JP2014145278A - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
JP2014145278A
JP2014145278A JP2013013390A JP2013013390A JP2014145278A JP 2014145278 A JP2014145278 A JP 2014145278A JP 2013013390 A JP2013013390 A JP 2013013390A JP 2013013390 A JP2013013390 A JP 2013013390A JP 2014145278 A JP2014145278 A JP 2014145278A
Authority
JP
Japan
Prior art keywords
filter
exhaust
temperature
regeneration
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013390A
Other languages
Japanese (ja)
Other versions
JP6136298B2 (en
Inventor
Mitsuhiro Aso
充宏 阿曽
Tadashi Uchiyama
正 内山
Masabumi Noda
正文 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013013390A priority Critical patent/JP6136298B2/en
Priority to CN201480010885.1A priority patent/CN105026707B/en
Priority to US14/763,723 priority patent/US9435238B2/en
Priority to PCT/JP2014/050566 priority patent/WO2014115622A1/en
Priority to EP14743195.1A priority patent/EP2949892B1/en
Publication of JP2014145278A publication Critical patent/JP2014145278A/en
Application granted granted Critical
Publication of JP6136298B2 publication Critical patent/JP6136298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust purification device for an internal combustion engine which optimizes fuel supply amount during forced regeneration.SOLUTION: An exhaust purification device for an internal combustion engine comprises: a diesel particulate filter (DPF) 16 which collects PM; an exhaust temperature sensor 19 which detects an exhaust temperature; capacitance detection units 17a, 17b and 21 which detect capacitance of the DPF 16; an accumulation amount estimation section 22 which estimates a PM accumulation amount of the DPF 16 on the basis of the capacitance; and filter regeneration units 13 and 23 which can execute forced regeneration. The filter regeneration units 13 and 23 executes the forced regeneration when the exhaust temperature reaches a temperature threshold in a state where the PM accumulation amount reaches an accumulation amount threshold on the basis of the accumulation amount threshold smaller than an upper limit PM accumulation amount and the temperature threshold with which the accumulated PM can be burned and removed with a limited fuel supply amount.

Description

本発明は、内燃機関の排気浄化装置に関し、特に、内燃機関から排出される排気ガス中の粒子状物質を捕集するフィルタを備える排気浄化装置に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device including a filter that collects particulate matter in exhaust gas discharged from the internal combustion engine.

ディーゼルエンジンから排出される排気ガス中の粒子状物質(Particulate Matter、以下、PM)を捕集するフィルタとして、例えば、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPF)が知られている。   For example, a diesel particulate filter (hereinafter referred to as DPF) is known as a filter that collects particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine. Yes.

DPFは、PM捕集量に限度があるため、堆積したPMを定期的に燃焼除去する強制再生を行う必要がある。強制再生は、排気管内噴射やポスト噴射によって、排気上流側の酸化触媒に未燃燃料(HC)を供給し、酸化により発生する熱で排気ガスの温度をPM燃焼温度まで昇温することで行われる。   Since the DPF has a limit in the amount of collected PM, it is necessary to perform forced regeneration by periodically burning and removing the accumulated PM. Forced regeneration is performed by supplying unburned fuel (HC) to the oxidation catalyst upstream of the exhaust by in-pipe injection or post-injection, and raising the temperature of the exhaust gas to the PM combustion temperature by the heat generated by oxidation. Is called.

例えば、特許文献1には、DPFの排気上流側及び下流側の差圧、運転時間(又は運転距離)に基づいてPM堆積量を推定すると共に、PM堆積量が所定量以上になると、強制再生を実行する排気浄化装置が開示されている。   For example, in Patent Document 1, the PM accumulation amount is estimated based on the pressure difference between the upstream and downstream sides of the DPF, the operation time (or the operation distance), and the forced regeneration is performed when the PM accumulation amount exceeds a predetermined amount. An exhaust purification device that performs the above is disclosed.

特許第4070687号公報Japanese Patent No. 4070687

ところで、DPFを流れる排気ガスの流量は、エンジンの運転状態に応じて変化する。そのため、DPFの排気上流側及び下流側の差圧を検出する差圧センサでは、PM堆積量を正確に推定できない場合がある。また、運転時間(又は、運転距離)に基づいた強制再生の開始制御においては、排気ガスの温度が低い状態で強制再生を実行する可能性がある。そのため、低温の排気ガスをPM燃焼温度まで上昇させるために、燃料供給量を多く確保する必要があり、燃費の悪化を招く虞もある。   By the way, the flow rate of the exhaust gas flowing through the DPF varies depending on the operating state of the engine. For this reason, the differential pressure sensor that detects the differential pressure upstream and downstream of the exhaust of the DPF may not be able to accurately estimate the PM deposition amount. In addition, in the forced regeneration start control based on the operation time (or the operation distance), there is a possibility that the forced regeneration is executed in a state where the temperature of the exhaust gas is low. Therefore, in order to raise the low temperature exhaust gas to the PM combustion temperature, it is necessary to secure a large amount of fuel supply, which may lead to deterioration of fuel consumption.

本発明は、このような点に鑑みてなされたもので、その目的は、PM堆積量の推定精度を向上させると共に、強制再生時における燃料供給量の最適化を図ることにある。   The present invention has been made in view of these points, and an object thereof is to improve the estimation accuracy of the PM accumulation amount and to optimize the fuel supply amount during forced regeneration.

上述の目的を達成するため、本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられて、排気中の粒子状物質を捕集するフィルタと、前記フィルタよりも排気上流側の排気通路に設けられて、排気温度を検出する排気温度検出手段と、前記フィルタの静電容量を検出する静電容量検出手段と、検出される前記静電容量に基づいて、前記フィルタに捕集された粒子状物質の堆積量を推定する堆積量推定手段と、前記フィルタに燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段と、を備え、前記フィルタ再生手段は、粒子状物質の上限堆積量よりも小さい堆積量閾値と、燃料供給量を抑制しても前記堆積量閾値まで堆積した粒子状物質を燃焼除去し得る所定の高排気温度に相当する温度閾値とに基づき、推定される前記堆積量が前記堆積量閾値に達した状態で、検出される前記排気温度が前記温度閾値に達すると強制再生を実行することを特徴とする。   In order to achieve the above-described object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of the internal combustion engine, a filter that collects particulate matter in the exhaust gas, and an exhaust upstream side of the filter. An exhaust temperature detecting means provided in the exhaust passage for detecting the exhaust temperature, a capacitance detecting means for detecting the capacitance of the filter, and collected on the filter based on the detected capacitance. Deposit amount estimating means for estimating the amount of deposited particulate matter, filter regeneration means capable of performing forced regeneration by supplying fuel to the filter and raising the temperature of the filter to the combustion temperature of the particulate matter; The filter regeneration means includes a deposition amount threshold smaller than an upper limit deposition amount of the particulate matter, and a predetermined high amount capable of burning and removing particulate matter deposited up to the deposition amount threshold even if the fuel supply amount is suppressed. Exhaust temperature Based on the equivalent temperature threshold, with the amount of the deposit has reached the deposition amount threshold that is estimated, the exhaust gas temperature is detected and executes the forced regeneration to reach the temperature threshold value.

また、前記フィルタ再生手段による強制再生が所定時間継続して実行されない場合に、前記温度閾値を低く補正する補正手段をさらに備えてもよい。   In addition, when the forced regeneration by the filter regeneration unit is not continuously executed for a predetermined time, a correction unit that corrects the temperature threshold value low may be further provided.

また、前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含むものであってもよい。   Further, the capacitance detection means may include a pair of electrodes that are disposed opposite to each other with at least one partition wall in the filter and form a capacitor.

また、前記フィルタよりも排気上流側及び下流側の前記排気通路を接続して、当該フィルタを迂回するバイパス通路と、前記バイパス通路に設けられて、当該バイパス通路を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、前記一対の電極は、前記第2のフィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されるものであってもよい。   Further, the exhaust passage on the upstream side and the downstream side of the filter is connected to bypass the filter, and the particulate matter in the exhaust gas that is provided in the bypass passage and flows through the bypass passage. And a second filter for collecting, and the pair of electrodes may be arranged to face each other with at least one partition wall interposed in the second filter.

また、前記第2のフィルタの強制再生を実行する際は、前記一対の電極をヒータとして機能させてもよい。   Further, when the forced regeneration of the second filter is executed, the pair of electrodes may function as a heater.

本発明の内燃機関の排気浄化装置によれば、PM堆積量の推定精度を向上させると共に、強制再生時における燃料供給量の最適化を図ることができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, it is possible to improve the estimation accuracy of the PM accumulation amount and optimize the fuel supply amount during forced regeneration.

本発明の一実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の排気浄化装置において、静電容量からPM堆積量を推定するマップを示す図である。It is a figure which shows the map which estimates PM deposition amount from an electrostatic capacitance in the exhaust gas purification apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の排気浄化装置において、(a)はPM堆積量の変化を示す図、(b)は排気温度の変化を示す図である。In the exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention, (a) shows a change in the amount of accumulated PM, and (b) shows a change in the exhaust temperature. 本発明の一実施形態に係る内燃機関の排気浄化装置による制御内容を示すフローチャートである。It is a flowchart which shows the control content by the exhaust gas purification apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 他の実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the exhaust gas purification apparatus of the internal combustion engine which concerns on other embodiment.

以下、図1〜4に基づいて、本発明の一実施形態に係る内燃機関の排気浄化装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention will be described with reference to FIGS. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジン)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気ガスを大気に放出する排気通路12が接続されている。さらに、排気通路12には、排気上流側から順に排気管内噴射装置13、排気温度センサ19、排気後処理装置14が設けられている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b. Further, the exhaust passage 12 is provided with an exhaust pipe injection device 13, an exhaust temperature sensor 19, and an exhaust aftertreatment device 14 in order from the exhaust upstream side.

排気管内噴射装置13は、ECU20から出力される指示信号に応じて、排気通路12内に未燃燃料(HC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置13を省略してもよい。   The exhaust pipe injection device 13 injects unburned fuel (HC) into the exhaust passage 12 in response to an instruction signal output from the ECU 20. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 13 may be omitted.

排気温度センサ19は、排気後処理装置14よりも上流側の排気通路12内を流れる排気ガスの温度を検出する。排気温度センサ19によって検出される排気温度EGTは、電気的に接続された電子制御ユニット(以下、ECU)20に入力される。   The exhaust temperature sensor 19 detects the temperature of the exhaust gas flowing in the exhaust passage 12 upstream of the exhaust aftertreatment device 14. The exhaust temperature EGT detected by the exhaust temperature sensor 19 is input to an electronic control unit (hereinafter referred to as ECU) 20 that is electrically connected.

排気後処理装置14は、ケース14a内に排気上流側から順に酸化触媒15、DPF16を配置して構成されている。   The exhaust aftertreatment device 14 is configured by arranging an oxidation catalyst 15 and a DPF 16 in order from the exhaust upstream side in a case 14a.

酸化触媒15は、例えば、コーディエライトハニカム構造体等のセラミック製担体表面に触媒成分を担持して形成されている。酸化触媒15は、排気管内噴射装置13又はポスト噴射によって未燃燃料(HC)が供給されると、これを酸化して排気ガスの温度を上昇させる。   The oxidation catalyst 15 is formed by, for example, supporting a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When the unburned fuel (HC) is supplied by the in-pipe injection device 13 or post injection, the oxidation catalyst 15 oxidizes this to raise the temperature of the exhaust gas.

DPF16は、例えば、多孔質性の隔壁で区画された多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。DPF16は、排気ガス中のPMを隔壁の細孔や表面に捕集すると共に、PMの堆積量が所定量に達すると、これを燃焼除去するいわゆる強制再生が実行される。強制再生は、排気管内噴射装置13又はポスト噴射により酸化触媒15に未燃燃料(HC)を供給し、DPF16をPM燃焼温度(例えば、約600℃)まで昇温することで行われる。   The DPF 16 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the exhaust gas flow direction, and alternately plugging the upstream side and the downstream side of these cells. . The DPF 16 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and performs so-called forced regeneration that burns and removes the PM when the PM accumulation amount reaches a predetermined amount. The forced regeneration is performed by supplying unburned fuel (HC) to the oxidation catalyst 15 by the exhaust pipe injection device 13 or post injection, and raising the DPF 16 to the PM combustion temperature (for example, about 600 ° C.).

また、本実施形態のDPF16には、少なくとも一個以上の隔壁を挟んで対向配置されてコンデンサを形成する一対の電極17a,17bが設けられている。これら一対の電極17a,17bは、それぞれECU20と電気的に接続されている。   In addition, the DPF 16 of the present embodiment is provided with a pair of electrodes 17a and 17b that are disposed to face each other with at least one partition wall therebetween to form a capacitor. The pair of electrodes 17a and 17b are electrically connected to the ECU 20, respectively.

ECU20は、エンジン10や排気管内噴射装置13の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。また、ECU20は、静電容量演算部21と、PM堆積量推定部22と、再生制御部23と、閾値補正部24とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU20に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 20 performs various controls such as fuel injection of the engine 10 and the exhaust pipe injection device 13, and includes a known CPU, ROM, RAM, input port, output port, and the like. In addition, the ECU 20 includes a capacitance calculation unit 21, a PM accumulation amount estimation unit 22, a regeneration control unit 23, and a threshold correction unit 24 as some functional elements. Each of these functional elements will be described as being included in the ECU 20 which is an integral hardware, but any one of these may be provided in separate hardware.

なお、本実施形態において、静電容量演算部21及び電極17a,17bは、本発明の静電容量検出手段を構成する。また、再生制御部23及び排気管内噴射装置13(又は、エンジン10の図示しない燃料噴射装置)は、本発明のフィルタ再生手段を構成する。   In the present embodiment, the capacitance calculation unit 21 and the electrodes 17a and 17b constitute the capacitance detection means of the present invention. Further, the regeneration control unit 23 and the exhaust pipe injection device 13 (or a fuel injection device (not shown) of the engine 10) constitute the filter regeneration means of the present invention.

静電容量演算部21は、一対の電極17a,17bから入力される信号に基づいて、これら電極17a,17b間の静電容量Cを演算する。静電容量Cは、電極17a,17b間の媒体の誘電率ε、電極17a,17bの面積S、電極17a,17b間の距離dとする以下の数式1で演算される。   The capacitance calculating unit 21 calculates the capacitance C between the electrodes 17a and 17b based on signals input from the pair of electrodes 17a and 17b. The electrostatic capacity C is calculated by the following formula 1, which is the dielectric constant ε of the medium between the electrodes 17a and 17b, the area S of the electrodes 17a and 17b, and the distance d between the electrodes 17a and 17b.

PM堆積量推定部22は、静電容量演算部21で演算される静電容量Cに基づいて、DPF16に捕集されたPM堆積量PMDEPを演算する。例えば、電極17a,17b間に導体性の炭素が堆積すると、これら電極17a,17b間の距離dは実質的に短くなり、静電容量Cが増加する。また、電極17a,17b間の媒体中にPMの堆積が進むと、誘電率εの増加に伴い静電容量Cも増加する。すなわち、静電容量CとPM堆積量PMDEPとの間には比例関係があり、静電容量Cを演算すればPM堆積量PMDEPを容易に推定することができる。ECU20には、予め実験等により作成した静電容量CとPM堆積量PMDEPとの比例関係を示すマップ(図2参照)が記憶されている。PM堆積量推定部22は、このマップから、静電容量演算部21で演算される静電容量Cに対応するPM堆積量PMDEPを読み取る。 The PM accumulation amount estimation unit 22 calculates the PM accumulation amount PM DEP collected by the DPF 16 based on the capacitance C calculated by the capacitance calculation unit 21. For example, when conductive carbon is deposited between the electrodes 17a and 17b, the distance d between the electrodes 17a and 17b is substantially shortened and the capacitance C is increased. Further, when PM is deposited in the medium between the electrodes 17a and 17b, the capacitance C increases as the dielectric constant ε increases. That is, there is a proportional relationship between the capacitance C and the PM deposition amount PM DEP, and if the capacitance C is calculated, the PM deposition amount PM DEP can be easily estimated. The ECU 20 stores a map (see FIG. 2) showing a proportional relationship between the capacitance C and the PM deposition amount PM DEP created in advance by experiments or the like. The PM deposition amount estimation unit 22 reads the PM deposition amount PM DEP corresponding to the capacitance C calculated by the capacitance calculation unit 21 from this map.

再生制御部23は、排気温度センサ19から入力される排気温度EGTと、PM堆積量推定部22で推定されるPM堆積量PMDEPとに基づいて、DPF16の強制再生を制御する。より具体的な制御内容を図3に基づいて説明する。 The regeneration control unit 23 controls forced regeneration of the DPF 16 based on the exhaust gas temperature EGT input from the exhaust gas temperature sensor 19 and the PM accumulation amount PM DEP estimated by the PM accumulation amount estimation unit 22. More specific control contents will be described with reference to FIG.

ECU20には、図3(a)中に破線Aで示す第1の再生実行閾値THV1、図3(a)中に破線Bで示す第2の再生実行閾値THV2(本発明の堆積量閾値)、図3(b)中に破線Cで示す排気温度閾値THV3(本発明の温度閾値)が予め記憶されている。第1の再生実行閾値THV1は、DPF16に捕集可能なPMの上限堆積量に相当する。第2の再生実行閾値THV2は、排気温度EGTが所定の高温(例えば、約400℃)の運転状態で強制再生を行う場合に、燃料供給量を抑制できるPM堆積量に相当し、第1の再生実行閾値THV1よりも小さく設定されている。排気温度閾値THV3は、強制再生を行う場合に燃料供給量を抑制しても、第2の再生実行閾値THV2まで堆積したPMを燃焼除去できる高温の排気温度(例えば、約400℃)に相当する。 The ECU 20 includes a first regeneration execution threshold value THV 1 indicated by a broken line A in FIG. 3A and a second regeneration execution threshold value THV 2 indicated by a broken line B in FIG. ), An exhaust gas temperature threshold THV 3 (temperature threshold of the present invention) indicated by a broken line C in FIG. 3B is stored in advance. The first regeneration execution threshold THV 1 corresponds to the upper limit accumulation amount of PM that can be collected in the DPF 16. The second regeneration execution threshold THV 2 corresponds to a PM accumulation amount that can suppress the fuel supply amount when forced regeneration is performed in an operation state where the exhaust gas temperature EGT is a predetermined high temperature (for example, about 400 ° C.). It is smaller than the reproduction execution threshold THV 1. The exhaust temperature threshold THV 3 is set to a high exhaust temperature (for example, about 400 ° C.) at which the PM accumulated up to the second regeneration execution threshold THV 2 can be removed by combustion even if the fuel supply amount is suppressed when performing forced regeneration. Equivalent to.

再生制御部23は、PM堆積量PMDEPが第1の再生実行閾値THV1に達すると(PMDEP≧THV1)、排気温度EGTに関係なく強制再生を実行する(図3(a),(b)の時刻T3参照)。また、再生制御部23は、PM堆積量PMDEPが第2の再生実行閾値THV2以上、第1の再生実行閾値THV1未満(THV2≦PMDEP<THV1)の時は、排気温度EGTが排気温度閾値THV3以上(EGT≧THV3)の場合に、強制再生を実行する(図3(b)の時刻T1,T2参照)。一方、PM堆積量PMDEPが第2の再生実行閾値THV2以上、第1の再生実行閾値THV1未満(THV2≦PMDEP<THV1)の条件を満たしても、排気温度EGTが排気温度閾値THV3未満(EGT<THV3)の場合は、強制再生を保留する(図3(b)中の破線Yの時刻T1〜2参照)。すなわち、排気温度EGTが低い場合は強制再生を見送りつつ、その後、運転状態の変化により排気温度EGTが上昇すると、強制再生を実行するように構成されている。これにより、強制再生時の燃料供給量を効果的に抑制することができる。 When the PM accumulation amount PM DEP reaches the first regeneration execution threshold value THV 1 (PM DEP ≧ THV 1 ), the regeneration control unit 23 performs forced regeneration regardless of the exhaust gas temperature EGT (FIG. 3 (a), ( Refer to time T3 in b)). Further, the regeneration control unit 23, when the PM accumulation amount PM DEP is equal to or greater than the second regeneration execution threshold value THV 2 and less than the first regeneration execution threshold value THV 1 (THV 2 ≦ PM DEP <THV 1 ), Is the exhaust temperature threshold THV 3 or more (EGT ≧ THV 3 ), the forced regeneration is executed (see times T1 and T2 in FIG. 3B). On the other hand, even if the PM accumulation amount PM DEP satisfies the condition of the second regeneration execution threshold value THV 2 or more and less than the first regeneration execution threshold value THV 1 (THV 2 ≦ PM DEP <THV 1 ), the exhaust temperature EGT is the exhaust temperature. When the threshold value is less than THV 3 (EGT <THV 3 ), forced regeneration is suspended (see times T 1 and T 2 on the broken line Y in FIG. 3B). That is, when the exhaust gas temperature EGT is low, the forced regeneration is forgotten, and when the exhaust gas temperature EGT rises due to a change in the operation state thereafter, the forced regeneration is executed. Thereby, the fuel supply amount at the time of forced regeneration can be effectively suppressed.

閾値補正部24は、強制再生が継続して実行されない時間(以下、再生不実施期間TNREという)に基づいて、排気温度閾値THV3を補正する。本実施形態において、再生不実施時間TNREは、イグニッションキーがON操作された時(強制再生が終了した時も含む)から、タイマカウンタにより計時される時間を積算することで演算される。ECU20には、強制再生の不実施を許容できる上限時間TMAXが予め記憶されている。閾値補正部24は、再生不実施時間TNREが上限時間TMAXを超えると(TNRE>TMAX)、排気温度閾値THV3を低く補正する。なお、具体的な補正方法としては、例えば、強制再生の不実施期間における排気温度EGTの最高値(図3(b)のα参照)を記憶しておき、排気温度閾値THV3をこの最高値まで下方修正することが好ましい。 The threshold correction unit 24 corrects the exhaust temperature threshold THV 3 based on a time during which forced regeneration is not continuously performed (hereinafter referred to as a regeneration non-execution period T NRE ). In the present embodiment, the regeneration non-execution time T NRE is calculated by integrating the time counted by the timer counter from when the ignition key is turned ON (including when forced regeneration ends). The ECU 20 stores in advance an upper limit time T MAX that allows the forced regeneration not to be performed. When the regeneration non-execution time T NRE exceeds the upper limit time T MAX (T NRE > T MAX ), the threshold correction unit 24 corrects the exhaust temperature threshold THV 3 to be low. As a specific correction method, for example, the maximum value (see α in FIG. 3B) of the exhaust gas temperature EGT during the forced regeneration non-execution period is stored, and the exhaust gas temperature threshold value THV 3 is set to this maximum value. It is preferable to correct downward.

次に、図4に基づいて、本実施形態の排気浄化装置による制御フローを説明する。なお、本制御はイグニッションキーのON操作と同時にスタートする。   Next, based on FIG. 4, the control flow by the exhaust emission control device of the present embodiment will be described. Note that this control starts simultaneously with the ON operation of the ignition key.

ステップ(以下、ステップを単にSと記載する)100では、静電容量Cから推定されるPM堆積量PMDEPが、第2の再生実行閾値THV2に達したか否かが判定される。PM堆積量PMDEPが第2の再生実行閾値THV2以上の場合(YES)、本制御はS110に進む。一方、PM堆積量PMDEPが第2の再生実行閾値THV2未満の場合(NO)、本制御はリターンされる。 In step (hereinafter, the step is simply referred to as S) 100, it is determined whether or not the PM accumulation amount PM DEP estimated from the capacitance C has reached the second regeneration execution threshold value THV2. When the PM accumulation amount PM DEP is equal to or greater than the second regeneration execution threshold value THV 2 (YES), the control proceeds to S110. On the other hand, when the PM accumulation amount PM DEP is less than the second regeneration execution threshold value THV 2 (NO), this control is returned.

S110では、静電容量Cから推定されるPM堆積量PMDEPが、第1の再生実行閾値THV1に達したか否かが判定される。PM堆積量PMDEPが第1の再生実行閾値THV1以上の場合(YES)、本制御はS120に進み、排気温度EGTに関係なく強制再生を実行してリターンされる。一方、PM堆積量PMDEPが第1の再生実行閾値THV1未満の場合(NO)、本制御はS130に進む。 In S110, it is determined whether or not the PM deposition amount PM DEP estimated from the capacitance C has reached the first regeneration execution threshold value THV1. When the PM accumulation amount PM DEP is equal to or greater than the first regeneration execution threshold value THV 1 (YES), the control proceeds to S120, and forced regeneration is performed regardless of the exhaust gas temperature EGT, and the process returns. On the other hand, when the PM accumulation amount PM DEP is less than the first regeneration execution threshold value THV 1 (NO), the present control proceeds to S130.

S130では、排気温度EGTが排気温度閾値THV3に達したか否かが判定される。排気温度EGTが排気温度閾値THV3以上の場合(YES)、本制御はS140に進み、強制再生を実行してリターンされる。一方、排気温度EGTが排気温度閾値THV3未満の場合(NO)、本制御はS150に進む。すなわち、強制再生は保留される。 In S130, the exhaust gas temperature EGT whether reaches the exhaust temperature threshold value THV 3 is determined. When the exhaust gas temperature EGT is equal to or higher than the exhaust gas temperature threshold value THV 3 (YES), the control proceeds to S140, and forced regeneration is executed and the process returns. On the other hand, if the exhaust temperature EGT is less than the exhaust temperature threshold THV 3 (NO), the control proceeds to S150. That is, forced regeneration is suspended.

S150では、再生不実施時間TNREが上限時間TMAXを超えたか否かが判定される。再生不実施時間TNREが上限時間TMAXを超えた場合(YES)、本制御はS160に進む。一方、再生不実施時間TNREが上限時間TMAX以下の場合(NO)、本制御はリターンされる。 In S150, it is determined whether the reproduction non-execution time T NRE has exceeded the upper limit time T MAX . When the reproduction non-execution time T NRE exceeds the upper limit time T MAX (YES), the control proceeds to S160. On the other hand, when the reproduction non-execution time T NRE is equal to or shorter than the upper limit time T MAX (NO), this control is returned.

S160では、排気温度閾値THV3をS100〜150の間で記憶された排気温度EGTの最高値まで低くする補正を行い、本制御はリターンされる。その後、S100〜160の各制御ステップは、イグニッションキーのOFF操作まで繰り返し実行される。 In S160, performs correction to reduce to a maximum value of the stored exhaust gas temperature EGT exhaust temperature threshold value THV 3 between S100~150, the control is returned. Thereafter, each control step of S100 to S160 is repeatedly executed until the ignition key is turned off.

次に、本実施形態に係る内燃機関の排気浄化装置による作用効果を説明する。   Next, functions and effects of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment will be described.

従来の強制再生は、DPF差圧や運転時間に基づいて、強制再生の開始制御を行っている。しかしながら、排気流量は運転状態に伴い変化するため、DPF差圧からはPM堆積量を正確に推定できない可能性がある。また、運転時間(又は、運転距離)に基づいた強制再生の開始制御においては、排気温度が低い状態でも強制再生を実行する場合があり、燃料供給量の増加により燃費が悪化する可能性がある。   In the conventional forced regeneration, the forced regeneration start control is performed based on the DPF differential pressure and the operation time. However, since the exhaust gas flow rate changes with the operating state, there is a possibility that the PM accumulation amount cannot be accurately estimated from the DPF differential pressure. In addition, in the forced regeneration start control based on the driving time (or driving distance), forced regeneration may be executed even when the exhaust temperature is low, and the fuel consumption may deteriorate due to an increase in the fuel supply amount. .

これに対し、本実施形態の排気浄化装置は、DPF16に設けた一対の電極17a,17b間の静電容量CからPM堆積量PMDEPを推定する。また、推定されるPM堆積量PMDEPが第2の再生実行閾値THV2に達しても、排気温度EGTが低い状態(THV3未満)では強制再生を見送る一方、排気温度EGTが燃料供給量を抑制できる高温状態(THV3以上)になると、強制再生を実行するように構成されている。 On the other hand, the exhaust emission control device of this embodiment estimates the PM deposition amount PM DEP from the capacitance C between the pair of electrodes 17a and 17b provided in the DPF 16. Further, even if the estimated PM accumulation amount PM DEP reaches the second regeneration execution threshold value THV 2 , forced regeneration is forgotten when the exhaust gas temperature EGT is low (less than THV 3 ), while the exhaust gas temperature EGT reduces the fuel supply amount. When a high temperature state (THV 3 or more) that can be suppressed is reached, forced regeneration is performed.

したがって、本実施形態の排気浄化装置によれば、運転状態の変化の影響を受けない静電容量Cに基づいて、PM堆積量PMDEPを高精度に推定できると共に、燃料供給量を抑制可能な高温の排気温度(THV3以上)になるまで強制再生を保留することで、燃費を効果的に向上することができる。 Therefore, according to the exhaust gas purification apparatus of the present embodiment, the PM accumulation amount PM DEP can be estimated with high accuracy and the fuel supply amount can be suppressed based on the capacitance C that is not affected by the change in the operating state. By suspending forced regeneration until a high exhaust temperature (THV 3 or higher) is reached, fuel efficiency can be effectively improved.

また、本実施形態の排気浄化装置は、強制再生が一定期間継続して実行されない場合は、排気温度閾値THV3を低く補正するように構成されている。 The exhaust purifying apparatus of the present embodiment, when the forced regeneration is not performed continues for a predetermined period of time is configured to correct a low exhaust gas temperature threshold value THV 3.

したがって、本実施形態の排気浄化装置によれば、高負荷運転の頻度が少なく、排気温度EGTが高温にならない使用条件に対しても、強制再生を確実に実行させることが可能になる。   Therefore, according to the exhaust emission control device of the present embodiment, forced regeneration can be reliably performed even under use conditions where the frequency of high-load operation is low and the exhaust temperature EGT does not become high.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、図5に示すように、排気通路12にDPF16を迂回させるバイパス通路18を接続し、このバイパス通路18に容量の小さい計測用DPF16a(第2のフィルタ)を備えて構成してもよい。この場合、一対の電極17a,17bを計測用DPF16a内に少なくとも一個以上の隔壁を挟んで対向配置すると共に、バイパス通路18には排気ガスの流量を調整するオリフィス18a(絞り)を設けることが好ましい。また、計測用DPF16aの強制再生を実行する場合は、一対の電極17a,17bに電圧を印加してヒータとして機能させてもよい。   For example, as shown in FIG. 5, a bypass passage 18 that bypasses the DPF 16 may be connected to the exhaust passage 12, and the bypass passage 18 may be provided with a measurement DPF 16 a (second filter) having a small capacity. In this case, it is preferable that the pair of electrodes 17a and 17b are arranged opposite to each other with at least one partition wall in the measurement DPF 16a, and an orifice 18a (throttle) for adjusting the flow rate of the exhaust gas is provided in the bypass passage 18. . Further, when the forced regeneration of the measurement DPF 16a is executed, a voltage may be applied to the pair of electrodes 17a and 17b so as to function as a heater.

10 エンジン
12 排気通路
13 排気管内噴射装置
14 排気後処理装置
15 酸化触媒
16 DPF(フィルタ)
19 排気温度センサ
20 ECU
21 静電容量演算部
22 PM堆積量推定部
23 再生制御部
24 閾値補正部
DESCRIPTION OF SYMBOLS 10 Engine 12 Exhaust passage 13 Exhaust pipe injection apparatus 14 Exhaust after-treatment apparatus 15 Oxidation catalyst 16 DPF (filter)
19 Exhaust temperature sensor 20 ECU
21 Capacitance calculation unit 22 PM deposition amount estimation unit 23 Regeneration control unit 24 Threshold correction unit

Claims (5)

内燃機関の排気通路に設けられて、排気中の粒子状物質を捕集するフィルタと、
前記フィルタよりも排気上流側の排気通路に設けられて、排気温度を検出する排気温度検出手段と、
前記フィルタの静電容量を検出する静電容量検出手段と、
検出される前記静電容量に基づいて、前記フィルタに捕集された粒子状物質の堆積量を推定する堆積量推定手段と、
前記フィルタに燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段と、を備え、
前記フィルタ再生手段は、
粒子状物質の上限堆積量よりも小さい堆積量閾値と、燃料供給量を抑制しても前記堆積量閾値まで堆積した粒子状物質を燃焼除去し得る所定の高排気温度に相当する温度閾値とに基づき、推定される前記堆積量が前記堆積量閾値に達した状態で、検出される前記排気温度が前記温度閾値に達すると強制再生を実行する
ことを特徴とする内燃機関の排気浄化装置。
A filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
An exhaust temperature detecting means provided in an exhaust passage upstream of the filter for detecting the exhaust temperature;
Capacitance detecting means for detecting the capacitance of the filter;
A deposition amount estimating means for estimating a deposition amount of the particulate matter collected by the filter based on the detected capacitance;
Filter regeneration means capable of performing forced regeneration by supplying fuel to the filter and raising the temperature of the filter to the combustion temperature of the particulate matter,
The filter regeneration means includes
A deposition amount threshold smaller than the upper limit deposition amount of particulate matter, and a temperature threshold corresponding to a predetermined high exhaust temperature at which particulate matter deposited up to the deposition amount threshold can be burned and removed even if the fuel supply amount is suppressed. An exhaust gas purification apparatus for an internal combustion engine, wherein forced regeneration is executed when the detected exhaust gas temperature reaches the temperature threshold value in a state where the estimated accumulation amount has reached the accumulation amount threshold value.
前記フィルタ再生手段による強制再生が所定時間継続して実行されない場合に、前記温度閾値を低く補正する補正手段をさらに備える
請求項1に記載の内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to claim 1, further comprising correction means for correcting the temperature threshold to be low when forced regeneration by the filter regeneration means is not continuously executed for a predetermined time.
前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含む
請求項1又は2に記載の内燃機関の排気浄化装置。
3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the electrostatic capacitance detection means includes a pair of electrodes that are disposed to face each other with at least one or more partition walls in the filter and form a capacitor.
前記フィルタよりも排気上流側及び下流側の前記排気通路を接続して、当該フィルタを迂回するバイパス通路と、
前記バイパス通路に設けられて、当該バイパス通路を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、
前記一対の電極は、前記第2のフィルタ内に少なくとも一個以上の隔壁を挟んで対向配置される
請求項3に記載の内燃機関の排気浄化装置。
A bypass passage that bypasses the filter by connecting the exhaust passage upstream and downstream of the filter;
A second filter that is provided in the bypass passage and collects particulate matter in the exhaust gas flowing through the bypass passage;
The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the pair of electrodes are disposed to face each other with at least one partition wall interposed in the second filter.
前記第2のフィルタの強制再生を実行する際は、前記一対の電極をヒータとして機能させる
請求項4に記載の内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein when the forced regeneration of the second filter is executed, the pair of electrodes function as a heater.
JP2013013390A 2013-01-28 2013-01-28 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP6136298B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013013390A JP6136298B2 (en) 2013-01-28 2013-01-28 Exhaust gas purification device for internal combustion engine
CN201480010885.1A CN105026707B (en) 2013-01-28 2014-01-15 The emission-control equipment of internal combustion engine
US14/763,723 US9435238B2 (en) 2013-01-28 2014-01-15 Exhaust purification device for internal combustion engine
PCT/JP2014/050566 WO2014115622A1 (en) 2013-01-28 2014-01-15 Exhaust purification device for internal combustion engine
EP14743195.1A EP2949892B1 (en) 2013-01-28 2014-01-15 Exhaust purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013390A JP6136298B2 (en) 2013-01-28 2013-01-28 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014145278A true JP2014145278A (en) 2014-08-14
JP6136298B2 JP6136298B2 (en) 2017-05-31

Family

ID=51227414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013390A Expired - Fee Related JP6136298B2 (en) 2013-01-28 2013-01-28 Exhaust gas purification device for internal combustion engine

Country Status (5)

Country Link
US (1) US9435238B2 (en)
EP (1) EP2949892B1 (en)
JP (1) JP6136298B2 (en)
CN (1) CN105026707B (en)
WO (1) WO2014115622A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417780B2 (en) * 2014-08-11 2018-11-07 いすゞ自動車株式会社 Sensor
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
JP7263773B2 (en) 2018-12-29 2023-04-25 いすゞ自動車株式会社 DETECTION DEVICE, DETECTION METHOD, AND EXHAUST PURIFICATION DEVICE WITH DETECTION DEVICE
JP7207195B2 (en) * 2019-06-24 2023-01-18 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2021004555A (en) * 2019-06-25 2021-01-14 トヨタ自動車株式会社 Internal combustion engine control apparatus
JP7310671B2 (en) * 2020-03-23 2023-07-19 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP7264111B2 (en) * 2020-05-19 2023-04-25 トヨタ自動車株式会社 Exhaust purification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021537A (en) * 2000-07-03 2002-01-23 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
JP2007313443A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning apparatus
WO2008117853A1 (en) * 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Fine particle sensor
JP2010285958A (en) * 2009-06-12 2010-12-24 Isuzu Motors Ltd Pm sensor
JP2011032969A (en) * 2009-08-04 2011-02-17 Mitsubishi Motors Corp Engine exhaust emission control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139922A (en) 1984-12-12 1986-06-27 Hitachi Maxell Ltd Magnetic recording medium
JP4007085B2 (en) * 2002-06-13 2007-11-14 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2004197657A (en) * 2002-12-18 2004-07-15 Nissan Motor Co Ltd Reproducing apparatus for particulate filter and engine waste gas purifying facility
JP4070687B2 (en) 2003-08-11 2008-04-02 日産ディーゼル工業株式会社 Exhaust purification device
JP5565005B2 (en) * 2010-03-10 2014-08-06 いすゞ自動車株式会社 DPF failure detection method and DPF failure detection device
JP5573391B2 (en) * 2010-06-11 2014-08-20 いすゞ自動車株式会社 Exhaust gas purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021537A (en) * 2000-07-03 2002-01-23 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
JP2007313443A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning apparatus
WO2008117853A1 (en) * 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Fine particle sensor
JP2010285958A (en) * 2009-06-12 2010-12-24 Isuzu Motors Ltd Pm sensor
JP2011032969A (en) * 2009-08-04 2011-02-17 Mitsubishi Motors Corp Engine exhaust emission control device

Also Published As

Publication number Publication date
US9435238B2 (en) 2016-09-06
EP2949892B1 (en) 2017-09-20
CN105026707A (en) 2015-11-04
EP2949892A1 (en) 2015-12-02
WO2014115622A1 (en) 2014-07-31
JP6136298B2 (en) 2017-05-31
US20160040571A1 (en) 2016-02-11
CN105026707B (en) 2017-12-19
EP2949892A4 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6197377B2 (en) Exhaust purification device
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
JP4403961B2 (en) Exhaust gas purification device for internal combustion engine
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2003314249A (en) Exhaust-emission control device of internal combustion engine
JP6136351B2 (en) Exhaust gas purification device for internal combustion engine
JP2014167274A (en) Exhaust emission control device for internal combustion engine
WO2015053323A1 (en) Exhaust purification system
JP6032053B2 (en) Exhaust system state detection device and control device
JP2015059476A (en) Exhaust purification system of internal combustion engine
EP3056699B1 (en) Exhaust purification system
JP6572651B2 (en) Exhaust purification device
JP6206065B2 (en) Exhaust purification system
WO2014115621A1 (en) Exhaust purification device for internal combustion engine
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
JP2015059477A (en) Exhaust purification system of internal combustion engine
JP2015059478A (en) Exhaust purification system of internal combustion engine
JP2020026732A (en) Detection device, detection method and exhaust emission control device having detection device
JP2004052568A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees