JP2024045696A - 送信装置および送信方法、並びに受信装置および受信方法 - Google Patents

送信装置および送信方法、並びに受信装置および受信方法 Download PDF

Info

Publication number
JP2024045696A
JP2024045696A JP2024024802A JP2024024802A JP2024045696A JP 2024045696 A JP2024045696 A JP 2024045696A JP 2024024802 A JP2024024802 A JP 2024024802A JP 2024024802 A JP2024024802 A JP 2024024802A JP 2024045696 A JP2024045696 A JP 2024045696A
Authority
JP
Japan
Prior art keywords
key stream
unit
waveform
time information
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024024802A
Other languages
English (en)
Inventor
敏宏 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JP2024045696A publication Critical patent/JP2024045696A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0457Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply dynamic encryption, e.g. stream encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • H04L9/3242Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving keyed hash functions, e.g. message authentication codes [MACs], CBC-MAC or HMAC
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/75Information technology; Communication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y30/00IoT infrastructure
    • G16Y30/10Security thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • H04L9/0662Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0872Generation of secret information including derivation or calculation of cryptographic keys or passwords using geo-location information, e.g. location data, time, relative position or proximity to other entities
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】本開示は、LPWA(Low Power Wide Area)通信における秘匿性、および通信耐性を向上できるようにする。【解決手段】送信装置において、GPS時刻情報に基づいてキーストリームを発生し、キーストリームに基づいて送信データを暗号化して暗号化データを生成し受信装置に送信する。受信装置においては、GPS時刻情報に基づいてキーストリームを発生し、キーストリームに基づいて暗号化データを送信データに復号する。本開示は、LPWA通信システムに適用することができる。【選択図】図10

Description

本開示は、送信装置および送信方法、並びに受信装置および受信方法に関し、特に、LPWA(Low Power Wide Area)通信における秘匿性、および通信耐性を向上できるようにした送信装置および送信方法、並びに受信装置および受信方法に関する。
LPWA(Low Power Wide Area)通信を用いた通信技術が提案されている(特許文献1参照)。
LPWA通信は、低ビットレートによる少量のPayloadデータ(100ビット前後)を、IoT端末(送信装置)からIoTゲートウェイ(受信装置)に一方向に送受信する通信であるため、LPWA通信を行なうIoT端末(送信器)においては低消費電力での通信を実現することができる。
特許第6259550号公報
しかしながら、上述したLPWA通信においては、高度なセキュリティを実現するために、複雑な数学的問題を解く演算処理を用いた暗号化手法を用いると、低消費電力が求められるIoT端末において処理負荷が増大し、消費電力が大きくなってしまう。
また、多層防衛の観点から、物理層での暗号化を導入することで、物理層より上層での暗号化処理と合わせることで、さらなる秘匿性を向上させることができる。
特に、無線においては、物理層での波形合成手法(最大比合成や選択合成など)を用いて、復調能力を高める手法が用いられる。
この場合、波形合成するためには同じ無線波形、または簡単に同じ波形に変換できる波形である必要がある。
同じ無線波形を用いる場合、無線波形をキャプチャし、再送信することでIoTゲートウェイ(受信装置)を攻撃するリプレイ(反射)攻撃が可能になるため、リプレイ(反射)攻撃への対策が必要となる。
さらに、線形符号のみで構成されたフォーマットでは、ビット反転などによる改竄対策が必要であり、CMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)による対策などが一般に採用されている。
しかしながら、無線の復調/復号性能を向上させる波形合成技術を使用する場合には、CMAC値を送信ごとに変化させてリプレイ攻撃に対処する手法は採用することができない。
本開示は、このような状況に鑑みてなされたものであり、特に、LPWA通信における秘匿性、および通信耐性を向上させるものである。
本開示の第1の側面の送信装置は、送信データを繰り返し送信する送信装置であって、前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成部と、前記キーストリームにより、前記送信データを暗号化データに変換する暗号化部と、前記暗号化データを変調した波形信号を送信する送信部とを含む送信装置である。
本開示の第1の側面の送信方法は、送信データを繰り返し送信する送信装置の送信方法であって、前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成処理と、前記キーストリームにより、前記送信データを暗号化データに変換する暗号化処理と、前記暗号化データを変調した波形信号を送信する送信処理とを含む送信方法である。
本開示の第1の側面においては、送信データが繰り返し送信され、前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームが生成され、前記キーストリームにより、前記送信データが暗号化データに変換され、前記暗号化データが変調された波形信号が送信される。
本開示の第2の側面の受信装置は、送信装置から繰り返し送信される送信データを繰り返し受信する受信装置であって、前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信部と、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として前記キーストリームを生成するキーストリーム生成部と、前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転部と、前記極性が反転された波形信号に基づいて、前記送信データを復号する復号部とを含む受信装置である。
本開示の第2の側面の受信方法は、送信装置から繰り返し送信される送信データを繰り返し受信する受信装置の受信方法であって、前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信処理と、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として前記キーストリームを生成するキーストリーム生成処理と、前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転処理と、前記極性が反転された波形信号に基づいて、前記送信データを復号する復号処理とを含む受信方法である。
本開示の第2の側面においては、送信装置から繰り返し送信される送信データが繰り返し受信され、前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号が受信され、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として前記キーストリームが生成され、前記波形信号の波形の極性が、前記キーストリームにより反転され、前記極性が反転された波形信号に基づいて、前記送信データが復号される。
LPWA通信を用いた片方向通信システムの概要を説明する図である。 図1の符号化部および復号部におけるキーストリーム発生器の構成を説明する図である。 ブロック符号化におけるノイズにより生じるビット反転の影響を説明する図である。 ストリーム符号化におけるノイズにより生じるビット反転の影響を説明する図である。 リプレイ攻撃と改竄攻撃を説明する図である。 改竄攻撃を説明する図である。 本開示の通信システムの構成例を説明する図である。 図7の送信装置の構成例を説明する図である。 図7の受信装置の構成例を説明する図である。 図7の通信システムによる動作を説明する図である。 一般のストリーム暗号化における暗号化および復号の動作を説明するための図である。 図7の受信装置における極性反転部の動作を説明する図である。 図7の通信システムにおけるLPWA通信による波形合成方法を説明する図である。 図7の送信装置による送信処理例を説明するフローチャートである。 図7の受信装置による受信処理例を説明するフローチャートである。 キーストリーム発生器の構成例を説明する図である。 汎用のパーソナルコンピュータの構成例を説明する図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.LPWA通信を用いた通信システムの概要
2.本開示の実施の形態
3.応用例
4.ソフトウェアにより実行させる例
<<1.LPWA通信を用いた片方向通信システムの概要>>
図1を参照して、LPWA(Low Power Wide Area)通信を用いた片方向通信システムの概要について説明する。
図1のLPWA通信を用いた通信システム1は、IoT(Internet of Things)端末11-1乃至11-n、IoTゲートウェイ12-1乃至12-m、およびクラウドサーバ13より構成される。
尚、IoT端末11-1乃至11-n、およびIoTゲートウェイ12-1乃至12-mは、それぞれを特に区別する必要がない場合、単にIoT端末11、およびIoTゲートウェイ12と称するものとし、その他の構成についても同様に称する。
IoT端末11は、様々な環境に設けられる各種の図示せぬセンサと共に配置される、または、所定のユーザ等に所持されるものであり、それぞれの環境において、図示せぬセンサにより検出されたセンサデータを取得して、IoTゲートウェイ12を介してクラウドサーバ13に送信する。
IoTゲートウェイ12は、クラウドサーバ13により動作が制御され、IoT端末11より送信されるセンサデータを中継して、クラウドサーバ13に送信する。
クラウドサーバ13は、IoTゲートウェイ12の動作を制御するとともに、IoTゲートウェイ12を介してIoT端末11より送信されてくるセンサデータを受信し、受信したセンサデータに応じて各種のアプリケーションプログラムを実行させる。
IoT端末11とIoTゲートウェイ12とは、LPWA通信によりセンサデータが送信される。LPWA通信においては、IoT端末11からIoTゲートウェイ12に対して、センサデータが一方向に送信される。
このように、IoT端末11は、センサデータを少量のPayloadデータとしてIoTゲートウェイ12に対して一方向に送信するのみでよいため、低消費電力での通信を実現することができる。
より詳細には、IoT端末11は、暗号化部31、符号化部32、およびLPWA通信部33を備えている。
IoT端末11においては、センサデータを送信するにあたって、暗号化部31がMAC(Media Access Control)層を構成し、符号化部32、およびLPWA通信部33が、PHY(物理)層を構成している。
暗号化部31は、センサデータに基づいて、送信データ列のPayloadを生成するとともに、さらに、Payloadに基づいて、CMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理を施して、改竄の有無を検証するためのCMACタグを生成して、PayloadとCMACタグとを符号化部32に出力する。
符号化部32は、PayloadとCMACタグに対して誤り検出/訂正符号を付加した平文データビット列を作成した後、暗号化データビット列に変換して、LPWA通信部33に送信する。
LPWA通信部33は、センサデータの暗号化データビット列を変調して、送信フレーム波形を生成し、LPWA通信によりIoTゲートウェイ12に送信する。
IoTゲートウェイ12は、LPWA通信部51、および復号部52を備えている。IoTゲートウェイ12においては、センサデータからなる送信フレーム波形を受信するにあたって、LPWA通信部51がPHY(物理)層を構成し、復号部52がMAC層を構成する。
LPWA通信部51は、LPWA通信により送信されてくる送信フレーム波形を受信して、IoT端末11より送信されてきたセンサデータの暗号化データビット列の波形信号として復調し、復号部52に出力する。
復号部52は、暗号化データビット列の波形信号を、センサデータからなるPayloadとCMACタグを含むストリーム復号データビット列に復号するとともに、PayloadからCMACタグを求め、送信されてきたCMACタグとの比較に基づいてPayloadの改竄の有無を判定し、判定結果と共にPayloadであるセンサデータをクラウドサーバ13に送信する。
クラウドサーバ13は、IoTゲートウェイ12の動作を制御するとともに、IoTゲートウェイ12を介して、IoT端末11より送信されてきたセンサデータに基づいて、各種のアプリケーションプログラム71-1乃至71-pを実行する。
尚、図1においては、クラウドサーバ13におけるアプリケーションプログラム71-1が、IoTゲートウェイ12を介してIoT端末11より送信されてきたセンサデータに基づいて動作する様子が表現されているが、他のアプリケーションプログラム71についても同様に機能する。
ここで、図1の通信システム1においては、IoT端末11とIoTゲートウェイ12との通信TRZ11は、LPWA通信であり、IoT端末11からIoTゲートウェイ12へと送信フレーム波形が送信されるのみの一方向(片方向)通信である。このため、IoT端末11とIoTゲートウェイ12との通信TRZ11は、相互通信ができないことにより、例えば、チャレンジアンドレスポンス認証などによる確認ができないので、盗聴や改竄については対策が必要とされる。
一方、IoTゲートウェイ12とクラウドサーバ13との通信TRZ12については、双方向通信が可能な通信であるので、通信TRZ11よりも強力なセキュリティを実現できると考えられる。
次に、図1の通信システム1の動作について説明する。
IoT端末11の暗号化部31は、図示せぬセンサより検出されるセンサデータを取得して、センサデータに対応するPayloadを生成するとともに、Payloadに基づいて、CAMC処理を施して、CMACタグを生成し、PayloadとCAMCタグとを符号化部32に出力する。
符号化部32は、PayloadとCAMCタグに対して誤り検出/訂正符号を付加した平文データビット列を暗号化データビット列に変換して、LPWA通信部33に出力する。
LPWA通信部33は、暗号化データビット列を変調することにより送信フレーム波形信号を生成して、LPWA通信によりIoTゲートウェイ12に送信する。
IoTゲートウェイ12のLPWA通信部51は、LPWA通信により送信されてくる送信フレーム波形信号を受信して、受信した送信フレーム波形信号に基づいて、IoT端末11より送信されてきたセンサデータの暗号化データビット列を復調し、復号部52に出力する。
復号部52は、暗号化データビット列より、センサデータからなるPayloadとCMACタグを復号するとともに、PayloadよりCMACタグを求めて、送信されてきたCMACタグとの比較に基づいてPayloadの改竄の有無を判定し、判定結果と共にPayloadであるセンサデータをクラウドサーバ13に送信する。
クラウドサーバ13は、IoTゲートウェイ12の動作を制御するとともに、IoTゲートウェイ12を介して、IoT端末11より送信されてきたセンサデータに基づいて、各種のアプリケーションプログラム71-1乃至71-pを実行する。
以上の一連の動作により、図示せぬセンサにより検出されたセンサデータが、IoT端末11により、IoTゲートウェイ12を介して、クラウドサーバ13に送信されて、クラウドサーバ13により管理されるアプリケーションプログラム71を動作させることが可能となる。この際、IoT端末11は、LPWA通信によりセンサデータをIoTゲートウェイに片方向通信で送信することができるので、低消費電力での通信を実現することが可能となる。
<センサデータのPayloadとCMACタグを含む平文データビット列を暗号化データビット列に変換する手法>
次に、図2を参照して、図1の符号化部32によるセンサデータのPayloadとCMACタグを含む平文データビット列を暗号化データビット列に変換する手法について説明する。
図2の符号化部32は、キーストリーム(keystream)発生器91、およびXOR処理部92を備えている。
キーストリーム発生器91は、初期値データ(NONCE:Number used Once)と秘密鍵データとから、疑似乱数ビット列(PRBS:Pseudo Random Binary Sequence)をキーストリームとして発生し、XOR処理部92に出力する。
尚、初期値データ(NONCE)は、リセットごとに異なる1度だけしか使用されない数値である。
XOR処理部92は、PayloadとCMACタグを含む平文データビット列に対して、キーストリームを用いたビット単位での排他的論理和(XOR)処理を施すことにより、平文データビット列を暗号化データビット列に変換して出力する。
尚、IoTゲートウェイ12の復号部52においても、キーストリーム(keystream)発生器91と同様の構成が設けられており、復号部52は、キーストリーム(keystream)発生器91と同一の初期値データ(NONCE:Number used Once)と秘密鍵データとを用いることでキーストリームを発生して、発生されたキーストリームを用いることにより、暗号化データビット列に対して、排他的論理和(XOR)処理を施すことで、ストリーム復号データビット列に復号する。
<キーストリームを用いる理由>
ここで、PHY(物理)層において、暗号化データビット列を生成する際に、ストリーム暗号を用いる理由について説明する。
暗号化には、所定のビット数単位(ブロック単位)でなされるブロック暗号化と、任意のビット数単位でなされるストリーム暗号がある。
例えば、図3の上段で示されるように、符号化部32が、キーストリーム発生器91とXOR処理部92に代えて、所定のビット単位(ブロック単位)で暗号化する、例えば、AES(Advanced Encryption Standard)暗号器からなる暗号器101を備え、対応して復号部52が、ブロック単位で復号する復号器104が設けられている場合について考える。
尚、図3においては、暗号器101により平文データビット列が暗号化データビット列に変換され、暗号化データビット列がLPWA通信部33の変調器102により、送信フレーム波形信号に変調されて無線通信路を介してIoTゲートウェイ12のLPWA通信部51に送信される。また、LPWA通信部51においては、復調器103が、送信されてきた送信フレーム波形信号を暗号化データビット列に復調して復号部52に出力する。
このような場合、図3の下段で示されるように、秘密鍵が「00112233445566778899aabbccddeeff」であり、データが「00000000000000000000000000000000」であり、暗号化データビット列が「fde4fbae4a09e020eff722969f83832b」である場合について考える。このような場合、復号データビット列は、データと同様に「00000000000000000000000000000000」となる。
ここで、通信経路上にノイズが発生し、このノイズにより、例えば、点線で囲まれる暗号化データビット列の先頭ビットがビット反転することにより「f」(=2進数「1111」)から「7」(2進数「0111」)となり、暗号化データビット列が「7de4fbae4a09e020eff722969f83832b」となるものとする。この場合、この暗号化データビット列がストリーム復号データビット列に変換されると「c61abdd4dfa32aa26c2b3ff9933542b1」となる。
すなわち、ブロック暗号化においては、ノイズによる影響を受けない場合の平文データビット列が、「00000000000000000000000000000000」であるのに対して、ノイズによる影響を受けて暗号化データビット列の先頭ビットがビット反転するだけで、ストリーム復号データビット列は「c61abdd4dfa32aa26c2b3ff9933542b1」となり、全く異なる復号データビット列に変換されてしまうので、後段の誤り訂正が困難になる。
これに対して、図4の上段で示されるように、符号化部32および復号部52のそれぞれにおいて、図2を参照して説明したキーストリーム発生器91とXOR処理部92が設けられる構成について考える。
ここで、例えば、秘密鍵が「3d62e9b18e5b042f42df43cc7175c96e」であり、NONCE値が「777cefe4541300c8adcaca8a0b48cd55」であり、生成されるキーストリーム(keystream)が「690f108d84f44ac7bf257bd7e394f6c9」であり、平文データビット列が「00000000000000000000000000000000」である場合について考える。この場合、平文データビット列がキーストリームを用いてストリーム暗号化されると、暗号化データビット列は「690f108d84f44ac7bf257bd7e394f6c9」となる。ここで、無線通信路において、ノイズの影響により、例えば、暗号化データビット列の先頭ビットがビット反転することにより、点線で囲まれて示されるように、「6」(=2進数「0110」)から「e」(2進数「1110」)となるものとする。
このノイズの影響により、ビット反転した暗号化データビット列は「e90f108d84f44ac7bf257bd7e394f6c9」となり、この暗号化データビット列から復号されるストリーム復号データビット列は「8000000000000000000000000000000」となる。
すなわち、ストリーム暗号化においては、平文データビット列が、「00000000000000000000000000000000」であるのに対して、ノイズによる影響を受けたストリーム復号出力は「8000000000000000000000000000000」となり、先頭の一文字を「8」から「0」に訂正するのみとなる。
このようにブロック暗号化に対してストリーム暗号化を用いる方が、ノイズによる誤りの影響が局所的になるため、エラー訂正成功の可能性が高くなる。
したがって、このような理由から図1の通信システムにおいては、ブロック暗号化を用いるよりも、ストリーム暗号化が用いる方が、エラー耐性が高いと考えることができる。
<リプレイ攻撃と改竄攻撃>
上述したLPWA通信においては、悪意ある第三者による攻撃を受ける可能性がある。
例えば、図3で示されるように、IoT端末11からIoTゲートウェイ12に対して送信フレーム波形信号Sign1をLPWA通信により送信する場合を考える。
この場合、悪意ある第三者により運用される通信装置111が、送信フレーム波形信号Sign1を傍受(キャプチャ)し、キャプチャした送信フレーム波形信号をコピーして送信フレーム波形信号Sign11を生成し、送信フレーム波形信号Sign11-1,11-2、・・・のように繰り返しIoTゲートウェイ12に送信する。
このような動作により、IoTゲートウェイ12には、送信フレーム波形信号Sign1をコピーして生成された送信フレーム波形信号Sign11が繰り返し受信されることにより、受信された送信フレーム波形信号が偽造されたもの認識することができず、処理負荷が上昇してしまうことにより動作速度が低減するといったサービス障害が生じる。このように、PHY(物理)層による送信フレーム波形信号を傍受して、傍受した送信フレーム波形信号をコピーして、繰り返し送信する攻撃をリプレイ攻撃という。
また、悪意ある第三者により運用される通信装置111が、送信フレーム波形信号Sign1を傍受(キャプチャ)し、フォーマット仕様を解析して反転させるビットを特定し、CRCなどの線形符号の変化に相当するビットを反転させて、反転されたビットに相当する波形部分を極性反転させた改竄波形からなる送信フレーム波形信号Sign12を生成して送信する。このように所定のビットに対応する波形部分を極性反転された改竄波形からなる送信フレーム波形信号を生成して送信する攻撃を改竄攻撃という。
より具体的には、例えば、図6の右上段で示されるように、送信するデータビット列Payloadとして「010111…」を想定する。このデータビット列Payload「010111…」を符号化すると、図6の中央上段で示されるように、データビット列Payload「010111…」に線形符号処理によりCRC、畳み込み符号、および低密度パリティ検査符号等からなるECC(誤り訂正/検査符号:Error Correcting Code or Error Check and Correct)として「1101…」が付加されたデータビット列「010111…1101…」が生成されることになる。
例えば、悪意ある第三者が、データビット列のフォーマット仕様を解析して、先頭ビットを反転させることを試みる場合、図6の左中段で示されるように、先頭ビットのみが「1」であるビット列からなる符号語であるデータビット列Payload「10000…」を符号化することで、図6の中央中段で示されるように、ECC(誤り訂正/検査符号)として「1001…」が付加されたデータビット列「100000…1001…」が生成されることになる。
このとき改竄対象であるデータビット列「010111…1101…」と生成したデータビット列「100000…1001…」とを加算すると、図6の右上部で示されるように、データビット列「110111…0100…」からなる新たなデータビット列が生成される。
一方で、図6の左下部に示す送信するデータビット列の先頭ビットを反転させたデータビット列Payload「110111」を生成して、ECC(誤り訂正/検査符号)を付加すると、図6の右下部で示されるようなデータビット列「110111…0100…」を生成することができる。これらは同じデータビット列となるため、受信側では改竄されたものか改竄されていないデータであるかを判別することはできず、図5の送信信号sign12のような改竄した送信フレーム波形信号による改竄攻撃の可能性が生じる。
ただし、上記の改竄攻撃については、ECC(誤り訂正/検査符号)が線形演算であることから生じるものであり、CMACを用いることで防御することが可能となる。
しかしながら、リプレイ攻撃については、受信処理に波形合成手法を用いるため、CMACでは防御することができない。
これは、送信毎に異なる送信フレーム波形とすることで、リプレイ攻撃に対する防御対策をとることが考えられるが、CMACタグ生成時に、タイミングなどの送信情報を含めると、送信フレーム波形信号が送信毎に大きく異なることになり、波形合成が困難となる。このように、LPWA通信においては、CMACを用いて改竄攻撃に対する防御を行った上で、リプレイ攻撃を対策することができなかった。
本開示の通信システムにおいては、リプレイ攻撃と改竄攻撃に対して有効な防御対策を実現することで、LPWA(Low Power Wide Area)通信における秘匿性、および通信耐性を向上できるようにする。
<<2.本開示の実施の形態>>
次に、図7を参照して、本開示の通信システムの構成例について説明する。
本開示の通信システム200は、基本的な構成において、図1の通信システム1と類似している。すなわち、通信システム200は、送信装置201-1乃至201-n、受信装置202-1乃至202-m、およびクラウドサーバ203より構成される。
送信装置201は、図1のIoT端末11に対応するものであり、図示せぬセンサにより検出されたセンサデータをLPWA通信により受信装置202を介してクラウドサーバ203に送信する。ここで、送信装置201は、GPS(Global Positioning System)により位置情報と共に送信されるGPS時刻情報を取得して、送信装置201固有のIDであるTXIDと共にNONCEとして使用し、キーストリームを生成して、このキーストリームを用いて、平文データビット列を暗号化データビット列に変換する。
受信装置202は、図1のIoTゲートウェイ12に対応する構成であり、送信装置201より送信されてくる送信信号を受信して、クラウドサーバ203に送信する。この際、受信装置202は、GPS(Global Positioning System)により位置情報と共に送信されるGPS時刻情報を取得して、送信装置201のTXIDと共にキーストリームを生成して、暗号化データビット列をストリーム復号データビット列に変換する。
尚、クラウドサーバ203については、アプリケーションプログラム211-1乃至211-pを備えており、基本的に図1のクラウドサーバ13と同様であるので、その説明は省略する。
すなわち、図7の通信システム200においては、キーストリームが、GPS時刻情報に基づいて、発生される度に変化することになり、この変化するキーストリームを用いて平文データビット列が暗号化データビット列に変換されることで、暗号化データビット列が変調されることで生成される送信フレーム波形信号も送信される度に変化することになるので、リプレイ攻撃の有効な対策となる。
<送信装置の構成例>
次に、図8のブロック図を参照して、送信装置201の構成例について説明する。
送信装置201は、MAC暗号化部221、符号化部222、およびLPWA送信部223より構成される。送信装置201のLPWA通信においては、MAC暗号化部221が、MAC層を構成し、符号化部222、およびLPWA送信部223が、MAC層よりも下位層となるPHY(物理)層を構成する。
MAC(Media Access Control)暗号化部221は、図示せぬセンサデータからなるPayloadを暗号化(MAC層)し、暗号化データ(または、暗号化されていないPayloadのデータ)を格納したデータビット列からなるMSDU(MAC Service Data Unit)を生成すると共に、MSDUに対応するCMACタグを生成し、符号化部222に出力する。
より詳細には、MAC暗号化部221は、MSDU生成部231、およびCMAC処理部232を備えている。
MSDU生成部231は、PHY(物理)層より上位のMAC層において、図示せぬセンサデータからなるPayload(または、Payloadを暗号化(MAC層)したデータ)を格納したデータビット列からなるMSDU(MAC Service Data Unit)を生成し、CMAC処理部232に出力し、CMAC処理によりCMACタグを生成させ、MSDUとCMACタグとを合わせて符号化部222に出力する。
CMAC(Cipher-based Message Authentication Code)処理部232は、メッセージ認証符号アルゴリズムにより、MSDU(MAC Service Data Unit)からCMACタグを生成する。CMACタグは、復号の際、認証およびデータ改竄検出に用いられる。CMACタグはハッシュ値のように、元のデータであるMSDUが改竄されると大きく値が異なる性質をもつため、受信したデータビット列より生成されるCMACタグと受信したCMACタグとの比較により改竄の有無を判定することができる。
符号化部222は、MSDUとCMACタグとを合わせて符号化し、LPWA送信部223に出力する。
より詳細には、符号化部222は、誤り訂正符号付加部251、XOR処理部252、キーストリーム(Keystream)発生器253、記憶部254、GPS時刻情報取得部255、同期パターン生成部256、およびスイッチ257を備えている。
誤り訂正符号付加部251は、MSDUとCMACタグに基づいて、誤りを検出・訂正するための符号である誤り訂正符号ECCを生成し、MSDU、およびCMACタグにECCを付与することでPSDU(Physical Layer Service Data Unit)と呼ばれるデータビット列を生成してXOR処理部252に出力する。
キーストリーム発生器253は、記憶部254に予め記憶されている送信装置201の固有のIDであるTXIDを読み出すとともに、GPS時刻情報取得部255より供給される時刻情報とを併せてNONCEとして使用し、さらに秘密鍵を用いて、PRBS(Pseudo Random Binary Sequence:疑似乱数ビット列)からなるキーストリームを発生してXOR処理部252に出力する。
記憶部254は、メモリなどから構成されており、予め記憶されている送信装置201の固有のIDであるTXIDを記憶しており、キーストリーム発生器253に対して供給する。
GPS時刻情報取得部255は、図示せぬ衛星より送信される衛星波を受信してGPS位置情報を取得する際に供給されるGPS時刻情報を取得して、キーストリーム発生器253に対して供給する。
XOR処理部252は、PSDUのデータビット列からなる平文データビット列に対して、キーストリームを用いて、ビット単位で排他的論理和(XOR)処理を掛けることにより暗号化データビット列を生成し、スイッチ257に出力する。
同期パターン生成部256は、受信装置202に対して送信フレーム信号を受信する際に先頭位置を示す同期パターンSYNCを生成し、スイッチ257に出力する。
スイッチ257は、同期パターン生成部256より供給される同期パターンSYNCと、XOR処理部252より供給されるPSDUの暗号化データビット列とを切り替えて、PPDU(PLCP(Physical Layer Convergence Protocol) Protocol Data Unit または Physical Layer Protocol Data Unit)を生成して、LPWA送信部223に出力する。
より詳細には、スイッチ257は、送信フォーマットに基づき入力を切り替えることができ、端子257aに接続された同期パターン生成部256より供給される同期パターンSYMCのビット出力と、端子257bに接続されたXOR処理部252より供給される暗号化データビット列とを切り替えることで、同期パターンと暗号化データビット列から成る符号化信号であるPPDUを生成してLPWA送信部223に出力する。
LPWA送信部223は、同期パターンSYNCと、PSDUの暗号化データビット列とが合わされたPPDUを変調することで送信フレーム波形信号を生成し、LPWA通信により受信装置202に送信する。
より詳細には、LPWA送信部223は、変調部271、ミキサ272、局部発振器273、BPF(Band Pass Filter)274、増幅器275、およびアンテナ276より構成される。
変調部271は、符号化信号であるPPDUを変調して、送信フレーム波形信号を生成しミキサ272に出力する。
ミキサ272は、局部発振器273により発生される局部発振信号と送信フレーム波形信号とを合成して高周波信号を生成し、BPF274に出力する。
BPF274は、高周波信号に対してフィルタリングにより所定の周波数帯域の信号を抽出して増幅器275に出力する。
増幅器275は、BPF274より供給される所定の周波数帯域の信号を所定の倍率で増幅してアンテナ276を介して送信フレーム波形信号として受信装置202に送信する。
尚、送信装置201は、以上の一連の動作により、異なる送信フレーム波形信号を異なる周波数帯域で4回繰り返し送信する。また、異なる送信フレーム波形信号が、異なる周波数帯で4回繰り返し送信される例について説明するものとするが、繰り返される回数については、2回以上であれば、それ以外の回数であってもよい。
<受信装置の構成例>
次に、図9のブロック図を参照して、受信装置202の構成例について説明する。
受信装置202は、LPWA受信部321、復号部322、およびMAC復号部323を備えている。受信装置202のLPWA通信においては、LPWA受信部321、および復号部322が、PHY(物理)層を構成し、MAC復号部323が、PHY(物理)層よりも上位となるMAC層を構成する。
LPWA受信部321は、LPWA通信により送信装置201より送信されてくるPPDUからなる送信フレーム波形信号をLPWA通信により受信して、送信フレーム波形信号のPPDUに含まれる同期パターンSYNCと、PSDUの暗号化データビット列とを復号部322に出力する。
より詳細には、LPWA受信部321は、アンテナ331、増幅器332、ミキサ333、局部発振器334、BPF335、位相補正部336、および同期検出部337を備えている。
増幅器332は、アンテナ331を介して高周波信号として送信されてくる送信フレーム波形信号を受信して増幅してミキサ333に出力する。
ミキサ333は、局部発振器334より発振される所定の周波数帯域の波形信号に基づいて中間周波数の波形信号に変換してBPF335に出力する。
BPF335は、中間周波数に変換された送信フレーム波形信号のうち、所定の周波数帯域のPPDUに対応する送信フレーム波形信号を抽出して位相補正部336、および同期検出部337に出力する。
同期検出部337は、PPDUに対応する送信フレーム波形信号のうちの同期パターンSYNCの波形信号を検出して位相補正部336に出力する。
位相補正部336は、同期検出部337により同期パターンSYNCが検出されたタイミングにおいて、BPF335より供給されるPPDUに対応する送信フレーム波形信号の位相を補正して復号部322に出力する。
復号部322は、同期パターンSYNCの波形信号に基づいて、PSDUに対応する波形信号の位置を検出して、送信装置201と同様にキーストリームを発生して、暗号化データビット列に対応する波形信号を復元し、復元した波形信号に基づいてPSDUのデータビット列を復号してMAC復号部323に出力する。
より詳細には、復号部322は、スイッチ351、極性反転部352、復調器353、積算部354、復号器355、キーストリーム発生器356、記憶部357、GPS時刻情報取得部358、および同期信号波形保存部359を備えている。
スイッチ351は、同期検出部337により制御され、LPWA受信部321より供給される送信フレーム波形信号を分離し、同期信号波形保存部359および極性反転部352に出力する。
より詳細には、スイッチ351は、PPDUに対応する波形信号のうちの同期信号波形に相当するタイミングでは端子351aに接続されており、LPWA受信部321より供給される波形信号を同期信号波形保存部359に出力する。そして、同期信号波形以外のタイミングでは、端子351bに接続され、PPDUのうちの暗号化されたPSDUに対応する送信フレーム波形信号を極性反転部352に出力する。
極性反転部352は、キーストリーム発生器356より供給されるキーストリームに基づいて、PSDUに対応する波形信号を極性反転させて復調器353に出力する。尚、極性反転部352の動作については、図11,図12を参照して詳細を後述する。
また、キーストリーム発生器356、記憶部357、およびGPS時刻情報取得部358は、送信装置201のキーストリーム発生器253、記憶部254、およびGPS時刻情報取得部255に対応する機能を備えた構成であるので、その説明は省略する。
復調器353は、極性反転部352より出力されるPSDUに対応する波形信号を復調し、積算部354に出力し、積算して記憶させる。
積算部354は、ストリーム復号された同一のPSDUに対応する波形信号を積算して記憶し、積算したPSDUの波形信号を復号器355に出力する。尚、ここでは、同一のPSDUから生成される送信フレーム信号が異なる周波数帯域で4回繰り返される例について説明を進めるものとするが、2回以上であれば、それ以外の回数であってもよい。したがって、この例においては、4回分積算されたPSDUの波形信号の加算結果が復号器355に出力される。
復号器355は、積算部354に積算して記憶されている、4回分の復調されている極性反転部352より出力されるPSDUに対応する波形信号が加算された波形信号を、復号して、暗号化データビット列に対応するストリーム復号データビット列からなるPSDUを生成して、MAC復号部323に出力する。
MAC復号部323は、PSDUのストリーム復号データビット列に基づいて、送信装置201より送信されてきたセンサデータに対応するPayloadをMAC復号して出力する。
より詳細には、MAC復号部323は、MSDU復号部371、およびCMAC処理部372を備えている。
MSDU復号部371は、PSDUに含まれる誤り訂正符号ECCを用いて誤りを訂正した後、MSDUとCMACタグを抽出し、MSDUよりPayloadを復号してCMAC処理部372に出力する。
CMAC処理部372は、MSDUに基づいてCMAC処理によりCMACタグを生成すると共に、MSDUに付加されたCMACタグと比較して一致するか否かにより改竄の有無を判定する。
MSDU復号部371は、改竄の有無の情報と共に復号結果であるPayloadを出力する。
<図7の通信システムによる動作>
次に、図10を参照して、図7の通信システム200の動作について説明する。尚、図10においては、図中の左側が送信装置201の動作により生成される信号および波形の流れが示されており、図中の右側が受信装置202の動作により生成される信号および波形の流れが示されている。
まず、図中の左上部から、送信装置201における動作を説明する。
送信装置201におけるMAC暗号化部221のMSDU生成部231は、センサデータであるpayload401を暗号化してMSDU402を生成し、CMAC処理部232に出力する。
CMAC処理部232は、MSDU402に対してCMAC処理を施して、改竄の有無を判定するためのCMACタグ403を生成してMSDU生成部231に出力する。MSDU生成部231は、生成したMSDU402に対してCMACタグ403を付加して符号化部222に出力する。
尚、MSDU402が生成されてCMACタグ403が付加されるまでの処理がMAC層の処理となり、以降の処理が、PHY(物理)層の処理となる。
符号化部222の誤り訂正符号付加部251は、MSDU402とCMACタグ403とを合わせた情報からエラー訂正符号ECC412を生成し、MSDU402とCMACタグ403とを合わせた情報にエラー訂正符号ECC412とを合わせてPSDU413を生成する。
また、キーストリーム発生器253は、GPS時刻情報取得部255より供給されるGPS時刻情報TIMEと、記憶部254に記憶されているTXIDとに基づいてNONCEを生成し、秘密鍵と共にキーストリーム414を生成してXOR処理部252に出力する。
XOR処理部252は、PHY(物理)層におけるストリーム暗号化処理により、ビット単位で、平文データビット列であるPSDU413と、キーストリーム414に対してXOR処理を施して、PSDU413を暗号化データビット列に変換して、スイッチ257に出力する。
同期パターン生成部256は、同期パターンSYNC411を生成してスイッチ257に出力する。
スイッチ257は、PSDU413の暗号化データビット列に、同期パターンSYNC411を付加することにより、PPDU415を生成してLPWA送信部223に出力する。より詳細には、スイッチ257は、送信フォーマットに基づいて、同期パターンSYNC411のビット出力を端子257aに接続して、同期パターンSYNC411の入力を受け付ける。そして、スイッチ257は、端子257bに切り替えて接続し、XOR処理部252からのPSDU413の暗号化データビット列の入力を受け付けて、同期パターンSYNC411を含んだPPDU415を生成し、LPWA送信部223に出力する。
LPWA送信部223において、変調部271が、PPDU415を変調して送信フレーム波形416を生成する。そして、送信フレーム波形416が、ミキサ272により局部発振器273により所定の高周波信号に変換され、さらにBPF274により所定の周波数帯域が抽出し、増幅器275により増幅してアンテナ276より受信装置202に送信される。
ここまでが、送信装置201の動作の説明となる。次に、図中の右下部から、受信装置202における動作を説明する。
LPWA受信部321において、アンテナ331を介して送信フレーム波形416に対応する受信フレーム波形421が受信されて、増幅器332により所定のゲインに増幅された後、ミキサ333により局部発振器334より供給される所定の周波数の信号に基づいて中間周波数に変換されてBFP335に出力される。
BPF335は、中間周波数信号にされた受信フレーム波形421の波形信号より所定の帯域の信号を抽出して位相補正部336、および同期検出部337に出力する。
同期検出部337は、受信フレーム波形421における同期パターンとなる波形を検出して検出結果を位相補正部336に出力する。
位相補正部336は、同期検出部337より検出される同期パターンが検出されたタイミングから受信フレーム波形421の位相を補正し、PPDU波形422として復号部322に出力する。
復号部322において、スイッチ351は、端子351aに接続してLPWA受信部321より入力されるPPDU波形422の波形信号を同期信号波形保存部359に出力する。同期検出部337は、入力されたPPDU波形422より同期信号波形以外を検出すると、スイッチ351を制御して端子351bに接続させる。この動作により、スイッチ351は、PPDU波形422のうち、暗号化データビット列に対応するPSDU位置の波形を極性反転部352に出力する。
また、キーストリーム発生器356は、GPS時刻情報取得部358より供給されるGPS時刻情報TIMEと、記憶部357に記憶されているTXIDとに基づいてNONCEを生成し、秘密鍵と共にキーストリーム414(送信装置201のキーストリーム発生器253で発生したキーストリームと同一のキーストリーム)を生成して極性反転部352に出力する。
極性反転部352は、PPDU波形422のうち、暗号化データビット列に対応するPSDU位置の波形の極性を、キーストリームに基づいて極性反転することで、PSDUの波形423に変換して復調器353に出力する。
尚、極性反転部352の動作については、図11,図12を参照して、詳細を後述する。
復調器353は、ストリーム復号したデータビット列に対応するPSDUの波形423を復調し、積算部354に積算して記憶させる。
復号器355は、積算部354に所定回数分積算されて記憶されているストリーム復号したデータビット列に対応するPSDUの波形423より、誤り訂正符号ECCを用いて誤りを訂正し、PSDU424(PSDU413に対応するもの)を復号し、MAC復号部323に出力する。
MAC復号部323において、MSDU復号部371は、PSDU424より、MSDU431とCMACタグ432とを抽出して、CMAC処理部372に出力する。
CMAC処理部372は、抽出されたMSDU431にCMAC処理を施してCMACタグを生成し、CMACタグ432と比較して、MSDU431に対する改竄の有無を判定し、判定結果をMSDU復号部371に出力する。
MSDU復号部371は、MSDU431を復号してPayload433を生成し、MSDU431の改竄の有無を示す情報と共に出力する。
以上の送信装置201と受信装置202とのLPWA通信により、送受信されるPPDU波形である送信フレーム波形および受信フレーム波形は、GPS時刻情報に基づいて生成されたキーストリームが用いられた暗号化データビット列に基づいて生成されることになる。この結果、暗号化データビット列は、時刻変化に応じて変化することになるので、リプレイ攻撃を防御することが可能となる。
また、CMACを用いたLPWA通信も実現することが可能となるので、改竄攻撃に対する防御も可能となる。
さらに、キーストリームを用いたストリーム暗号化方式を採用した通信を実現することができるので、ブロック暗号化方式を採用した場合にエラー等が発生したとき生じるエラーが生じるビット数を小さくすることが可能となるので、エラー耐性を向上させることができる。
結果として、CMACによる改竄攻撃に対する防御をしつつ、リプレイ攻撃を防御することが可能となり、通信の秘匿性を向上させることが可能となる。また、ストリーム暗号化方式による通信によりブロック暗号化を用いる場合よりもエラー耐性を向上させることが可能となる。
<極性反転部の動作>
次に、図11,図12を参照して、極性反転部352の動作について説明する。
まず、極性反転部352の動作を説明するにあたって、図11を参照して、図1の通信システム1におけるキーストリーム発生器91およびXOR処理部92の動作について説明する。
一般的にストリーム暗号化では、図11の右上部で示されるように、IoT端末11の符号化部32のキーストリーム発生器91からキーストリーム(K)が出力されて、PSDUの平文データビット列(P)が入力される場合、XOR処理部92は、PSDUの平文データビット列(P)の各ビット値をPとしてキーストリーム(K)の各ビット値をKとしたとき、図11の左上部で示されるように、PSDUの暗号化データビット列Cに変換する。
すなわち、(P,K)=(0,0),(1,1)のとき、XOR処理部92は、PSDUの暗号化データビット列(C)のビットCを0に変換し、(P,K)=(1,0),(0,1)のとき、XOR処理部92は、暗号化データビット列(C)のビットCを1に変換する。
一方、復号の際には、図11の右下部で示されるように、IoTゲートウェイ12の復号部52のキーストリーム発生器91からキーストリーム(K)が出力されて、PSDUの暗号化データビット列(C)が入力される場合、XOR処理部92は、PSDUの暗号化データビット列(C)の各ビット値をCとしてキーストリーム(K)の各ビット値をKとしたとき、図11の左下部で示されるように、PSDUのストリーム復号データビット列(P)に変換する。
すなわち、(C,K)=(0,0),(1,1)のとき、XOR処理部92は、PSDUのストリーム復号データビット列(P)のビットPを0に変換し、(C,K)=(1,0),(0,1)のとき、XOR処理部92は、ストリーム復号データビット列(P)のビットPを1に変換する。
また、図7の通信システム200の送信装置201のキーストリーム発生器253およびXOR処理部252の動作においては、基本的に、図12の左上段、および中央上段で示されるように、IoT端末11のキーストリーム発生器91およびXOR処理部92と同一の動作となる。
すなわち、以上の処理は、いずれもデジタル化されたPSDUの平文データビット列やPSDUの暗号化データビット列に対してなされる処理である。
これに対して、受信装置202の極性反転部352における処理は、アナログ信号からなるPPUD波形信号(PPUDが変調された波形信号)のうちのPSDU波形信号(PPUDの波形信号のうちのPSDUの位置の波形信号)に対してなされる処理である。
すなわち、図12の中央下部で示されるように、受信装置202の復号部322のキーストリーム発生器356からキーストリーム(K)が出力されると、キーストリーム(K)のビットKが0である場合、係数として+1が付与され、キーストリーム(K)のビットKが1である場合、係数として-1が付与される。
そして、PSDUの暗号化データビット列に対応する波形信号が入力される場合、極性反転部352は、乗算器として機能し、図12の左下部で示されるように、PSDUの暗号化データビット列に対応する波形信号の各波形の極性に対して、係数を乗じることで極性を反転させることにより、PSDUのストリーム復号データビット列に対応する復号波形に変換する。
すなわち、(K,係数,暗号化データビット列に対応する波形信号の波形の極性)=(0,+1,-),(1,-1,-)のとき、極性反転部352は、PSDUの暗号化データビット列に対応する暗号化波形信号の極性を反転させ、(K,係数,暗号化データビット列に対応する波形信号の波形の極性)=(1,-1,+),(0,+1,+)のとき、極性反転部352は、極性を反転させない。
尚、波形の極性は、上に凸の波形が+であり、下に凸の波形が-である。
より具体的には、例えば、図12の右上段で示されるように、“1111110”からなるPSDUの平文データビット列(P)が入力される場合について考える。尚、図12においては、“1111110”は、‘1’,‘1’,‘1’,‘1’,‘1’,‘1’,‘0’として表記されているが、明細書の記載においては、先頭文字と最後尾の文字に「“」、「”」を付与するのみで表現するものとする。
ここで、キーストリーム発生器253において、“1010100”からなるキーストリーム(K)が発生されるものとする。
この場合、XOR処理部252により、排他的論理和(XOR)の処理がなされることにより、“0101010”からなる暗号化データビット列(C)が生成される。
この“0101010”からなるPSDUの暗号化データビット列(C)が変調されることにより、送信フレーム波形W1が生成されて送信されることになる。送信フレーム波形W1においては、PSDUの暗号化データビット列Cにおける‘0’が下に凸の波形とされ、‘1’が上に凸の波形とされることで変調される。
すなわち、送信フレーム波形W1においては、先頭の時刻t1のPSDUの暗号化データビット列Cの‘0’が下に凸の波形とされ、時刻t2のPSDUの暗号化データビット列Cの‘1’が上に凸の波形とされ、時刻t3のPSDUの暗号化データビット列Cの‘0’が下に凸の波形とされる。また、時刻t4のPSDUの暗号化データビット列Cの‘1’が上に凸の波形とされ、時刻t5のPSDUの暗号化データビット列Cの‘0’が下に凸の波形とされる。さらに、時刻t6のPSDUの暗号化データビット列Cの‘1’が上に凸の波形とされ、時刻t7のPSDUの暗号化データビット列Cの‘0’が下に凸の波形とされる。
次に、図12の右下段で示されるように、受信装置202においては、この送信フレーム波形W1が受信フレーム波形W11として受信される。
この場合、キーストリーム発生器356は、送信装置201のキーストリーム発生器253と同一の“1010100”からなるキーストリームKを発生する。
ここで、極性反転部352は、“1010100”からなるキーストリーム(K)の各ビットに対して、図12の左下部で示されるように、係数を付与することで、係数データビット列として-1,+1,-1,+1,-1,+1,+1を生成する。
そして、極性反転部352は、係数データビット列と受信フレーム波形W11とから、PSDUの位置の波形を復号信号波形W12として生成する。
すなわち、時刻t1において、極性反転部352は、キーストリーム(K)のビットKが‘1’であるので係数を-1に設定することで、時刻t1の下に凸の波形により極性が「-」であるので、極性を「+」として、波形を上に凸の波形にして極性を反転させる。尚、図12に右下部においては、極性が反転される前の波形が点線の波形として示されており、時刻t1においては、反転されることにより実線で示される上に凸の波形とされていることが示されている。
また、時刻t2において、極性反転部352は、キーストリーム(K)のビットKが‘0’であるので係数を+1に設定することで、時刻t2の上に凸の波形により極性が「+」であるので、極性を反転させずに、極性を「+」のままとする。
さらに、時刻t3において、極性反転部352は、キーストリーム(K)のビットKが‘1’であるので係数を-1に設定し、時刻t3の下に凸の波形により極性が「-」になるので、極性を反転し、極性を「+」として、波形を上に凸の波形とする。
また、時刻t4において、極性反転部352は、キーストリーム(K)のビットKが‘0’であるので係数を+1に設定することで、時刻t4の上に凸の波形により極性が「+」であるので、極性を反転させずに、極性を「+」のままとする。
さらに、時刻t5において、極性反転部352は、キーストリーム(K)のビットKが‘1’であるので係数を-1に設定することで、時刻t5の下に凸の波形により極性が「-」であるので、極性を反転し、極性を「+」として、波形を上に凸の波形とする。
また、時刻t6において、極性反転部352は、キーストリーム(K)のビットKが‘0’であるので係数を+1に設定することで、時刻t6の上に凸の波形により極性が「+」であるので、極性を反転させずに、極性を「+」のままとする。
さらに、時刻t7において、極性反転部352は、キーストリーム(K)のビットKが‘0’であるので係数を+1に設定することで、時刻t7の下に凸の波形により極性が「-」であるので、極性を反転させずに、極性を「-」のままとする。
以上の処理により、PSDUの暗号化データビット列Cに対応する受信フレーム波形W11より、復号信号波形W12が復号される。
この後、復号信号波形W12の波形に基づいて復号処理がなされることにより、ストリーム復号データビット列が得られる。すなわち、復号信号波形W12における時刻t1乃至t6の上に凸の波形より‘111111’が復号されて、時刻t7の下に凸の波形より‘0’が復号されて、元のPSDUである‘1111110’が復号される。
すなわち、以上の処理により、送信装置201においては、GPS時刻情報に応じた異なるキーストリームが生成されて、ストリーム暗号化方式でPSDUが暗号化されることになり、受信装置202においては、同様の方式でキーストリームが生成されて暗号化されたPSDUを復号することで、LPWA通信によるPayloadを送信することが可能となる。
受信装置202においては、PHY(物理)層において、アナログ信号からなる暗号化されたPSDUの波形信号が、GPS時刻情報に応じた異なるキーストリームにより波形信号を復号することが可能となる。
以上のような処理により、PHY(物理)層における波形極性の極性反転を用いたストリーム暗号化を実現することが可能となり、ローコストで通信と親和性の高い方式で、リプレイ攻撃を防御することが可能となる。また、PHY(物理層)より上位のMAC層におけるCMACと組み合わせることで、リプレイ攻撃と改竄攻撃にも対応した多層防衛を実現することが可能となる。
<通信システムによる具体的な通信方法>
次に、図13を参照して、送信装置201、および受信装置202からなる通信システム200によりLPWA通信による通信方法について説明する。
本開示においては、送信装置201が、異なる送信フレーム波形により同一のPSDUを、周波数を変えて、繰り返し受信装置202に送信する。このようなPSDUの送信をバースト送信とする。
すなわち、図13の点線より上部で示されるように、送信装置201は、GPS時刻#1において、GPS時刻#1とTXIDとに基づいたキーストリームでPSDUを暗号化した送信フレーム波形416-1を、周波数f2で送信装置201に送信する。
また、送信装置201は、GPS時刻#2において、GPS時刻#2とTXIDとに基づいたキーストリームでPSDUを暗号化した送信フレーム波形416-2を、周波数f1で送信装置201に送信する。
さらに、送信装置201は、GPS時刻#3において、GPS時刻#3とTXIDとに基づいたキーストリームでPSDUを暗号化した送信フレーム波形416-3を、周波数f4で送信装置201に送信する。
また、送信装置201は、GPS時刻#4において、GPS時刻#4とTXIDとに基づいたキーストリームでPSDUを暗号化した送信フレーム波形416-4を、周波数f3で送信装置201に送信する。
そして、受信装置202においては、図13の点線より下部で示されるように、受信装置202は、GPS時刻#1において、GPS時刻#1とTXIDとに基づいたキーストリームで、周波数f2で送信されてきた送信フレーム波形416-1よりPSDU位置の信号波形に対して前述の極性反転処理をする。
また、受信装置202は、GPS時刻#2において、GPS時刻#2とTXIDとに基づいたキーストリームで、周波数f1で送信されてきた送信フレーム波形416-2よりPSDU位置の信号波形に対して前述の極性反転処理をする。
さらに、受信装置202は、GPS時刻#3において、GPS時刻#3とTXIDとに基づいたキーストリームで、周波数f4で送信されてきた送信フレーム波形416-3よりPSDU位置の信号波形に対して前述の極性反転処理をする。
また、受信装置202は、GPS時刻#4において、GPS時刻#4とTXIDとに基づいたキーストリームで、周波数f3で送信されてきた送信フレーム波形416-4よりPSDU位置の信号波形に対して前述の極性反転処理をする。
そして、受信装置202は、送信フレーム波形416-1乃至416-4より復調した4フレームのPSDUの信号波形を加算(積算)して得られた送信フレーム波形416-11を復号する。
以上のように、異なる送信タイミングにおいて、異なるGPS時刻情報により異なるキーストリームが生成されることになるので、送信処理におけるストリーム暗号化により送信される各フレーム波形は毎回異なる形状となる一方で、受信処理におけるストリーム(暗号の)復号により、各フレーム波形を同じ形状にすることができる。さらに受信側では、これにより波形を加算(積算)する波形合成が可能となり、リプレイ攻撃への耐性だけでなく、復調/復号性能を向上させることができる。
また、繰り返し送信されるPSDU位置の信号波形についても、CMACタグが付与されることになるので、改竄攻撃を防御することも可能となる。
結果として、リプレイ攻撃と改竄攻撃とを同時に多層的に防御しつつ、復調/復号性能を向上させることが可能となる。
<送信処理>
次に、図14のフローチャートを参照して、例として5秒間の間隔を開けて1バーストあたり4フレーム送信する送信装置201による送信処理について説明する。
ステップS11において、送信装置201は、自身のスリープ状態から復帰させる。
ステップS12において、送信装置201は、送信回数のカウンタCsを1に初期化する。
ステップS13において、キーストリーム発生器253は、記憶部254に記憶されている送信装置201を識別するIDとしてTXIDを読み出す。
ステップS14において、キーストリーム発生器253は、GPS時刻情報取得部255より供給されるGPS時刻情報TIMEを取得する。
ステップS15において、キーストリーム発生器253は、取得したGPS時刻情報TIMEを5秒単位で切り捨てる。すなわち、ステップS13において、例えば、供給されたGPS時刻情報TIMEが00:15:21(00時15分21秒)である場合、5秒単位で切り捨てられることにより、GPS時刻情報TIMEは、00:15:20(00時15分20秒)とされる。
ステップS16において、キーストリーム発生器253は、TXIDおよびGPS時刻情報TIMEに基づいて、キーストリームの初期値NONCEを生成する。
ステップS17において、キーストリーム発生器253は、初期値NONCEおよび秘密鍵に基づいて、キーストリームを発生し、XOR処理部252に出力する。
ステップS18において、センサデータからなるPayloadに対して符号化処理が施される。より詳細には、MSDU生成部231は、Payloadに対して暗号化処理を施して、MSDUを生成し、CMAC処理部232に出力する。CMAC処理部232は、MSDUに対してCMAC処理を施してCMACタグを生成し、MSDU生成部231に出力する。MSDU生成部231は、MSDUとCMACタグとを合わせて符号化部222に出力する。符号化部222の誤り訂正符号付加部251は、MSDUとCMACタグとから誤り訂正符号ECCを求めて付加し、平文データビット列からなるPSDUを生成してXOR処理部252に出力する。
ステップS19において、XOR処理部252は、平文データビット列からなるPSDUに対して、キーストリームの各ビット値をビット単位で、排他的論理和(XOR)を掛けることにより、ストリーム暗号化して、暗号化データビット列からなるPSDUに変換してスイッチ257に出力する。
ステップS20において、同期パターン生成部256は、同期パターンを生成してスイッチ257の端子257aに出力する。また、XOR処理部252は出力する暗号化データビット列を端子257bに出力する。スイッチ257は、送信フォーマットに基づいて、入力を切り替えて出力し、同期パターンと暗号化データビット列を含むPPDUを生成してLPWA送信部223に出力する。
ステップS21において、LPWA送信部223は、PPDUを変調し、送信回数を示すカウンタCsに対応する周波数帯域で受信装置202に送信する。
ステップS22において、送信装置201は、送信回数を示すカウンタCsが4であるか否かを判定し、4ではない場合、処理は、ステップS23に進む。
ステップS23において、送信装置201は、送信回数を示すカウンタCsを1インクリメントし、処理は、ステップS14に戻る。
すなわち、カウンタCsが4になるまで、ステップS14乃至S23の処理が繰り返されて、カウンタCsに応じた異なる周波数で、それぞれの送信タイミングに応じたGPS時刻情報とTXIDに基づいたキーストリームを用いてストリーム暗号化処理されたPSDUを含むPPDUからなる送信フレーム波形が受信装置202に送信される。
そして、ステップS22において、送信回数を示すカウンタCsが4であるとみなされ、4フレーム分の送信フレーム波形が送信されると処理が終了する。
<受信処理>
次に、図15のフローチャートを参照して、同様に例として5秒間の間隔を開けて1バーストあたり4フレーム送信する受信装置202による受信処理について説明する。
ステップS31において、キーストリーム発生器356は、受信処理を行う対象となる送信装置201のTXIDを特定する。
ステップS32において、受信装置202は、受信回数のカウンタCrを1に初期化する。
ステップS33において、キーストリーム発生器356は、GPS時刻情報取得部358より供給されるGPS時刻情報TIMEを取得する。
ステップS34において、キーストリーム発生器356は、取得したGPS時刻情報TIMEを5秒単位で切り捨てる。
ステップS35において、キーストリーム発生器356は、TXIDおよびGPS時刻情報TIMEに基づいて、キーストリームの初期値NONCEを生成する。
ステップS36において、キーストリーム発生器356は、初期値NONCEおよび秘密鍵に基づいて、キーストリームを発生し、極性反転部352に出力する。
ステップS37において、LPWA受信部321は、所定の周波数で送信されてきた送信フレーム波形を受信フレーム波形として受信して、同期検出を行い、復号部322に出力する。復号部322は、PSDU位置の波形を取得する。
より詳細には、復号部322の増幅器332が、アンテナ331を介して高周波信号として送信されてくる送信信号を受信して増幅してミキサ333に出力する。
ミキサ333は、局部発振器334より発振される所定の周波数帯域の波形信号に基づいて中間周波数の波形信号に変換してBPF335に出力する。
BPF335は、中間周波数に変換された波形信号のうち、所定の周波数帯域の波形信号を抽出して位相補正部336、および同期検出部337に出力する。
位相補正部336は、同期検出部337により同期パターンSYNCが検出されたタイミングにおいて、BPF335より供給される波形信号の位相を補正して復号部322に出力する。
復号部322のスイッチ351は、位相補正部336の出力を受け取り、同期検出部337からのタイミング信号により、同期信号波形と暗号化されているPSDUに対応する信号波形とを分離する。スイッチ351の端子351aの先には、同期信号波形保存部359が接続されて同期信号波形出力され、端子351bの先には極性反転部352が接続されて暗号化データビット列に対応するPSDU位置の波形信号が出力される。
ステップS38において、極性反転部352は、図12を参照して説明したように、キーストリーム発生器356により発生されたキーストリームを用いて、PSDU位置の波形信号を極性反転させることにより、PHY(物理)層におけるストリーム復号を行い、PSDUの波形に変換して復調器353に出力する。
ステップS39において、復調器353は、ストリーム復号データビット列に対応するPSDUの波形を積算部354に蓄積された波形に対して積算して蓄積させる。
ステップS40において、受信装置202は、受信回数を示すカウンタCrが4であるか否かを判定する。ステップS38において、カウンタCrが4ではない場合、処理は、ステップS41に進む。
ステップS41において、受信回数を示すカウンタCrが1インクリメントされ、処理は、ステップS33に戻る。
すなわち、異なる周波数で繰り返し送信されてくる送信フレーム波形を4フレーム分受信するまで、ステップS33乃至S41の処理が繰り返される。
そして、ステップS40において、4フレーム分の送信フレーム波形が受信されて、積算部354において、4回分のストリーム復号データビット列に対応するPSDUの波形が加算されて蓄積され、カウンタCrが4であると判定された場合、処理は、ステップS42に進む。
ステップS42において、復号器355は、積算部354に蓄積された4回分のPSDUの波形が積算された波形に基づいて、誤り訂正符号ECCを用いて誤りを訂正した後、PSDUのデータビット列を復号し、MAC復号部323に出力する。
そして、MAC復号部323のMSDU復号部371は、PSDUに含まれるMSDUとCMACタグを抽出し、CMAC処理部372に出力すると共に、MSDUよりPayloadを復号する。
CMAC処理部372は、MSDUに基づいてCMAC処理によりCMACタグを生成すると共に、MSDUに付加されたCMACタグと比較して一致するか否かにより改竄の有無を判定し、判定結果をMSDU復号部371に出力する。
MSDU復号部371は、改竄の有無の情報と共に復号結果であるPayloadを出力する。
以上の一連の送信処理および受信処理により、異なる周波数で、それぞれの送信タイミングに応じたGPS時刻情報とTXIDに基づいたキーストリームを用いてストリーム暗号化処理されたPSDUを含むPPDUからなる送信フレーム波形が受信装置202に送信される。
この処理により、送信フレーム波形は、それぞれ送信タイミングに応じた異なるGPS時刻情報とTXIDとに基づいて生成されるキーストリームを用いてストリーム暗号化されたPSDUを含むPPDUが異なる送信フレーム波形として送信されることになるので、リプレイ攻撃を防御することが可能となる。また、PSDUにはCMACが含められているので、改竄攻撃を防御することが可能となる。
結果として、PHY(物理)層におけるリプレイ攻撃対策と、MAC層における改竄攻撃対策との多層防衛を実現することが可能となる。
また、同一のPSDUを繰り返し送信するので、受信装置202においては、繰り返し送信された積算結果を用いて復号することができるので、復調/復号性能を向上させることが可能となる。
尚、以上においては、送信フレーム波形毎に用いるキーストリームの発生に、TXIDとGPS時刻情報を用いたが、追加情報として、送信装置201と受信装置202で予め定めた同じ数値が含まれていても良い。
すなわち、NONCEとして用いる情報をより多くすることで、リプレイ攻撃に対する耐性を向上させることが可能となる。
また、以上においては、送信フレーム波形毎にGPS時刻情報を用いたが、先頭の送信フレームだけはGPS時刻情報に基づいて発生されるキーストリームを用いる一方で、後続の送信フレーム波形のキーストリームに関しては、先頭のGPS時刻情報に、送信フレーム波形数のカウント値を用いた変換処理により得られる初期値を用いて発生させるようにしてもよい。
すなわち、例えば、先頭の送信フレームにおいては、秘密鍵、TXID、およびGPS時刻情報によりキーストリームを生成し、次の送信フレームにおいては、先頭のキーストリームを生成する際に使用したGPS時刻情報に、先頭のキーストリームを生成したタイミングからの経過時間に対応したカウンタの値を加算して、キーストリームを生成するようにし、以降の送信フレームにおいても同様にキーストリームを生成するようにしてもよい。
さらに、以上においては、5秒単位で切り捨てたGPS時刻情報を用いてNONCEとして用いる例について説明してきたが、送信フレーム波形を区別することができればよいので、例えば、ミリ秒単位で送信フレーム波形の送信間隔が定まっている場合には、送信間隔に応じたミリ秒単位のGPS時刻情報をNONCEに用いるようにしてもよい。
また、以上においては、キーストリームの発生に用いるNONCEとしてTXIDと共にGPS時刻情報を用いるようにしたが、キーストリームを発生させるタイミングに応じて変化する情報であれば他の情報であってもよく、例えば、UTC(Universal time coordinated:世界協定時)、GMT(グリニッジ標準時:Greenwich Mean Time)、JST(日本標準時:Japan Standard Time)などの時刻情報を用いるようにしてもよいし、所定の時間間隔(等時間間隔でも、非等時間間隔でもよい)でカウントされるカウンタの値を用いるようにしてもよい。
さらに、以上においては、4フレーム分の送信フレーム波形を同一のPSDUを送信する1セットとする例について説明してきたが、同一のPSDUについて複数の送信フレーム波形を1セットとして送信すればよいの1セット分の送信フレーム波形のフレーム数については、1セットにつき、2フレーム分以上であればその他のフレーム数分であってもよい。
また、以上においては、キーストリームの発生に際して、NONCE(初期値)を変化させて秘密鍵と合わせてキーストリームを発生させる例について説明してきたが、キーストリームの生成に必要とされるパラメータを変化させられればよいので、キーストリームを発生させる度に、秘密鍵を変化させるようにして、NONCE(初期値)については固定値とするようにしてもよい。
<<3.応用例>>
以上においては、受信装置202において、GPS時刻情報とTXIDとに基づいた、いわゆるストリーム暗号器に用いられるキーストリーム発生器を用いて、キーストリームを発生させる例について説明してきた。
しかしながら、ブロック暗号器を特定の暗号利用モードと組み合わせることによりキーストリーム発生器を構成することもでき、これを用いても良い。
例えば、図16のケースC1で示されるように、キーストリームを発生させる度に、NONCEを所定値だけインクリメントするブロック暗号器を用いるようにしてもよい。
すなわち、ブロック暗号器401は、例えば、最初のタイミングにおいて、c59bcf35…00000000からなるNONCEと、秘密鍵Keyとにより固定ビット数のキーストリームK1を発生する。XOR処理部402は、平文データビット列に対して、キーストリームK1を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
次のタイミングにおいて、ブロック暗号器401は、例えば、直前のNONCEを1インクリメントしたc59bcf35…00000001からなるNONCEを生成し、秘密鍵Keyと共に用いることでキーストリームK2を発生する。XOR処理部402は、平文データビット列に対して、キーストリームK2を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
さらに次のタイミングにおいて、ブロック暗号器401は、例えば、直前のNONCEをさらに1インクリメントしたc59bcf35…00000002からなるNONCEを生成し、秘密鍵Keyと共に用いることでキーストリームK3を発生する。XOR処理部402は、平文データビット列に対して、キーストリームK3を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
このように、キーストリームが発生される度に、NONCEが変化することでキーストリームも変化することになるので、リプレイ攻撃を防御することが可能となる。
また、図16のケースC2で示されるように、NONCEとなる初期値を直前に発生させたキーストリームにしてもよい。
すなわち、ブロック暗号器411は、例えば、最初に、初期値と、秘密鍵KeyとによりキーストリームK11を発生して、XOR処理部412が、平文データビット列に対して、キーストリームK11を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
次のタイミングにおいて、ブロック暗号器411は、例えば、直前のキーストリームK11を初期値とし、秘密鍵Keyと共に用いることでキーストリームK12を発生して、XOR処理部412が、平文データビット列に対して、キーストリームK12を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
さらに次のタイミングにおいて、ブロック暗号器411が、例えば、直前のキーストリームK12を初期値とし、秘密鍵Keyと共に用いることでキーストリームK13を発生して、XOR処理部402が、平文データビット列に対して、キーストリームK13を用いてビット単位でXORを掛けて暗号化データビット列に変換する。
このように、キーストリームが発生される度に、初期値が変化することでキーストリームも変化することになるので、リプレイ攻撃を防御することが可能となる。
さらに、図16のケースC3で示されるように、NONCEとなる初期値を直前に発生させた暗号化データビット列にしてもよい。
すなわち、ブロック暗号器411は、例えば、最初に、初期値と、秘密鍵KeyとによりキーストリームK21を発生する。そして、XOR処理部412は、平文データビット列に対して、キーストリームを用いてビット単位でXORを掛けて暗号化データビット列E1に変換する。
次のタイミングにおいて、ブロック暗号器411は、例えば、直前の暗号化データビット列E1を初期値とし、秘密鍵Keyと共に用いることでキーストリームK22を発生する。そして、XOR処理部412は、平文データビット列に対して、キーストリームK22を用いてビット単位でXORを掛けて暗号化データビット列E2に変換する。
さらに次のタイミングにおいて、ブロック暗号器411が、例えば、直前の暗号化データビット列E2を初期値とし、秘密鍵Keyと共に用いることでキーストリームK23を発生する。そして、XOR処理部402は、平文データビット列に対して、キーストリームK23を用いてビット単位でXORを掛けて暗号化データビット列E3に変換する。
このように、キーストリームが発生される度に、初期値が変化することでキーストリームも変化することになるので、リプレイ攻撃を防御することが可能となる。
以上の如く、本開示の通信システムにおいては、PHY(物理)層におけるストリーム暗号を用いるようにしたので、受信装置において、送信フレーム波形を極性反転することで、PSDUの波形を復号することが可能となり、それぞれの送信フレーム波形を容易に同じ形に変形することができ、波形合成が可能となる。
また、時刻に基づいてフレーム送信ごとにキーストリームを変更することで、送信フレーム波形が毎回異なり、リプレイ攻撃への耐性を向上させることが可能になると共に、暗号化され送信波形が異なっていても波形合成手法により復調/復号性能を向上させることが可能となる。
さらに、ストリーム暗号化により、任意長の平文データビット列を、暗号化データビット列に変換することができる。
<<4.ソフトウェアにより実行させる例>>
ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどに、記録媒体からインストールされる。
図17は、汎用のコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタフェース1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
入出力インタフェース1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブル記憶媒体1011に対してデータを読み書きするドライブ1010が接続されている。
CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブル記憶媒体1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記憶媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブル記憶媒体1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
尚、図17におけるCPU1001が、図8の符号化部222および図9の復号部322の機能を実現させる。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
尚、本開示は、以下のような構成も取ることができる。
<1> 送信データを繰り返し送信する送信装置であって、
前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成部と、
前記キーストリームにより、前記送信データを暗号化データに変換する暗号化部と、
前記暗号化データを変調した波形信号を送信する送信部と
を含む送信装置。
<2> 前記時刻情報は、GPS(Global Positioning System)時刻情報、UTC(Universal time coordinated:世界協定時)時刻情報、GMT(グリニッジ標準時:Greenwich Mean Time)、JST(日本標準時:Japan Standard Time)時刻情報、および、所定の等時間間隔、または、非等時間間隔によりカウントされるカウンタの値を含む
<1>に記載の送信装置。
<3> 前記キーストリーム生成部は、前記時刻情報を所定の時間単位で切り捨てた情報に基づいて、前記キーストリームを生成する
<1>に記載の送信装置。
<4> 前記キーストリーム生成部は、前記時刻情報と、前記固有のIDとを前記初期値とし、さらに、秘密鍵を用いて、前記キーストリームを生成する
<1>に記載の送信装置。
<5> PayloadよりMSDU(MAC(Media Access Control) Service Data Unit)を生成するMSDU生成部と、
前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理によりCMACタグを生成するCMAC処理部とをさらに含み、
前記送信データは、前記MSDUおよび前記CMACタグと、前記MSDUおよび前記CMACタグより生成される誤り訂正符号ECC(Error Correcting Code or Error Check and Correct)とを含む
<1>に記載の送信装置。
<6> 送信データを繰り返し送信する送信装置の送信方法であって、
前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成処理と、
前記キーストリームにより、前記送信データを暗号化データに変換する暗号化処理と、
前記暗号化データを変調した波形信号を送信する送信処理と
を含む送信方法。
<7> 送信装置から繰り返し送信される送信データを繰り返し受信する受信装置であって、
前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信部と、
前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として前記キーストリームを生成するキーストリーム生成部と、
前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転部と、
前記極性が反転された波形信号に基づいて、前記送信データを復号する復号部と
を含む受信装置。
<8> 前記時刻情報は、GPS(Global Positioning System)時刻情報、UTC(Universal time coordinated:世界協定時)時刻情報、GMT(グリニッジ標準時:Greenwich Mean Time)、JST(日本標準時:Japan Standard Time)時刻情報、および、所定の等時間間隔、または、非等時間間隔によりカウントされるカウンタの値を含む
<7>に記載の受信装置。
<9> 前記キーストリーム生成部は、前記時刻情報を所定の時間単位で切り捨てた情報に基づいて、前記キーストリームを生成する
<7>に記載の受信装置。
<10> 前記キーストリーム生成部は、前記時刻情報と、前記送信装置の固有のIDとを前記初期値とし、さらに、秘密鍵を用いて前記キーストリームを生成する
<7>に記載の受信装置。
<11> 前記送信データは、Payloadに基づいて生成されるMSDU(MAC(Media Access Control) Service Data Unit)と、前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理により生成されるCMACタグ、並びに前記MSDUおよびCMACタグより求められる誤り訂正符号ECC(Error Correcting Code or Error Check and Correct)を含み、
前記送信データより、前記誤り訂正符号ECCにより誤り訂正を行って、前記MSDUおよびCMACタグを復号するMSDU復号部と、
前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理によりCMACタグを生成し、前記MSDU復号部により復号されたCMACタグと比較し、前記送信データの改竄の有無を判定するCMAC処理部とをさらに含む
<7>に記載の受信装置。
<12> 前記送信装置より繰り返し送信される、同一の前記送信データが暗号化された暗号化データを変調した波形信号の波形の極性が、前記極性反転部において、前記キーストリームにより反転された波形を積算して記憶する積算記憶部をさらに含み、
前記復号部は、前記積算記憶部に積算して記憶されている、前記極性が反転された波形信号に基づいて、前記送信データを復号する
<11>に記載の受信装置。
<13> 前記極性反転部は、前記波形信号の波形の極性と、前記キーストリームにより設定される係数との乗算により、前記波形信号の波形の極性を反転させる
<7>に記載の受信装置。
<14> 送信装置から繰り返し送信される送信データを繰り返し受信する受信装置の受信方法であって、
前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信処理と、
前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として前記キーストリームを生成するキーストリーム生成処理と、
前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転処理と、
前記極性が反転された波形信号に基づいて、前記送信データを復号する復号処理と
を含む受信方法。
200 通信システム, 201 送信装置, 202 受信装置, 203 クラウドサーバ, 211,211-1,211-2 アプリケーションプログラム, 221 MAC暗号化部, 222 符号化部, 223 LPWA送信部, 231 MSDU生成部, 232 CMAC処理部, 251 誤り訂正符号付加部, 252 XOR処理部, 253 キーストリーム発生器, 254 記憶部, 255 GPS時刻情報取得部, 256 同期パターン生成部, 257 スイッチ, 257a,257b 端子, 271 変調部, 272 ミキサ, 273 局部発振器, 274 BPF, 275 増幅器, 276 アンテナ, 321 LPWA受信部, 322 復号部, 323 MAC復号部, 331 アンテナ, 332 増幅器, 333 ミキサ, 334 局部発振器, 335 BPF, 336 位相補正部, 337 同期検出部, 351 スイッチ, 351a,351b 端子, 352 極性反転部, 353 復調器, 354 積算部, 355 複合機, 356 キーストリーム発生器, 357 記憶部, 358 GPS時刻情報取得部, 359 同期信号波形保存部, 371 MSDU生成部, 372 CMAC処理部

Claims (14)

  1. 送信データを繰り返し送信する送信装置であって、
    前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成部と、
    前記キーストリームにより、前記送信データを暗号化データに変換する暗号化部と、
    前記暗号化データを変調した波形信号を送信する送信部と
    を含む送信装置。
  2. 前記時刻情報は、GPS(Global Positioning System)時刻情報、UTC(Universal time coordinated:世界協定時)時刻情報、GMT(グリニッジ標準時:Greenwich Mean Time)、JST(日本標準時:Japan Standard Time)時刻情報、および、所定の等時間間隔、または、非等時間間隔によりカウントされるカウンタの値を含む
    請求項1に記載の送信装置。
  3. 前記キーストリーム生成部は、前記時刻情報を所定の時間単位で切り捨てた情報に基づいて、前記キーストリームを生成する
    請求項1に記載の送信装置。
  4. 前記キーストリーム生成部は、前記時刻情報と、前記固有のIDとを前記初期値とし、さらに、秘密鍵を用いて、前記キーストリームを生成する
    請求項1に記載の送信装置。
  5. PayloadよりMSDU(MAC(Media Access Control) Service Data Unit)を生成するMSDU生成部と、
    前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理によりCMACタグを生成するCMAC処理部とをさらに含み、
    前記送信データは、前記MSDUおよび前記CMACタグと、前記MSDUおよび前記CMACタグより生成される誤り訂正符号ECC(Error Correcting Code or Error Check and Correct)とを含む
    請求項1に記載の送信装置。
  6. 送信データを繰り返し送信する送信装置の送信方法であって、
    前記送信データを繰り返し送信するそれぞれのタイミングにおける時刻情報と自身の固有のIDを初期値としてキーストリームを生成するキーストリーム生成処理と、
    前記キーストリームにより、前記送信データを暗号化データに変換する暗号化処理と、
    前記暗号化データを変調した波形信号を送信する送信処理と
    を含む送信方法。
  7. 送信装置から繰り返し送信される送信データを繰り返し受信する受信装置であって、
    前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信部と、
    前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置に固有のIDを初期値として前記キーストリームを生成するキーストリーム生成部と、
    前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転部と、
    前記極性が反転された波形信号に基づいて、前記送信データを復号する復号部と
    を含む受信装置。
  8. 前記時刻情報は、GPS(Global Positioning System)時刻情報、UTC(Universal time coordinated:世界協定時)時刻情報、GMT(グリニッジ標準時:Greenwich Mean Time)、JST(日本標準時:Japan Standard Time)時刻情報、および、所定の等時間間隔、または、非等時間間隔によりカウントされるカウンタの値を含む
    請求項7に記載の受信装置。
  9. 前記キーストリーム生成部は、前記時刻情報を所定の時間単位で切り捨てた情報に基づいて、前記キーストリームを生成する
    請求項7に記載の受信装置。
  10. 前記キーストリーム生成部は、前記時刻情報と、前記送信装置の固有のIDとを前記初期値とし、さらに、秘密鍵を用いて前記キーストリームを生成する
    請求項7に記載の受信装置。
  11. 前記送信データは、Payloadに基づいて生成されるMSDU(MAC(Media Access Control) Service Data Unit)と、前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理により生成されるCMACタグ、並びに前記MSDUおよびCMACタグより求められる誤り訂正符号ECC(Error Correcting Code or Error Check and Correct)を含み、
    前記送信データより、前記誤り訂正符号ECCにより誤り訂正を行って、前記MSDUおよびCMACタグを復号するMSDU復号部と、
    前記MSDUよりCMAC(Cihper-based MAC:暗号ベースメッセージ認証コード)処理によりCMACタグを生成し、前記MSDU復号部により復号されたCMACタグと比較し、前記送信データの改竄の有無を判定するCMAC処理部とをさらに含む
    請求項7に記載の受信装置。
  12. 前記送信装置より繰り返し送信される、同一の前記送信データが暗号化された暗号化データを変調した波形信号の波形の極性が、前記極性反転部において、前記キーストリームにより反転された波形を積算して記憶する積算記憶部をさらに含み、
    前記復号部は、前記積算記憶部に積算して記憶されている、前記極性が反転された波形信号に基づいて、前記送信データを復号する
    請求項11に記載の受信装置。
  13. 前記極性反転部は、前記波形信号の波形の極性と、前記キーストリームにより設定される係数との乗算により、前記波形信号の波形の極性を反転させる
    請求項7に記載の受信装置。
  14. 送信装置から繰り返し送信される送信データを繰り返し受信する受信装置の受信方法であって、
    前記送信装置より送信される、前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として生成されたキーストリームにより前記送信データが暗号化された暗号化データを変調した波形信号を受信する受信処理と、
    前記送信データが繰り返し送信されるそれぞれのタイミングにおける時刻情報と前記送信装置の固有のIDを初期値として前記キーストリームを生成するキーストリーム生成処理と、
    前記波形信号の波形の極性を、前記キーストリームにより反転させる極性反転処理と、
    前記極性が反転された波形信号に基づいて、前記送信データを復号する復号処理と
    を含む受信方法。
JP2024024802A 2018-09-20 2024-02-21 送信装置および送信方法、並びに受信装置および受信方法 Pending JP2024045696A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018176527 2018-09-20
JP2018176527 2018-09-20
JP2018184021 2018-09-28
JP2018184021 2018-09-28
PCT/JP2019/035150 WO2020059535A1 (ja) 2018-09-20 2019-09-06 送信装置および送信方法、並びに受信装置および受信方法
JP2020548329A JPWO2020059535A1 (ja) 2018-09-20 2019-09-06 送信装置および送信方法、並びに受信装置および受信方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020548329A Division JPWO2020059535A1 (ja) 2018-09-20 2019-09-06 送信装置および送信方法、並びに受信装置および受信方法

Publications (1)

Publication Number Publication Date
JP2024045696A true JP2024045696A (ja) 2024-04-02

Family

ID=69887285

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020548329A Pending JPWO2020059535A1 (ja) 2018-09-20 2019-09-06 送信装置および送信方法、並びに受信装置および受信方法
JP2024024802A Pending JP2024045696A (ja) 2018-09-20 2024-02-21 送信装置および送信方法、並びに受信装置および受信方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020548329A Pending JPWO2020059535A1 (ja) 2018-09-20 2019-09-06 送信装置および送信方法、並びに受信装置および受信方法

Country Status (5)

Country Link
US (1) US11528260B2 (ja)
EP (1) EP3855676A4 (ja)
JP (2) JPWO2020059535A1 (ja)
CN (1) CN112689972A (ja)
WO (1) WO2020059535A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11483704B2 (en) * 2019-12-27 2022-10-25 University Of Electronic Science And Technology Of China Physical layer secure communication against an eavesdropper with arbitrary number of eavesdropping antennas
US20220255752A1 (en) * 2021-02-09 2022-08-11 Ford Global Technologies, Llc Vehicle computing device authentication
KR102470261B1 (ko) * 2021-03-05 2022-11-25 논스랩 주식회사 휴대폰 사진의 gps 위치 데이터를 이용한 개인키 생성 및 복구 방법 및 이를 이용한 시스템
WO2023201724A1 (zh) * 2022-04-22 2023-10-26 Oppo广东移动通信有限公司 一种无线通信方法及装置、设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725165A (en) 1980-07-22 1982-02-09 Tsuneo Ikegami Dc/dc converter
JP3439838B2 (ja) * 1994-08-10 2003-08-25 富士通株式会社 ソフトウエア従量課金・再生装置
JPH0879236A (ja) 1994-09-09 1996-03-22 Mita Ind Co Ltd 通信装置
JP2728034B2 (ja) * 1995-06-15 1998-03-18 日本電気株式会社 スペクトラム拡散信号受信装置
JPH10215488A (ja) * 1997-01-31 1998-08-11 Nec Corp 移動無線システムにおけるホストアクセス方法
JP2000209196A (ja) 1999-01-13 2000-07-28 Nec Corp 暗号通信方法及び装置
JP3779580B2 (ja) * 2001-09-27 2006-05-31 株式会社東芝 信号処理方法及び装置、信号再生方法及び装置、記録媒体
US7606560B2 (en) * 2002-08-08 2009-10-20 Fujitsu Limited Authentication services using mobile device
US7784684B2 (en) * 2002-08-08 2010-08-31 Fujitsu Limited Wireless computer wallet for physical point of sale (POS) transactions
US20060265595A1 (en) * 2003-04-02 2006-11-23 Scottodiluzio Salvatore E Cascading key encryption
US20070172067A1 (en) * 2004-02-12 2007-07-26 Koninklijke Philips Electronics N.V. System for selective data transmission
FI20050562A0 (fi) * 2005-05-26 2005-05-26 Nokia Corp Menetelmä avainmateriaalin tuottamiseksi
FI20075776L (fi) * 2007-10-31 2009-05-01 Eads Secure Networks Oy Päästä-päähän salattu viestintä
US20120087496A1 (en) * 2010-10-08 2012-04-12 Da Ar Fa International Co., Ltd. Home use active remote encryption and switching device
WO2012090448A1 (ja) 2010-12-28 2012-07-05 三洋電機株式会社 端末装置
JP6017232B2 (ja) * 2012-09-07 2016-10-26 ルネサスエレクトロニクス株式会社 送信装置及び通信システム
JP5997588B2 (ja) 2012-11-15 2016-09-28 株式会社エヌ・ティ・ティ・データ 通信システム、通信方法、通信装置、および通信プログラム
US9263052B1 (en) * 2013-01-25 2016-02-16 Google Inc. Simultaneous estimation of fundamental frequency, voicing state, and glottal closure instant
US8995658B2 (en) * 2013-02-13 2015-03-31 Honeywell International Inc. Physics-based key generation
US9465960B2 (en) * 2013-12-04 2016-10-11 Honeywell International Inc. Physics-based authentication
US20160210185A1 (en) * 2015-01-21 2016-07-21 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication
US11627639B2 (en) * 2015-01-26 2023-04-11 Ievgen Verzun Methods and apparatus for HyperSecure last mile communication
US10095634B2 (en) * 2015-05-22 2018-10-09 Nxp B.V. In-vehicle network (IVN) device and method for operating an IVN device
CN105425118B (zh) * 2015-10-29 2018-09-04 山东建筑大学 一种多信息融合故障电弧检测方法及装置
WO2017212810A1 (ja) * 2016-06-08 2017-12-14 ソニーセミコンダクタソリューションズ株式会社 情報処理装置および方法、送信装置および方法、並びに、受信装置および方法
US10630481B2 (en) * 2016-11-07 2020-04-21 Ford Global Technologies, Llc Controller area network message authentication
US11228421B1 (en) * 2017-02-03 2022-01-18 Apple Inc. Secure secrets to mitigate against attacks on cryptographic systems
US10586057B2 (en) * 2017-11-16 2020-03-10 Intuit Inc. Processing data queries in a logically sharded data store
EP3598691A1 (en) * 2018-07-18 2020-01-22 Kabushiki Kaisha Toshiba Information processing method for quantum key distribution, and computer-readable medium

Also Published As

Publication number Publication date
US20210314307A1 (en) 2021-10-07
WO2020059535A1 (ja) 2020-03-26
CN112689972A (zh) 2021-04-20
EP3855676A1 (en) 2021-07-28
JPWO2020059535A1 (ja) 2021-08-30
EP3855676A4 (en) 2021-11-10
US11528260B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP2024045696A (ja) 送信装置および送信方法、並びに受信装置および受信方法
US8312551B2 (en) Low level sequence as an anti-tamper Mechanism
US8781125B2 (en) Systems and methods of secure coding for physical layer communication channels
US8473738B2 (en) Mode of information transmission and complex protection
US8213616B2 (en) Systems and methods for providing opportunistic security for physical communication channels
US9379887B2 (en) Efficient cryptographic key stream generation using optimized S-box configurations
US20130326630A1 (en) Pre-processor for physical layer security
Makhdoom et al. A comprehensive survey of covert communication techniques, limitations and future challenges
CN112788599A (zh) 一种基于信道状态信息的物理层密钥生成方法
CN116669022A (zh) 无线通信系统数据安全传输方法
Ghane et al. A network steganographic approach to overlay cognitive radio systems utilizing systematic coding
JP2012257248A (ja) ワイヤレス通信システム用の共有鍵の生成方法
CN109889327B (zh) 共享密钥生成方法和装置
Nergui et al. Reliable and robust transmission and storage techniques for medical images with patient information
Emek et al. Frequency hopping against a powerful adversary
Ziaullah et al. Image feature based authentication and digital signature for wireless data transmission
Vo-Huu et al. Mitigating rate attacks through crypto-coded modulation
Kuldeep et al. A novel efficient secure and error-robust scheme for Internet of Things using compressive sensing
JP6923878B2 (ja) 認証装置、認証システム、認証方法およびプログラム
Amanna et al. Realizing physical layer authentication using constellation perturbation on a software-defined radio testbed
AU2021103993A4 (en) A system and method for joint encoding and encryption using ldpc and chaotic security
Liu et al. Designing rich-secure network covert timing channels based on nested lattices
Srinivasan et al. Secure android covert channel with robust survivability to service provider restrictions
Zhang et al. Joint physical–application layer security
KR20060058931A (ko) 암호화 모듈이 구성된 gps 수신기 내장형 통신시스템및 gps 데이터의 암호화 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240313