルの負荷電流と励磁電圧との位相差に基づき前記一次コイルと前記二次コイルとの位置関係を検出する構成であることを特徴とする電気自動車用充電システム。The coil position detecting means excites the primary coil at a predetermined frequency, and based on a phase difference between a load current of the primary coil and an excitation voltage due to a mutual induction action with the secondary coil, the primary coil and the secondary coil are excited. A charging system for an electric vehicle, which is configured to detect a positional relationship with a next coil.
JP01748696A 1996-01-30 1996-02-02 Electric vehicle charging system Expired - Fee Related JP3586955B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP01748696A JP3586955B2 (en) 1996-02-02 1996-02-02 Electric vehicle charging system
EP97101385A EP0788211B1 (en) 1996-01-30 1997-01-29 A connection system and a connection method
DE69714879T DE69714879T2 (en) 1996-01-30 1997-01-29 Connection system with associated procedure
EP00114922A EP1061631A1 (en) 1996-01-30 1997-01-29 Connection system and connection method for an electric automotive vehicle
DE69711963T DE69711963T2 (en) 1996-01-30 1997-01-29 Connection system and method for an electrically powered vehicle
EP97101386A EP0788212B1 (en) 1996-01-30 1997-01-29 Connection system and connection method for an electric automotive vehicle
US08/791,110 US5821731A (en) 1996-01-30 1997-01-30 Connection system and connection method for an electric automotive vehicle
US08/791,109 US5850135A (en) 1996-01-30 1997-01-30 Connecting system and a connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01748696A JP3586955B2 (en) 1996-02-02 1996-02-02 Electric vehicle charging system

Publications (2)

Publication Number Publication Date
JPH09215211A JPH09215211A (en) 1997-08-15
JP3586955B2 true JP3586955B2 (en) 2004-11-10

Family

ID=11945340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01748696A Expired - Fee Related JP3586955B2 (en) 1996-01-30 1996-02-02 Electric vehicle charging system

Country Status (1)

Country Link
JP (1) JP3586955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105966260A (en) * 2016-06-20 2016-09-28 黄杰 Automatic wireless charging positioning device for electric car
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
KR101778480B1 (en) 2013-09-30 2017-09-13 닛산 지도우샤 가부시키가이샤 Wireless power supply device and parking assist device
KR101780163B1 (en) 2014-01-31 2017-09-19 닛산 지도우샤 가부시키가이샤 Wireless power supply system and power transmission device

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081310A (en) * 2004-09-09 2006-03-23 Matsushita Electric Works Ltd Feeder device
JP2006174548A (en) * 2004-12-14 2006-06-29 Takenaka Komuten Co Ltd Collector wheel for cordless power transmission
JP4723424B2 (en) * 2006-06-20 2011-07-13 シャープ株式会社 Non-contact charging device for mobile phone
JP4600454B2 (en) 2007-09-26 2010-12-15 セイコーエプソン株式会社 Power transmission control device, power transmission device, non-contact power transmission system, secondary coil positioning method
JP4788693B2 (en) 2007-09-26 2011-10-05 セイコーエプソン株式会社 Structure
CN101809842A (en) * 2007-09-27 2010-08-18 松下电器产业株式会社 Electronic device, recharger and recharging system
MX2010003837A (en) * 2007-10-09 2011-08-26 Powermat Ltd Inductive power providing system.
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
JP5362330B2 (en) 2007-12-18 2013-12-11 三洋電機株式会社 Charging stand
JP5430046B2 (en) * 2007-12-18 2014-02-26 パナソニック株式会社 Charging stand
JP5141285B2 (en) * 2008-02-14 2013-02-13 日本電気株式会社 Non-contact charger
JP5334470B2 (en) * 2008-06-30 2013-11-06 三井造船株式会社 Non-contact power supply system for ships, ship and ship power supply method
US8466654B2 (en) * 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
WO2010052785A1 (en) 2008-11-07 2010-05-14 トヨタ自動車株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
NZ593750A (en) * 2009-01-06 2013-09-27 Access Business Group Int Llc Inductive power supply
JP2010183813A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system
JP2010183804A (en) * 2009-02-09 2010-08-19 Maspro Denkoh Corp Power supply system of moving body and moving body
JP5606098B2 (en) * 2009-02-25 2014-10-15 マスプロ電工株式会社 Mobile power supply system
JP2010226945A (en) * 2009-02-25 2010-10-07 Maspro Denkoh Corp Power supply system of mobile unit
KR101006774B1 (en) * 2009-04-01 2011-01-10 용인송담대학 산학협력단 Battery charging system for electric vehicle using Magnetic Induction
JP5495620B2 (en) * 2009-05-22 2014-05-21 キヤノン株式会社 Power supply
JP5496553B2 (en) * 2009-06-15 2014-05-21 三洋電機株式会社 Charging stand
DE102009033237A1 (en) * 2009-07-14 2011-01-20 Conductix-Wampfler Ag Device for inductive transmission of electrical energy
JP2011036107A (en) * 2009-08-05 2011-02-17 Hino Motors Ltd Charging system and vehicle
KR101526589B1 (en) * 2009-08-18 2015-06-05 현대자동차일본기술연구소 Non-contact charging device for electric vehicle
JP5559518B2 (en) * 2009-10-30 2014-07-23 富士変速機株式会社 Three-dimensional parking device and non-contact charging device for electric vehicle
JP5641891B2 (en) * 2009-11-13 2014-12-17 パナソニック株式会社 Charging and feeding system for vehicles
JP5525804B2 (en) 2009-12-03 2014-06-18 現代自動車株式会社 Primary coil raising type non-contact charging device
US8937454B2 (en) 2010-01-05 2015-01-20 Access Business Group International Llc Inductive charging system for electric vehicle
JP5389735B2 (en) * 2010-02-08 2014-01-15 昭和飛行機工業株式会社 Power transmission instruction transmission device
JP2011188733A (en) 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd Moving object, and system and method for wireless power feeding
JP2011169043A (en) * 2010-02-19 2011-09-01 Toyota Industries Corp Automated warehouse for automobile and adapter for noncontact charging
CN102791513B (en) * 2010-03-04 2015-01-28 本田技研工业株式会社 Electric vehicle
US20110221387A1 (en) * 2010-03-09 2011-09-15 Robert Louis Steigerwald System and method for charging an energy storage system for an electric or hybrid-electric vehicle
JP5051257B2 (en) 2010-03-16 2012-10-17 トヨタ自動車株式会社 vehicle
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
JP5370275B2 (en) * 2010-06-04 2013-12-18 株式会社デンソー Connector connection device
JP5524724B2 (en) * 2010-06-08 2014-06-18 株式会社東海理化電機製作所 Vehicle power supply device
JP5370301B2 (en) * 2010-07-20 2013-12-18 株式会社デンソー Connector connection device
KR101673611B1 (en) * 2010-09-30 2016-11-16 현대자동차주식회사 Unmanned charging system for of electrical vehicle and driving method thereof
US9536655B2 (en) 2010-12-01 2017-01-03 Toyota Jidosha Kabushiki Kaisha Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system
CN103262387B (en) 2010-12-24 2016-08-17 丰田自动车株式会社 Non-contact charger systems and method, vehicle and non-contact charge managing device
RU2547930C2 (en) * 2010-12-27 2015-04-10 Ниссан Мотор Ко., Лтд. Contactless charging device
CN102097840B (en) * 2010-12-31 2013-12-11 云南昆船数码科技有限公司 Charging adaptive tray device for electromobile
KR101102918B1 (en) * 2011-02-14 2012-01-10 자동차부품연구원 Transmitter receiver for a electric car and the electric power source system
WO2012121184A1 (en) * 2011-03-10 2012-09-13 日本電気株式会社 System for contactlessly supplying power to moving body
JP5720367B2 (en) 2011-03-30 2015-05-20 株式会社Ihi Parking facilities
US10090885B2 (en) * 2011-04-13 2018-10-02 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
JP5834463B2 (en) * 2011-04-21 2015-12-24 日産自動車株式会社 Torque control device and non-contact charging system
JP5775363B2 (en) * 2011-05-17 2015-09-09 トヨタ自動車株式会社 Charging system
JP5793963B2 (en) 2011-05-27 2015-10-14 日産自動車株式会社 Non-contact power feeding device
JP5879748B2 (en) 2011-05-27 2016-03-08 日産自動車株式会社 Non-contact power supply device, vehicle and non-contact power supply system
JP5708250B2 (en) * 2011-05-27 2015-04-30 日産自動車株式会社 Non-contact power feeding device
JP2013013274A (en) * 2011-06-30 2013-01-17 Yazaki Corp Power supply system
