JP6123343B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP6123343B2
JP6123343B2 JP2013031167A JP2013031167A JP6123343B2 JP 6123343 B2 JP6123343 B2 JP 6123343B2 JP 2013031167 A JP2013031167 A JP 2013031167A JP 2013031167 A JP2013031167 A JP 2013031167A JP 6123343 B2 JP6123343 B2 JP 6123343B2
Authority
JP
Japan
Prior art keywords
filter
temperature
exhaust
dpf
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013031167A
Other languages
Japanese (ja)
Other versions
JP2014159780A (en
Inventor
充宏 阿曽
充宏 阿曽
正 内山
正 内山
正文 野田
正文 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013031167A priority Critical patent/JP6123343B2/en
Publication of JP2014159780A publication Critical patent/JP2014159780A/en
Application granted granted Critical
Publication of JP6123343B2 publication Critical patent/JP6123343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、内燃機関の排気浄化装置に関し、特に、内燃機関から排出される排気ガス中の粒子状物質を捕集するフィルタを備える排気浄化装置に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device including a filter that collects particulate matter in exhaust gas discharged from the internal combustion engine.

ディーゼルエンジンから排出される排気ガス中の粒子状物質(Particulate Matter、以下、PM)を捕集するフィルタとして、例えば、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPF)が知られている。   For example, a diesel particulate filter (hereinafter referred to as DPF) is known as a filter that collects particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine. Yes.

DPFは、PM捕集量に限度があるため、堆積したPMを定期的に燃焼除去する強制再生を行う必要がある。強制再生は、排気管内噴射やポスト噴射によって、排気上流側の酸化触媒に未燃燃料(HC)を供給し、酸化により発生する熱で排気ガスの温度をPM燃焼温度まで昇温することで行われる。   Since the DPF has a limit in the amount of collected PM, it is necessary to perform forced regeneration by periodically burning and removing the accumulated PM. Forced regeneration is performed by supplying unburned fuel (HC) to the oxidation catalyst upstream of the exhaust by in-pipe injection or post-injection, and raising the temperature of the exhaust gas to the PM combustion temperature by the heat generated by oxidation. Is called.

強制再生時の燃料供給量が必要以上に多くなると、DPFは過昇温により溶損する虞がある。このため、DPFの排気上流側及び下流側に設けられた排気温度センサに基づいて、溶損を回避できる目標温度となるように、強制再生時の燃料供給量をフィードバック制御する技術も知られている。   If the fuel supply amount at the time of forced regeneration becomes larger than necessary, the DPF may be damaged due to excessive temperature rise. For this reason, based on exhaust temperature sensors provided on the exhaust upstream side and downstream side of the DPF, a technique for feedback control of the fuel supply amount during forced regeneration is also known so that the target temperature can be avoided. Yes.

特開2010−1860号公報JP 2010-1860 A

ところで、排気温度センサのセンサ値は、実際の排気温度の急激な変化に対して応答遅れが生じ易い。また、その取り付け位置はフィルタの上流又は下流となり、フィルタそのものに温度センサを設置は出来ない。そのため、排気温度センサのセンサ値に基づいて、強制再生時の燃料供給量をフィードバック制御すると、特に強制再生の開始時は、燃料供給量を最適に制御できず、DPFを目標温度に維持できない虞がある。結果として、DPFの内部温度がオーバーシュートして、過昇温によるDPFの溶損を引き起こす可能性がある。   By the way, the sensor value of the exhaust temperature sensor is likely to be delayed in response to a sudden change in the actual exhaust temperature. Moreover, the attachment position is upstream or downstream of the filter, and a temperature sensor cannot be installed on the filter itself. Therefore, if feedback control of the fuel supply amount during forced regeneration is performed based on the sensor value of the exhaust temperature sensor, the fuel supply amount cannot be optimally controlled especially at the start of forced regeneration, and the DPF may not be maintained at the target temperature. There is. As a result, the internal temperature of the DPF may overshoot, which may cause the DPF to melt due to excessive temperature rise.

本発明は、このような点に鑑みてなされたもので、その目的は、DPF内部温度の推定精度を向上させて、DPF内部温度のオーバーシュート及びDPFの溶損を効果的に防止することにある。   The present invention has been made in view of the above points, and its purpose is to improve the estimation accuracy of the internal temperature of the DPF and effectively prevent overshooting of the internal temperature of the DPF and melting of the DPF. is there.

上述の目的を達成するため、本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられて、排気中の粒子状物質を捕集するフィルタと、前記フィルタの静電容量を検出する静電容量検出手段と、検出される前記静電容量に基づいて、前記フィルタに捕集された粒子状物質の堆積量を推定する堆積量推定手段と、検出される前記静電容量に基づいて、前記フィルタの内部温度を推定するフィルタ温度推定手段と、を備えることを特徴とする。 In order to achieve the above-mentioned object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of the internal combustion engine and detects a capacitance of the filter that collects particulate matter in the exhaust gas. Based on the detected capacitance, the accumulated amount estimating means for estimating the accumulated amount of the particulate matter collected by the filter based on the detected capacitance, and the detected capacitance Te, characterized in that it comprises a filter temperature estimation means for estimating the internal temperature of the filter.

また、推定される前記堆積量が所定の閾値に達すると、排気管内に燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段をさらに備え、前記フィルタ再生手段は、前記フィルタの過昇温による溶損を回避可能な目標温度に基づいて、推定される前記内部温度が当該目標温度以下となるように、強制再生時の燃料供給量をフィードバック制御し、前記フィルタ温度推定手段は、直前に推定される前記堆積量と検出される前記静電容量の変化とに基づいて、前記フィルタの内部温度を推定し、前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含むものであってもよい。 In addition, when the estimated accumulation amount reaches a predetermined threshold value, a filter regeneration unit is further provided that can perform forced regeneration by supplying fuel into the exhaust pipe and raising the temperature of the filter to the combustion temperature of the particulate matter. The filter regeneration means reduces the fuel supply amount during forced regeneration so that the estimated internal temperature is equal to or lower than the target temperature based on a target temperature that can avoid melting damage due to excessive temperature rise of the filter. Feedback control is performed, and the filter temperature estimation means estimates the internal temperature of the filter based on the accumulation amount estimated immediately before and the detected capacitance change, and the capacitance detection means In addition, the filter may include a pair of electrodes that are arranged to face each other with at least one partition wall interposed therebetween and form a capacitor.

また、推定される前記堆積量が所定の閾値に達すると、排気管内に燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段と、前記フィルタの排気上流又は排気下流の少なくとも何れか一方に設けられて、前記フィルタの排気上流又は排気下流の少なくとも何れか一方の排気温度を検出する排気温度センサと、をさらに備え、前記フィルタ再生手段は、前記フィルタの過昇温による溶損を回避可能な目標温度に基づいて、推定される前記内部温度が当該目標温度以下となるように、前記排気温度センサによって検出される前記排気温度に基づく制御から、前記フィルタ温度推定手段によって推定される前記内部温度に基づく制御に切り替えて、強制再生時の燃料供給量をフィードバック制御し、前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含むものであってもよい。 Further, when the estimated accumulation amount reaches a predetermined threshold, fuel is supplied into the exhaust pipe, and filter regeneration means capable of performing forced regeneration to raise the temperature of the filter to the combustion temperature of the particulate matter, An exhaust gas temperature sensor that is provided at at least one of the upstream side and the downstream side of the exhaust of the filter and detects the exhaust temperature of at least one of the upstream side and the downstream side of the exhaust of the filter; Control based on the exhaust temperature detected by the exhaust temperature sensor so that the estimated internal temperature is equal to or lower than the target temperature based on the target temperature that can avoid melting damage due to excessive temperature rise of the filter To control based on the internal temperature estimated by the filter temperature estimating means, and the amount of fuel supplied during forced regeneration is feedback controlled. And, the electrostatic capacitance detecting means, disposed opposite each other across at least one or more partition walls in the filter, it may include a pair of electrodes forming a capacitor.

また、前記フィルタよりも排気上流側及び下流側の前記排気通路を接続して、前記フィルタを迂回するバイパス通路と、前記バイパス通路に設けられて、当該バイパス通路を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、前記一対の電極は、前記第2のフィルタ内に少なくとも一個以上の隔壁を挟んで対向配置され、前記第2のフィルタの強制再生を実行する際は、前記一対の電極をヒータとして機能させてもよい。 Further, the exhaust passage on the upstream side and the downstream side of the filter is connected to bypass the filter, and the particulate matter in the exhaust gas that is provided in the bypass passage and flows through the bypass passage. A second filter for collecting, and the pair of electrodes are disposed opposite to each other with at least one partition wall interposed between the pair of electrodes in the second filter, and forcibly regenerating the second filter. May cause the pair of electrodes to function as a heater.

本発明の内燃機関の排気浄化装置によれば、DPF内部温度の推定精度を向上させて、DPF内部温度のオーバーシュート及びDPFの溶損を効果的に防止することができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, it is possible to improve the estimation accuracy of the internal temperature of the DPF and effectively prevent the overshoot of the internal temperature of the DPF and the melting loss of the DPF.

本発明の一実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の排気浄化装置において、静電容量、DPF入口温度、DPF出口温度の変化を説明する図である。It is a figure explaining the change of an electrostatic capacity, a DPF entrance temperature, and a DPF exit temperature in an exhaust-air-purification device of an internal-combustion engine concerning one embodiment of the present invention. 他の実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the exhaust gas purification apparatus of the internal combustion engine which concerns on other embodiment.

以下、図1,2に基づいて、本発明の一実施形態に係る内燃機関の排気浄化装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention will be described with reference to FIGS. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジン)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気ガスを大気に放出する排気通路12が接続されている。さらに、排気通路12には、排気上流側から順に排気管内噴射装置13、排気後処理装置14、DPF入口温度センサ31、DPF出口温度センサ32が設けられている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b. Further, in the exhaust passage 12, an exhaust pipe injection device 13, an exhaust aftertreatment device 14, a DPF inlet temperature sensor 31, and a DPF outlet temperature sensor 32 are provided in order from the exhaust upstream side.

排気管内噴射装置13は、ECU20から出力される指示信号に応じて、排気通路12内に未燃燃料(HC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置13を省略してもよい。   The exhaust pipe injection device 13 injects unburned fuel (HC) into the exhaust passage 12 in response to an instruction signal output from the ECU 20. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 13 may be omitted.

排気後処理装置14は、ケース14a内に排気上流側から順に酸化触媒15、DPF16を配置して構成されている。   The exhaust aftertreatment device 14 is configured by arranging an oxidation catalyst 15 and a DPF 16 in order from the exhaust upstream side in a case 14a.

酸化触媒15は、例えば、コーディエライトハニカム構造体等のセラミック製担体表面に触媒成分を担持して形成されている。酸化触媒15は、排気管内噴射装置13又はポスト噴射によって未燃燃料(HC)が供給されると、これを酸化して排気ガスの温度を上昇させる。   The oxidation catalyst 15 is formed by, for example, supporting a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When the unburned fuel (HC) is supplied by the in-pipe injection device 13 or post injection, the oxidation catalyst 15 oxidizes this to raise the temperature of the exhaust gas.

DPF16は、例えば、多孔質セラミックの隔壁で区画された多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。DPF16は、排気ガス中のPMを隔壁の細孔や表面に捕集すると共に、PMの堆積量が所定量に達すると、これを燃焼除去するいわゆる強制再生が実行される。強制再生は、排気管内噴射装置13又はポスト噴射により酸化触媒15に未燃燃料(HC)を供給し、DPF16をPM燃焼温度(例えば、約600℃)まで昇温することで行われる。   The DPF 16 is formed, for example, by arranging a large number of cells partitioned by porous ceramic partition walls along the exhaust gas flow direction, and alternately plugging the upstream side and the downstream side of these cells. . The DPF 16 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and performs so-called forced regeneration that burns and removes the PM when the PM accumulation amount reaches a predetermined amount. The forced regeneration is performed by supplying unburned fuel (HC) to the oxidation catalyst 15 by the exhaust pipe injection device 13 or post injection, and raising the DPF 16 to the PM combustion temperature (for example, about 600 ° C.).

また、本実施形態のDPF16には、少なくとも一個以上の隔壁を挟んで対向配置されてコンデンサを形成する一対の電極17a,17bが設けられている。これら一対の電極17a,17bは、それぞれ電子制御ユニット(以下、ECU)20と電気的に接続されている。   In addition, the DPF 16 of the present embodiment is provided with a pair of electrodes 17a and 17b that are disposed to face each other with at least one partition wall therebetween to form a capacitor. The pair of electrodes 17a and 17b are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20, respectively.

DPF入口温度センサ31は、DPF16に流入する排気ガスの温度(以下、入口温度TIN)を検出する。DPF出口温度センサ32は、DPF16から流出する排気ガスの温度(以下、出口温度TOUT)を検出する。これら、入口温度TIN及び、出口温度TOUTは、電気的に接続されたECU20に出力される。 The DPF inlet temperature sensor 31 detects the temperature of exhaust gas flowing into the DPF 16 (hereinafter referred to as inlet temperature T IN ). The DPF outlet temperature sensor 32 detects the temperature of exhaust gas flowing out from the DPF 16 (hereinafter referred to as outlet temperature T OUT ). The inlet temperature T IN and the outlet temperature T OUT are output to the electrically connected ECU 20.

ECU20は、エンジン10や排気管内噴射装置13の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。また、ECU20は、静電容量演算部21と、PM堆積量推定部22と、DPF温度推定部23と、再生制御部24とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU20に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 20 performs various controls such as fuel injection of the engine 10 and the exhaust pipe injection device 13, and includes a known CPU, ROM, RAM, input port, output port, and the like. In addition, the ECU 20 includes a capacitance calculation unit 21, a PM accumulation amount estimation unit 22, a DPF temperature estimation unit 23, and a regeneration control unit 24 as some functional elements. Each of these functional elements will be described as being included in the ECU 20 which is an integral hardware, but any one of these may be provided in separate hardware.

なお、本実施形態において、静電容量演算部21と一対の電極17a,17bとは、本発明の静電容量検出手段を構成、PM堆積量推定部22とDPF入口温度センサ31とDPF出口温度センサ32とは、本発明のPM堆積量推定手段を構成、再生制御部24と排気管内噴射装置13(又は、エンジン10の図示しない燃料噴射装置)とは、本発明のフィルタ再生手段を構成する。   In the present embodiment, the capacitance calculation unit 21 and the pair of electrodes 17a and 17b constitute the capacitance detection means of the present invention, and the PM accumulation amount estimation unit 22, the DPF inlet temperature sensor 31, and the DPF outlet temperature. The sensor 32 constitutes the PM accumulation amount estimation means of the present invention, and the regeneration control unit 24 and the exhaust pipe injection device 13 (or the fuel injection device (not shown) of the engine 10) constitute the filter regeneration means of the present invention. .

静電容量演算部21は、一対の電極17a,17bから入力される信号に基づいて、これら電極17a,17b間の静電容量CからPM堆積量を演算する。静電容量Cは、電極17a,17b間の媒体の誘電率ε、電極17a,17bの面積S、電極17a,17b間の距離dとする以下の数式1の関係を基本として、PMの堆積により誘電率εや距離dが変化する事に伴って変化する。   The capacitance calculating unit 21 calculates the PM deposition amount from the capacitance C between the electrodes 17a and 17b based on signals input from the pair of electrodes 17a and 17b. Capacitance C is determined by PM deposition based on the relationship of Equation 1 below, which is the dielectric constant ε of the medium between the electrodes 17a and 17b, the area S of the electrodes 17a and 17b, and the distance d between the electrodes 17a and 17b. It changes as the dielectric constant ε and the distance d change.

Figure 0006123343
Figure 0006123343

PM堆積量推定部22は、DPF入口温度センサ31で検出される入口温度TIN及びDPF出口温度センサ32で検出される出口温度TOUTの平均値TAVEと、静電容量演算部21で演算される静電容量Cとに基づいて、DPF16に捕集されたPM堆積量PMDEPを推定する。PM堆積量PMDEPの推定には、予め実験により求めた近似式やマップ等を用いることができる。 The PM accumulation amount estimation unit 22 calculates the average value T AVE of the inlet temperature T IN detected by the DPF inlet temperature sensor 31 and the outlet temperature T OUT detected by the DPF outlet temperature sensor 32, and is calculated by the capacitance calculation unit 21. The PM deposition amount PM DEP collected in the DPF 16 is estimated on the basis of the capacitance C to be generated. For the estimation of the PM deposition amount PM DEP , an approximate expression or a map obtained in advance by experiments can be used.

DPF温度推定部23は、DPF16の内部温度(以下、DPF内部温度TDPF)を推定する。図2に示すように、静電容量Cの変化は、DPF入口温度センサ31やDPF出口温度センサ32の検出値と同様の応答性を示す。また、静電容量Cの変化は、DPF入口温度センサ31やDPF出口温度センサ32よりも速い応答性を示す。本実施形態のDPF温度推定部23は、静電容量演算部21で演算した静電容量C及び、PM堆積量推定部22で推定したPM堆積量PMDEPに基づいて、DPF内部温度TDPFを推定する。 The DPF temperature estimation unit 23 estimates the internal temperature of the DPF 16 (hereinafter, DPF internal temperature T DPF ). As shown in FIG. 2, the change in the capacitance C shows the same responsiveness as the detection values of the DPF inlet temperature sensor 31 and the DPF outlet temperature sensor 32. Further, the change in the capacitance C shows faster response than the DPF inlet temperature sensor 31 and the DPF outlet temperature sensor 32. The DPF temperature estimation unit 23 of the present embodiment calculates the DPF internal temperature T DPF based on the capacitance C calculated by the capacitance calculation unit 21 and the PM deposition amount PM DEP estimated by the PM deposition amount estimation unit 22. presume.

より詳しくは、PM堆積量は、運転状態に応じて変化するが、所定の短時間(例えば、約1秒)では変化に限度がある。本実施形態では、直前に推定したPM堆積量PMDEPを固定値として扱い、瞬間的な静電容量Cの変化から、DPF入口温度センサ31やDPF出口温度センサ32では追従できないDPF内部温度TDPFの突発的な温度変化を推定する。DPF内部温度TDPFの推定には、予め実験により求めた近似式やマップ等を用いることができる。 More specifically, the PM deposition amount changes depending on the operation state, but there is a limit to change in a predetermined short time (for example, about 1 second). In this embodiment, the PM deposition amount PM DEP estimated immediately before is treated as a fixed value, and the DPF internal temperature T DPF that cannot be followed by the DPF inlet temperature sensor 31 or the DPF outlet temperature sensor 32 due to the instantaneous change in the capacitance C. The sudden temperature change of is estimated. For the estimation of the DPF internal temperature TDPF , an approximate expression or a map obtained in advance by experiments can be used.

再生制御部24は、PM堆積量推定部22で推定されるPM堆積量PMDEPが、DPF16に捕集可能なPMの上限堆積量PMMAXに達すると、排気管内噴射装置13に燃料を噴射(又は、ポスト噴射)させる強制再生を実行する。 When the PM accumulation amount PM DEP estimated by the PM accumulation amount estimation unit 22 reaches the upper limit accumulation amount PM MAX of PM that can be collected in the DPF 16, the regeneration control unit 24 injects fuel into the in-pipe injection device 13 ( (Or, post injection) is performed.

また、再生制御部24は、強制再生時の燃料噴射量を、DPF温度推定部23で推定されるDPF内部温度TDPFの変化に基づいてフィードバック制御する。より詳しくは、ECU20には、DPF16の過昇温による溶損を回避できる目標温度TTARが予め記憶されている。再生制御部24は、DPF温度推定部23で推定されるDPF内部温度TDPFが目標温度TTAR以下となるように、排気管内噴射装置13(又は、ポスト噴射)による燃料噴射量をフィードバック制御する。これにより、堆積したPMの急激な燃焼によるDPF16の内部温度のオーバーシュートが回避され、DPF16の溶損を効果的に防止することができる。この時、EGRバルブ40を開弁、もしくはインテークスロットルバルブ41を閉弁する制御を単独又は併用して行い、排気酸素濃度を下げる制御を単独で行うか、上述の燃料噴射量フィードバック制御と併用して行ってもよい。 The reproduction control unit 24, the fuel injection amount at the time of forced regeneration is feedback controlled based on a change in the DPF internal temperature T DPF estimated by DPF temperature estimation unit 23. More specifically, the ECU 20 stores in advance a target temperature T TAR that can avoid melting damage due to excessive temperature rise of the DPF 16. The regeneration control unit 24 feedback-controls the fuel injection amount by the in-pipe injection device 13 (or post injection) so that the DPF internal temperature T DPF estimated by the DPF temperature estimation unit 23 is equal to or lower than the target temperature T TAR. . Thereby, the overshoot of the internal temperature of the DPF 16 due to the rapid combustion of the accumulated PM is avoided, and the DPF 16 can be effectively prevented from being damaged. At this time, the control for opening the EGR valve 40 or closing the intake throttle valve 41 is performed alone or in combination, and the control for lowering the exhaust oxygen concentration is performed alone or in combination with the fuel injection amount feedback control described above. You may go.

