JP2012044038A - Heat dissipation structure of electronic device - Google Patents

Heat dissipation structure of electronic device Download PDF

Info

Publication number
JP2012044038A
JP2012044038A JP2010184944A JP2010184944A JP2012044038A JP 2012044038 A JP2012044038 A JP 2012044038A JP 2010184944 A JP2010184944 A JP 2010184944A JP 2010184944 A JP2010184944 A JP 2010184944A JP 2012044038 A JP2012044038 A JP 2012044038A
Authority
JP
Japan
Prior art keywords
housing
air
casing
heat
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010184944A
Other languages
Japanese (ja)
Other versions
JP2012044038A5 (en
Inventor
Hiroyuki Nakahira
悠之 中平
Takahiro Oguro
崇弘 大黒
Hiroyuki Mori
浩之 森
Makoto Inagaki
誠 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2010184944A priority Critical patent/JP2012044038A/en
Publication of JP2012044038A publication Critical patent/JP2012044038A/en
Publication of JP2012044038A5 publication Critical patent/JP2012044038A5/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipation structure of an electronic device, which is not easily broken even if the device is installed in an outdoor location or a high humidity location, and has higher heat dissipation effect.SOLUTION: A heat dissipation structure includes a first housing that accommodates an electric component generating heat and is formed of at least five surfaces, a second airtight housing having the first housing therein so as to have an interval from the first housing, and an air blower which is installed on the first housing and forcibly convects air in the interval formed between the first housing and the second airtight housing or inside the first housing. Out of the surfaces forming the first housing, the surface on which the air blower is installed has holes for the air blower, and at least another surface has air holes. The air, which is forcibly convected, flows into or out between the interval formed between the first housing and the second airtight housing and the interior of the first housing through the air holes to be circulated.

Description

本発明は、屋外等に設置される密閉型電子機器の放熱構造に関するものである。   The present invention relates to a heat dissipation structure for a sealed electronic device installed outdoors.

近年、電子機器を建物がない様な場所に設置する場合や可搬型として様々な場所へ持ち運んで設置する場合等、電子機器が屋外に設置され運用されることがある。   In recent years, electronic devices are sometimes installed and operated outdoors, such as when electronic devices are installed in places where there are no buildings, or when portable electronic devices are carried and installed in various places.

一般的に、電子機器は雨水、湿気等の水分や塵や埃等に弱く、これらに晒されると故障してしまうことがある。電子機器が屋外に設置される場合には、これらの雨水、湿気等の水分や塵や埃等の侵入を防ぐために密閉構造とされることが多い。   In general, electronic devices are vulnerable to moisture such as rain water and moisture, dust, dust, and the like, and may be damaged when exposed to them. When an electronic device is installed outdoors, a sealed structure is often used to prevent intrusion of moisture such as rainwater and moisture, dust, and dust.

なお、密閉構造の電子機器として、2重構造の制御装置が開示されている(特許文献1参照)。この制御装置の様な従来の電子機器について、図12を用いて説明する。図12は従来の電子機器の構造の一例を示す断面図である。   Note that a double-structure control device is disclosed as an electronic device having a sealed structure (see Patent Document 1). A conventional electronic device such as this control device will be described with reference to FIG. FIG. 12 is a cross-sectional view showing an example of the structure of a conventional electronic device.

50は外側筺体、51は外側筺体50の内部に収納される内側筺体、52は外側筺体50と内側筺体51との間隙を流れる風を排出するための排出部、53は内側筺体51の内部に収納されている発熱の大きい電気部品、54も同じく内側筺体51の内部に間隙を設けて収納されている電気部品、55は電気部品53に当接して取り付けられ、電気部品53内の熱を排出するファン、56は外側筺体50の内側に当接して取り付けられ、外気を吸引して外側筺体50の内部に排出するファンである。   50 is an outer casing, 51 is an inner casing housed in the outer casing 50, 52 is a discharge section for discharging wind flowing through the gap between the outer casing 50 and the inner casing 51, and 53 is inside the inner casing 51. The housed electrical part 54 with large heat generation, 54 is also housed in the inner casing 51 with a gap, and 55 is mounted in contact with the electrical part 53 to discharge the heat in the electrical part 53. The fan 56, which is attached in contact with the inside of the outer casing 50, sucks outside air and discharges it into the outer casing 50.

内側筺体51の内部では、電気部品53および電気部品54から熱が放出され、また電気部品53の熱によって温度上昇した空気がファン55より排出されて内側筺体51の内部を攪拌し、内側筺体51の壁面へ熱伝達する。外側筺体50と内側筺体51との間隙にはファン56より排出された空気が内側筺体51から熱を奪いながら流れ、排出部52から排出される。   Inside the inner casing 51, heat is released from the electrical component 53 and the electrical component 54, and air whose temperature has risen due to the heat of the electrical component 53 is discharged from the fan 55 to stir the inside of the inner casing 51, and the inner casing 51. Heat transfer to the wall. The air discharged from the fan 56 flows through the gap between the outer casing 50 and the inner casing 51 while taking heat from the inner casing 51 and is discharged from the discharge portion 52.

特開平9−181471号公報JP-A-9-181471

上記の様な電子機器の場合、筺体全体が密閉構造ではないため、屋外や湿度の高い場所等に設置されると、水分が電子機器の筺体内に侵入し、電子機器が故障してしまう虞がある。また、電子機器は熱にも弱いため、例えば、暑く日差しも強い場所に設置されれば、外部からの熱に加え内部からの熱により電子機器の温度は上昇し、電子機器が故障してしまう虞がある。   In the case of electronic devices such as those described above, since the entire housing is not hermetically sealed, if it is installed outdoors or in places with high humidity, moisture may enter the housing of the electronic device and the electronic device may break down. There is. In addition, since electronic devices are also vulnerable to heat, for example, if installed in a hot and sunny place, the temperature of the electronic device rises due to heat from the inside in addition to heat from the outside, causing the electronic device to fail There is a fear.

本発明はこの様な問題を解決するためになされたもので、屋外や湿度の高い場所等に設置されても故障しにくく、さらに放熱効果の高い電子機器の放熱構造を提供することを目的とする。   The present invention has been made to solve such problems, and it is an object of the present invention to provide a heat dissipation structure for an electronic device that is less likely to fail even when installed outdoors or in a place with high humidity, and has a high heat dissipation effect. To do.

本発明の電子機器の放熱構造は、発熱する電気部品を内装し、少なくとも5つの面で構成される第1の筺体と、前記第1の筺体との間に間隙をおいて前記第1の筺体を内包した第2の密閉筺体と、前記第1の筺体に取り付けられ、前記第1の筐体と前記第2の密閉筐体との間に形成された間隙または前記第1の筺体内に強制的に空気を対流させる送風機と、を備え、前記第1の筺体を構成する面の中で送風機が取り付けられた面に送風機用の孔を有し、少なくとも他の1つの面に通気孔を有し、前記強制的に対流させられた空気が前記通気孔を介して前記第1の筺体と前記第2の密閉筺体との間に形成された間隙と前記第1の筐体の内部との間を行き来することで循環させることを特徴とする。   The heat dissipation structure for an electronic device according to the present invention includes an electrical component that generates heat, and the first casing having a gap between the first casing composed of at least five surfaces and the first casing. And a second sealed housing containing the first housing and a gap formed between the first housing and the second sealed housing or forced into the first housing. A blower that convects air in general, and has a blower hole on a surface of the first casing that is attached to the blower, and at least one other surface has a vent hole. Then, the forced convection air passes between the gap formed between the first casing and the second sealed casing through the vent hole and the inside of the first casing. It is characterized by circulating by going back and forth.

また、上記電子機器の放熱構造は、発熱する電気部品を内装し、少なくとも5つの面で構成される第1の筺体と、前記第1の筺体との間に間隙をおいて前記第1の筺体を内包した第2の密閉筺体と、を備え、前記第1の筺体を構成する面の中で少なくとも2つの面に通気孔を有し、前記電気部品から発生した熱により自然対流した空気が前記通気孔を介して前記第1の筺体と前記第2の密閉筺体との間に形成された間隙と前記第1の筐体の内部との間を行き来することで循環させることを特徴とする。   Further, the heat dissipation structure of the electronic device includes an electrical component that generates heat, and the first casing having a gap between the first casing including at least five surfaces and the first casing. A second hermetically sealed housing containing air, and having air holes in at least two surfaces among the surfaces constituting the first housing, and the air naturally convected by the heat generated from the electrical component is It is circulated by going back and forth between a gap formed between the first casing and the second sealed casing and the inside of the first casing through a vent hole.

また、上記電子機器の放熱構造は、前記電気部品は面積の小さい面を上下に向けて取り付けられることを特徴とする。   The heat dissipation structure of the electronic device is characterized in that the electrical component is attached with a surface having a small area facing up and down.

また、上記電子機器の放熱構造は、前記電気部品で発熱の大きい電気部品は、前記第1の筺体のいずれかの面に当接して取り付けられることを特徴とする。   Further, the heat dissipation structure of the electronic device is characterized in that the electric component that generates a large amount of heat is attached in contact with any surface of the first casing.

また、上記電子機器の放熱構造は、前記発熱の大きい電気部品が取り付けられる面は、前記第1の筺体を構成する面の中で1番大きな面であることを特徴とする。   The heat dissipation structure of the electronic device is characterized in that a surface on which the electric component generating a large amount of heat is attached is the largest surface among the surfaces constituting the first casing.

また、上記電子機器の放熱構造は、前記電気部品は電源、制御装置および記録装置であり、前記電源および前記記録装置が前記第1の筺体の面に当接して取り付けられることを特徴とする。   In the heat dissipation structure of the electronic device, the electrical components are a power source, a control device, and a recording device, and the power source and the recording device are attached in contact with a surface of the first casing.

また、上記電子機器の放熱構造は、前記電気部品のうちで発熱の大きい電気部品が前記第1の筺体内の下方に配置されることを特徴とする。   Moreover, the heat dissipation structure of the electronic device is characterized in that an electrical component that generates a large amount of heat among the electrical components is disposed below the first casing.

したがって、本発明によれば、密閉構造としたことで屋外や湿度の高い場所等に設置されても故障しにくく、さらに風を筺体内部で効率よく循環させることで放熱効果の高い電子機器の放熱構造を提供することができる。 Therefore, according to the present invention, the sealed structure makes it difficult to break down even when installed outdoors or in high-humidity locations, and further efficiently circulates the wind inside the housing to efficiently dissipate heat from electronic devices. Structure can be provided.

本発明の一実施例である電子機器の外側筺体の斜視図である。It is a perspective view of the outer side casing of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の内側筺体の斜視図である。It is a perspective view of the inner side housing | casing of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の外側筺体と内側筺体の斜視図である。1 is a perspective view of an outer casing and an inner casing of an electronic apparatus that is an embodiment of the present invention. 本発明の一実施例である電子機器の断面図1である。It is sectional drawing 1 of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の断面図2である。It is sectional drawing 2 of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の断面図3である。It is sectional drawing 3 of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の制御装置の放熱の様子を示す断面図である。It is sectional drawing which shows the mode of the thermal radiation of the control apparatus of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の断面図2´である。It is sectional drawing 2 'of the electronic device which is one Example of this invention. 本発明の一実施例である電子機器の断面図3´である。It is sectional drawing 3 'of the electronic device which is one Example of this invention. 本発明の他の実施例である電子機器の外側筺体の斜視図である。It is a perspective view of the outer side housing | casing of the electronic device which is the other Example of this invention. 本発明の他の実施例である電子機器の内側筺体の斜視図である。It is a perspective view of the inner side housing | casing of the electronic device which is the other Example of this invention. 従来の電子機器の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the conventional electronic device.

以下、図1〜3を参照して本発明の実施の形態について詳細に説明する。図1は本発明の一実施例である電子機器の外側筺体の斜視図である。図2は本発明の一実施例である電子機器の内側筺体の斜視図である。図3は本発明の一実施例である電子機器の外側筺体と内側筺体の斜視図である。ここでは、電子機器はカメラから送られてきた画像等を記録する記録装置として説明するが、記録装置に限らず、電子機器であればどの様なものであっても良い。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. FIG. 1 is a perspective view of an outer casing of an electronic apparatus according to an embodiment of the present invention. FIG. 2 is a perspective view of the inner casing of the electronic apparatus according to the embodiment of the present invention. FIG. 3 is a perspective view of an outer casing and an inner casing of an electronic apparatus according to an embodiment of the present invention. Here, the electronic device is described as a recording device that records an image or the like sent from the camera, but the electronic device is not limited to the recording device, and any electronic device may be used.

図1において、10はそれぞれ長方形または正方形の背面および上下左右の面から構成される箱型の外側筺体、11は外側筺体の内側上部に取り付けられた内側筺体を固定するための上固定部A、12は外側筺体の内側下部に取り付けられた内側筺体を固定するための下固定部A、13は外側筺体10の背面と同形状の面と上下左右の面で構成され、左側面と外側筺体10の右側面とが蝶番等を用いて一辺で接続され、外側筺体10のそれぞれの辺と合わさる様に閉じられることで電子機器として密閉する扉部である。なお、扉部13は、閉じられた場合、外側筺体10の前面として説明する。   In FIG. 1, 10 is a box-shaped outer casing composed of a rectangular or square back and upper, lower, left and right surfaces, 11 is an upper fixing portion A for fixing an inner casing attached to the inner upper portion of the outer casing, Reference numeral 12 denotes a lower fixing portion A for fixing the inner casing attached to the inner lower portion of the outer casing, and 13 is composed of a surface having the same shape as the back of the outer casing 10 and upper, lower, left and right surfaces. Is a door portion hermetically sealed as an electronic device by being connected to one side using a hinge or the like and closed so as to be combined with each side of the outer casing 10. In addition, the door part 13 demonstrates as a front surface of the outer side housing | casing 10, when closed.

図2において、20は外側筺体10の内部に収納され、外側筺体10を構成する各面より小さい長方形または正方形の少なくとも背面および上下左右の面で構成される箱型の内側筺体、22は内側筺体20の背面に設けられた風の通り道となる円状の通気孔、23は内側筺体20の左側面に設けられた風の通り道となる円状の通気孔、24は内側筺体20の右側面に設けられた風の通り道となる円状の通気孔、25は内側筺体20の底面に設けられた風の通り道となる円状の通気孔、26は内側筺体20の天井面に設けられた風の通り道となる円状の通気孔、27は内側筺体20の天井面手前に設けられた内側筺体20を外側筺体10に固定するための上固定部B、28は内側筺体20の底面手前に設けられた内側筺体20を外側筺体10に固定するための下固定部B、30は入力されたAC電源をDC電源に変換してまたは蓄積された電力を各電気部品に供給する電源(ケーブルは図示せず)、31は電子機器全体の制御・処理を行う制御装置、32は外部から送信されてきた画像等を記録する記録装置、33はLED(図示せず)の点灯制御等を行うプリント基板、34は内側筺体20内部の空気を吸引し通気孔26を介して内側筺体20の外部へ排出するファンである。なお、電源30、制御装置31およびプリント基板33は内側筺体20の内壁にそれぞれ当接して取り付けられている。また、本電子機器内の電力を用いて動作するものを総称して電気部品と呼ぶこととする。これらの電気部品は風の流れを阻害しない様に、面積の小さい面を下にして(風の向かってくる方向に向けて)取り付けられている。   In FIG. 2, reference numeral 20 denotes a box-shaped inner casing that is housed in the outer casing 10, and is composed of at least a back surface and upper, lower, left, and right surfaces that are smaller than each surface constituting the outer casing 10, and 22 is an inner casing. 20 is a circular vent hole provided on the back surface of the inner casing 20 as a wind passage, 23 is a circular vent hole provided on the left side surface of the inner casing 20, and 24 is a right side surface of the inner casing 20. A circular vent hole provided as a wind path provided for the wind, 25 a circular vent hole provided as a wind path provided in the bottom surface of the inner casing 20, and 26 a wind vent provided in the ceiling surface of the inner casing 20. A circular ventilation hole 27 serving as a passageway, 27 is an upper fixing portion B for fixing the inner housing 20 provided in front of the ceiling surface of the inner housing 20 to the outer housing 10, and 28 is provided in front of the bottom surface of the inner housing 20. The inner casing 20 is changed to the outer casing 10. The lower fixing parts B and 30 are used to convert the input AC power into DC power or supply the stored power to each electrical component (cable is not shown), 31 is the entire electronic device A control device that performs control and processing, 32 is a recording device that records images and the like transmitted from the outside, 33 is a printed circuit board that controls lighting of LEDs (not shown), and 34 is the air inside the inner casing 20. It is a fan that sucks and discharges to the outside of the inner casing 20 through the vent hole 26. The power supply 30, the control device 31, and the printed circuit board 33 are attached in contact with the inner wall of the inner casing 20, respectively. Moreover, what operates using the electric power in this electronic device will be generically called an electrical component. These electrical components are mounted with the small area facing down (toward the direction of the wind) so as not to impede the flow of the wind.

なお、ここでは内側筺体20は前面がない場合で説明しているが、実際にない場合もある場合も、または一部ある場合も考えられ、風の流れと放熱効果、堅牢性を重視すれば前面はあった方が良く、記録装置の取り出し等メンテナンスのしやすさを考慮すればない方が良く、目的に合わせてどの様な形をとっても良い。図3においては前面がある場合で説明するが、前面がある場合でもない場合でも外側筺体10と内側筺体20との関係は変わらない。   Here, the inner casing 20 is described as having no front surface, but there may be a case where it is not actually present or a part thereof. It is better to have the front side, and it is better not to consider the ease of maintenance such as taking out the recording apparatus, and any shape may be taken according to the purpose. In FIG. 3, the case where there is a front surface will be described.

図3において、21は内側筺体20の前面に設けられた円状の通気孔である。   In FIG. 3, reference numeral 21 denotes a circular ventilation hole provided on the front surface of the inner casing 20.

内側筺体20が外側筺体10に収納される様子を説明する。内側筺体20は、内側筺体20の上固定部B27および下固定部B28のそれぞれが、外側筺体10の上固定部A11および下固定部B12のそれぞれと重なり合う様に外側筺体10の内部に収納され、内側筺体20の上固定部B27のそれぞれと外側筺体10の上固定部A11のそれぞれ、および、内側筺体20の下固定部B28のそれぞれと外側筺体10の下固定部B12のそれぞれとがネジ等を用いて固定される。そして、扉部13が外側筺体10と接続された辺を軸として回動して閉じられることで、本電子機器が密閉される。   A state where the inner casing 20 is housed in the outer casing 10 will be described. The inner casing 20 is housed inside the outer casing 10 such that the upper fixing portion B27 and the lower fixing portion B28 of the inner casing 20 overlap with the upper fixing portion A11 and the lower fixing portion B12 of the outer casing 10, respectively. Each of the upper fixing portion B27 of the inner casing 20 and each of the upper fixing portion A11 of the outer casing 10, and each of the lower fixing portion B28 of the inner casing 20 and each of the lower fixing portions B12 of the outer casing 10 are screwed. Fixed using. Then, the electronic device is hermetically sealed by rotating and closing the door portion 13 with the side connected to the outer casing 10 as an axis.

次に、図4〜7を参照して、本発明の電子機器内部の風の流れと放熱の様子について、角図においてファンが(A)作動している場合と(B)停止している場合に分けて説明する。図4は本発明の一実施例である電子機器を図3の破線aで切断した断面図である。図5は本発明の一実施例である電子機器を図3の破線bで切断した断面図である。なお、構成部品および符号は上述した通りである。また、外側筺体10の前面として説明する部分は扉部13であるが、上記した様に外側筺体10の前面として説明する。また、図4〜9では、太い矢印は強制対流(風の流れ)の様子を、細い波状の矢印は自然対流の様子を示し、図7においては細い矢印は熱伝導の様子を示す。   Next, with reference to FIGS. 4-7, about the flow of the wind inside the electronic device of this invention, and the mode of heat dissipation, the case where the fan is (A) operating and (B) is stopped in the angle figure This will be explained separately. 4 is a cross-sectional view of an electronic apparatus according to an embodiment of the present invention, taken along a broken line a in FIG. FIG. 5 is a cross-sectional view of an electronic apparatus according to an embodiment of the present invention, taken along a broken line b in FIG. The component parts and symbols are as described above. Moreover, although the part demonstrated as the front surface of the outer housing 10 is the door part 13, it demonstrates as the front surface of the outer housing 10 as mentioned above. 4-9, the thick arrow shows the state of forced convection (wind flow), the thin wavy arrow shows the state of natural convection, and the thin arrow in FIG. 7 shows the state of heat conduction.

図4(A)および図5(A)において、ファン34が作動している場合、強制対流により筺体内部で空気が循環して熱を運び、筺体内部の温度が平均化される。ファン34は、電気部品から放出された熱によって温まった内側筺体20内部の空気を吸引し、通気孔26を介して外側筺体10の天井面に向けて排出する。外側筺体10の天井面に衝突した空気は四方八方に分散され、外側筺体10の天井面に沿って外側筺体10の天井面と内側筺体20の天井面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の天井面へ伝達され、外側筺体10の天井面から外気へと放熱される。間隙を通って外側方向に流れた空気は、それぞれ外側筺体10の前後左右面に衝突し、外側筺体10の前後左右面と内側筺体20の前後左右面との間隙をそれぞれ下方向へと流れる。このとき、各電気部品から発生した熱は、内側筺体20の前後左右面へそれぞれ伝わり、さらに内側筺体20の前後左右面それぞれから下方向へ流れる空気に伝達される。この熱は、空気に運ばれる最中に外側筺体20の前後左右面に伝達され、外側筺体20の前後左右面それぞれから外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れる冷却された空気の一部は、それぞれ通気孔21,22,23,24から内側筺体20内部へと流入し、残りの冷却された空気はさらに下方向へと流れ、それぞれ外側筺体10の底面に衝突し、外側筺体10の底面と内側筺体20の底面との間隙をそれぞれ中心方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の底面へ伝達され、外側筺体10の底面から外気へ放熱され、間隙を流れる空気はさらに冷却される。間隙を通って中心方向へと流れた冷却された空気は、それぞれ通気孔25から内側筺体20内部へと流入する。内側筺体20内部へと流入した冷却された空気は、上方向へと流れ、再びファン34に吸引、排出されることで循環する。このとき、内側筺体20の内部を上方向に流れる冷却された空気は、各電気部品から発生した熱を吸収し、各電気部品を冷却する。この様に、空気は外側筺体10と内側筺体20との間隙と内側筺体20の内部を循環し効率良く放熱される。   4 (A) and 5 (A), when the fan 34 is operating, air is circulated inside the enclosure by forced convection to carry heat, and the temperature inside the enclosure is averaged. The fan 34 sucks the air inside the inner casing 20 warmed by the heat released from the electrical components, and discharges the air toward the ceiling surface of the outer casing 10 through the vent hole 26. The air that has collided with the ceiling surface of the outer casing 10 is dispersed in all directions, and flows outward along the ceiling surface of the outer casing 10 through the gap between the ceiling surface of the outer casing 10 and the ceiling surface of the inner casing 20. At this time, the heat carried by the air is transmitted to the ceiling surface of the outer casing 10 and radiated from the ceiling surface of the outer casing 10 to the outside air. The air that has flowed outward through the gap collides with the front, rear, left, and right surfaces of the outer casing 10, and flows downward through the gap between the front, rear, left, and right surfaces of the outer casing 10 and the front, rear, left and right surfaces of the inner casing 20, respectively. At this time, the heat generated from each electrical component is transmitted to the front, rear, left and right surfaces of the inner housing 20 and further transmitted to the air flowing downward from the front, rear, left and right surfaces of the inner housing 20. This heat is transmitted to the front, rear, left and right surfaces of the outer housing 20 while being carried by the air, and is radiated to the outside air from the front, rear, left and right surfaces of the outer housing 20, and the air flowing through the gap is cooled. A portion of the cooled air flowing downward through the gap flows into the inner housing 20 from the vents 21, 22, 23, and 24, respectively, and the remaining cooled air further flows downward. Each of the flow collides with the bottom surface of the outer housing 10 and flows through the gap between the bottom surface of the outer housing 10 and the bottom surface of the inner housing 20 toward the center. At this time, the heat carried by the air is transmitted to the bottom surface of the outer housing 10 and is radiated from the bottom surface of the outer housing 10 to the outside air, so that the air flowing through the gap is further cooled. The cooled air that has flowed toward the center through the gap flows into the inside of the inner housing 20 from the air holes 25. The cooled air that has flowed into the inner housing 20 flows upward, and is circulated by being sucked and discharged again by the fan 34. At this time, the cooled air flowing upward in the inner housing 20 absorbs heat generated from each electrical component, and cools each electrical component. In this manner, air circulates in the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 and is efficiently dissipated.

図4(B)および図5(B)において、ファン34が停止している場合、ファン34が作動している場合に比べ筺体内部での空気の流れはかなり少ないが、自然対流により循環流が発生する。各電子部品から発生した熱は内側筺体20内部の空気に伝達され、暖められた内側筺体20内部の空気は自然対流により上方へ流れる。上方へ流れた空気は、停止したファン34および通気孔26を通り、外側筺体10の天井面と内側筺体20の天井面との間隙に流れる。外側筺体10の天井面に衝突した空気は四方八方に分散され、外側筺体10の天井面に沿って外側筺体10の天井面と内側筺体20の天井面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の天井面へ伝達され、外側筺体10の天井面から外気へと放熱される。放熱されて冷えた空気は自然対流により、外側筺体10の前後左右面と内側筺体20の前後左右面との間隙をそれぞれ下方向へと流れる。このとき、各電気部品から発生した熱は、内側筺体20の前後左右面へそれぞれ伝わり、さらに内側筺体20の前後左右面それぞれから下方向へ流れる空気に伝達される。この熱は、空気に運ばれる最中に外側筺体20の前後左右面に伝達され、外側筺体20の前後左右面それぞれから外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れる冷却された空気の一部は、それぞれ通気孔21,22,23,24から内側筺体20内部へと流入し、残りの冷却された空気はさらに下方向へと流れ、それぞれ外側筺体10の底面に衝突し、外側筺体10の底面と内側筺体20の底面との間隙をそれぞれ中心方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の底面へ伝達され、外側筺体10の底面から外気へ放熱され、間隙を流れる空気はさらに冷却される。間隙を通って中心方向へと流れる冷却された空気は、それぞれ通気孔25から内側筺体20内部へと流入する。内側筺体20内部へと流入した冷却された空気は、各電気部品が放出した熱を吸収して暖められ、自然対流により上方向へと流れ循環する。この様に、ファン34が停止していても、外側筺体10と内側筺体20との間隙と内側筺体20の内部を自然対流により循環し効率良く放熱される。   4 (B) and 5 (B), when the fan 34 is stopped, the air flow inside the housing is considerably smaller than when the fan 34 is operating, but the circulation flow is caused by natural convection. appear. The heat generated from each electronic component is transferred to the air inside the inner casing 20, and the heated air inside the inner casing 20 flows upward by natural convection. The air that has flowed upward passes through the stopped fan 34 and the vent hole 26, and then flows into the gap between the ceiling surface of the outer housing 10 and the ceiling surface of the inner housing 20. The air that has collided with the ceiling surface of the outer casing 10 is dispersed in all directions, and flows outward along the ceiling surface of the outer casing 10 through the gap between the ceiling surface of the outer casing 10 and the ceiling surface of the inner casing 20. At this time, the heat carried by the air is transmitted to the ceiling surface of the outer casing 10 and radiated from the ceiling surface of the outer casing 10 to the outside air. The air that has been radiated and cooled flows down through the gaps between the front and rear left and right surfaces of the outer housing 10 and the front and rear and left and right surfaces of the inner housing 20 by natural convection. At this time, the heat generated from each electrical component is transmitted to the front, rear, left and right surfaces of the inner housing 20 and further transmitted to the air flowing downward from the front, rear, left and right surfaces of the inner housing 20. This heat is transmitted to the front, rear, left and right surfaces of the outer housing 20 while being carried by the air, and is radiated to the outside air from the front, rear, left and right surfaces of the outer housing 20, and the air flowing through the gap is cooled. A portion of the cooled air flowing downward through the gap flows into the inner housing 20 from the vents 21, 22, 23, and 24, respectively, and the remaining cooled air further flows downward. Each of the flow collides with the bottom surface of the outer housing 10 and flows through the gap between the bottom surface of the outer housing 10 and the bottom surface of the inner housing 20 toward the center. At this time, the heat carried by the air is transmitted to the bottom surface of the outer housing 10 and is radiated from the bottom surface of the outer housing 10 to the outside air, so that the air flowing through the gap is further cooled. The cooled air that flows toward the center through the gap flows into the inner housing 20 from the air holes 25. The cooled air that has flowed into the inner casing 20 is heated by absorbing the heat released by each electrical component, and flows upward and circulates by natural convection. In this manner, even when the fan 34 is stopped, the air is circulated through the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 by natural convection, and the heat is efficiently radiated.

なお、各電気部品は空気の流れ方向に対して面積の小さい面が上流側または下流側を向くように取り付けられているため、空気の流れを阻害することなく(空気抵抗が少なく)循環効率を高めている。また、面積の小さい面を上流側または下流側に向けなくても、空気抵抗が少なくなる様に、例えば角を向けて取り付けられたりしても良い。   In addition, each electrical component is mounted so that the surface with a small area with respect to the air flow direction faces the upstream side or the downstream side, so that the circulation efficiency is reduced without obstructing the air flow (less air resistance) It is increasing. Further, it may be attached with, for example, a corner so that the air resistance is reduced without directing the surface having a small area toward the upstream side or the downstream side.

以上に説明した様に、ファン34を作動させ、筺体内部で風が循環して熱が運ばれることで、熱が特定の場所に溜まるのを防止して電気部品の故障を防止でき、万遍なく熱が伝わることでより外側筺体10の全ての面からバランス良く放熱することができ、放熱効果が良くなる。また、ファン34を作動させなくとも、自然対流により筺体内部で風が循環して放熱されることで、放熱効果を確保できる。   As described above, the fan 34 is operated, and the heat is circulated through the inside of the housing to prevent the heat from accumulating in a specific place, thereby preventing the failure of electrical parts. Since heat is transmitted without any problem, heat can be radiated from all surfaces of the outer casing 10 in a well-balanced manner, and the heat radiation effect is improved. Further, even if the fan 34 is not operated, the heat is radiated by the circulation of the wind inside the housing by natural convection, thereby ensuring the heat dissipation effect.

図6は本発明の一実施例である背面を下にして電子機器を寝かせた場合の図3の破線bで切断した断面図である。その様子を以下に説明する。なお、構成部品および符号は上述した通りである。また、上述した説明とは、風の流れについては殆ど変らず、ファン停止時の自然対流の様子が異なる。ここでは、寝かせて設置しているが、上下前後左右面の関係は、例えば天井面は寝かせて右方向を向いたとしても天井面として説明し、その他の面も同様する。   FIG. 6 is a cross-sectional view taken along the broken line b in FIG. 3 when the electronic device is laid down with the back side being one embodiment of the present invention. This will be described below. The component parts and symbols are as described above. In addition, the wind flow is hardly changed from the above description, and the natural convection state when the fan is stopped is different. Here, although it is laid down, the relationship between the top, bottom, front, back, left, and right surfaces will be described as a ceiling surface even if the ceiling surface is laid down and turned to the right, for example, and the other surfaces are the same.

図6(A)において、ファン34が作動している場合の風の流れと放熱の様子は、図4(A)および図5(A)の強制対流による風の流れと同様であるため説明は省略する。   In FIG. 6 (A), the flow of wind and the state of heat dissipation when the fan 34 is operating are the same as the flow of wind by forced convection in FIGS. 4 (A) and 5 (A). Omitted.

図6(B)において、ファン34が停止している場合、ファン34が作動している場合に比べ筺体内部での空気の流れはかなり少ないが、自然対流により循環流が発生する。各電子部品から発生した熱が内側筺体20内部の空気に伝達され、暖められた空気は自然対流により上方へ流れる。上方へ流れた空気は風となり、通気孔23を通り、外側筺体10の前面と内側筺体20の前面との間隙に流れる。外側筺体10の前面に衝突した空気は四方八方に分散され、外側筺体10の前面に沿って外側筺体10の前面と内側筺体20の前面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の前面へ伝達され、外側筺体10の前面から外気へと放熱される。放熱されて冷えた空気は自然対流により、外側筺体10の天井面・底面・左右側面と内側筺体20の天井面・底面・左右側面との間隙をそれぞれ下方向へと空気となって流れる。このとき、各電気部品から発生した熱は、内側筺体20の天井面・底面・左右側面へそれぞれ伝導し、内側筺体20の天井面・底面・左右側面それぞれから下方向へ流れる空気に伝達され、空気によって運ばれる。この熱は、空気に運ばれる最中に外側筺体20の天井面・底面・左右側面に伝達され、外側筺体20の天井面・底面・左右側面それぞれから外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れた冷却された空気の一部は、それぞれ通気孔23,24,25,26およびファン34から内側筺体20内部へと流入し、残りの冷却された空気はさらに下方向へと流れ、それぞれ外側筺体10の背面に衝突し、外側筺体10の背面と内側筺体20の背面との間隙をそれぞれ中心方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の背面へ伝達され、外側筺体10の背面から外気へ放熱され、間隙を流れる空気はさらに冷却される。間隙を通って中心方向へと流れた冷却された空気は、それぞれ通気孔22から内側筺体20内部へと流入する。内側筺体20内部へと流入した冷却された空気は、各電気部品から発生する熱を吸収して再び暖められ、自然対流により上方向へと流れて循環する。この様に、ファン34が停止していても、外側筺体10と内側筺体20との間隙と内側筺体20の内部を自然対流により循環し効率良く放熱される。   In FIG. 6B, when the fan 34 is stopped, the flow of air inside the housing is considerably less than when the fan 34 is operating, but a circulating flow is generated by natural convection. The heat generated from each electronic component is transmitted to the air inside the inner casing 20, and the warmed air flows upward by natural convection. The air that has flowed upward becomes wind, flows through the vent hole 23, and flows into the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20. The air that has collided with the front surface of the outer housing 10 is dispersed in all directions, and flows along the front surface of the outer housing 10 toward the outer side through the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20. At this time, the heat carried by the air is transmitted to the front surface of the outer housing 10 and radiated from the front surface of the outer housing 10 to the outside air. The air that has been radiated and cooled is caused by natural convection to flow downward through the gaps between the ceiling surface, bottom surface, left and right side surfaces of the outer housing 10 and the ceiling surface, bottom surface, and left and right side surfaces of the inner housing 20. At this time, heat generated from each electrical component is conducted to the ceiling surface, bottom surface, and left and right side surfaces of the inner casing 20, and is transmitted to the air flowing downward from the ceiling surface, bottom surface, and left and right side surfaces of the inner casing 20, Carried by air. This heat is transmitted to the ceiling surface, bottom surface, and left and right side surfaces of the outer casing 20 while being carried by the air, and is radiated to the outside air from the ceiling surface, bottom surface, and left and right side surfaces of the outer casing 20, and the air flowing through the gap is cooled. Is done. Some of the cooled air that has flowed downward through the gap flows into the inner housing 20 from the vents 23, 24, 25, 26 and the fan 34, respectively, and the remaining cooled air further It flows downward, collides with the back surface of the outer housing 10, and flows through the gap between the back surface of the outer housing 10 and the back surface of the inner housing 20 toward the center. At this time, the heat carried by the air is transmitted to the back surface of the outer housing 10 and is radiated from the back surface of the outer housing 10 to the outside air, and the air flowing through the gap is further cooled. The cooled air that has flowed toward the center through the gap flows into the inside of the inner casing 20 from the air holes 22. The cooled air that has flowed into the inner casing 20 absorbs the heat generated from each electrical component, is warmed again, and flows upward and circulates by natural convection. In this manner, even when the fan 34 is stopped, the air is circulated through the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 by natural convection, and the heat is efficiently radiated.

ここで、背面を下にして寝かせて電子機器を設置し、ファン34が停止している場合、筺体内部の電気部品の内、発熱の大きい電気部品(本実施例の場合、内側筺体20の背面に当接して配置された電源30や制御装置31)が下方にくる様に配置されることで、自然対流による流れが大きくなり、発熱の大きい電気部品を上方に配置する場合に比べてより高い放熱効果を得ることができる。一方、電子機器を立てて設置した場合にも、発熱の大きい電気部品が下方にくる様に配置することで、放熱効果を高くすることが可能である。   Here, when the electronic device is installed with the back face down, and the fan 34 is stopped, among the electrical parts inside the housing, the electrical components that generate a large amount of heat (in this embodiment, the back surface of the inner housing 20). The power supply 30 and the control device 31) that are disposed in contact with each other are arranged so as to be downward, so that the flow due to natural convection is increased, which is higher than the case where an electrical component that generates a large amount of heat is disposed upward. A heat dissipation effect can be obtained. On the other hand, even when the electronic device is installed upright, it is possible to enhance the heat dissipation effect by arranging the electric parts that generate a large amount of heat downward.

図7は本発明の一実施例である電子機器の制御装置の放熱の様子を示す断面図である。なお、構成部品および符号は上述した通りである。   FIG. 7 is a cross-sectional view showing a heat dissipation state of the electronic apparatus control apparatus according to an embodiment of the present invention. The component parts and symbols are as described above.

制御装置31は発熱し、表面から内側筺体20内部の空気へと放熱する。また、制御装置31から発生した熱は内側筺体20と当接した面から内側筺体20へと熱伝導する。   The control device 31 generates heat and dissipates heat from the surface to the air inside the inner casing 20. Further, the heat generated from the control device 31 is conducted from the surface in contact with the inner casing 20 to the inner casing 20.

さらに、図8,9を参照して、内側筺体20の前面がない場合の電子機器内部の放熱の様子について説明する。図8は電子機器を図3の破線aで切断した断面図である。図9は電子機器を図3の破線bで切断した断面図である。なお、構成部品および符号は上述した通りであるが、内側筺体20の前面がない(開放である)点で異なる。   Furthermore, with reference to FIGS. 8 and 9, the state of heat radiation inside the electronic apparatus when there is no front surface of the inner housing 20 will be described. 8 is a cross-sectional view of the electronic device taken along the broken line a in FIG. FIG. 9 is a cross-sectional view of the electronic device taken along broken line b in FIG. In addition, although a component and a code | symbol are as above-mentioned, it differs in the point which does not have the front surface of the inner side housing | casing 20 (open).

図8(A)において、ファン34が作動している場合は、外側筺体10の前面付近の空気の流れが異なるだけで、その他の方向の空気の流れは上述した流れと同じであるため、外側筺体10の前面付近の空気の流れを中心に説明する。ファン34は、電気部品から発生した熱により温まった内側筺体20内部の空気を吸引し、通気孔26を介して外側筺体10の天井面に向けて排出する。外側筺体10の天井面に衝突した空気は四方八方に分散され、外側筺体10の天井面に沿って外側筺体10の天井面と内側筺体20の天井面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の天井面へ伝達され、外側筺体10の天井面から外気へと放熱される。間隙を通って外側方向に流れた空気の内、前面方向へ流れた空気は、外側筺体10の前面に衝突し、外側筺体10の前面に沿って下方向へと流れる。下方向へと流れた空気は開放となっている内側筺体20の前面から内側筺体20内部へと流入する。内側筺体20内部へと流入した空気は、下方向から流れてくる空気と共に上方向へと流れ、再びファン34に吸引、排出されることで循環する。このとき、内側筺体20の内部を上方向に流れる冷却された空気は、各電気部品から発生する熱を吸収し、各電気部品を冷却する。この様に、空気は外側筺体10と内側筺体20との間隙と内側筺体20の内部を循環し効率良く放熱される。   In FIG. 8A, when the fan 34 is operating, only the air flow near the front surface of the outer housing 10 is different, and the air flow in the other directions is the same as the above-described flow. The description will focus on the flow of air near the front surface of the housing 10. The fan 34 sucks the air inside the inner casing 20 warmed by the heat generated from the electrical components, and discharges the air toward the ceiling surface of the outer casing 10 through the vent hole 26. The air that has collided with the ceiling surface of the outer casing 10 is dispersed in all directions, and flows outward along the ceiling surface of the outer casing 10 through the gap between the ceiling surface of the outer casing 10 and the ceiling surface of the inner casing 20. At this time, the heat carried by the air is transmitted to the ceiling surface of the outer casing 10 and radiated from the ceiling surface of the outer casing 10 to the outside air. Of the air that flows outward through the gap, the air that flows in the front direction collides with the front surface of the outer casing 10 and flows downward along the front surface of the outer casing 10. The air that flows downward flows into the inside of the inner casing 20 from the front surface of the inner casing 20 that is open. The air that has flowed into the inner housing 20 flows upward together with the air flowing from the lower direction, and is circulated by being sucked and discharged again by the fan 34. At this time, the cooled air flowing upward in the inner housing 20 absorbs heat generated from each electrical component and cools each electrical component. In this manner, air circulates in the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 and is efficiently dissipated.

図8(B)において、ファン34が停止している場合は、ファン34が作動している場合に比べ筺体内部での空気の流れはかなり少ないが、自然対流により循環風が発生する。各電子部品から発生した熱が内側筺体20内部の空気に伝達され、暖められた空気は自然対流により上方へ流れる。上方へ流れた空気は、通気孔23を通り、外側筺体10の前面と内側筺体20の前面との間隙に流れる。外側筺体10の前面に衝突した空気は四方八方に分散され、外側筺体10の前面に沿って外側筺体10の前面と内側筺体20の前面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の前面へ伝達され、外側筺体10の前面から外気へと放熱される。放熱されて冷えた空気は自然対流により、外側筺体10の前面と内側筺体20の前面との間隙をそれぞれ下方向へと流れる。このとき、熱は、空気に運ばれる最中に外側筺体20の前面に伝達され、外側筺体20の前面から外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れる冷却された空気は、開放となっている内側筺体20の前面から内側筺体20内部へと流入する。内側筺体20内部へと流入した冷却された空気は、各電気部品から発生した熱を吸収して暖められ、自然対流により上方向へと流れて循環する。この様に、ファン34が停止していても、外側筺体10と内側筺体20との間隙と内側筺体20の内部を自然対流により循環し効率良く放熱される。   In FIG. 8B, when the fan 34 is stopped, the flow of air inside the housing is considerably less than when the fan 34 is operating, but circulating air is generated by natural convection. The heat generated from each electronic component is transmitted to the air inside the inner casing 20, and the warmed air flows upward by natural convection. The air that has flowed upward passes through the vent hole 23 and flows into the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20. The air that has collided with the front surface of the outer housing 10 is dispersed in all directions, and flows along the front surface of the outer housing 10 toward the outer side through the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20. At this time, the heat carried by the air is transmitted to the front surface of the outer housing 10 and radiated from the front surface of the outer housing 10 to the outside air. The air that has been radiated and cooled flows down through the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20 by natural convection. At this time, heat is transferred to the front surface of the outer casing 20 while being carried by the air, radiated from the front surface of the outer casing 20 to the outside air, and the air flowing through the gap is cooled. The cooled air flowing downward through the gap flows from the front surface of the opened inner casing 20 into the inner casing 20. The cooled air that has flowed into the inner housing 20 is heated by absorbing heat generated from each electrical component, and flows upward and circulates by natural convection. In this manner, even when the fan 34 is stopped, the air is circulated through the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 by natural convection, and the heat is efficiently radiated.

図9は本発明の一実施例である背面を下にして電子機器を寝かせた場合の図3の破線bで切断した断面図である。なお、構成部品および符号は上述した通りである。また、上述した説明とは、空気の流れについては殆ど変らず、ファン停止時の自然対流の様子が異なる。ここでは、寝かせて設置しているが、上下前後左右面の関係は、例えば天井面は寝かせて右方向を向いたとしても天井面として説明し、その他の面も同様する。その様子を以下に説明する。   FIG. 9 is a cross-sectional view taken along the broken line b in FIG. 3 when the electronic device is laid down with the back side being one embodiment of the present invention. The component parts and symbols are as described above. In addition, the air flow is hardly changed from the above description, and the natural convection state when the fan is stopped is different. Here, although it is laid down, the relationship between the top, bottom, front, back, left, and right surfaces will be described as a ceiling surface even if the ceiling surface is laid down and turned to the right, for example, and the other surfaces are the same. This will be described below.

図9(A)において、ファン34が作動している場合の空気の流れと放熱の様子は、図8(A)8の強制対流による空気の流れと同様であるため説明は省略する。   In FIG. 9A, the flow of air and the state of heat dissipation when the fan 34 is operating are the same as the flow of air by forced convection in FIG.

図9(B)において、ファン34が停止している場合、ファン34が作動している場合に比べ筺体内部での空気の流れはかなり少ないが、自然対流により循環流が発生する。各電子部品から発生した熱が内側筺体20内部の空気に伝達され、暖められた空気は自然対流により上方へ流れる。上方へ流れた空気は、開放となっている内側筺体20の前面を通り、外側筺体10の前面に衝突する。外側筺体10の前面に衝突した空気は四方八方に分散され、外側筺体10の前面に沿って外側筺体10の前面と内側筺体20の前面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の前面へ伝達され、外側筺体10の前面から外気へと放熱される。放熱されて冷えた空気は自然対流により、外側筺体10の天井面・底面・左右側面と内側筺体20の天井面・底面・左右側面との間隙をそれぞれ下方向へと流れる。このとき、各電気部品から発生した熱は、内側筺体20の天井面・底面・左右側面へそれぞれ伝導し、内側筺体20の天井面・底面・左右側面それぞれから下方向へ流れる空気に伝達される。この熱は、空気に運ばれる最中に外側筺体20の天井面・底面・左右側面に伝達され、外側筺体20の天井面・底面・左右側面それぞれから外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れた冷却された空気の一部は、それぞれ通気孔23,24,25,26およびファン34から内側筺体20内部へと流入し、残りの冷却された空気はさらに下方向へと流れ、それぞれ外側筺体10の背面に衝突し、外側筺体10の背面と内側筺体20の背面との間隙をそれぞれ中心方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の背面へ伝達され、外側筺体10の背面から外気へ放熱され、間隙を流れる空気はさらに冷却される。間隙を通って中心方向へと流れた冷却された空気は、それぞれ通気孔22から内側筺体20内部へと流入する。内側筺体20内部へと流入した冷却された空気は、各電気部品から発生した熱を吸収して暖められ、自然対流により上方向へと流れて循環する。この様に、ファン34が停止していても、外側筺体10と内側筺体20との間隙と内側筺体20の内部を自然対流により循環し効率良く放熱される。   In FIG. 9B, when the fan 34 is stopped, the air flow inside the housing is considerably smaller than when the fan 34 is operating, but a circulating flow is generated by natural convection. The heat generated from each electronic component is transmitted to the air inside the inner casing 20, and the warmed air flows upward by natural convection. The air flowing upward passes through the front surface of the inner casing 20 that is open and collides with the front surface of the outer casing 10. The air that has collided with the front surface of the outer housing 10 is dispersed in all directions, and flows along the front surface of the outer housing 10 toward the outer side through the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20. At this time, the heat carried by the air is transmitted to the front surface of the outer housing 10 and radiated from the front surface of the outer housing 10 to the outside air. The air that has been radiated and cooled flows down through the gaps between the ceiling surface, bottom surface, left and right side surfaces of the outer casing 10 and the ceiling surface, bottom surface, and left and right side surfaces of the inner casing 20 by natural convection. At this time, heat generated from each electrical component is conducted to the ceiling surface, bottom surface, and left and right side surfaces of the inner casing 20, and is transmitted to the air flowing downward from the ceiling surface, bottom surface, and left and right side surfaces of the inner casing 20, respectively. . This heat is transmitted to the ceiling surface, bottom surface, and left and right side surfaces of the outer casing 20 while being carried by the air, and is radiated to the outside air from the ceiling surface, bottom surface, and left and right side surfaces of the outer casing 20, and the air flowing through the gap is cooled. Is done. Some of the cooled air that has flowed downward through the gap flows into the inner housing 20 from the vents 23, 24, 25, 26 and the fan 34, respectively, and the remaining cooled air further It flows downward, collides with the back surface of the outer housing 10, and flows through the gap between the back surface of the outer housing 10 and the back surface of the inner housing 20 toward the center. At this time, the heat carried by the air is transmitted to the back surface of the outer housing 10 and is radiated from the back surface of the outer housing 10 to the outside air, and the air flowing through the gap is further cooled. The cooled air that has flowed toward the center through the gap flows into the inside of the inner casing 20 from the air holes 22. The cooled air that has flowed into the inner housing 20 is heated by absorbing heat generated from each electrical component, and flows upward and circulates by natural convection. In this manner, even when the fan 34 is stopped, the air is circulated through the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 by natural convection, and the heat is efficiently radiated.

ここでも図6の場合と同様に、背面を下にして寝かせて電子機器を設置し、ファン34が停止している場合、筺体内部の電気部品の内、発熱の大きい電気部品(本実施例の場合、内側筺体20の背面に当接して配置された電源30や制御装置31)が下方にくる様に配置されることで、自然対流による流れが大きくなり、発熱の大きい電気部品を上方に配置する場合に比べてより高い放熱効果を得ることができる。一方、電子機器を立てて設置した場合にも、発熱の大きい電気部品が下方にくる様に配置することで、放熱効果を高くすることが可能である。   Here again, as in the case of FIG. 6, when the electronic device is installed with the back face down and the fan 34 is stopped, of the electrical components inside the housing, In such a case, the power supply 30 and the control device 31) arranged in contact with the back surface of the inner housing 20 are arranged so that the flow by natural convection is increased, and an electric component generating a large amount of heat is arranged upward. A higher heat dissipation effect can be obtained as compared with the case of doing so. On the other hand, even when the electronic device is installed upright, it is possible to enhance the heat dissipation effect by arranging the electric parts that generate a large amount of heat downward.

以上に説明した様に、内側筺体20の前面がなく(開放である)背面を下にして寝かせて設置しファン34が停止している場合、内側筺体20内の空気は各電気部品から発生した熱を吸収して暖められ、自然対流により上方向へと流れ、外側筺体10の前面に直接衝突して外側筺体10の前面に熱が直接伝わるため、放熱効果が高まる。   As described above, when there is no front side of the inner casing 20 (the open side) is laid down and the fan 34 is stopped, air in the inner casing 20 is generated from each electrical component. Since the heat is absorbed and warmed, it flows upward due to natural convection, and directly collides with the front surface of the outer housing 10 to directly transfer the heat to the front surface of the outer housing 10, so that the heat dissipation effect is enhanced.

さらに、図10,11を参照して電子機器にコネクタを設け、さらに内側筺体20の前面の一部を残して開放とした場合の構成について説明する。図10は本発明の一実施例である電子機器の外側筺体の斜視図である。図11本発明の一実施例である電子機器の内側筺体の斜視図である。   Further, a configuration in which a connector is provided in the electronic apparatus with reference to FIGS. 10 and 11 and a part of the front surface of the inner casing 20 is left open will be described. FIG. 10 is a perspective view of the outer casing of the electronic apparatus according to the embodiment of the present invention. 11 is a perspective view of the inner housing of the electronic device according to one embodiment of the present invention.

図10において、14は電子機器の外部と信号等をやり取りするためにケーブル等が接続されるコネクタ部、図11において、29はコネクタ部14の出っ張りに沿った窪み部である。   10, 14 is a connector part to which a cable or the like is connected for exchanging signals with the outside of the electronic device, and in FIG. 11, 29 is a recess part along the protruding part of the connector part 14.

ファン34が作動している場合、コネクタ29付近および前面付近の空気の流れ以外は、筺体内部での空気の流れも熱の移動も図4,5や図8で説明した場合とほぼ同様であるため、異なる部分を中心に説明する。ファン34は、電気部品から発生した熱により温まった内側筺体20内部の空気を吸引し、通気孔26を介して外側筺体10の天井面に向けて排出する。外側筺体10の天井面に衝突した空気は四方八方に分散され、外側筺体10の天井面に沿って外側筺体10の天井面と内側筺体20の天井面との間隙を外側方向へと流れる。このとき、空気によって運ばれた熱は外側筺体10の天井面へ伝達され、外側筺体10の天井面から外気へと放熱される。間隙を通って外側方向に流れた空気の内、左側面方向へ流れた空気は、外側筺体10の左側面に衝突し、外側筺体10の左側面と内側筺体20の左側面との間隙を下方向へと流れる。このとき、電気部品(プリント基板33)から発生した熱は、内側筺体20の左側面へ伝導し、内側筺体20の左側面から下方向へ流れる空気に伝達され、空気によって運ばれる。この熱は、空気に運ばれる最中に外側筺体20の左側面に伝達され、外側筺体20の左側面それぞれから外気に放熱され、間隙を流れる空気は冷却される。間隙を通って下方向へと流れる冷却された空気の一部はコネクタ部14に衝突し分散されて下方へ流れ、下方向へと流れた冷却された空気の他の一部は通気孔23から内側筺体20内部へと流入し、残りの空気はさらに下方向へと流れ、外側筺体10の底面に衝突し、外側筺体10の底面と内側筺体20の底面との間隙を中心方向へと流れる。また、外側筺体10の天井面と内側筺体20の天井面との間隙を通って外側方向に流れた空気の内、前面方向へ流れた空気は、外側筺体10の前面に衝突し、外側筺体10の前面に沿って下方向へと流れる。下方向へと流れた空気の一部は、外側筺体10の前面と内側筺体20の前面との間隙を通って下方向へと流れ、また一部は開放となっている内側筺体20の前面から内側筺体20内部へと流入し、残りの空気はさらに下方向へと流れ、それぞれ外側筺体10の底面に衝突し、外側筺体10の底面と内側筺体20の底面との間隙をそれぞれ中心方向へと流れる。このとき、内側筺体20内部の熱は内側筺体20の前面へ伝達され、内側筺体20の左側面から下方向へ流れる空気に伝達され、空気によって運ばれる。この熱は、空気に運ばれる最中に外側筺体20の前面に伝達され、外側筺体20の左側面それぞれから外気に放熱され、間隙を流れる空気は冷却される。また、空気によって運ばれた熱は外側筺体10の底面へ伝達され、外側筺体10の底面から外気へ放熱され、間隙を流れる空気はさらに冷却される。内側筺体20内部へと流入した冷却された空気は、下方向から流れてくる空気と共に上方向へと流れ、再びファン34に吸引、排出されることで循環する。このとき、内側筺体20の内部を上方向に流れる冷却された空気は、各電気部品から発生した熱を吸収し、各電気部品を冷却する。この様に、空気は外側筺体10と内側筺体20との間隙と内側筺体20の内部を循環し効率良く放熱される。   When the fan 34 is operating, except for the air flow near the connector 29 and near the front surface, the air flow and heat transfer inside the housing are almost the same as those described with reference to FIGS. Therefore, it demonstrates centering on a different part. The fan 34 sucks the air inside the inner casing 20 warmed by the heat generated from the electrical components, and discharges the air toward the ceiling surface of the outer casing 10 through the vent hole 26. The air that has collided with the ceiling surface of the outer casing 10 is dispersed in all directions, and flows outward along the ceiling surface of the outer casing 10 through the gap between the ceiling surface of the outer casing 10 and the ceiling surface of the inner casing 20. At this time, the heat carried by the air is transmitted to the ceiling surface of the outer casing 10 and radiated from the ceiling surface of the outer casing 10 to the outside air. Of the air that has flowed outward through the gap, the air that has flowed in the left side direction collides with the left side surface of the outer casing 10, and lowers the gap between the left side surface of the outer casing 10 and the left side surface of the inner casing 20. It flows in the direction. At this time, the heat generated from the electrical component (printed circuit board 33) is conducted to the left side surface of the inner casing 20, and is transmitted to the air flowing downward from the left side surface of the inner casing 20, and is carried by the air. This heat is transmitted to the left side surface of the outer casing 20 while being carried by the air, and is radiated to the outside air from each of the left side surfaces of the outer casing 20, so that the air flowing through the gap is cooled. A part of the cooled air flowing downward through the gap collides with the connector part 14 and is dispersed and flows downward, and another part of the cooled air which flows downward flows from the vent hole 23. The air flows into the inner housing 20 and the remaining air further flows downward, collides with the bottom surface of the outer housing 10, and flows through the gap between the bottom surface of the outer housing 10 and the bottom surface of the inner housing 20 toward the center. Of the air that flows outward through the gap between the ceiling surface of the outer housing 10 and the ceiling surface of the inner housing 20, the air that flows in the front direction collides with the front surface of the outer housing 10, and the outer housing 10. Flows downward along the front of the. Part of the air that has flowed downward flows downward through the gap between the front surface of the outer housing 10 and the front surface of the inner housing 20, and a part of the air flows from the front surface of the inner housing 20 that is open. The air flows into the inner housing 20 and the remaining air further flows downward, collides with the bottom surface of the outer housing 10, respectively, and the gap between the bottom surface of the outer housing 10 and the bottom surface of the inner housing 20 is directed toward the center. Flowing. At this time, the heat inside the inner housing 20 is transmitted to the front surface of the inner housing 20, is transmitted to the air flowing downward from the left side surface of the inner housing 20, and is carried by the air. This heat is transmitted to the front surface of the outer housing 20 while being carried by the air, and is radiated to the outside air from each of the left side surfaces of the outer housing 20, so that the air flowing through the gap is cooled. Further, the heat carried by the air is transmitted to the bottom surface of the outer housing 10 and is radiated from the bottom surface of the outer housing 10 to the outside air, and the air flowing through the gap is further cooled. The cooled air that has flowed into the inner casing 20 flows upward together with the air flowing from the lower direction, and is circulated by being sucked and discharged again by the fan 34. At this time, the cooled air flowing upward in the inner housing 20 absorbs heat generated from each electrical component, and cools each electrical component. In this manner, air circulates in the gap between the outer casing 10 and the inner casing 20 and the inside of the inner casing 20 and is efficiently dissipated.

ファン34が停止している場合、筺体内部での風の流れはほとんどなく、熱の移動も図4,5や図8で説明した場合とほぼ同様である。   When the fan 34 is stopped, there is almost no wind flow inside the housing, and the heat transfer is almost the same as in the case described with reference to FIGS.

以上に説明した様に、ファン34を作動させ、筺体内部で風が循環して熱が運ばれることで、熱が特定の場所に溜まるのを防止して電気部品の故障を防止でき、万遍なく熱が伝わることでより外側筺体10の全ての面からバランス良く放熱することができ、放熱効果が良くなる。また、ファン34を作動させなくとも、自然対流により筺体内部で風が循環して放熱されることで、放熱効果を確保できる。すなわち、筺体を二重構造として間隙を設けることで、内側筺体内部の高温の流れと外側筺体と内側筺体との間隙の低温の流れが互いに干渉しなくなり、高い放熱効果を得ることができる。   As described above, the fan 34 is operated, and the heat is circulated through the inside of the housing to prevent the heat from accumulating in a specific place, thereby preventing the failure of electrical parts. Since heat is transmitted without any problem, heat can be radiated from all surfaces of the outer casing 10 in a well-balanced manner, and the heat radiation effect is improved. Further, even if the fan 34 is not operated, the heat is radiated by the circulation of the wind inside the housing by natural convection, thereby ensuring the heat dissipation effect. That is, by providing a gap with the casing having a double structure, the high-temperature flow inside the inner casing and the low-temperature flow in the gap between the outer casing and the inner casing do not interfere with each other, and a high heat dissipation effect can be obtained.

上述してきた電子機器の説明では、画像記録装置を想定した場合の効果を一部説明したが、画像記録装置の他にも屋外または屋内に設置される電子機器または電子機器以外の装置等に用いることももちろん可能であり、その構成及び動作とその内容についても本発明の要旨を逸脱しない範囲で種々に変形して実施できる。   In the above description of the electronic apparatus, a part of the effect when the image recording apparatus is assumed has been described. However, in addition to the image recording apparatus, the apparatus is used for an electronic apparatus installed outdoors or indoors or an apparatus other than the electronic apparatus. Of course, the configuration, operation, and contents thereof can be variously modified without departing from the spirit of the present invention.

また、ファン34から排出される風の向きを逆にして内側筺体20の内部に風を排出する様にしても、風の流れる向きが逆になるだけで、上述した構成と同様の効果を得ることができる。また、発熱の大きい記録装置32には専用のファンが別途設けられていても良く、これにより記録装置32から内側筺体20に効率的に熱を放出することができる。   Further, even if the direction of the wind discharged from the fan 34 is reversed and the wind is discharged into the inner casing 20, the same effect as the above-described configuration can be obtained only by the direction of the flow of the wind being reversed. be able to. In addition, a dedicated fan may be separately provided in the recording device 32 that generates a large amount of heat, whereby heat can be efficiently released from the recording device 32 to the inner housing 20.

要するに本発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.

10:外側筺体、11:上固定部材A、12:下固定部材A、13:扉部、14:コネクタ部、20:内側筺体、21:通気孔(前面)、22:通気孔(背面)、23:通気孔(左側面)、24:通気孔(右側面)、25:通気孔(底面)、26:通気孔(天井面)、27:上固定部材B、28:下固定部材B、29:窪み部、30:電源装置、31:制御装置、32:記録装置、33:プリント基板、34:ファン。 10: Outer housing, 11: Upper fixing member A, 12: Lower fixing member A, 13: Door portion, 14: Connector portion, 20: Inner housing, 21: Vent (front), 22: Vent (back), 23: Vent hole (left side) 24: Vent hole (right side) 25: Vent hole (bottom surface) 26: Vent hole (ceiling surface) 27: Upper fixing member B 28: Lower fixing member B 29 : Depression part, 30: power supply device, 31: control device, 32: recording device, 33: printed circuit board, 34: fan.

Claims (7)

発熱する電気部品を内装し、少なくとも5つの面で構成される第1の筺体と、
前記第1の筺体との間に間隙をおいて前記第1の筺体を内包した第2の密閉筺体と、
前記第1の筺体に取り付けられ、前記第1の筐体と前記第2の密閉筐体との間に形成された間隙または前記第1の筺体内に強制的に空気を対流させる送風機と、を備え、
前記第1の筺体を構成する面の中で送風機が取り付けられた面に送風機用の孔を有し、少なくとも他の1つの面に通気孔を有し、前記強制的に対流させられた空気が前記通気孔を介して前記第1の筺体と前記第2の密閉筺体との間に形成された間隙と前記第1の筐体の内部との間を行き来することで循環させることを特徴とする電子機器の放熱構造。
A first housing that is configured with at least five surfaces, and that includes an electrical component that generates heat;
A second sealed housing enclosing the first housing with a gap between the first housing and the first housing;
A blower attached to the first housing and forcibly convection air into a gap formed between the first housing and the second sealed housing or the first housing; Prepared,
Among the surfaces constituting the first housing, the surface to which the fan is attached has a hole for the fan, and at least one other surface has a vent hole, and the forced convection air is It is circulated by going back and forth between a gap formed between the first casing and the second sealed casing and the inside of the first casing through the vent hole. Heat dissipation structure for electronic equipment.
発熱する電気部品を内装し、少なくとも5つの面で構成される第1の筺体と、
前記第1の筺体との間に間隙をおいて前記第1の筺体を内包した第2の密閉筺体と、を備え、
前記第1の筺体を構成する面の中で少なくとも2つの面に通気孔を有し、前記電気部品から発生した熱により自然対流した空気が前記通気孔を介して前記第1の筺体と前記第2の密閉筺体との間に形成された間隙と前記第1の筐体の内部との間を行き来することで循環させることを特徴とする電子機器の放熱構造。
A first housing that is configured with at least five surfaces, and that includes an electrical component that generates heat;
A second sealed housing enclosing the first housing with a gap between the first housing and the first housing,
Ventilation holes are provided on at least two surfaces of the surfaces constituting the first casing, and the air naturally convected by the heat generated from the electrical component is connected to the first casing and the first through the ventilation holes. A heat dissipation structure for an electronic device, wherein the heat dissipation structure is circulated by going back and forth between a gap formed between the two sealed casings and the inside of the first casing.
請求項1乃至2に記載の電子機器の放熱構造であって、
前記電気部品は面積の小さい面を上下に向けて取り付けられることを特徴とする電子機器の放熱構造。
A heat dissipation structure for an electronic device according to claim 1,
A heat dissipation structure for an electronic device, wherein the electrical component is attached with a small area facing up and down.
請求項1乃至3に記載の電子機器の放熱構造であって、
前記電気部品で発熱の大きい電気部品は、前記第1の筺体のいずれかの面に当接して取り付けられることを特徴とする電子機器の放熱構造。
A heat dissipation structure for an electronic device according to claim 1,
An electronic device heat dissipation structure, wherein an electrical component that generates a large amount of heat is attached in contact with any surface of the first casing.
請求項4に記載の電子機器の放熱構造であって、
前記発熱の大きい電気部品が取り付けられる面は、前記第1の筺体を構成する面の中で1番大きな面であることを特徴とする電子機器の放熱構造。
A heat dissipation structure for an electronic device according to claim 4,
The heat radiation structure for an electronic device is characterized in that the surface on which the electric component generating a large amount of heat is attached is the largest surface among the surfaces constituting the first casing.
請求項3乃至4に記載の電子機器の放熱構造であって、
前記電気部品は電源、制御装置および記録装置であり、前記電源および前記記録装置が前記第1の筺体の面に当接して取り付けられることを特徴とする電子機器の放熱構造。
A heat dissipation structure for an electronic device according to claim 3, wherein
The electrical component is a power source, a control device, and a recording device, and the power source and the recording device are attached in contact with a surface of the first casing.
請求項1乃至6に記載の電子機器の放熱構造であって、
前記電気部品のうちで発熱の大きい電気部品が前記第1の筺体内の下方に配置されることを特徴とする電子機器の放熱構造。
A heat dissipation structure for an electronic device according to claim 1,
A heat dissipation structure for an electronic device, wherein an electric component generating a large amount of heat among the electric components is disposed below the first housing.
JP2010184944A 2010-08-20 2010-08-20 Heat dissipation structure of electronic device Pending JP2012044038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184944A JP2012044038A (en) 2010-08-20 2010-08-20 Heat dissipation structure of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184944A JP2012044038A (en) 2010-08-20 2010-08-20 Heat dissipation structure of electronic device

Publications (2)

Publication Number Publication Date
JP2012044038A true JP2012044038A (en) 2012-03-01
JP2012044038A5 JP2012044038A5 (en) 2013-09-19

Family

ID=45899993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184944A Pending JP2012044038A (en) 2010-08-20 2010-08-20 Heat dissipation structure of electronic device

Country Status (1)

Country Link
JP (1) JP2012044038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462821A1 (en) * 2017-09-29 2019-04-03 Siemens Ltd. China Electronic device
CN114460406A (en) * 2022-02-15 2022-05-10 国网山东省电力公司宁津县供电公司 Line loss measuring and calculating device of power distribution network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984885U (en) * 1982-11-30 1984-06-08 富士通株式会社 Heat dissipation structure of sealed housing
JPH11195878A (en) * 1998-01-05 1999-07-21 Mitsubishi Electric Corp Case body containing electronic device
JP2001156476A (en) * 1999-11-30 2001-06-08 Hitachi Cable Ltd Switching hub
JP2002185169A (en) * 2000-12-18 2002-06-28 Fujitsu Ltd Outdoor communication device
JP2004039692A (en) * 2002-06-28 2004-02-05 Fujitsu Ltd Cabinet for outdoor installation
JP2005236099A (en) * 2004-02-20 2005-09-02 Nec Corp Heat insulating method of electronic device cabinet, and electronic device housing type heat exchange structure applying the method thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984885U (en) * 1982-11-30 1984-06-08 富士通株式会社 Heat dissipation structure of sealed housing
JPH11195878A (en) * 1998-01-05 1999-07-21 Mitsubishi Electric Corp Case body containing electronic device
JP2001156476A (en) * 1999-11-30 2001-06-08 Hitachi Cable Ltd Switching hub
JP2002185169A (en) * 2000-12-18 2002-06-28 Fujitsu Ltd Outdoor communication device
JP2004039692A (en) * 2002-06-28 2004-02-05 Fujitsu Ltd Cabinet for outdoor installation
JP2005236099A (en) * 2004-02-20 2005-09-02 Nec Corp Heat insulating method of electronic device cabinet, and electronic device housing type heat exchange structure applying the method thereto

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462821A1 (en) * 2017-09-29 2019-04-03 Siemens Ltd. China Electronic device
US10813244B2 (en) 2017-09-29 2020-10-20 Siemens Ltd., China Electronic device including a waterproof case and flow guide assembly including a fan and an airflow guide plate
CN114460406A (en) * 2022-02-15 2022-05-10 国网山东省电力公司宁津县供电公司 Line loss measuring and calculating device of power distribution network

Similar Documents

Publication Publication Date Title
CN207249336U (en) Projecting apparatus with radiator structure
US6646867B1 (en) Apparatus for flame containment in electronic devices
US9134757B2 (en) Electronic device having passive cooling
JP5927539B2 (en) Electronics
JP2008112225A (en) Casing temperature suppression structure for electronic apparatus, and portable computer
KR20150005338A (en) Air conditioner
JP2017216410A (en) Cooling device of control panel
JP5265012B2 (en) Electronics
JP2012044038A (en) Heat dissipation structure of electronic device
JP2008244214A (en) Electronic equipment box
JP6074346B2 (en) Switchboard equipment
JP4944420B2 (en) Cooling structure for heat source in housing and projector
JP2013251452A (en) Electronic apparatus
JP6224315B2 (en) Electronics
JP5733144B2 (en) Electronics
JP5434713B2 (en) Heat dissipation unit and electronic device using the same
JP5117362B2 (en) Thermal cooling structure for camera swivel
JP5936631B2 (en) Information processing device
JP2003218569A (en) Cooling device of electronic equipment
JP6242169B2 (en) Control panel and pump device
TW201422123A (en) Electronic device
TW201343059A (en) Server cooling assembly
JP2006269575A (en) Cooling structure of electronic apparatus unit
JP6683487B2 (en) refrigerator
JP2007221057A (en) Electronic equipment device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150416