JP2013055803A (en) * 2011-09-05 2013-03-21 Denso Corp Non-contact charger
JP5986365B2 (en) * 2011-09-30 2016-09-06 富士変速機株式会社 Charging device, transport device and parking device
CN103891099B (en) 2011-10-27 2017-05-31 丰田自动车株式会社 Electric system is received in noncontact current-collecting device, noncontact power transmitting device and noncontact transmission of electricity
JP2013115936A (en) * 2011-11-29 2013-06-10 Nec Casio Mobile Communications Ltd Mobile terminal charging system and mobile terminal charging method
JP6024106B2 (en) 2011-12-27 2016-11-09 株式会社Ihi Transfer device and mobile vehicle
KR20140097372A (en) * 2011-12-27 2014-08-06 후지쯔 가부시끼가이샤 Wireless power supply apparatus, wireless power supply system, and wireless power supply method
JPWO2013098975A1 (en) * 2011-12-27 2015-04-30 富士通株式会社 Wireless power supply apparatus, wireless power supply system, and wireless power supply method
KR101287292B1 (en) * 2012-01-05 2013-08-13 르노삼성자동차 주식회사 System and method for controlling a charging area for an electric vehicle
JP5895631B2 (en) * 2012-03-16 2016-03-30 アイシン精機株式会社 Vehicle power supply device
JP2015195633A (en) * 2012-08-23 2015-11-05 パナソニック株式会社 Non-contact power supply device
JP6019929B2 (en) 2012-08-24 2016-11-02 株式会社Ihi Mobile parking facilities
JP5900636B2 (en) * 2012-09-27 2016-04-06 Tdk株式会社 Mobile system
JP6003602B2 (en) * 2012-12-10 2016-10-05 日産自動車株式会社 Power supply device
KR102040739B1 (en) 2013-03-20 2019-11-06 삼성전자주식회사 Wireless power transmission and reception system
US9643505B2 (en) 2013-04-26 2017-05-09 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, power transfer system, and parking assisting device
CN104515465B (en) * 2013-09-27 2019-06-25 中兴通讯股份有限公司 A kind of detection method and device of contactless transformer
JP6208528B2 (en) * 2013-10-16 2017-10-04 矢崎総業株式会社 Contactless power supply
JP6131887B2 (en) * 2014-03-14 2017-05-24 株式会社デンソー Charging cable
CN104113125A (en) * 2014-08-12 2014-10-22 山东齐星铁塔科技股份有限公司 Wireless charging unit of mechanical stereo garage
US10132650B2 (en) * 2015-01-22 2018-11-20 Integrated Device Technology, Inc. Apparatuses and related methods for detecting magnetic flux field characteristics with a wireless power transmitter
US10079508B2 (en) * 2015-01-22 2018-09-18 Integrated Device Technology, Inc. Apparatuses and related methods for detecting magnetic flux field characteristics with a wireless power receiver
JP2015165090A (en) * 2015-03-24 2015-09-17 株式会社Ihi Parking facilities
CN104795872A (en) * 2015-05-17 2015-07-22 李俊娇 Telescopic electric vehicle wireless charging device
KR102550114B1 (en) * 2016-06-16 2023-06-29 현대자동차주식회사 Coil alignment method and wireless power transfer apparatus using the same for electric vehicles
CN106994908A (en) * 2017-04-24 2017-08-01 中海阳能源集团股份有限公司 A kind of automobile wireless charging device and charging method
KR20200029526A (en) * 2017-07-14 2020-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Feeding device and non-contact feeding system
US10243379B1 (en) * 2017-09-22 2019-03-26 Locus Robotics Corp. Robot charging station protective member
CN111512517B (en) * 2017-11-13 2023-06-23 Tdk电子股份有限公司 Dynamic transmitting coil positioning system, wireless power transmission system and method for positioning transmitting coil
WO2019229808A1 (en) * 2018-05-28 2019-12-05 日産自動車株式会社 Power transmission device, and method for controlling power transmission device
JP2019209729A (en) * 2018-05-31 2019-12-12 川崎重工業株式会社 Vehicle power supply device
GB2577568A (en) * 2018-09-28 2020-04-01 Bombardier Primove Gmbh Inductive power transfer pad comprising an airflow generating system, arrangement for an inductive power transfer and method for cooling an inductive power
KR102249280B1 (en) * 2018-12-18 2021-05-07 이진국 Coupling device of Electric vehicle inlet and charge car connector
CN110154808B (en) * 2019-05-27 2023-06-20 周红军 New energy sharing electric car charging pile
DE102019122158A1 (en) * 2019-08-19 2021-02-25 Ims Gear Se & Co. Kgaa Charging robot and charging device for charging a store for electrical energy of a vehicle and a vehicle whose store for electrical energy can be charged with such a charging device
CN112421787B (en) 2019-08-21 2023-12-19 北京小米移动软件有限公司 Wireless charging device, wireless charging system, wireless charging control method, wireless charging equipment and wireless storage medium
JP6932812B1 (en) * 2020-04-27 2021-09-08 株式会社Ihi建材工業 Vehicle power supply and roadbed unit
CN113263940B (en) * 2021-07-21 2021-10-08 深圳市微卓通科技有限公司 Anti-collision new energy automobile charging pile
JP7011763B1 (en) * 2021-09-30 2022-01-27 Haloworld株式会社 Power supply system
CN114274802A (en) * 2021-12-22 2022-04-05 湖南亚富智能设备股份有限公司 Wireless charging device for stereo garage
TR2022008373A2 (en) * 2022-05-24 2022-06-21 Univ Istanbul Gelisim FOUNDED ELECTRIC VEHICLE CHARGING STATION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778480B1 (en) 2013-09-30 2017-09-13 닛산 지도우샤 가부시키가이샤 Wireless power supply device and parking assist device
KR101780163B1 (en) 2014-01-31 2017-09-19 닛산 지도우샤 가부시키가이샤 Wireless power supply system and power transmission device
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
CN105966260A (en) * 2016-06-20 2016-09-28 黄杰 Automatic wireless charging positioning device for electric car

Also Published As

Publication number Publication date
JPH09215211A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3586955B2 (en) Electric vehicle charging system
EP0788212B1 (en) Connection system and connection method for an electric automotive vehicle
US9739641B2 (en) Method and apparatus for controlling stray electromagnetic fields and providing operator feedback when aligning a vehicle with an inductive charging system
JP6103044B2 (en) Power receiving device, power transmitting device, power transmission system, and parking assist device
JP6427873B2 (en) Parking assistance device and system
CN102300744B (en) Vehicle parking assistance device and electric vehicle equipped with same
JP5900636B2 (en) Mobile system
US20160082848A1 (en) Power receiving device, parking assist system, and power transfer system
JPH09213378A (en) Charge system for electric vehicle
JP7275662B2 (en) Contactless power supply device and contactless power supply system
JP2009071909A (en) Mobile noncontact power feeder
JPH0525126B2 (en)
JPH104638A (en) Charger for electric vehicle
JP5966332B2 (en) Mobile vehicle and non-contact power transmission device
CN101714828B (en) Electricity picking-up device with function of location deviation detection
JP2012016106A (en) Alignment system of noncontact power supply device
JP2013090392A (en) Non-contact charging device and non-contact power supply facility
CN109484217B (en) Three-in-one electronic highway unmanned navigation system and method
KR101285768B1 (en) Power Supply Apparatus, Power Collection Apparatus and Power Transmission Apparatus for Maximize Power Transmission Efficiency
JP2013090393A (en) Non-contact charging device and power receiving device
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPS60193023A (en) Guide device for unmanned truck
JPH0630524B2 (en) Traveling control device for moving body for carrier device
JP2000292361A (en) Pipe external inspecting robot and its control method
JPH01152512A (en) Traveling system for unmanned vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees