JP2015093795A - Method for producing glass laminate, and method for producing electronic device - Google Patents

Method for producing glass laminate, and method for producing electronic device Download PDF

Info

Publication number
JP2015093795A
JP2015093795A JP2013233024A JP2013233024A JP2015093795A JP 2015093795 A JP2015093795 A JP 2015093795A JP 2013233024 A JP2013233024 A JP 2013233024A JP 2013233024 A JP2013233024 A JP 2013233024A JP 2015093795 A JP2015093795 A JP 2015093795A
Authority
JP
Japan
Prior art keywords
inorganic layer
glass
glass substrate
substrate
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233024A
Other languages
Japanese (ja)
Other versions
JP6119567B2 (en
Inventor
光耀 牛
Koyo Gyu
光耀 牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013233024A priority Critical patent/JP6119567B2/en
Priority to TW103139116A priority patent/TWI622493B/en
Priority to CN201410643715.9A priority patent/CN104626664B/en
Priority to KR1020140155995A priority patent/KR20150054692A/en
Publication of JP2015093795A publication Critical patent/JP2015093795A/en
Application granted granted Critical
Publication of JP6119567B2 publication Critical patent/JP6119567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/14Velocity, e.g. feed speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a glass laminate having excellent laminated state keeping properties between an inorganic layer disposed on a support substrate and a glass substrate.SOLUTION: The method for producing the glass laminate, in which the glass laminate 10, that includes: an inorganic layer-disposed support substrate 16 having the support substrate 12 and the inorganic layer 14 disposed on the support substrate; and the glass substrate 18 layered peelably on the inorganic layer, is obtained, comprises: a layering step of layering the glass substrate on the inorganic layer; and a heat treatment step of performing heat treatment on the layered glass substrate. The inorganic layer contains at least one selected from silicon carbide, carbonized silicon oxide, silicon nitride and nitrided silicon oxide. The heat treatment step satisfies the following conditions (a)-(d). The condition (a) is that a temperature rising rate is 300°C/minute or lower. The condition (b) is that the heating temperature is set within 150-600°C. The condition (c) is that the retention time is 0.5 minutes or more. The condition (d) is that the atmosphere is an air atmosphere of an atmospheric state or a reduced pressure state, an inert gas atmosphere or a vacuum atmosphere.

Description

本発明は、ガラス積層体の製造方法および電子デバイスの製造方法に関する。   The present invention relates to a method for manufacturing a glass laminate and a method for manufacturing an electronic device.

近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などの電子デバイス(電子機器)の薄型化、軽量化が進行しており、これらの電子デバイスに用いるガラス基板の薄板化が進行している。一方、薄板化によりガラス基板の強度が不足すると、電子デバイスの製造工程において、ガラス基板の取り扱い性が低下する。   In recent years, electronic devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and a thin glass substrate used for these electronic devices. Progress is being made. On the other hand, when the strength of the glass substrate is insufficient due to the thin plate, the handleability of the glass substrate is lowered in the manufacturing process of the electronic device.

そこで、最近では、ガラス基板の取り扱い性を向上させる観点から、無機薄膜付き支持ガラスの無機薄膜上にガラス基板を積層した積層体を用意し、積層体のガラス基板上に素子の製造処理を施した後、積層体からガラス基板を分離する方法が提案されている(特許文献1)。   Therefore, recently, from the viewpoint of improving the handleability of the glass substrate, a laminated body in which a glass substrate is laminated on an inorganic thin film of a supporting glass with an inorganic thin film is prepared, and an element manufacturing process is performed on the laminated glass substrate. After that, a method of separating the glass substrate from the laminate has been proposed (Patent Document 1).

特開2011−184284号公報JP 2011-184284 A

本発明者らは、特許文献1を踏まえて、支持基板(支持ガラス)上に配置される無機層(無機薄膜)について検討を行なった。その結果、無機層の組成として、特許文献1に具体的に記載されていない特定の組成を採用した場合に、無機層上のガラス基板を剥離する際の剥離性が優れることを見出した。
ところで、特許文献1に記載の方法では、積層後に、加熱処理を行なっている。そこで、本発明者らは、上記特定の組成を用いた無機層上にガラス基板を積層した後に、特許文献1に具体的に記載されている条件で加熱処理を行なった。その結果、該加熱処理を行なった積層体については、切り折りや研磨を行なう際に、積層状態が維持されない場合があることが分かった。この場合、該加熱処理を行なった積層体のガラス基板上に電子デバイス用部材を形成する際に、ガラス基板に剥がれが生じて、得られる電子デバイスに不具合が発生するおそれがある。
The present inventors examined the inorganic layer (inorganic thin film) arrange | positioned on a support substrate (support glass) based on patent document 1. FIG. As a result, when the specific composition which is not specifically described in patent document 1 is employ | adopted as a composition of an inorganic layer, it discovered that the peelability at the time of peeling the glass substrate on an inorganic layer was excellent.
By the way, in the method described in Patent Document 1, heat treatment is performed after stacking. Therefore, the present inventors performed a heat treatment under the conditions specifically described in Patent Document 1 after laminating a glass substrate on the inorganic layer using the specific composition. As a result, it was found that the laminated state may not be maintained when the laminated body subjected to the heat treatment is cut and folded or polished. In this case, when the electronic device member is formed on the glass substrate of the laminate subjected to the heat treatment, the glass substrate may be peeled off, which may cause a problem in the obtained electronic device.

本発明は、以上の点を鑑みてなされたものであり、支持基板上に配置された無機層とガラス基板との積層維持性に優れるガラス積層体の製造方法、および、該ガラス積層体を用いた電子デバイスの製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and a method for producing a glass laminate excellent in the laminate maintenance of an inorganic layer and a glass substrate disposed on a support substrate, and the glass laminate are used. It is an object of the present invention to provide a method for manufacturing an electronic device.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、無機層の組成として特定の組成を採用した場合に、無機層上にガラス基板を積層した後に、特定の条件で加熱処理を行なうことで、無機層とガラス基板との積層状態が維持されることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have adopted a specific composition as the composition of the inorganic layer, and after heating a glass substrate on the inorganic layer, heating under specific conditions. By performing the treatment, it was found that the laminated state of the inorganic layer and the glass substrate was maintained, and the present invention was completed.

すなわち、本発明は、以下の(1)〜(4)を提供する。
(1)支持基板および上記支持基板上に配置された無機層を有する無機層付き支持基板と、上記無機層上に剥離可能に積層されたガラス基板と、を備えるガラス積層体を得る、ガラス積層体の製造方法であって、上記無機層上に上記ガラス基板を積層させる積層工程と、上記積層工程の後に加熱処理を行う加熱処理工程と、を備え、上記無機層が、炭化ケイ素、炭化酸化ケイ素、窒化ケイ素および窒化酸化ケイ素からなる群から選ばれる少なくとも1種を含み、上記加熱処理が、下記(a)〜(d)の条件を満たす、ガラス積層体の製造方法。
(a)昇温速度:300℃/分以下
(b)加熱温度:150〜600℃
(c)保持時間:0.5分以上
(d)雰囲気:大気圧状態もしくは減圧状態の大気雰囲気もしくは不活性ガス雰囲気、または、真空雰囲気
(2)上記(a)昇温速度が、200℃/分以下である、上記(1)に記載のガラス積層体の製造方法。
(3)上記支持基板が、ガラス基板である、上記(1)または(2)に記載のガラス積層体の製造方法。
(4)上記(1)〜(3)のいずれかに記載のガラス積層体の製造方法により得られたガラス積層体中の上記ガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、上記電子デバイス用部材付き積層体から上記無機層付き支持基板を剥離し、上記ガラス基板および上記電子デバイス用部材を有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法。
That is, the present invention provides the following (1) to (4).
(1) A glass laminate that obtains a glass laminate comprising a support substrate and a support substrate with an inorganic layer having an inorganic layer disposed on the support substrate, and a glass substrate that is detachably laminated on the inorganic layer. A method for producing a body, comprising: a laminating step of laminating the glass substrate on the inorganic layer; and a heat treatment step of performing a heat treatment after the laminating step, wherein the inorganic layer comprises silicon carbide, carbonized oxidation A method for producing a glass laminate, comprising at least one selected from the group consisting of silicon, silicon nitride, and silicon nitride oxide, wherein the heat treatment satisfies the following conditions (a) to (d).
(A) Temperature increase rate: 300 ° C./min or less (b) Heating temperature: 150 to 600 ° C.
(C) Holding time: 0.5 minutes or more (d) Atmosphere: atmospheric or inert gas atmosphere or vacuum atmosphere under atmospheric pressure or reduced pressure (2) The above (a) heating rate is 200 ° C. / The manufacturing method of the glass laminated body as described in said (1) which is below minutes.
(3) The manufacturing method of the glass laminated body as described in said (1) or (2) whose said support substrate is a glass substrate.
(4) An electronic device member is formed on the surface of the glass substrate in the glass laminate obtained by the method for producing a glass laminate according to any one of (1) to (3), and the electronic device is used. A member forming step for obtaining a laminate with members, and a separation step for peeling the support substrate with inorganic layers from the laminate with members for electronic devices to obtain an electronic device having the glass substrate and the members for electronic devices. A method for manufacturing an electronic device.

本発明によれば、支持基板上に配置された無機層とガラス基板との積層維持性に優れるガラス積層体の製造方法、および、該ガラス積層体を用いた電子デバイスの製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the glass laminated body which is excellent in the lamination | stacking maintenance property of the inorganic layer arrange | positioned on a support substrate and a glass substrate, and the manufacturing method of an electronic device using this glass laminated body can be provided.

本発明に係るガラス積層体の一実施形態の模式的断面図である。It is typical sectional drawing of one Embodiment of the glass laminated body which concerns on this invention. 本発明に係る電子デバイスの製造方法の工程図である。It is process drawing of the manufacturing method of the electronic device which concerns on this invention. 剥離性の評価方法を示す模式的断面図である。It is typical sectional drawing which shows the peelable evaluation method.

以下、本発明のガラス積層体の製造方法および電子デバイスの製造方法の好適形態について図面を参照して説明するが、本発明は、以下の実施形態に限定されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。   Hereinafter, preferred embodiments of a method for producing a glass laminate and a method for producing an electronic device of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the scope of the present invention. Various modifications and substitutions can be made to the following embodiments without departing from the scope of the present invention.

本発明のガラス積層体の製造方法により得られるガラス積層体は、概略的には、支持基板とガラス基板との間に、特定の組成を採用した無機層を介在させたものであり、これにより、高温条件下での処理後であっても無機層とガラス基板との剥離性が優れる。   The glass laminate obtained by the method for producing a glass laminate of the present invention is generally an intermediate layer adopting a specific composition interposed between a support substrate and a glass substrate. Even after treatment under high temperature conditions, the peelability between the inorganic layer and the glass substrate is excellent.

以下においては、まず、ガラス積層体の好適態様について詳述し、その後、このガラス積層体の製造方法、および、このガラス積層体を使用した電子デバイスの製造方法の好適態様について詳述する。   Below, the suitable aspect of a glass laminated body is explained in full detail first, Then, the suitable aspect of the manufacturing method of this glass laminated body and the manufacturing method of an electronic device using this glass laminated body is explained in full detail.

<ガラス積層体>
図1は、本発明に係るガラス積層体の一実施形態の模式的断面図である。
図1に示すように、ガラス積層体10は、支持基板12および無機層14からなる無機層付き支持基板16と、ガラス基板18とを有する。ガラス積層体10中において、無機層付き支持基板16の無機層14の無機層表面14a(支持基板12側とは反対側の表面)と、ガラス基板18の第1主面18aとを積層面として、無機層付き支持基板16とガラス基板18とが剥離可能に積層している。つまり、無機層14は、その一方の面が支持基板12の層に固定されると共に、その他方の面がガラス基板18の第1主面18aに接し、無機層14とガラス基板18との界面は剥離可能に密着されている。言い換えると、無機層14は、ガラス基板18の第1主面18aに対して易剥離性を具備している。
<Glass laminate>
FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention.
As shown in FIG. 1, the glass laminate 10 includes a support substrate 16 with an inorganic layer composed of a support substrate 12 and an inorganic layer 14, and a glass substrate 18. In the glass laminate 10, the inorganic layer surface 14 a of the inorganic layer 14 of the support substrate 16 with an inorganic layer (surface opposite to the support substrate 12 side) and the first main surface 18 a of the glass substrate 18 are used as the laminate surface. The support substrate 16 with an inorganic layer and the glass substrate 18 are laminated so as to be peelable. That is, the inorganic layer 14 has one surface fixed to the layer of the support substrate 12 and the other surface in contact with the first main surface 18 a of the glass substrate 18, and the interface between the inorganic layer 14 and the glass substrate 18. Are in close contact with each other. In other words, the inorganic layer 14 is easily peelable from the first main surface 18 a of the glass substrate 18.

また、このガラス積層体10は、後述する部材形成工程まで使用される。即ち、このガラス積層体10は、そのガラス基板18の第2主面18b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、無機層付き支持基板16の層は、ガラス基板18の層との界面で剥離され、無機層付き支持基板16の層は電子デバイスを構成する部材とはならない。分離された無機層付き支持基板16は新たなガラス基板18と積層され、新たなガラス積層体10として再利用できる。   Moreover, this glass laminated body 10 is used until the member formation process mentioned later. That is, the glass laminate 10 is used until an electronic device member such as a liquid crystal display device is formed on the surface of the second main surface 18b of the glass substrate 18. Thereafter, the layer of the support substrate 16 with the inorganic layer is peeled off at the interface with the layer of the glass substrate 18, and the layer of the support substrate 16 with the inorganic layer does not become a member constituting the electronic device. The separated support substrate 16 with an inorganic layer is laminated with a new glass substrate 18 and can be reused as a new glass laminate 10.

本発明において、上記固定と(剥離可能な)密着は、剥離強度(すなわち、剥離に要する応力)に違いがあり、固定は密着に対し剥離強度が大きいことを意味する。具体的には、無機層14と支持基板12との界面の剥離強度が、ガラス積層体10中の無機層14とガラス基板18との界面の剥離強度よりも大きくなる。
また、剥離可能な密着とは、剥離可能であると同時に、固定されている面の剥離を生じさせることなく剥離可能であることも意味する。つまり、本発明のガラス積層体10において、ガラス基板18と支持基板12とを分離する操作を行った場合、密着された面(無機層14とガラス基板18との界面)で剥離し、固定された面では剥離しないことを意味する。したがって、ガラス積層体10をガラス基板18と支持基板12とに分離する操作を行うと、ガラス積層体10はガラス基板18と無機層付き支持基板16との2つに分離される。
In the present invention, the above-mentioned fixing and (separable) adhesion have a difference in peeling strength (that is, stress required for peeling), and fixing means that the peeling strength is larger than the adhesion. Specifically, the peel strength at the interface between the inorganic layer 14 and the support substrate 12 is greater than the peel strength at the interface between the inorganic layer 14 and the glass substrate 18 in the glass laminate 10.
Further, the peelable adhesion means that it can be peeled at the same time that it can be peeled without causing peeling of the fixed surface. That is, in the glass laminate 10 of the present invention, when the operation of separating the glass substrate 18 and the support substrate 12 is performed, the glass substrate 10 is peeled and fixed on the closely contacted surface (interface between the inorganic layer 14 and the glass substrate 18). It means that it does not peel on the surface. Therefore, when the operation of separating the glass laminate 10 into the glass substrate 18 and the support substrate 12 is performed, the glass laminate 10 is separated into two, the glass substrate 18 and the support substrate 16 with an inorganic layer.

以下では、まず、ガラス積層体10を構成する無機層付き支持基板16およびガラス基板18について詳述し、その後ガラス積層体10の製造の手順(本発明のガラス積層体の製造方法)について詳述する。   Below, the support substrate 16 with an inorganic layer and the glass substrate 18 which comprise the glass laminated body 10 are explained in full detail first, and the manufacturing procedure (the manufacturing method of the glass laminated body of this invention) of the glass laminated body 10 is explained in full detail after that. To do.

[無機層付き支持基板]
無機層付き支持基板16は、支持基板12と、その表面上に配置(固定)される無機層14とを備える。無機層14は、後述するガラス基板18と剥離可能に密着するように、無機層付き支持基板16中の最外側に配置される。
以下に、支持基板12、および、無機層14の態様について詳述する。
[Support substrate with inorganic layer]
The support substrate 16 with an inorganic layer includes a support substrate 12 and an inorganic layer 14 disposed (fixed) on the surface thereof. The inorganic layer 14 is arrange | positioned in the outermost side in the support substrate 16 with an inorganic layer so that it may closely_contact | adhere with the glass substrate 18 mentioned later so that peeling.
Below, the aspect of the support substrate 12 and the inorganic layer 14 is explained in full detail.

(支持基板)
支持基板12は、第1主面と第2主面とを有し、第1主面上に配置された無機層14と協働して、ガラス基板18を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板18の変形、傷付き、破損などを防止する基板である。
支持基板12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。支持基板12は、部材形成工程が熱処理を伴う場合、ガラス基板18との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板18と同一材料で形成されることがより好ましく、支持基板12はガラス板であることが好ましい。特に、支持基板12は、ガラス基板18と同じガラス材料からなるガラス板であることが好ましい。
(Support substrate)
The support substrate 12 has a first main surface and a second main surface, cooperates with the inorganic layer 14 disposed on the first main surface, supports and reinforces the glass substrate 18, and a member to be described later It is a substrate that prevents the glass substrate 18 from being deformed, scratched or damaged during the production of the electronic device member in the forming step (the step of producing the electronic device member).
As the support substrate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. When the member forming step involves heat treatment, the support substrate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 18, and more preferably formed of the same material as the glass substrate 18, The support substrate 12 is preferably a glass plate. In particular, the support substrate 12 is preferably a glass plate made of the same glass material as the glass substrate 18.

支持基板12の厚さは、後述するガラス基板18よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板18の厚さ、無機層14の厚さ、および後述するガラス積層体10の厚さに基づいて、支持基板12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板18の厚さおよび無機層14の厚さの和が0.1mmの場合、支持基板12の厚さを0.4mmとする。支持基板12の厚さは、通常の場合、0.2〜5.0mmが好ましい。   The thickness of the support substrate 12 may be thicker or thinner than a glass substrate 18 described later. Preferably, the thickness of the support substrate 12 is selected based on the thickness of the glass substrate 18, the thickness of the inorganic layer 14, and the thickness of the glass laminate 10 described later. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 18 and the thickness of the inorganic layer 14 is 0.1 mm, The thickness of the support substrate 12 is 0.4 mm. In general, the thickness of the support substrate 12 is preferably 0.2 to 5.0 mm.

支持基板12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上が好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下が好ましい。   When the support substrate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.

(無機層)
無機層14は、支持基板12の主面上に配置(固定)され、ガラス基板18の第1主面18aと接触する層である。本発明においては、無機層14の組成として、炭化ケイ素(以下、「SiC」とも表記する)、炭化酸化ケイ素(以下、「SiCO」とも表記する)、窒化ケイ素(以下、「SiN」とも表記する)および窒化酸化ケイ素(以下、「SiNO」とも表記する)からなる群から選ばれる少なくとも1種を含む。なお、無機層14の組成は、X線光電子分光法(XPS)により測定できる。
このような無機層14を支持基板12上に設けることにより、高温条件下の長時間処理後においても、ガラス基板18の接着を抑制でき、剥離性に優れる。この理由は明らかではないが、SiとCまたはNとの電気陰性度の差が比較的小さいことで、高温条件下の長時間処理後においても、無機層とガラス基板との間で化学結合について、弱い結合から強い結合への転換が行われにくくなったりするためと考えられる。
(Inorganic layer)
The inorganic layer 14 is a layer disposed (fixed) on the main surface of the support substrate 12 and in contact with the first main surface 18 a of the glass substrate 18. In the present invention, as the composition of the inorganic layer 14, silicon carbide (hereinafter also referred to as “SiC”), silicon carbide oxide (hereinafter also referred to as “SiCO”), silicon nitride (hereinafter also referred to as “SiN”). And at least one selected from the group consisting of silicon nitride oxide (hereinafter also referred to as “SiNO”). The composition of the inorganic layer 14 can be measured by X-ray photoelectron spectroscopy (XPS).
By providing such an inorganic layer 14 on the support substrate 12, adhesion of the glass substrate 18 can be suppressed even after long-time treatment under high temperature conditions, and the peelability is excellent. The reason for this is not clear, but the difference in electronegativity between Si and C or N is relatively small. This is thought to be because it is difficult to convert weak bonds to strong bonds.

また、本発明において、無機層表面14aの表面粗さRaは、2.00nm以下が好ましく、1.00nm以下がより好ましく、積層性および剥離性の観点から、0.20〜1.00nmがさらに好ましい。なお、Ra(算術平均粗さ)は、JIS B 0601(2001年改正)に従って測定される。   In the present invention, the surface roughness Ra of the inorganic layer surface 14a is preferably 2.00 nm or less, more preferably 1.00 nm or less, and from the viewpoint of stackability and peelability, 0.20 to 1.00 nm is further provided. preferable. Ra (arithmetic mean roughness) is measured according to JIS B 0601 (revised in 2001).

無機層14の25〜300℃における平均線膨張係数(以下、単に「平均線膨張係数」という)は特に限定されないが、支持基板12としてガラス板を使用する場合は、その平均線膨張係数は10×10-7〜200×10-7/℃が好ましい。該範囲であれば、ガラス板(SiO2)との平均線膨張係数の差が小さくなり、高温環境下におけるガラス基板18と無機層付き支持基板16との位置ずれを抑制できる。 The average linear expansion coefficient at 25 to 300 ° C. of the inorganic layer 14 (hereinafter simply referred to as “average linear expansion coefficient”) is not particularly limited, but when a glass plate is used as the support substrate 12, the average linear expansion coefficient is 10 × 10 −7 to 200 × 10 −7 / ° C. is preferable. If the range, the difference in average linear expansion coefficient between the glass plates (SiO 2) is reduced, it is possible to suppress the positional deviation of the glass substrate 18 and the inorganic layer with the supporting substrate 16 in a high temperature environment.

無機層14には、上述したSiC、SiCO、SiNおよびSiNOからなる群から選ばれる少なくとも1種が主成分として含まれていることが好ましい。ここで、主成分とは、これらの総含有量が、無機層14全量に対して、90質量%以上であることを意味し、98質量%以上が好ましく、99質量%以上がより好ましく、99.999質量%以上が特に好ましい。   The inorganic layer 14 preferably contains at least one selected from the group consisting of SiC, SiCO, SiN and SiNO as a main component. Here, the main component means that the total content thereof is 90% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, with respect to the total amount of the inorganic layer 14. 999% by mass or more is particularly preferable.

無機層14の厚さとしては、耐擦傷性の観点からは、5〜5000nmが好ましく、10〜500nmがより好ましい。
無機層14は、図1において単層として記載されているが、2層以上の積層であってもよい。2層以上の積層の場合、各層ごとが異なる組成であってもよい。
The thickness of the inorganic layer 14 is preferably 5 to 5000 nm, more preferably 10 to 500 nm, from the viewpoint of scratch resistance.
The inorganic layer 14 is described as a single layer in FIG. 1, but may be a laminate of two or more layers. In the case of two or more layers, each layer may have a different composition.

無機層14は、通常、図1に示すように支持基板12の全面に設けられるが、本発明の効果を損なわない範囲で、支持基板12表面上の一部に設けられていてもよい。例えば、無機層14が、支持基板12表面上に、島状や、ストライプ状に設けられていてもよい。   The inorganic layer 14 is usually provided on the entire surface of the support substrate 12 as shown in FIG. 1, but may be provided on a part of the surface of the support substrate 12 as long as the effects of the present invention are not impaired. For example, the inorganic layer 14 may be provided on the surface of the support substrate 12 in an island shape or a stripe shape.

無機層14は、優れた耐熱性を示す。そのため、ガラス積層体10を高温条件に曝しても層自体の化学変化が起きにくく、後述するガラス基板18との間でも化学結合を生じにくく、重剥離化によるガラス基板18の無機層14への付着が生じにくい。
ここで、重剥離化とは、無機層14とガラス基板18との界面の剥離強度が、支持基板12と無機層14との界面の剥離強度、および、無機層14の材料自体の強度(バルク強度)のいずれかよりも大きくなることをいう。無機層14とガラス基板18との界面で重剥離化が起こると、ガラス基板18表面に無機層14の成分が付着しやすく、その表面の清浄化が困難となりやすい。ガラス基板18表面への無機層14の付着とは、無機層14全体がガラス基板18表面に付着すること、および、無機層14表面が損傷し無機層14表面の成分の一部がガラス基板18表面に付着すること、などを意味する。
The inorganic layer 14 exhibits excellent heat resistance. Therefore, even if the glass laminate 10 is exposed to a high temperature condition, the chemical change of the layer itself does not easily occur, and it is difficult for chemical bonding to occur with the glass substrate 18 to be described later. Adhesion hardly occurs.
Here, heavy peeling means that the peel strength at the interface between the inorganic layer 14 and the glass substrate 18 is the peel strength at the interface between the support substrate 12 and the inorganic layer 14 and the strength of the material of the inorganic layer 14 (bulk). (Strength) means greater than any of the above. When heavy peeling occurs at the interface between the inorganic layer 14 and the glass substrate 18, the components of the inorganic layer 14 are likely to adhere to the surface of the glass substrate 18, making it difficult to clean the surface. The adhesion of the inorganic layer 14 to the surface of the glass substrate 18 means that the entire inorganic layer 14 adheres to the surface of the glass substrate 18 and that the surface of the inorganic layer 14 is damaged and some of the components on the surface of the inorganic layer 14 are glass substrate 18. It means to adhere to the surface.

(無機層付き支持基板の製造方法)
無機層付き支持基板16の製造方法としては、例えば、蒸着法、スパッタリング法、または、CVD法などの方法を採用できるが、スパッタリング法の場合、具体的には、例えば、SiCターゲットまたはSiNターゲットを用いて、Ar等の不活性ガス、または、不活性ガスとO2もしくはCO2等の酸素原子含有ガスとの混合ガスを導入しながら、支持基板12上に、上述した無機層表面14aの組成を有する無機層14を設ける方法が挙げられる。なお、製造条件は、使用される材料等に応じて、適宜最適な条件が選択される。
(Method for producing support substrate with inorganic layer)
As a manufacturing method of the support substrate 16 with an inorganic layer, for example, a method such as a vapor deposition method, a sputtering method, or a CVD method can be adopted. In the case of the sputtering method, specifically, for example, a SiC target or a SiN target is used. The composition of the inorganic layer surface 14a described above on the support substrate 12 while introducing an inert gas such as Ar or a mixed gas of an inert gas and an oxygen atom-containing gas such as O 2 or CO 2. The method of providing the inorganic layer 14 which has this is mentioned. As manufacturing conditions, optimum conditions are appropriately selected according to the materials used.

また、支持基板12上に無機層14を形成した後、無機層表面14aの表面粗さ(Ra)を制御するために、無機層14の表面を削る処理を施すことができる。該処理としては、例えば、イオンスパッタリング法などが挙げられる。   Moreover, after forming the inorganic layer 14 on the support substrate 12, in order to control the surface roughness (Ra) of the inorganic layer surface 14a, the process of shaving the surface of the inorganic layer 14 can be given. Examples of the treatment include an ion sputtering method.

[ガラス基板]
ガラス基板18は、第1主面18aが無機層14と密着し、無機層14側とは反対側の第2主面18bに後述する電子デバイス用部材が設けられる。
ガラス基板18の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板18は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
[Glass substrate]
As for the glass substrate 18, the 1st main surface 18a closely_contact | adheres to the inorganic layer 14, The member for electronic devices mentioned later is provided in the 2nd main surface 18b on the opposite side to the inorganic layer 14 side.
The kind of the glass substrate 18 may be a common one, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 18 is excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.

ガラス基板18は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。   The glass substrate 18 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. In addition, a glass substrate having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature, and stretching it by means of stretching or the like to make it thin (redraw method).

ガラス基板18のガラスは、特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40〜90質量%のガラスが好ましい。   The glass of the glass substrate 18 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.

ガラス基板18のガラスとしては、デバイスの種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板18のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。   As the glass of the glass substrate 18, glass suitable for the type of device and its manufacturing process is adopted. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 18 is appropriately selected based on the type of device to be applied and its manufacturing process.

ガラス基板18の厚さは、特に限定されないが、ガラス基板18の薄型化および/または軽量化の観点から、通常0.8mm以下であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。0.8mm超の場合、ガラス基板18の薄型化および/または軽量化の要求を満たせない。0.3mm以下の場合、ガラス基板18に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板18をロール状に巻き取ることが可能である。また、ガラス基板18の厚さは、ガラス基板18の製造が容易であること、ガラス基板18の取り扱いが容易であることなどの理由から、0.03mm以上が好ましい。   The thickness of the glass substrate 18 is not particularly limited, but is usually 0.8 mm or less, preferably 0.3 mm or less, more preferably 0.8 mm or less from the viewpoint of reducing the thickness and / or weight of the glass substrate 18. It is 15 mm or less. If it exceeds 0.8 mm, the glass substrate 18 cannot meet the demand for thinning and / or lightening. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 18. In the case of 0.15 mm or less, the glass substrate 18 can be wound into a roll. Moreover, the thickness of the glass substrate 18 is preferably 0.03 mm or more because the glass substrate 18 is easy to manufacture and the glass substrate 18 is easy to handle.

なお、ガラス基板18は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板の厚さ」は全ての層の合計の厚さを意味するものとする。   The glass substrate 18 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate” means the total thickness of all the layers.

ガラス基板18の第1主面18a上には、さらに無機薄膜層が積層されていてもよい。
無機薄膜層がガラス基板18上に配置(固定)される場合、ガラス積層体中においては、無機層付き支持基板16の無機層14と無機薄膜層とが接触する。無機薄膜層をガラス基板18上に設けることにより、高温条件下の長時間処理後においても、ガラス基板18と無機層付き支持基板16との接着をより抑制できる。
無機薄膜層の態様は特に限定されないが、好ましくは、金属酸化物、金属窒化物、金属酸窒化物、金属炭化物、金属炭窒化物、金属珪化物および金属弗化物からなる群から選ばれる少なくとも1つを含む。なかでも、ガラス基板18の剥離性がより優れる点で、金属酸化物を含むことが好ましく、酸化インジウムスズがより好ましい。
An inorganic thin film layer may be further laminated on the first main surface 18 a of the glass substrate 18.
When the inorganic thin film layer is disposed (fixed) on the glass substrate 18, the inorganic layer 14 and the inorganic thin film layer of the support substrate 16 with the inorganic layer are in contact with each other in the glass laminate. By providing the inorganic thin film layer on the glass substrate 18, adhesion between the glass substrate 18 and the support substrate 16 with the inorganic layer can be further suppressed even after long-time treatment under high temperature conditions.
The mode of the inorganic thin film layer is not particularly limited, but preferably at least one selected from the group consisting of metal oxides, metal nitrides, metal oxynitrides, metal carbides, metal carbonitrides, metal silicides and metal fluorides. Including one. Especially, it is preferable that a metal oxide is included at the point which the peelability of the glass substrate 18 is more excellent, and an indium tin oxide is more preferable.

金属酸化物、金属窒化物、金属酸窒化物としては、例えば、Si、Hf、Zr、Ta、Ti、Y、Nb、Na、Co、Al、Zn、Pb、Mg、Bi、La、Ce、Pr、Sm、Eu、Gd、Dy、Er、Sr、Sn、InおよびBaから選ばれる1種類以上の元素の酸化物、窒化物、酸窒化物が挙げられる。より具体的には、酸化チタン(TiO2)、酸化インジウム(In23)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化ガリウム(Ga23)、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛スズ(ZTO)、ガリウム添加酸化亜鉛(GZO)などが挙げられる。 Examples of the metal oxide, metal nitride, and metal oxynitride include Si, Hf, Zr, Ta, Ti, Y, Nb, Na, Co, Al, Zn, Pb, Mg, Bi, La, Ce, and Pr. , Sm, Eu, Gd, Dy, Er, Sr, Sn, In, and Ba, oxides, nitrides, and oxynitrides of one or more elements selected from Ba and the like. More specifically, titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), gallium oxide (Ga 2 O 3 ), indium tin oxide (ITO) Indium zinc oxide (IZO), zinc tin oxide (ZTO), gallium-doped zinc oxide (GZO), and the like.

金属炭化物、金属炭窒化物としては、例えば、Ti、W、Si、Zr、Nbから選ばれる1種以上の元素の炭化物、炭窒化物が挙げられる。金属珪化物としては、例えば、Mo、W、Crから選ばれる1種以上の元素の珪化物が挙げられる。金属弗化物としては、例えば、Mg、Y、La、Baから選ばれる1種以上の元素の弗化物が挙げられる。   Examples of the metal carbide and metal carbonitride include carbides and carbonitrides of one or more elements selected from Ti, W, Si, Zr, and Nb. Examples of the metal silicide include a silicide of one or more elements selected from Mo, W, and Cr. Examples of the metal fluoride include fluorides of one or more elements selected from Mg, Y, La, and Ba.

<ガラス積層体>
本発明のガラス積層体10は、上述した無機層付き支持基板16の無機層表面14aとガラス基板18の第1主面18aとを積層面として、無機層付き支持基板16とガラス基板18とを剥離可能に積層してなる積層体である。言い換えると、支持基板12とガラス基板18との間に、無機層14が介在する積層体である。
<Glass laminate>
The glass laminate 10 of the present invention comprises the support layer 16 with an inorganic layer and the glass substrate 18 with the inorganic layer surface 14a of the support substrate 16 with an inorganic layer and the first main surface 18a of the glass substrate 18 described above as a laminate surface. It is a laminated body which is laminated so as to be peelable. In other words, it is a laminate in which the inorganic layer 14 is interposed between the support substrate 12 and the glass substrate 18.

<ガラス積層体の製造方法>
(積層工程)
本発明のガラス積層体の製造方法は、無機層14上にガラス基板18を積層させる積層工程を備える。ここで、ガラス基板18を積層させる方法としては、特に限定されないが、具体的には、常圧環境下で無機層付き支持基板16とガラス基板18とを重ねた後に、例えば、ガラス基板18の自重またはガラス基板18の第2主面18bを軽く一か所押すことにより、重ね合わせ面内に密着起点を発生させ、その密着起点から密着を自然に広げる方法;ロールやプレスを用いて圧着することで、密着起点からの密着を広げる方法;等が挙げられる。ロールやプレスによる圧着は、無機層14とガラス基板18とがより密着するうえ、両者の間に混入している気泡が比較的容易に除去されるので好ましい。
<Method for producing glass laminate>
(Lamination process)
The method for producing a glass laminate of the present invention includes a laminating step of laminating a glass substrate 18 on the inorganic layer 14. Here, the method for laminating the glass substrate 18 is not particularly limited, but specifically, after the support substrate 16 with the inorganic layer and the glass substrate 18 are stacked in a normal pressure environment, for example, the glass substrate 18 is laminated. A method of generating an adhesion start point in the overlapping surface by pushing the weight or the second main surface 18b of the glass substrate 18 lightly at one place, and naturally expanding the adhesion from the contact start point; Thus, there is a method of expanding the adhesion from the adhesion starting point. The pressure bonding by a roll or a press is preferable because the inorganic layer 14 and the glass substrate 18 are more closely adhered to each other and air bubbles mixed between the two are relatively easily removed.

なお、真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が好ましく行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ゆがみ欠陥につながりにくいという利点もある。   In addition, it is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method because it is preferable to suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are less likely to cause distortion defects.

無機層付き支持基板16とガラス基板18とを剥離可能に密着させる際には、無機層14およびガラス基板18の互いに接触する側の面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほどその平坦性は良好となるので好ましい。
洗浄の方法は特に限定されないが、例えば、無機層14またはガラス基板18の表面をアルカリ水溶液で洗浄した後、さらに水を用いて洗浄する方法が挙げられる。
When the support substrate 16 with the inorganic layer and the glass substrate 18 are detachably adhered, the surfaces of the inorganic layer 14 and the glass substrate 18 that are in contact with each other are sufficiently washed and laminated in a clean environment. Is preferred. The higher the degree of cleanness, the better the flatness.
The cleaning method is not particularly limited, and examples thereof include a method of cleaning the surface of the inorganic layer 14 or the glass substrate 18 with an aqueous alkaline solution and then using water.

(加熱処理工程)
本発明のガラス積層体の製造方法は、積層工程の後に、下記(a)〜(d)の条件を満たす加熱処理を行う加熱処理工程を備える。
(a)昇温速度:300℃/分以下
(b)加熱温度:150〜600℃
(c)保持時間:0.5分以上
(d)雰囲気:大気圧状態もしくは減圧状態の大気雰囲気もしくは不活性ガス雰囲気、または、真空雰囲気
無機層付き支持基板16が、上述した組成を採用した無機層14を有する場合においては、(a)〜(d)の条件を満たす加熱処理を施すことで、積層維持性が優れる。これは、積層工程において無機層14とガラス基板18との界面に働くのは弱い分子間力(例えば、ファンデルワールス力や水素結合など)である一方、上記(a)〜(d)の条件の範囲内で適切な熱を加えると、その分子間力に加え、界面での適度な酸素拡散反応が起き、これにより接着力が向上するためであると考えられる。
(Heat treatment process)
The manufacturing method of the glass laminated body of this invention is equipped with the heat processing process which performs the heat processing which satisfy | fills the conditions of following (a)-(d) after a lamination process.
(A) Temperature increase rate: 300 ° C./min or less (b) Heating temperature: 150 to 600 ° C.
(C) Holding time: 0.5 minutes or more (d) Atmosphere: atmospheric or inert gas atmosphere or vacuum atmosphere in an atmospheric pressure state or a reduced pressure state or a vacuum atmosphere In the case of having the layer 14, stacking maintainability is excellent by performing heat treatment that satisfies the conditions (a) to (d). While this is a weak intermolecular force (for example, van der Waals force or hydrogen bond) that acts on the interface between the inorganic layer 14 and the glass substrate 18 in the laminating step, the conditions (a) to (d) It is considered that when an appropriate heat is applied within the range, an appropriate oxygen diffusion reaction occurs at the interface in addition to the intermolecular force, thereby improving the adhesive force.

(a)昇温速度は、300℃/分を超えると積層維持性に劣るが、300℃/分以下であれば積層維持性に優れる。(a)昇温速度は、加熱途中での部分剥がれが少なく、積層維持状態が面内均一で、積層維持性により優れるという理由からは、250℃/分以下が好ましく、200℃/分以下がより好ましく、100℃/分以下がさらに好ましい。   (A) When the rate of temperature rise exceeds 300 ° C./min, the stackability is poor, but when it is 300 ° C./min or less, the stackability is excellent. (A) The rate of temperature increase is preferably 250 ° C./min or less, preferably 200 ° C./min or less, because there is little partial peeling during heating, the laminate maintaining state is in-plane uniform, and the laminate maintaining property is excellent. More preferred is 100 ° C./min or less.

(b)加熱温度は、上記(a)の昇温速度で昇温した後に保持される温度であり、150℃未満であると積層維持性に劣るが、150〜600℃の範囲であれば、積層維持性に優れ、また、剥離性にも優れる。(b)加熱温度は、積層維持性により優れるという理由からは、200℃以上が好ましく、250〜350℃がより好ましい。   (B) The heating temperature is a temperature that is maintained after the temperature is raised at the rate of temperature rise in (a) above, and is inferior in lamination maintenance when it is less than 150 ° C, but if it is in the range of 150 to 600 ° C, Excellent stacking maintainability and excellent peelability. (B) The heating temperature is preferably 200 ° C. or higher, and more preferably 250 to 350 ° C., because it is superior in stacking maintainability.

(c)保持時間は、上記(b)の加熱温度を保持する時間であり、0.5分(30秒)未満であると積層維持性に劣るが、0.5分(30秒)以上であれば積層維持性に優れる。(c)保持時間は、積層維持性により優れるという理由からは、1〜60分が好ましく、3〜10分がより好ましい。   (C) The holding time is the time for holding the heating temperature of (b) above, and if it is less than 0.5 minutes (30 seconds), the laminate maintenance is poor, but 0.5 minutes (30 seconds) or more. If it exists, it is excellent in lamination maintenance. (C) The retention time is preferably from 1 to 60 minutes, and more preferably from 3 to 10 minutes, because it is superior in stacking maintainability.

(d)雰囲気は、上記(a)の条件で昇温され、かつ、上記(b)および(c)の条件で加熱される際の雰囲気であり、大気圧状態もしくは減圧状態の大気雰囲気もしくは不活性ガス雰囲気、または、真空雰囲気であれば特に限定されない。ここで、不活性ガスとしては、例えば、Arガス、N2ガス等が挙げられる。 (D) The atmosphere is an atmosphere when the temperature is raised under the conditions (a) and heated under the conditions (b) and (c). There is no particular limitation as long as it is an active gas atmosphere or a vacuum atmosphere. Here, examples of the inert gas include Ar gas and N 2 gas.

本発明のガラス積層体の製造方法により得られるガラス積層体10は、種々の用途に使用でき、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、ガラス積層体10が高温条件(例えば、350℃以上)で曝される(例えば、1時間以上)場合が多い。
ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(Micro Electro Mechanical Systems)シャッターパネル等が含まれる。
The glass laminate 10 obtained by the method for producing a glass laminate of the present invention can be used for various applications. For example, a display panel, PV, a thin film secondary battery, and a semiconductor wafer on which a circuit is formed on the surface. The use etc. which manufacture electronic parts, such as these, are mentioned. In this application, the glass laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 350 ° C. or higher).
Here, the display device panel includes LCD, OLED, electronic paper, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.

<電子デバイスおよびその製造方法>
次に、電子デバイスおよびその製造方法の好適実施態様について詳述する。
図2は、本発明の電子デバイスの製造方法の好適実施態様における各製造工程を順に示す模式的断面図である。本発明の電子デバイスの好適実施態様は、部材形成工程および分離工程を備える。
以下に、図2を参照しながら、各工程で使用される材料およびその手順について詳述する。まず、部材形成工程について詳述する。
<Electronic device and manufacturing method thereof>
Next, preferred embodiments of the electronic device and the manufacturing method thereof will be described in detail.
FIG. 2 is a schematic cross-sectional view sequentially showing each manufacturing process in a preferred embodiment of the method for manufacturing an electronic device of the present invention. A preferred embodiment of the electronic device of the present invention includes a member forming step and a separation step.
Hereinafter, the materials used in each step and the procedure thereof will be described in detail with reference to FIG. First, a member formation process is explained in full detail.

[部材形成工程]
部材形成工程は、ガラス積層体中のガラス基板上に電子デバイス用部材を形成する工程である。
より具体的には、図2(A)に示すように、本工程において、ガラス基板18の第2主面18b上に電子デバイス用部材20が形成され、電子デバイス用部材付き積層体22が製造される。
まず、本工程で使用される電子デバイス用部材20について詳述し、その後工程の手順について詳述する。
[Member forming process]
A member formation process is a process of forming the member for electronic devices on the glass substrate in a glass laminated body.
More specifically, as shown in FIG. 2A, in this step, the electronic device member 20 is formed on the second main surface 18b of the glass substrate 18, and the electronic device member laminated body 22 is manufactured. Is done.
First, the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.

(電子デバイス用部材(機能性素子))
電子デバイス用部材20は、ガラス積層体10中のガラス基板18の第2主面18b上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材20としては、表示装置用パネル、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材が挙げられる。表示装置用パネルとしては、有機ELパネル、フィールドエミッションパネル等が含まれる。
(Electronic device components (functional elements))
The electronic device member 20 is a member that is formed on the second main surface 18b of the glass substrate 18 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, examples of the electronic device member 20 include a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface thereof. Examples of the display device panel include an organic EL panel and a field emission panel.

例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
また、電子部品用部材としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a member for electronic components, in CCD and CMOS, metal of conductive part, silicon oxide and silicon nitride of insulating part, etc., other various sensors such as pressure sensor and acceleration sensor, rigid printed board, flexible printed board And various members corresponding to a rigid flexible printed circuit board.

(工程の手順)
上述した電子デバイス用部材付き積層体22の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス積層体10のガラス基板18の第2主面表面18b上に、電子デバイス用部材20を形成する。
なお、電子デバイス用部材20は、ガラス基板18の第2主面18bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。また、全部材付きガラス基板には、その剥離面(第1主面)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体から無機層付き支持基板16を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて電子デバイスを組み立て、その後、全部材付き積層体から2枚の無機層付き支持基板16を剥離して、電子デバイスを製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 18 of the glass laminated body 10 is used. The electronic device member 20 is formed on the surface 18b.
The electronic device member 20 is not all of the members finally formed on the second main surface 18b of the glass substrate 18 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with partial members can be made into a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps. Moreover, the member for electronic devices may be formed in the peeling surface (1st main surface) in the glass substrate with all the members. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then peeling off the support substrate 16 with an inorganic layer from the laminate with all members. Furthermore, an electronic device can also be manufactured by assembling an electronic device using two laminates with all members, and then peeling the two support substrates 16 with inorganic layers from the laminate with all members.

例えば、OLEDを製造する場合を例にとると、ガラス積層体10のガラス基板18の第2主面18bの表面上に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。   For example, taking the case of manufacturing an OLED as an example, in order to form an organic EL structure on the surface of the second main surface 18b of the glass substrate 18 of the glass laminate 10, a transparent electrode is further formed. Various layer formation and processing such as vapor-depositing hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. on the surface on which is formed, forming a back electrode, sealing with a sealing plate, etc. Done. Specific examples of these layer formation and treatment include film formation treatment, vapor deposition treatment, sealing plate adhesion treatment, and the like.

また、例えば、TFT−LCDの製造方法は、ガラス積層体10のガラス基板18の第2主面18b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体10のガラス基板18の第2主面18b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT付きデバイス基板とCF付きデバイス基板とを積層する貼り合わせ工程等の各種工程を有する。   In addition, for example, the TFT-LCD manufacturing method is formed on the second main surface 18b of the glass substrate 18 of the glass laminate 10 by a general film forming method such as a CVD method and a sputtering method using a resist solution. Forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed, and patterning a resist solution on the second main surface 18b of the glass substrate 18 of another glass laminate 10 And a CF forming step for forming a color filter (CF) and a bonding step for laminating a device substrate with TFT and a device substrate with CF.

TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板18の第2主面18bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
なお、TFTやCFを形成する前に、必要に応じて、ガラス基板18の第2主面18bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and CF are formed on the second main surface 18b of the glass substrate 18 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 18b of the glass substrate 18 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.

貼り合わせ工程では、TFT付き積層体と、CF付き積層体との間に液晶材を注入して積層する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。   In the bonding step, a liquid crystal material is injected and laminated between the laminated body with TFT and the laminated body with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.

[分離工程]
分離工程は、上記部材形成工程で得られた電子デバイス用部材付き積層体22から無機層付き支持基板16を剥離して、電子デバイス用部材20およびガラス基板18を含む電子デバイス24(電子デバイス用部材付きガラス基板)を得る工程である。つまり、電子デバイス用部材付き積層体22を、無機層付き支持基板16と電子デバイス用部材付きガラス基板24とに分離する工程である。
剥離時のガラス基板18上の電子デバイス用部材20が必要な全構成部材の形成の一部である場合には、分離後、残りの構成部材をガラス基板18上に形成することもできる。
[Separation process]
In the separation step, the support substrate 16 with the inorganic layer is peeled from the laminate 22 with the member for electronic devices obtained in the member forming step, and the electronic device 24 (for electronic device) including the electronic device member 20 and the glass substrate 18 is peeled off. This is a step of obtaining a glass substrate with a member. That is, it is a step of separating the laminate 22 with the electronic device member into the support substrate 16 with the inorganic layer and the glass substrate 24 with the electronic device member.
When the electronic device member 20 on the glass substrate 18 at the time of peeling is a part of the formation of all necessary constituent members, the remaining constituent members can be formed on the glass substrate 18 after separation.

無機層14の無機層表面14aとガラス基板18の第1主面18aとを剥離(分離)する方法は、特に限定されない。例えば、無機層14とガラス基板18との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えたうえで、水と圧縮空気との混合流体を吹き付けたりして剥離できる。   The method of peeling (separating) the inorganic layer surface 14a of the inorganic layer 14 and the first main surface 18a of the glass substrate 18 is not particularly limited. For example, a sharp blade-like object is inserted into the interface between the inorganic layer 14 and the glass substrate 18 to provide a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed to peel off.

好ましくは、電子デバイス用部材付き積層体22の支持基板12が上側、電子デバイス用部材20側が下側となるように定盤上に設置し、電子デバイス用部材20側を定盤上に真空吸着し(両面に支持基板が積層されている場合は順次行う)、この状態で、まず、刃物を無機層14とガラス基板18との界面に刃物を侵入させる。そして、その後に支持基板12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると無機層14とガラス基板18との界面へ空気層が形成され、その空気層が界面の全面に広がり、無機層付き支持基板16を容易に剥離できる。   Preferably, the laminate 22 with electronic device members is placed on a surface plate so that the support substrate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuum-adsorbed on the surface plate. (In the case where support substrates are laminated on both sides, the steps are sequentially performed). In this state, first, the blade is inserted into the interface between the inorganic layer 14 and the glass substrate 18. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of inorganic layer 14 and glass substrate 18, the air layer will spread over the whole surface of an interface, and support substrate 16 with an inorganic layer can be peeled easily.

また、例えば、無機層付き支持基板16の一部を、ガラス基板18から突出させて積層した場合、ガラス基板18を固定台(後述する図3中の符号31を参照)に固定して、上記のように剥離のきっかけを与えたうえで、または、与えないで、無機層表面14aに、L字型治具(後述する図3中の符号32を参照)を引っ掛けて、固定台から離れる方向に引き上げることにより、無機層14とガラス基板18とを剥離する方法が挙げられる。   Further, for example, when a part of the support substrate 16 with an inorganic layer protrudes from the glass substrate 18 and is laminated, the glass substrate 18 is fixed to a fixing base (see reference numeral 31 in FIG. 3 described later), and A direction in which an L-shaped jig (see reference numeral 32 in FIG. 3 to be described later) is hooked on the inorganic layer surface 14a and separated from the fixing base with or without giving a trigger for peeling as shown in FIG. The method of peeling the inorganic layer 14 and the glass substrate 18 by pulling up to (1) is mentioned.

上記工程によって得られた電子デバイス24は、携帯電話、スマートフォン、PDA、タブレット型PCなどのモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用できる。   The electronic device 24 obtained by the above process is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone, a smartphone, a PDA, or a tablet PC. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, it can be applied to both passive drive type and active drive type display devices.

以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

以下の例(実施例、比較例および参考例)では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(幅100mm、奥行き30mm、厚さ0.2mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
また、支持基板としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(幅90mm、奥行き30mm、厚さ0.5mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
In the following examples (Examples, Comparative Examples and Reference Examples), a glass plate made of non-alkali borosilicate glass (width 100 mm, depth 30 mm, thickness 0.2 mm, linear expansion coefficient 38 × 10 −7 / The product name “AN100” manufactured by Asahi Glass Co., Ltd. was used.
Also, as the support substrate, a glass plate made of alkali-free borosilicate glass (width 90 mm, depth 30 mm, thickness 0.5 mm, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.

<例I−1〜16>
(SiCを含む無機層の形成)
支持基板の一方の主面をアルカリ性水溶液で洗浄して清浄化した。さらに、清浄化した面に、SiCターゲットを用いて、Arガスを導入しながら、マグネトロンスパッタリング法により、SiCを含む無機層(厚さ10nm、表面粗さRa0.4nm、以下同様)を形成し、無機層付き支持基板を得た。
<Examples I-1 to 16>
(Formation of inorganic layer containing SiC)
One main surface of the support substrate was cleaned by washing with an alkaline aqueous solution. Further, an inorganic layer containing SiC (thickness 10 nm, surface roughness Ra 0.4 nm, the same applies below) is formed on the cleaned surface by magnetron sputtering while introducing Ar gas using a SiC target. A support substrate with an inorganic layer was obtained.

(SiCOを含む無機層の形成)
Arガスに代えて、ArおよびO2の混合ガス(体積比(Ar/O2)=39/1)を導入した以外は、SiCを含む無機層の形成と同様にして、SiCOを含む無機層を形成し、無機層付き支持基板を得た。
(Formation of inorganic layer containing SiCO)
An inorganic layer containing SiCO in the same manner as the formation of the inorganic layer containing SiC except that a mixed gas of Ar and O 2 (volume ratio (Ar / O 2 ) = 39/1) was introduced instead of Ar gas. And a support substrate with an inorganic layer was obtained.

(SiNを含む無機層の形成)
SiCターゲットに代えて、SiNターゲットを用いた以外は、SiCを含む無機層の形成と同様にして、SiNを含む無機層を形成し、無機層付き支持基板を得た。
(Formation of inorganic layer containing SiN)
An inorganic layer containing SiN was formed in the same manner as the formation of the inorganic layer containing SiC except that a SiN target was used in place of the SiC target to obtain a support substrate with an inorganic layer.

(SiNOを含む無機層の形成)
SiCターゲットに代えて、SiNターゲットを用いた以外は、SiCOを含む無機層の形成と同様にして、SiNOを含む無機層を形成し、無機層付き支持基板を得た。
(Formation of inorganic layer containing SiNO)
An inorganic layer containing SiNO was formed in the same manner as the formation of the inorganic layer containing SiCO except that a SiN target was used in place of the SiC target to obtain a support substrate with an inorganic layer.

<評価>
(積層維持性の評価)
次に、ガラス基板の第1主面をアルカリ性水溶液で洗浄して清浄化した。各例の無機層付き支持基板の無機層の無機層表面と、ガラス基板の清浄化した第1主面とに、アルカリ水溶液による洗浄および水による洗浄を施し、両面を清浄化した。その後、無機層表面にガラス基板を重ね合わせ、真空プレスを用いて圧着し、無機層とガラス基板とを積層させて、ガラス積層体を得た。
そして、得られた各例のガラス積層体に対して、下記第1表に示す(a)〜(d)の条件で、加熱処理を行なった。なお、加熱処理を行わなかった場合は下記第1表に「−」を記載した。また、(d)雰囲気として下記第1表に記載した「大気」とは、「大気圧状態の大気雰囲気」を示す。
そして、加熱処理後(加熱処理を行わなかった場合も含む)、各例のガラス積層体について、切り折りおよび研磨を行ない、無機層とガラス基板との積層維持性を下記基準で評価した。
なお、「切り折り」は、市販の切り折りの機械を用いて行った。具体的には、各例のガラス積層体について、その両面にそれぞれの位置が重なるように切り線を入れた後、支持基板が上側となるようにして、切り線を台のエッジに沿わせて、ガラス積層体の片側を台上に固定し、もう片側を押し下げて折った。
また、「研磨」では、支持基板が上側、ガラス基板が下側となるようにして、ガラス積層体をポリウレタン製のテーブルパッド上に固定し、酸化セリウムと水との混合液を使用して、研磨パッドで5分間研磨を行った。
結果を下記第1表に示す。「○」または「△」であれば、積層維持性が優れるものとして評価できる。
○:無機層とガラス基板との積層状態が維持されていた。
△:概ね積層状態が維持されたが、局所的に剥がれが生じた。
×:積層状態が崩れ、全体的に剥がれが生じた。
<Evaluation>
(Evaluation of stackability)
Next, the first main surface of the glass substrate was cleaned with an alkaline aqueous solution to be cleaned. Both surfaces of the inorganic layer of the support substrate with an inorganic layer in each example and the cleaned first main surface of the glass substrate were cleaned with an aqueous alkali solution and with water to clean both surfaces. Thereafter, a glass substrate was overlaid on the surface of the inorganic layer and pressure-bonded using a vacuum press, and the inorganic layer and the glass substrate were laminated to obtain a glass laminate.
And it heat-processed on the conditions of (a)-(d) shown to the following Table 1 with respect to the obtained glass laminated body of each example. In addition, when heat processing was not performed, "-" was described in the following Table 1. Further, (d) “atmosphere” described in Table 1 below as an atmosphere indicates “atmospheric atmosphere in an atmospheric pressure state”.
And after heat processing (including the case where heat processing was not performed), about the glass laminated body of each example, it cut and folded and grind | polished and evaluated the lamination | stacking maintenance property of an inorganic layer and a glass substrate on the following reference | standard.
Note that “cut-folding” was performed using a commercially available cutting and folding machine. Specifically, for the glass laminates of each example, after making a cut line so that the respective positions overlap on both surfaces, the support substrate is on the upper side, and the cut line is made along the edge of the table Then, one side of the glass laminate was fixed on a table, and the other side was pushed down and folded.
Further, in “polishing”, the glass substrate is fixed on a polyurethane table pad so that the supporting substrate is on the upper side and the glass substrate is on the lower side, and using a mixed solution of cerium oxide and water, Polishing was performed with a polishing pad for 5 minutes.
The results are shown in Table 1 below. If it is “◯” or “Δ”, it can be evaluated that the lamination maintaining property is excellent.
○: The laminated state of the inorganic layer and the glass substrate was maintained.
(Triangle | delta): Although the lamination | stacking state was maintained substantially, peeling peeled locally.
X: The laminated state collapsed and peeling occurred overall.

(剥離性の評価)
図3は、剥離性の評価方法を示す模式的断面図である。
まず、積層維持性の評価と同様にして、無機層の無機層表面およびガラス基板の第1主面を清浄化した。その後、各例の無機層付き支持基板と、ガラス基板とを、奥行き方向の位置を揃えつつ、幅方向の長さが異なるため、図3に示すように一端で揃えて重ね合わせた。なお、一端を揃えたため、他端では、図3に示すように、無機層付き支持基板の一部がガラス基板から突出している。
重ね合わせた後、密着起点を発生させ、真空プレスを用いて圧着して、密着を重ね合わせ面内全体に渡らせて、各例のガラス積層体を得た。その後、積層維持性の評価と同様にして、得られた各例のガラス積層体に対して、下記第1表に示す(a)〜(d)の条件で、加熱処理を行なった。
そして、次に、大気雰囲気にて、600℃で1時間加熱処理を施した。
次に、剥離試験を行った。具体的には、まず、ガラス積層体におけるガラス基板の第2主面を固定台(図3中符号31で示す)上に両面テープを用いて固定した。
次に、図3に示すように、ガラス基板から突出している無機層付き支持基板の無機層表面に、L字型治具(図3中符号32で示す)を引っ掛けて、固定台から離れる方向に機械を用いて10mm/minで引き上げることで、無機層とガラス基板との剥離性を下記基準で評価した。結果を下記第1表に示す。なお、「○」であれば、高温条件下の長時間処理の後であっても剥離性が優れるものとして評価できる。
○:剥離できた。
×:剥離できなかった。
(Evaluation of peelability)
FIG. 3 is a schematic cross-sectional view showing a peelability evaluation method.
First, the inorganic layer surface of the inorganic layer and the first main surface of the glass substrate were cleaned in the same manner as in the evaluation of the laminate maintenance property. Thereafter, the support substrate with an inorganic layer in each example and the glass substrate were aligned at one end as shown in FIG. 3 because the lengths in the width direction were different while aligning the positions in the depth direction. Since one end is aligned, at the other end, as shown in FIG. 3, a part of the support substrate with an inorganic layer protrudes from the glass substrate.
After the overlapping, an adhesion starting point was generated and pressure-bonded using a vacuum press, and the adhesion was spread over the entire overlapping surface to obtain a glass laminate of each example. Thereafter, in the same manner as in the evaluation of the laminate maintenance, the obtained glass laminates were subjected to heat treatment under the conditions (a) to (d) shown in Table 1 below.
Then, heat treatment was performed at 600 ° C. for 1 hour in an air atmosphere.
Next, a peel test was performed. Specifically, first, the second main surface of the glass substrate in the glass laminate was fixed on a fixing base (indicated by reference numeral 31 in FIG. 3) using a double-sided tape.
Next, as shown in FIG. 3, the L-shaped jig (indicated by reference numeral 32 in FIG. 3) is hooked on the inorganic layer surface of the support substrate with an inorganic layer protruding from the glass substrate, and the direction away from the fixing base By using a machine to pull up at 10 mm / min, the peelability between the inorganic layer and the glass substrate was evaluated according to the following criteria. The results are shown in Table 1 below. In addition, if it is "(circle)", it can be evaluated that it is excellent in peelability even after long-time treatment under high temperature conditions.
○: It was peeled off.
X: It was not able to peel.

上記第1表に示すように、(a)昇温速度が300℃/分以下であり、(b)加熱温度が150〜600℃であり、(c)保持時間が0.5分以上であり、(d)雰囲気が大気圧状態の大気雰囲気である例(実施例)は、いずれも積層維持性に優れていた。
これに対して、加熱処理を行わなかったり、(a)〜(d)の条件が外れたりする例(比較例)は、積層維持性が劣っていた。
なお、上記結果より、実施例においては、無機層と支持基板の層との界面の剥離強度が、無機層とガラス基板との界面の剥離強度よりも大きいことが確認された。
As shown in Table 1 above, (a) the heating rate is 300 ° C./min or less, (b) the heating temperature is 150 to 600 ° C., and (c) the holding time is 0.5 min or more. (D) All examples (Examples) in which the atmosphere was an atmospheric atmosphere in an atmospheric pressure state were excellent in stacking maintainability.
On the other hand, the lamination maintenance property was inferior in the example (comparative example) in which the heat treatment was not performed or the conditions (a) to (d) were removed.
In addition, from the said result, in the Example, it was confirmed that the peeling strength of the interface of an inorganic layer and the layer of a support substrate is larger than the peeling strength of the interface of an inorganic layer and a glass substrate.

<例II>
本例では、例I−7の条件(加熱処理条件は上記第1表を参照)で製造された、ガラス積層体を用いてOLEDを作製した。
より具体的には、ガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜して、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。
続いて、ガラス基板の第2主面側に、さらに蒸着法により正孔注入層として4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N−ナフチル)−N−フェニル]ベンジジン、発光層として8−キノリノールアルミニウム錯体(Alq3)に2,6−ビス[4−[N−(4−メトキシフェニル)−N−フェニル]アミノスチリル]ナフタレン−1,5−ジカルボニトリル(BSN−BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜した。次に、ガラス基板の第2主面側にスパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成した。次に、対向電極を形成したガラス基板の第2主面上に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止した。上記手順によって得られた、ガラス基板上に有機EL構造体を有するガラス積層体は、電子デバイス用部材付き積層体に該当する。
続いて、得られたガラス積層体の封止体側を定盤に真空吸着させたうえで、ガラス積層体のコーナー部の無機層とガラス基板との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス積層体から無機層付き支持基板を分離して、OLEDパネル(電子デバイスに該当。以下パネルAという)を得た。作製したパネルAにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example II>
In this example, an OLED was produced using a glass laminate produced under the conditions of Example I-7 (see Table 1 above for heat treatment conditions).
More specifically, a molybdenum film was formed by sputtering on the second main surface of the glass substrate in the glass laminate, and a gate electrode was formed by etching using photolithography. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide is formed by sputtering and photolithography is used. A pixel electrode was formed by etching.
Subsequently, on the second main surface side of the glass substrate, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine as a hole injection layer and bis [ (N-naphthyl) -N-phenyl] benzidine, 8-quinolinol aluminum complex (Alq 3 ) as a light emitting layer, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer were formed in this order, and then formed on the second main surface side of the glass substrate by sputtering. Aluminum was deposited, and a counter electrode was formed by etching using a photolithography method.Next, ultraviolet light was formed on the second main surface of the glass substrate on which the counter electrode was formed. Another glass substrate was bonded and sealed through a chemical adhesive layer, and the glass laminate having the organic EL structure on the glass substrate obtained by the above procedure was laminated with an electronic device member. Applies to the body.
Subsequently, after the sealed body side of the obtained glass laminate is vacuum-adsorbed to a surface plate, a stainless steel knife having a thickness of 0.1 mm is formed at the interface between the inorganic layer at the corner of the glass laminate and the glass substrate. Was inserted and the support substrate with an inorganic layer was separated from the glass laminate to obtain an OLED panel (corresponding to an electronic device, hereinafter referred to as panel A). When an IC driver was connected to the manufactured panel A and driven under normal temperature and normal pressure, display unevenness was not observed in the driving region.

<例III>
本例では、例I−7の条件(加熱処理条件は上記第1表を参照)で製造された、ガラス積層体を用いてLCDを作製した。
ガラス積層体を2枚用意し、まず、片方のガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。次に、画素電極を形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。得られたガラス積層体を、ガラス積層体X1と呼ぶ。
次に、もう片方のガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成した。次に、遮光層を設けたガラス基板の第2主面側に、さらにダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成した。次に、ガラス基板の第2主面側に、さらにスパッタリング法により酸化インジウム錫を成膜し、対向電極を形成した。次に、対向電極を設けたガラス基板の第2主面上に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成した。次に、柱状スペーサを形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。次に、ガラス基板の第2主面側に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上述したガラス積層体X1を用いて、2枚のガラス積層体のガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを有する積層体を得た。ここでのLCDパネルを有する積層体を以下、パネル付き積層体X2という。
次に、パネル付き積層体X2から両面の無機層付き支持基板を剥離し、TFTアレイを形成した基板およびカラーフィルタを形成した基板からなるLCDパネルB(電子デバイスに該当)を得た。
作製したLCDパネルBにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example III>
In this example, an LCD was produced using the glass laminate produced under the conditions of Example I-7 (see Table 1 above for the heat treatment conditions).
Two glass laminates were prepared. First, a molybdenum film was formed by sputtering on the second main surface of the glass substrate in one glass laminate, and a gate electrode was formed by etching using photolithography. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide was formed by sputtering and photolithography was used. A pixel electrode was formed by etching. Next, a polyimide resin liquid was applied on the second main surface of the glass substrate on which the pixel electrode was formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. The obtained glass laminate is referred to as a glass laminate X1.
Next, a chromium film was formed on the second main surface of the glass substrate in the other glass laminate by a sputtering method, and a light-shielding layer was formed by etching using a photolithography method. Next, a color resist was further applied by a die coating method to the second main surface side of the glass substrate provided with the light shielding layer, and a color filter layer was formed by a photolithography method and thermal curing. Next, an indium tin oxide film was further formed on the second main surface side of the glass substrate by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid was applied to the second main surface of the glass substrate provided with the counter electrode by a die coating method, and columnar spacers were formed by a photolithography method and heat curing. Next, a polyimide resin solution was applied on the second main surface of the glass substrate on which the columnar spacers were formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. Next, after the sealing resin liquid is drawn in a frame shape on the second main surface side of the glass substrate by the dispenser method, and the liquid crystal is dropped in the frame by the dispenser method, the above-described glass laminate X1 is used. The 2nd main surface side of the glass substrate of a sheet of glass laminated body was bonded together, and the laminated body which has an LCD panel by ultraviolet curing and thermosetting was obtained. Hereinafter, the laminate having the LCD panel is referred to as a laminate X2 with a panel.
Next, the support substrate with an inorganic layer on both sides was peeled from the laminated body X2 with a panel to obtain an LCD panel B (corresponding to an electronic device) comprising a substrate on which a TFT array was formed and a substrate on which a color filter was formed.
When an IC driver was connected to the manufactured LCD panel B and driven under normal temperature and normal pressure, no display unevenness was observed in the driving region.

10 ガラス積層体
12 支持基板
14 無機層
14a 無機層表面(無機層における支持基板側とは反対側の表面)
16 無機層付き支持基板
18 ガラス基板
18a ガラス基板の第1主面
18b ガラス基板の第2主面
20 電子デバイス用部材
22 電子デバイス用部材付き積層体
24 電子デバイス
31 固定台
32 L字型治具
DESCRIPTION OF SYMBOLS 10 Glass laminated body 12 Support substrate 14 Inorganic layer 14a Inorganic layer surface (surface on the opposite side to the support substrate side in an inorganic layer)
16 Support substrate 18 with inorganic layer Glass substrate 18a First main surface 18b of glass substrate Second main surface 20 of glass substrate 20 Electronic device member 22 Laminated body 24 with electronic device member Electronic device 31 Fixing base 32 L-shaped jig

Claims (4)

支持基板および前記支持基板上に配置された無機層を有する無機層付き支持基板と、前記無機層上に剥離可能に積層されたガラス基板と、を備えるガラス積層体を得る、ガラス積層体の製造方法であって、
前記無機層上に前記ガラス基板を積層させる積層工程と、
前記積層工程の後に加熱処理を行う加熱処理工程と、を備え、
前記無機層が、炭化ケイ素、炭化酸化ケイ素、窒化ケイ素および窒化酸化ケイ素からなる群から選ばれる少なくとも1種を含み、
前記加熱処理が、下記(a)〜(d)の条件を満たす、ガラス積層体の製造方法。
(a)昇温速度:300℃/分以下
(b)加熱温度:150〜600℃
(c)保持時間:0.5分以上
(d)雰囲気:大気圧状態もしくは減圧状態の大気雰囲気もしくは不活性ガス雰囲気、または、真空雰囲気
Manufacture of a glass laminate comprising a support substrate and a support substrate with an inorganic layer having an inorganic layer disposed on the support substrate, and a glass substrate that is detachably laminated on the inorganic layer. A method,
A laminating step of laminating the glass substrate on the inorganic layer;
A heat treatment step of performing a heat treatment after the laminating step,
The inorganic layer includes at least one selected from the group consisting of silicon carbide, silicon carbide oxide, silicon nitride, and silicon nitride oxide,
The manufacturing method of the glass laminated body with which the said heat processing satisfy | fills the conditions of following (a)-(d).
(A) Temperature increase rate: 300 ° C./min or less (b) Heating temperature: 150 to 600 ° C.
(C) Holding time: 0.5 minutes or more (d) Atmosphere: Atmospheric pressure or inactive gas atmosphere or inert gas atmosphere or vacuum atmosphere
前記(a)昇温速度が、200℃/分以下である、請求項1に記載のガラス積層体の製造方法。   The manufacturing method of the glass laminated body of Claim 1 whose said (a) temperature increase rate is 200 degrees C / min or less. 前記支持基板が、ガラス基板である、請求項1または2に記載のガラス積層体の製造方法。   The manufacturing method of the glass laminated body of Claim 1 or 2 whose said support substrate is a glass substrate. 請求項1〜3のいずれか1項に記載のガラス積層体の製造方法により得られたガラス積層体中の前記ガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、
前記電子デバイス用部材付き積層体から前記無機層付き支持基板を剥離し、前記ガラス基板および前記電子デバイス用部材を有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法。
The member for electronic devices is formed on the surface of the said glass substrate in the glass laminated body obtained by the manufacturing method of the glass laminated body of any one of Claims 1-3, The laminated body with the member for electronic devices A member forming step for obtaining
A separation step of peeling the support substrate with an inorganic layer from the laminate with the member for electronic devices to obtain an electronic device having the glass substrate and the member for electronic devices.
JP2013233024A 2013-11-11 2013-11-11 Method for manufacturing glass laminate and method for manufacturing electronic device Active JP6119567B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013233024A JP6119567B2 (en) 2013-11-11 2013-11-11 Method for manufacturing glass laminate and method for manufacturing electronic device
TW103139116A TWI622493B (en) 2013-11-11 2014-11-11 Method for manufacturing glass laminate and method for manufacturing electronic device
CN201410643715.9A CN104626664B (en) 2013-11-11 2014-11-11 The manufacture method of glass laminate and the manufacture method of electronic device
KR1020140155995A KR20150054692A (en) 2013-11-11 2014-11-11 Manufacturing method of glass laminated body and manufacturing method of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233024A JP6119567B2 (en) 2013-11-11 2013-11-11 Method for manufacturing glass laminate and method for manufacturing electronic device

Publications (2)

Publication Number Publication Date
JP2015093795A true JP2015093795A (en) 2015-05-18
JP6119567B2 JP6119567B2 (en) 2017-04-26

Family

ID=53196453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233024A Active JP6119567B2 (en) 2013-11-11 2013-11-11 Method for manufacturing glass laminate and method for manufacturing electronic device

Country Status (4)

Country Link
JP (1) JP6119567B2 (en)
KR (1) KR20150054692A (en)
CN (1) CN104626664B (en)
TW (1) TWI622493B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163134A1 (en) * 2014-04-25 2015-10-29 旭硝子株式会社 Glass laminate body, and method for manufacturing electronic device
WO2016017650A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492140B1 (en) * 2017-09-22 2019-03-27 ジオマテック株式会社 Resin substrate laminate and method of manufacturing electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184284A (en) * 2009-09-18 2011-09-22 Nippon Electric Glass Co Ltd Method for producing glass film, method for treating glass film and glass film laminate
JP2013184346A (en) * 2012-03-07 2013-09-19 Asahi Glass Co Ltd Glass laminate, and method for producing electronic device
WO2013179881A1 (en) * 2012-05-29 2013-12-05 旭硝子株式会社 Glass laminate and method for manufacturing electronic device
JP2015078113A (en) * 2013-09-12 2015-04-23 日本電気硝子株式会社 Support glass substrate and transport body using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471154B1 (en) * 2008-06-17 2014-12-09 삼성디스플레이 주식회사 Method for driving pixel and display apparatus for performing the method
JP5748088B2 (en) * 2010-03-25 2015-07-15 日本電気硝子株式会社 Manufacturing method of glass substrate
JP5887946B2 (en) * 2012-01-18 2016-03-16 旭硝子株式会社 Method for manufacturing electronic device and method for manufacturing glass laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184284A (en) * 2009-09-18 2011-09-22 Nippon Electric Glass Co Ltd Method for producing glass film, method for treating glass film and glass film laminate
JP2013184346A (en) * 2012-03-07 2013-09-19 Asahi Glass Co Ltd Glass laminate, and method for producing electronic device
WO2013179881A1 (en) * 2012-05-29 2013-12-05 旭硝子株式会社 Glass laminate and method for manufacturing electronic device
JP2015078113A (en) * 2013-09-12 2015-04-23 日本電気硝子株式会社 Support glass substrate and transport body using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
WO2015163134A1 (en) * 2014-04-25 2015-10-29 旭硝子株式会社 Glass laminate body, and method for manufacturing electronic device
WO2016017650A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets

Also Published As

Publication number Publication date
TWI622493B (en) 2018-05-01
TW201527088A (en) 2015-07-16
CN104626664A (en) 2015-05-20
KR20150054692A (en) 2015-05-20
CN104626664B (en) 2018-05-01
JP6119567B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6119567B2 (en) Method for manufacturing glass laminate and method for manufacturing electronic device
JP6172362B2 (en) GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP6176067B2 (en) GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2013184346A (en) Glass laminate, and method for producing electronic device
TWI580566B (en) A manufacturing method of an electronic device, and a method for manufacturing a glass laminate
JP6136909B2 (en) Manufacturing method of support substrate with resin layer, manufacturing method of glass laminate, manufacturing method of electronic device
WO2015163134A1 (en) Glass laminate body, and method for manufacturing electronic device
WO2012144499A1 (en) Laminate, method for producing same, and use of same
JP7136275B2 (en) LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD
WO2017006801A1 (en) Carrier substrate, laminate, and method for manufacturing electronic device
WO2018092688A1 (en) Laminated substrate and method for manufacturing electronic device
JP2015108735A (en) Manufacturing method of electronic device
WO2016017649A1 (en) Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer
JP2017164903A (en) Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer
JP2016210157A (en) Glass laminate and method for producing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250