次に、本実施形態に係る内燃機関の排気浄化装置による作用効果を説明する。   Next, functions and effects of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment will be described.

従来の排気浄化装置では、DPFの入口温度、出口温度を検出する排気温度センサのセンサ値に基づいて、強制再生時の燃料供給量をフィードバック制御している。しかしながら、排気温度センサは静電容量Cよりも応答性が遅いため(図2参照)、排気温度センサに基づいたフィードバック制御では、捕集したPMの異常燃焼の兆しを検知できず、燃料噴射量制御に反映出来ないため、特に強制再生の開始時に燃料供給量を最適に制御できず、DPFを目標温度に維持できない虞がある。結果として、DPFの内部温度がオーバーシュートして、過昇温によるDPFの溶損を引き起こす可能性がある。これを回避するためには、異常燃焼が確実に発生しえない軽度なPM捕集量で強制再生を行う必要があり、これは再生インターバルが短くなり、燃費の悪化を招くことになる。   In the conventional exhaust purification apparatus, the fuel supply amount at the time of forced regeneration is feedback controlled based on the sensor value of the exhaust temperature sensor that detects the inlet temperature and outlet temperature of the DPF. However, since the exhaust temperature sensor is slower in response than the capacitance C (see FIG. 2), the feedback control based on the exhaust temperature sensor cannot detect signs of abnormal combustion of the collected PM, and the fuel injection amount Since it cannot be reflected in the control, the fuel supply amount cannot be optimally controlled particularly at the start of forced regeneration, and the DPF may not be maintained at the target temperature. As a result, the internal temperature of the DPF may overshoot, which may cause the DPF to melt due to excessive temperature rise. In order to avoid this, it is necessary to perform forced regeneration with a light PM trapping amount at which abnormal combustion cannot surely occur, which shortens the regeneration interval and leads to deterioration of fuel consumption.

これに対し、本実施形態の排気浄化装置は、排気温度センサよりも応答性の速い静電容量Cの変化からDPF16の内部温度を推定することで、強制再生時の燃料供給量をフィードバック制御している。すなわち、排気温度センサに比べ、強制再生の開始時から速い応答性を示す静電容量Cの変化に基づいて、DPF16の内部温度を高精度に推定すると共に、DPF16の内部温度が目標温度で維持されるように、燃料供給量の最適化を図るように構成されている。   On the other hand, the exhaust purification apparatus of this embodiment performs feedback control of the fuel supply amount at the time of forced regeneration by estimating the internal temperature of the DPF 16 from the change in the capacitance C, which is faster in response than the exhaust temperature sensor. ing. That is, the internal temperature of the DPF 16 is estimated with high accuracy on the basis of the change in the capacitance C that shows a quick response from the start of forced regeneration compared to the exhaust temperature sensor, and the internal temperature of the DPF 16 is maintained at the target temperature. As described above, the fuel supply amount is optimized.

したがって、本実施形態の排気浄化装置によれば、強制再生時におけるDPF16の内部温度のオーバーシュートが効果的に防止され、過昇温によるDPF16の溶損を確実に防止することが可能になる。また、強制再生時における燃料供給量の最適化が図られて、燃費を効果的に向上することができる。   Therefore, according to the exhaust gas purification apparatus of the present embodiment, overshooting of the internal temperature of the DPF 16 during forced regeneration is effectively prevented, and it is possible to reliably prevent melting of the DPF 16 due to excessive temperature rise. Further, the fuel supply amount at the time of forced regeneration is optimized, and the fuel efficiency can be effectively improved.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、図3に示すように、排気通路12にDPF16を迂回させるバイパス通路18を接続し、このバイパス通路18に容量の小さい計測用DPF16a(第2のフィルタ)を備えて構成してもよい。この場合、一対の電極17a,17bを計測用DPF16a内に少なくとも一個以上の隔壁を挟んで対向配置すると共に、バイパス通路18には排気ガスの流量を調整するオリフィス18a(絞り)を設けることが好ましい。また、計測用DPF16aの強制再生を実行する場合は、一対の電極17a,17bに電圧を印加してヒータとして機能させてもよい。   For example, as shown in FIG. 3, a bypass passage 18 that bypasses the DPF 16 may be connected to the exhaust passage 12, and the bypass passage 18 may include a measurement DPF 16 a (second filter) having a small capacity. In this case, it is preferable that the pair of electrodes 17a and 17b are arranged opposite to each other with at least one partition wall in the measurement DPF 16a, and an orifice 18a (throttle) for adjusting the flow rate of the exhaust gas is provided in the bypass passage 18. . Further, when the forced regeneration of the measurement DPF 16a is executed, a voltage may be applied to the pair of electrodes 17a and 17b so as to function as a heater.

10 エンジン
12 排気通路
13 排気管内噴射装置
14 排気後処理装置
15 酸化触媒
16 DPF(フィルタ)
20 ECU
21 静電容量演算部
22 PM堆積量推定部
23 DPF温度推定部
24 再生制御部
31 入口温度センサ
32 出口温度センサ
40 RGRバルブ
41 インテークスロットルバルブ
DESCRIPTION OF SYMBOLS 10 Engine 12 Exhaust passage 13 Exhaust pipe injection apparatus 14 Exhaust after-treatment apparatus 15 Oxidation catalyst 16 DPF (filter)
20 ECU
DESCRIPTION OF SYMBOLS 21 Capacitance calculating part 22 PM deposition amount estimation part 23 DPF temperature estimation part 24 Reproduction | regeneration control part 31 Inlet temperature sensor 32 Outlet temperature sensor 40 RGR valve 41 Intake throttle valve

Claims (4)

内燃機関の排気通路に設けられて、排気中の粒子状物質を捕集するフィルタと、
前記フィルタの静電容量を検出する静電容量検出手段と、
検出される前記静電容量に基づいて、前記フィルタに捕集された粒子状物質の堆積量を推定する堆積量推定手段と、
検出される前記静電容量に基づいて、前記フィルタの内部温度を推定するフィルタ温度推定手段と、
を備える
ことを特徴とする内燃機関の排気浄化装置。
A filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
Capacitance detecting means for detecting the capacitance of the filter;
A deposition amount estimating means for estimating a deposition amount of the particulate matter collected by the filter based on the detected capacitance;
Filter temperature estimation means for estimating an internal temperature of the filter based on the detected capacitance;
Exhaust purification system of an internal combustion engine, characterized in that it comprises a.
推定される前記堆積量が所定の閾値に達すると、排気管内に燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段をさらに備え、
前記フィルタ再生手段は、前記フィルタの過昇温による溶損を回避可能な目標温度に基づいて、推定される前記内部温度が当該目標温度以下となるように、強制再生時の燃料供給量をフィードバック制御し、
前記フィルタ温度推定手段は、直前に推定される前記堆積量と検出される前記静電容量の変化とに基づいて、前記フィルタの内部温度を推定し、
前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含む
請求項1に記載の内燃機関の排気浄化装置。
When the estimated amount of deposition reaches a predetermined threshold, the filter further comprises filter regeneration means capable of performing forced regeneration by supplying fuel into the exhaust pipe and raising the temperature of the filter to the combustion temperature of the particulate matter,
The filter regeneration means feeds back the fuel supply amount during forced regeneration so that the estimated internal temperature is equal to or lower than the target temperature based on a target temperature that can avoid melting damage due to excessive temperature rise of the filter. Control
The filter temperature estimation means estimates the internal temperature of the filter based on the deposition amount estimated immediately before and the detected change in capacitance,
2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the capacitance detection means includes a pair of electrodes that are disposed opposite to each other with at least one partition wall in the filter and that form a capacitor.
推定される前記堆積量が所定の閾値に達すると、排気管内に燃料を供給して、当該フィルタを粒子状物質の燃焼温度まで昇温する強制再生を実行可能なフィルタ再生手段と、
前記フィルタの排気上流又は排気下流の少なくとも何れか一方に設けられて、前記フィルタの排気上流又は排気下流の少なくとも何れか一方の排気温度を検出する排気温度センサと、
をさらに備え、
前記フィルタ再生手段は、前記フィルタの過昇温による溶損を回避可能な目標温度に基づいて、推定される前記内部温度が当該目標温度以下となるように、前記排気温度センサによって検出される前記排気温度に基づく制御から、前記フィルタ温度推定手段によって推定される前記内部温度に基づく制御に切り替えて、強制再生時の燃料供給量をフィードバック制御し、
前記静電容量検出手段は、前記フィルタ内に少なくとも一個以上の隔壁を挟んで対向配置されて、コンデンサを形成する一対の電極を含む
請求項に記載の内燃機関の排気浄化装置。
Filter regeneration means capable of performing forced regeneration by supplying fuel into the exhaust pipe and raising the temperature of the filter to the combustion temperature of the particulate matter when the estimated accumulation amount reaches a predetermined threshold;
An exhaust temperature sensor provided at at least one of the upstream side and the downstream side of the exhaust of the filter to detect the exhaust temperature of at least one of the upstream side and the downstream side of the exhaust of the filter;
Further comprising
The filter regeneration means is detected by the exhaust temperature sensor so that the estimated internal temperature is equal to or lower than the target temperature based on a target temperature that can avoid melting damage due to excessive temperature rise of the filter. Switching from control based on the exhaust temperature to control based on the internal temperature estimated by the filter temperature estimation means, feedback control of the fuel supply amount during forced regeneration,
The electrostatic capacitance detecting means, wherein disposed facing each other across at least one or more partition walls in the filter, the exhaust purification system of an internal combustion engine according to claim 1 including a pair of electrodes forming a capacitor.
前記フィルタよりも排気上流側及び下流側の前記排気通路を接続して、前記フィルタを迂回するバイパス通路と、
前記バイパス通路に設けられて、当該バイパス通路を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、
前記一対の電極は、前記第2のフィルタ内に少なくとも一個以上の隔壁を挟んで対向配置され、
前記第2のフィルタの強制再生を実行する際は、前記一対の電極をヒータとして機能させる
請求項2又は3に記載の内燃機関の排気浄化装置。
A bypass passage that bypasses the filter by connecting the exhaust passage upstream and downstream of the filter;
A second filter that is provided in the bypass passage and collects particulate matter in the exhaust gas flowing through the bypass passage;
The pair of electrodes are disposed opposite to each other with at least one or more partition walls in the second filter,
The exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 3 , wherein when the forced regeneration of the second filter is executed, the pair of electrodes function as a heater.
JP2013031167A 2013-02-20 2013-02-20 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP6123343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031167A JP6123343B2 (en) 2013-02-20 2013-02-20 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031167A JP6123343B2 (en) 2013-02-20 2013-02-20 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014159780A JP2014159780A (en) 2014-09-04
JP6123343B2 true JP6123343B2 (en) 2017-05-10

Family

ID=51611617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031167A Expired - Fee Related JP6123343B2 (en) 2013-02-20 2013-02-20 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6123343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091647B2 (en) 2017-12-20 2022-06-28 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP2009097410A (en) * 2007-10-16 2009-05-07 Toyota Motor Corp Particulate matter collection amount estimation device, and filter regeneration system in particulate filter
JP4780149B2 (en) * 2008-06-23 2011-09-28 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP5094702B2 (en) * 2008-12-24 2012-12-12 本田技研工業株式会社 Particulate matter detector
JP5582459B2 (en) * 2011-03-14 2014-09-03 株式会社デンソー Particulate matter detection device and particulate filter failure detection device

Also Published As

Publication number Publication date
JP2014159780A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP4042476B2 (en) Exhaust gas purification device for internal combustion engine
JP6197377B2 (en) Exhaust purification device
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP4930215B2 (en) Exhaust purification device
JP6051948B2 (en) Exhaust gas purification device for internal combustion engine
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
JP6136351B2 (en) Exhaust gas purification device for internal combustion engine
JP6036388B2 (en) Particulate matter measuring device
WO2015053323A1 (en) Exhaust purification system
JP6032053B2 (en) Exhaust system state detection device and control device
JP2015059476A (en) Exhaust purification system of internal combustion engine
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
WO2016140215A1 (en) Sensor
EP3056699B1 (en) Exhaust purification system
JP6056537B2 (en) Particulate matter measuring apparatus and filter manufacturing method
JP2013160208A (en) Exhaust emission control apparatus and exhaust emission control method
JP2008138537A (en) Exhaust emission control device for internal combustion engine
JP5569690B2 (en) Exhaust gas purification device for internal combustion engine
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP2015059477A (en) Exhaust purification system of internal combustion engine
WO2014115621A1 (en) Exhaust purification device for internal combustion engine
JP2010270617A (en) Exhaust emission control system and method for controlling the same
JP5858225B2 (en) Exhaust purification device temperature control device
WO2016140214A1 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees