JPS61139922A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61139922A
JPS61139922A JP59262069A JP26206984A JPS61139922A JP S61139922 A JPS61139922 A JP S61139922A JP 59262069 A JP59262069 A JP 59262069A JP 26206984 A JP26206984 A JP 26206984A JP S61139922 A JPS61139922 A JP S61139922A
Authority
JP
Japan
Prior art keywords
magnetic
cobalt
iron oxide
porosity
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59262069A
Other languages
Japanese (ja)
Other versions
JPH0470687B2 (en
Inventor
Haruo Ando
安藤 晴夫
Yoshiharu Katsuta
勝田 善春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59262069A priority Critical patent/JPS61139922A/en
Publication of JPS61139922A publication Critical patent/JPS61139922A/en
Publication of JPH0470687B2 publication Critical patent/JPH0470687B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve largely the magnetic characteristic and electromagnetic conversion characteristic by depositing cobalt to the seed crystal of needle-like magnetic iron oxide having average <=5vol% of particle porosity and using such crystal as an essential component for the magnetic powder to be incorporated into a magnetic layer. CONSTITUTION:The magnetic particle to be incorporated into the magnetic layer of the magnetic recording medium consists essentially of the needle-like iron oxide having average <=5wt%, more preferably <=2wt% particle porosity which is used as the seed crystal and to which the cobalt is deposited. Since the seed crystal has the low porosity, the formation of the multiple magnetic domain structure of the particles is prevented and the surface of the magnetic particles after the deposition of the cobalt-contg. layer is made smooth. The dispersion of the magnetic powder in the magnetic paint is thus improved and the magnetic powder density of the magnetic layer is increased, by which the magnetic characteristic and electromagnetic conversion characteristic are largely improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はオーディオテープやビデオテープを始めとす
る各種磁気テープ、磁気ディスクなどの磁気記録媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic recording media such as various magnetic tapes and magnetic disks including audio tapes and video tapes.

[従来の技術〕 一般的な磁気記録媒体は、ポリエステルフィルムなどの
非磁性支持体上に磁気記録素子である磁性粉とこれを結
着するバインダを含む磁性層を設けたものである。この
ような磁気記録媒体の記録密度の向上を図るために、従
来より上記磁性粉としてT−Fe203やFe3O4お
よびT−Fe20.とFe3O4との中間体などの針状
磁性酸化鉄を核晶としてその表面にコバルト含有層を設
けたコバルト被着針状酸化鉄が広く使用されている。
[Prior Art] A typical magnetic recording medium is one in which a magnetic layer containing magnetic powder, which is a magnetic recording element, and a binder that binds the powder is provided on a non-magnetic support such as a polyester film. In order to improve the recording density of such magnetic recording media, T-Fe203, Fe3O4 and T-Fe20. Cobalt-coated acicular iron oxide, in which a cobalt-containing layer is provided on the surface of acicular magnetic iron oxide, such as an intermediate between Fe3O4 and Fe3O4, is widely used.

ところで、上記核晶である針状磁性酸化鉄は、通常第一
鉄塩水溶液とアルカリ水溶液との反応にて析出した水酸
化第一鉄を酸化するなどの手段で得られる。α−オキシ
水酸化鉄(α−FeOOH)を原料とし、これを気相中
で加熱脱水および還元してFe3O4とし、さらに必要
に応じて加熱酸化してT−Fe203とすることにより
製造されている(文献不詳)。したがってこれら針状磁
性酸化鉄の粒子は、上記加熱脱水工程で結晶水の揮散に
基づ(空孔およびその開裂による凹所を生じるため、一
般に平均8〜10容電%・という高い粒子空孔率を有し
ている。このような高空隙率の針状磁性酸化鉄は、空孔
に起因したローレンツ磁場の発生で多磁区構造となるこ
とから粒子1個当たりの磁力が低下し、かつこれを含有
する磁性層の空隙率も高くする傾向がある。
Incidentally, the acicular magnetic iron oxide which is the above-mentioned nucleus crystal is usually obtained by oxidizing ferrous hydroxide precipitated by a reaction between an aqueous ferrous salt solution and an aqueous alkaline solution. It is produced by using α-iron oxyhydroxide (α-FeOOH) as a raw material, dehydrating and reducing it by heating in a gas phase to obtain Fe3O4, and further heating and oxidizing it as necessary to obtain T-Fe203. (Reference unknown). Therefore, these acicular magnetic iron oxide particles generally have a high particle vacancy of 8 to 10% capacity on average, due to the volatilization of crystallized water during the heating and dehydration process (which creates pores and depressions due to their cleavage). Acicular magnetic iron oxide with such a high porosity has a multi-domain structure due to the Lorentz magnetic field generated by the pores, which reduces the magnetic force per particle. There is also a tendency to increase the porosity of the magnetic layer containing .

しかしながら、前述の如くコバルト被着針状磁性酸化鉄
とした場合は、従来では、核晶である針状磁性酸化−の
粒子が多少の空孔や凹所を有していてもこれがある程度
以上のコバルト含有層を設けることにより覆われてしま
うので問題はなく、これを用いた磁気記録媒体の磁気特
性および電磁変換特性には改良の余地は特にないものと
考えられてきた。
However, in the case of cobalt-coated acicular magnetic iron oxide as mentioned above, conventionally, even if the acicular magnetic oxide particles, which are the nucleus crystals, have some pores or recesses, these particles are larger than a certain level. Since it is covered by providing a cobalt-containing layer, there is no problem, and it has been thought that there is no particular room for improvement in the magnetic properties and electromagnetic conversion properties of a magnetic recording medium using this.

〔発明が解決しようとする問題点] しかるに、上述した従来の常識にかかわらず、この発明
者らが検討した結果、コバルト被着針状磁性酸化鉄にお
いても核晶の針状磁性酸化鉄の性状により磁気記録媒体
の磁気特性や′電磁変換特性が大きく左右され、この点
でなお改良の余地が残されていることが判明した。した
がって、この発明は、磁性粉としてコバルト被着針状磁
性酸化鉄を用いる磁気記録媒体において、従来のものよ
りもさらに磁気特性および電磁変換特性の改善を図るこ
とを目的としている。
[Problems to be Solved by the Invention] However, despite the above-mentioned conventional wisdom, the present inventors have investigated and found that even in cobalt-coated acicular magnetic iron oxide, the properties of the acicular magnetic iron oxide of the nucleus crystals are It has been found that the magnetic characteristics and electromagnetic conversion characteristics of the magnetic recording medium are greatly affected by this, and that there is still room for improvement in this respect. Therefore, it is an object of the present invention to further improve the magnetic properties and electromagnetic conversion properties of a magnetic recording medium using cobalt-coated acicular magnetic iron oxide as the magnetic powder compared to conventional media.

〔問題点を解決するための手段] この発明者らは、上記目的におりて鋭意検討を重ねる過
程で、水酸化第二鉄の水性懸濁液中に特定の結晶化制御
剤を加えて加熱して得られるα−Fe203粉を原料と
し、これを還元および必要に応じて酸化することにより
低空孔率の針状磁性酸化鉄を得る方法が種々提案されて
いることに着目し、これら提案法による低空孔率の針状
酸化鉄をコバルト被着針状磁性酸化鉄の核晶に利用する
ことを試みた。その結果、核晶が低空孔率でなめらかな
表面を有するため、コバルト被着後の粒子表面もなめら
かとなることから、これを磁性粉として用いた場合に磁
性塗料中で磁性粉同士のからみが少なくなり、分散が非
常に良好であり、該磁性塗料を非磁性支持体上に塗布、
乾燥して形成される磁性層中に単位体積あたり多くの磁
性粉を含有させ得ることが判明した。そして、この磁性
層の磁性粉密度増大により、従来の高空孔率の針状磁性
酸化鉄を核晶としたコバルト被着針状磁性酸化鉄を用い
た場合に比較して、磁気記録媒体の磁気特性および電磁
変換特性が大きく改善されることが判り、この発明をな
すに至った。
[Means for Solving the Problems] In the course of intensive studies for the above purpose, the inventors added a specific crystallization control agent to an aqueous suspension of ferric hydroxide and heated it. Focusing on the fact that various methods have been proposed for obtaining acicular magnetic iron oxide with low porosity by reducing and optionally oxidizing α-Fe203 powder obtained by An attempt was made to use acicular iron oxide with low porosity as the nucleus of cobalt-coated acicular magnetic iron oxide. As a result, since the nucleus crystals have a smooth surface with low porosity, the surface of the particles after coating with cobalt also becomes smooth, so when this is used as magnetic powder, entanglement between magnetic particles in magnetic paint is prevented. The magnetic paint is coated on a non-magnetic support, and the dispersion is very good.
It has been found that a large amount of magnetic powder can be contained per unit volume in the magnetic layer formed by drying. By increasing the density of the magnetic powder in the magnetic layer, the magnetic recording medium becomes more magnetic than the conventional case where cobalt-coated acicular magnetic iron oxide with high porosity acicular magnetic iron oxide as the nucleus is used. It was found that the characteristics and electromagnetic conversion characteristics were greatly improved, and this invention was made.

すなわち、この発明は、非磁性支持体上に、粒子空孔率
が平均5容量%以下の針状磁性酸化鉄からなる核晶にコ
バルト含有層を被着してなるコバルト被着針状酸化鉄を
主体とする磁性粉が含有された磁性層を設けてなる磁気
記録媒体に係る。
That is, the present invention provides a cobalt-coated acicular iron oxide in which a cobalt-containing layer is deposited on a core crystal of acicular magnetic iron oxide having an average particle porosity of 5% by volume or less on a non-magnetic support. The present invention relates to a magnetic recording medium provided with a magnetic layer containing magnetic powder mainly composed of.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において磁性粉の主体として用いるコバルト被
着針状磁性酸化鉄は、核晶として粒子空孔率が平均5容
量%以下、好適には2容量%以下の針状磁性酸化鉄を用
いたものである。すなわち鉄aがζ空孔率であるこさに
まQlその粒子の多磁区構造化が防止されるとともに、
コバルト含有層被着後の磁性粉粒子の表面が滑らかとな
り、磁性塗料中における磁性粉の分散が良好となって磁
性層の磁性粉密度増大を図ることができ、磁気記録媒体
の磁気特性および電磁変換特性が改善される。
In this invention, the cobalt-coated acicular magnetic iron oxide used as the main body of the magnetic powder is one in which acicular magnetic iron oxide with an average particle porosity of 5% by volume or less, preferably 2% by volume or less, is used as the nucleus crystal. It is. In other words, when iron a has a ζ porosity, the formation of a multi-domain structure in the particles is prevented, and
After the cobalt-containing layer has been applied, the surface of the magnetic powder particles becomes smooth, and the magnetic powder is well dispersed in the magnetic paint, making it possible to increase the density of the magnetic powder in the magnetic layer, thereby improving the magnetic properties of the magnetic recording medium. Conversion characteristics are improved.

このような低空孔率の核晶は、Fe50いT−Fe20
3および両者の中間的酸化物を包含するもので、たとえ
ば水酸化第二鉄の水性懸濁液を鉄に対して配位能のある
水溶性化合物から選ばれる結晶化制御剤の存在下でアル
カリ性領域下において加熱する方法、あるいは上記方法
において水性懸濁液中に結晶化制御剤とともにα−Fe
20.、種晶を添加する方法などにより、粒子空孔率の
低いα−Fe203粉を得、これを加熱還元してFe3
O4とするか、さらにこのFe50.を醇化してT−F
e203ないしはこれとFe3O4との中間的酸化物と
することにより、得ることができる。
Such low porosity core crystals are Fe50 and T-Fe20.
For example, an aqueous suspension of ferric hydroxide is made alkaline in the presence of a crystallization control agent selected from water-soluble compounds capable of coordinating iron. A method in which α-Fe is heated under the
20. , α-Fe203 powder with low particle porosity is obtained by adding seed crystals, etc., and this is heated and reduced to form Fe3
O4 or this Fe50. T-F
It can be obtained by using e203 or an intermediate oxide between it and Fe3O4.

このような核晶を用いることにより、コバルト含有層を
被着した磁性粉の磁性塗料中における分散がより良好と
なり、磁気記録媒体の感度特性が向上し、しかも低ノイ
ズ化にも好結果が得られる。
By using such nuclear crystals, the magnetic powder coated with the cobalt-containing layer can be better dispersed in the magnetic paint, improving the sensitivity characteristics of the magnetic recording medium and also achieving good results in reducing noise. It will be done.

なお、前記製造法においてたとえば結晶化制御剤の種類
、水酸化第二鉄の水性懸濁液のPHなどの条件を適当に
選択することにより、空孔率の設定を容易に行うことが
でき、この選択は当業者であれば容易になし得るもので
ある。
In addition, in the above manufacturing method, the porosity can be easily set by appropriately selecting conditions such as the type of crystallization control agent and the pH of the aqueous suspension of ferric hydroxide. This selection can be easily made by those skilled in the art.

また、この発明で核晶とする針状磁性酸化鉄の製造方法
に関しては、特公昭55−4694号公報、特公昭55
−22416号公報、特公昭56−17290号公報、
米国特許第4,202,871号明細書や特開昭57−
92527号公報に詳しく記述されている。結晶化制御
剤については、上記文献に記述されているような各種の
化合物、たとえばポリカルボン酸、ヒドロキシカルボン
酸、アミノカルボン酸、ポリアミン、有機ホスホン酸、
チオカルボン酸、多価アルコール、β−ジカルボニル化
合物、芳香族スルホン酸1.これらの塩およびエステル
やその他りん酸塩などが用いられる。
Furthermore, regarding the method for producing acicular magnetic iron oxide used as the nucleus crystal in this invention, Japanese Patent Publication No. 55-4694 and Japanese Patent Publication No. 55-4694,
-22416 Publication, Special Publication No. 56-17290,
U.S. Patent No. 4,202,871 and JP-A-57-
It is described in detail in the 92527 publication. As crystallization control agents, various compounds such as those described in the above-mentioned literature, such as polycarboxylic acids, hydroxycarboxylic acids, aminocarboxylic acids, polyamines, organic phosphonic acids,
Thiocarboxylic acid, polyhydric alcohol, β-dicarbonyl compound, aromatic sulfonic acid 1. Salts and esters of these and other phosphates are used.

なお、核晶の粒子径としては、平均長軸径が0.1〜1
.0μ、平均軸比(平均長軸径/平均短軸径)が5〜2
0の範囲にあるのが好ましい。平均長軸径が小さすぎる
と感度特性に好結果が得られず、また大きすぎるとノイ
ズ低減に好結果が得られない。
In addition, as for the particle size of the nucleus crystal, the average major axis diameter is 0.1 to 1.
.. 0 μ, average axial ratio (average major axis diameter/average minor axis diameter) is 5 to 2
Preferably, it is in the range of 0. If the average major axis diameter is too small, good results will not be obtained in sensitivity characteristics, and if it is too large, good results will not be obtained in noise reduction.

この発明では、上記核晶の表面にコバルト含有層を設け
たコバルト被着針状磁性酸化鉄を磁性粉の主成分として
用いるが、コバルト含有層の被着手段は従来の高空孔率
である針状磁性酸化鉄を核晶とするコバルト被着針状磁
性酸化鉄を得る場合の手段と同様にすればよい。たとえ
ば、コバルト塩および第一鉄塩を溶解した水溶液中に低
空孔率の核晶を分散させ、この懸濁液にアルカリ水溶液
を加えて加温下で撹拌することにより、該核晶上にコバ
ルト含有酸化鉄層が被着される。
In this invention, cobalt-coated acicular magnetic iron oxide with a cobalt-containing layer provided on the surface of the core crystals is used as the main component of the magnetic powder, but the means for attaching the cobalt-containing layer is a conventional high-porosity needle. The same method as used for obtaining cobalt-coated acicular magnetic iron oxide having acicular magnetic iron oxide as the nucleus may be used. For example, by dispersing low-porosity nuclear crystals in an aqueous solution containing cobalt salts and ferrous salts, and adding an alkaline aqueous solution to this suspension and stirring under heating, cobalt can be deposited on the nuclear crystals. A layer containing iron oxide is applied.

上記コバルト塩としては硫酸コバルト、塩化コバルト、
硝酸コバルトなど、また第一鉄塩として、′−は硫酸第
一鉄、塩化第一鉄など、アルカリ水溶液としてはNaO
HまたはKOH水溶液、NH3水などが使用される。
The above cobalt salts include cobalt sulfate, cobalt chloride,
Cobalt nitrate, etc., ferrous salts, '-' are ferrous sulfate, ferrous chloride, etc., and alkaline aqueous solutions include NaO.
H or KOH aqueous solution, NH3 water, etc. are used.

コバルト塩の使用量は、最終的に得られるコバルト含有
酸化鉄層中のコバルト原子が核晶に対して重量%で0.
05〜10%となる範囲が望ましく、さらに好ましくは
0.1〜5%となる範囲で使用する。コバルト塩が少な
すぎるとコバルト被着針状磁性酸化鉄としての特徴が薄
れて磁気特性面でコバルトを被着していないものと差が
小さくなり、逆にコバルト塩が多すぎると核晶に対する
コバルト含有層の被着の均一性に難がある。またコバル
ト塩と第一鉄塩の使用比率は、モル比で(第一鉄塩/コ
バルト塩)=0〜5程度とするのが良い。
The amount of cobalt salt to be used is such that the cobalt atoms in the finally obtained cobalt-containing iron oxide layer are 0.0% by weight relative to the core crystals.
It is preferably used in a range of 0.05 to 10%, more preferably in a range of 0.1 to 5%. If the amount of cobalt salt is too low, the characteristics of cobalt-coated acicular magnetic iron oxide will be weakened, and the difference in magnetic properties will be small compared to those without cobalt deposited.On the other hand, if the amount of cobalt salt is too high, the characteristics of cobalt-coated acicular magnetic iron oxide will be diminished, and on the other hand, if there is too much cobalt salt, cobalt will The uniformity of deposition of the containing layer is poor. The ratio of cobalt salt to ferrous salt used is preferably about 0 to 5 (ferrous salt/cobalt salt) in terms of molar ratio.

上記のコバルト含有層を被着させる反応は、通常温度2
0〜100°C1アル力リ水溶液添加時の初期PH13
〜14、反応時間1〜10時間程度とされる。
The reaction for depositing the above cobalt-containing layer is typically carried out at a temperature of 2
Initial pH 13 when adding 0 to 100°C1 alkaline aqueous solution
~14, reaction time is approximately 1 to 10 hours.

なお、この発明では、磁性粉として上述した低空孔率の
核晶を用いたコバルト被着針状磁性酸化鉄を主体的に使
用するが、この発明の前記効果を損なわない範囲、通常
磁性粉全体の50重量%以下の範囲内で、従来の高空孔
率の針状磁性酸化鉄を核晶としたコバルト被着針状酸化
鉄などを併用しても差し支えない。
In addition, in this invention, cobalt-coated acicular magnetic iron oxide using the above-mentioned low-porosity nucleus crystals is mainly used as the magnetic powder, but the whole magnetic powder is generally used as long as the above-mentioned effects of the invention are not impaired. Within the range of 50% by weight or less, cobalt-coated acicular iron oxide with a conventional high porosity acicular magnetic iron oxide as a nucleus may be used in combination.

この発明の磁気記録媒体は、上述した磁性粉とバインダ
成分と必要に応じて他の添加剤成分とを含む磁性塗料を
調製し、ポリエステルフィルムなどの公知の非磁性支持
体上に所定厚み(通常は乾燥後の厚みで4〜7μ)に塗
布して配向処理後、乾燥して磁性層を形成し、カレンダ
処理などの公知の処理を施すことにより製造される。
The magnetic recording medium of the present invention is produced by preparing a magnetic paint containing the above-mentioned magnetic powder, a binder component, and other additive components as necessary, and coating it on a known non-magnetic support such as a polyester film to a predetermined thickness (usually is coated to a thickness of 4 to 7 μm after drying, subjected to orientation treatment, dried to form a magnetic layer, and then subjected to known treatments such as calendering.

上記磁性層は、その保磁力が380〜750エルステツ
ド(Oe)の範囲にあり、かつその空隙率が既述した磁
性粉自体の性状に起因して従来のものよりも低く、一般
には20容量%以下、とくに好ましい態様では5〜10
容量%の範囲にあり、磁性粉が高密度で充填されたもの
となる。
The above-mentioned magnetic layer has a coercive force in the range of 380 to 750 oersted (Oe), and its porosity is lower than conventional ones due to the properties of the magnetic powder itself as described above, and is generally 20% by volume. Below, in a particularly preferred embodiment, 5 to 10
% by volume, and the magnetic powder is packed with high density.

上記バインダ成分としては、塩化ビニル−酢酸ビニル系
共重合体、ポリウレタン系樹脂、繊維素系樹脂、ポリビ
ニルブチラール樹脂、・ポリイソシアネート化合物など
の従来よりこの種磁気記録媒体に用いられているものが
いずれも使用可能である。また添加剤成分としては、分
散剤、潤滑剤、研摩剤、帯電防止剤、補強剤などを必要
に応じて適宜使用できる。
As the binder component, any of the binder components conventionally used in this type of magnetic recording medium, such as vinyl chloride-vinyl acetate copolymers, polyurethane resins, cellulose resins, polyvinyl butyral resins, and polyisocyanate compounds, can be used. is also available. Further, as additive components, dispersants, lubricants, abrasives, antistatic agents, reinforcing agents, etc. can be used as appropriate.

〔発明の効果] この発明に係る磁気記録媒体は、磁性層中に含有される
磁性粉が低空孔率の針状磁性酸性酸化鉄を核晶としたコ
バルト被着針状磁性酸化鉄を主体とするものであるから
、従来の高空孔率の核晶を用いたコバルト被着針状磁性
酸化鉄を磁性粉とするものに比較して、核晶表面がなめ
らかなことによりコバルト被着後の粒子表面もなめらか
となり、磁性塗料中において磁性粉同士のからみが少な
く分散が非常に良好となる結果、磁性層の磁性粉密度を
高(でき、もって磁気特性および電磁変換特性が大きく
改善される。
[Effects of the Invention] The magnetic recording medium according to the present invention is characterized in that the magnetic powder contained in the magnetic layer is mainly composed of cobalt-coated acicular magnetic iron oxide with low porosity acicular magnetic acidic iron oxide as the nucleus. Compared to conventional cobalt-coated acicular magnetic iron oxide magnetic powder using high-porosity core crystals, the smooth surface of the core crystals makes it easier to form particles after cobalt deposition. The surface becomes smooth, and the magnetic particles are less entangled with each other in the magnetic paint, resulting in very good dispersion. As a result, the density of the magnetic powder in the magnetic layer can be increased, which greatly improves the magnetic properties and electromagnetic conversion properties.

〔実施例〕〔Example〕

以下、この発明の実施例および比較例を示す。 Examples and comparative examples of the present invention will be shown below.

以下、部とあるのは重量部を意味する。Hereinafter, parts refer to parts by weight.

実施例1 粒子空孔率O容量%のT−Fe203粉〔比表面積25
.5m’/y、平均長軸径0.4/”、平均軸比10、
保磁力(Hc)3400e1飽和磁化量(σs ) 7
2.5 emu/V)300yを、硫酸コバルト(Co
S04・7H20)42.9yと硫酸第一鉄(Fe 5
04 ・7 HzO) 127.4yを溶解した水溶液
1.41!に分散させた。次に、この懸濁液に水酸化ナ
トリウム(NaOH) 240.9 yを溶解した水溶
液11を加え、撹拌しつつ45°Cにて6時間反応させ
た。生成した沈殿物を水洗。
Example 1 T-Fe203 powder with particle porosity O volume % [specific surface area 25
.. 5 m'/y, average major axis diameter 0.4/'', average axial ratio 10,
Coercive force (Hc) 3400e1 Saturation magnetization (σs) 7
2.5 emu/V) 300y, cobalt sulfate (Co
S04・7H20) 42.9y and ferrous sulfate (Fe 5
04 ・7 HzO) 127.4y dissolved in an aqueous solution 1.41! It was dispersed into Next, aqueous solution 11 in which 240.9 y of sodium hydroxide (NaOH) was dissolved was added to this suspension, and the mixture was reacted at 45°C for 6 hours with stirring. Wash the formed precipitate with water.

濾過し、大気中で120°Cにて゛乾燥し、コバルト被
着針状r−Fe203からなる磁性粉を得た。この磁性
粉は保磁力(Hc) 6100e、飽和磁化量(σ5)
74.5emu/yであった。なお、この磁性粉の電子
顕微鏡写真を第1図に示す。
It was filtered and dried at 120°C in the atmosphere to obtain magnetic powder consisting of cobalt-coated acicular r-Fe203. This magnetic powder has a coercive force (Hc) of 6100e and a saturation magnetization amount (σ5)
It was 74.5 emu/y. Incidentally, an electron micrograph of this magnetic powder is shown in FIG.

かくして得られた磁性粉を用い、下記の配合組成からな
る混合物°をボールミル中で70時間混合分散させて磁
性塗料を調製した。
Using the thus obtained magnetic powder, a mixture consisting of the following composition was mixed and dispersed in a ball mill for 70 hours to prepare a magnetic paint.

磁性粉(コバルト被着T−Fe203粉 ・・・240
部コロネートし) パルミチン酸       ・・ 2.4部メチルイソ
ブチルケトン       ・・・225部ト   ル
   エ   ン              ・・・
225部この磁性塗料を、厚さ11μのポリエステルフ
ィルム上に乾燥後の厚みが5μとなるように塗布。
Magnetic powder (cobalt coated T-Fe203 powder...240
Palmitic acid...2.4 parts Methyl isobutyl ketone...225 parts Toluene...
225 parts of this magnetic paint was applied onto a polyester film having a thickness of 11 μm so that the thickness after drying would be 5 μm.

乾燥し、カレンダー処理を行ったのち、Aインチ幅に裁
断して磁気テープを作製した。
After drying and calendering, the tape was cut into A-inch width to produce a magnetic tape.

実施例2 実施例1で用いた粒子空孔率O容量%のT−Fe203
粉に代えて、粒子空孔率2容量%のT−Fe、03粉〔
比表面積31rrl19’、平均長軸径Q、 3 pg
、平均軸比12、保磁力(Hc)3500e 、飽和磁
化量(σ5)71 emu/!i! ] 300 yを
使用した以外は実施例1と同様にしてコバルト被着針状
T−Fe203からなる磁性粉を得た。この磁性粉は保
磁力(Hc)6300e、飽和磁化量74 emp/ 
yであった。
Example 2 T-Fe203 with particle porosity O volume % used in Example 1
Instead of powder, T-Fe, 03 powder with a particle porosity of 2% by volume [
Specific surface area 31rrl19', average major axis diameter Q, 3 pg
, average axial ratio 12, coercive force (Hc) 3500e, saturation magnetization (σ5) 71 emu/! i! ] Magnetic powder consisting of cobalt-coated acicular T-Fe203 was obtained in the same manner as in Example 1 except that 300 y was used. This magnetic powder has a coercive force (Hc) of 6300e and a saturation magnetization of 74 emp/
It was y.

かくして得られた磁性粉を用いて実施例1と同様にして
磁気テープを作製した。
A magnetic tape was produced in the same manner as in Example 1 using the thus obtained magnetic powder.

比較例 実施例1で用いた粒子空孔率0容量%のT−Fe20s
に代えて、粒子空孔率8容量%のT−Fe203粉〔比
表面積26rr//y1平均長軸径0.45μ、平均軸
比12、保磁力(Hc) 3550e、飽和磁化量(σ
S)72emu/y)300yを使用した以外は実施例
1と同様にしてコバルト被着針状T−Fe203からな
る磁性粉を得た。この磁性粉は保磁力(Hc)6150
e、飽和磁化量74.5 emu/ yであった。なお
、この磁性粉の電子顕微鏡写真を第2図に示す。かくし
て得られた磁性粉を用いて実施例1と同様にして磁気テ
ープを作製した。
Comparative Example T-Fe20s with particle porosity of 0% by volume used in Example 1
Instead, T-Fe203 powder with a particle porosity of 8% by volume [specific surface area 26rr//y1 average major axis diameter 0.45μ, average axial ratio 12, coercive force (Hc) 3550e, saturation magnetization amount (σ
Magnetic powder consisting of cobalt-coated acicular T-Fe203 was obtained in the same manner as in Example 1 except that S) 72 emu/y) 300 y was used. This magnetic powder has a coercive force (Hc) of 6150
e, and the saturation magnetization amount was 74.5 emu/y. Incidentally, an electron micrograph of this magnetic powder is shown in FIG. A magnetic tape was produced in the same manner as in Example 1 using the thus obtained magnetic powder.

以上の実施例および比較例の各磁気テープにつき、磁気
特性として保磁力(Hc)、角型比、残留磁束密度QS
r)を、電磁変換特性として315Hzおよび12.5
KHzの感度、ACバイアスノイズレベルを、それぞれ
測定したところ、下記の表に示す結果を得た。なお電磁
変換特性はいずれもレファレンス比である。
For each of the magnetic tapes of the above examples and comparative examples, the magnetic properties include coercive force (Hc), squareness ratio, and residual magnetic flux density QS.
r) as electromagnetic conversion characteristics at 315Hz and 12.5
When the KHz sensitivity and AC bias noise level were measured, the results shown in the table below were obtained. Note that all electromagnetic conversion characteristics are reference ratios.

上表から明らかなように、低空孔率の核晶を用いたコバ
ルト被着針状磁性酸化鉄を磁性粉として使用したこの発
明に係る磁気テープ(実施例1,2)は、従来の高空孔
率の核晶を用いたコバルト被着針状磁性酸化鉄を磁性粉
として使用した磁気テープ(比較例)に比し、磁気特性
および電磁変換特性に優れていることが判る。また、第
1図と第2図の比較より、従来の如く高空孔率の核晶を
用いた場合はコバルト含有層を被着したのちの粒子も空
孔や凹凸が残っているのに対し、この発明で使用する磁
性粉のように低空孔率の核晶を用いたコバルト被着針状
磁性酸化鉄はなめらかな表面を有しているのが明らかで
あり、この外形からも磁性塗料中での分散が良好となり
、磁性層中への高密度充填を図り得ることが判る。
As is clear from the above table, the magnetic tape (Examples 1 and 2) according to the present invention, which uses cobalt-coated acicular magnetic iron oxide using low-porosity nucleus crystals as magnetic powder, is different from the conventional high-porosity magnetic tape (Examples 1 and 2). It can be seen that the magnetic tape has superior magnetic properties and electromagnetic conversion properties as compared to a magnetic tape (comparative example) that uses cobalt-coated acicular magnetic iron oxide as magnetic powder using a cobalt-coated core crystal (comparative example). Furthermore, from a comparison between Figures 1 and 2, it is clear that when a high-porosity core crystal is used as in the past, the particles still have pores and irregularities after the cobalt-containing layer is applied. It is clear that the cobalt-coated acicular magnetic iron oxide using low-porosity nuclear crystals like the magnetic powder used in this invention has a smooth surface, and from this external shape it is clear that it can be used in magnetic paints. It can be seen that the dispersion of the particles is improved, and it is possible to achieve high-density packing in the magnetic layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る実施例1で使用したコバルト被
着針状磁性酸化鉄の粒子構造を示す倍率3万倍の電子顕
微鏡写真図、第2図は比較例で使用したコバルト被着針
状磁性酸化鉄の粒子構造を示す倍率3万倍の電子顕微鏡
写真図である。 特許出願人  日立マクセル株式会社 jJj  1  1丁1.; 7 ′ ・ 第ゾ1、−・
Figure 1 is an electron micrograph at a magnification of 30,000 times showing the particle structure of the cobalt-coated acicular magnetic iron oxide used in Example 1 according to the present invention, and Figure 2 is a cobalt-coated needle used in a comparative example. FIG. 2 is an electron micrograph at a magnification of 30,000 times showing the particle structure of magnetic iron oxide. Patent applicant: Hitachi Maxell, Ltd.jJj 1 1-1. ; 7 ′ ・Zo 1, -・

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性支持体上に、粒子空孔率が平均5容量%以
下の針状磁性酸化鉄からなる核晶にコバルト含有層を被
着してなるコバルト被着針状磁性酸化鉄を主体とする磁
性粉が含有された磁性層を設けてなる磁気記録媒体。
(1) Mainly composed of cobalt-coated acicular magnetic iron oxide formed by coating a cobalt-containing layer on core crystals of acicular magnetic iron oxide with an average particle porosity of 5% by volume or less on a non-magnetic support. A magnetic recording medium provided with a magnetic layer containing magnetic powder.
JP59262069A 1984-12-12 1984-12-12 Magnetic recording medium Granted JPS61139922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262069A JPS61139922A (en) 1984-12-12 1984-12-12 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262069A JPS61139922A (en) 1984-12-12 1984-12-12 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61139922A true JPS61139922A (en) 1986-06-27
JPH0470687B2 JPH0470687B2 (en) 1992-11-11

Family

ID=17370593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262069A Granted JPS61139922A (en) 1984-12-12 1984-12-12 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61139922A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404457B2 (en) 2010-02-03 2014-01-29 三菱重工業株式会社 Engine exhaust gas purification device
JP6136298B2 (en) 2013-01-28 2017-05-31 いすゞ自動車株式会社 Exhaust gas purification device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123831A (en) * 1981-01-20 1982-08-02 Sakai Chem Ind Co Ltd Preparation of magnetic iron oxide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123831A (en) * 1981-01-20 1982-08-02 Sakai Chem Ind Co Ltd Preparation of magnetic iron oxide powder

Also Published As

Publication number Publication date
JPH0470687B2 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
KR920008415B1 (en) Magnetic medium
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JPH0544163B2 (en)
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPS61139922A (en) Magnetic recording medium
JP5457260B2 (en) Magnetic recording medium
JP4139873B2 (en) Powder for coating type magnetic recording media
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
US5480571A (en) Process for producing acicular goethite particles and acicular magnetic iron oxide particles
JP2924941B2 (en) Underlayer for magnetic recording media
JPS6129122B2 (en)
EP0076462B2 (en) Method of production of magnetic particles
JPS62264431A (en) Magnetic recording medium
JPH0644527B2 (en) Magnetic recording medium
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JPH1025115A (en) Iron oxide-base magnetic powder and magnetic recording medium using the same
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP2965606B2 (en) Method for producing metal magnetic powder
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JPS59169937A (en) Production of magnetic powder
JP2709955B2 (en) Magnetic recording media
JPS6048885B2 (en) magnetic recording medium
JP2588875B2 (en) Spindle-shaped magnetic iron powder