JP2011169187A - Waste power generation device utilizing solar heat - Google Patents

Waste power generation device utilizing solar heat Download PDF

Info

Publication number
JP2011169187A
JP2011169187A JP2010032245A JP2010032245A JP2011169187A JP 2011169187 A JP2011169187 A JP 2011169187A JP 2010032245 A JP2010032245 A JP 2010032245A JP 2010032245 A JP2010032245 A JP 2010032245A JP 2011169187 A JP2011169187 A JP 2011169187A
Authority
JP
Japan
Prior art keywords
heat
heat storage
solar heat
steam
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032245A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwasaki
克博 岩崎
Hiroshi Yamamoto
浩 山本
Norihito Uetake
規人 植竹
Takeshi Nakayama
剛 中山
Takeshi Uchiyama
武 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010032245A priority Critical patent/JP2011169187A/en
Publication of JP2011169187A publication Critical patent/JP2011169187A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste power generation device utilizing solar heat, effectively utilizing a capacity of a waste heat recovery power-generating facility of a waste power-generating facility, improving power generation efficiency when a solar heat is utilized for waste power generation, and smoothing fluctuation in solar heat receiving amount to maintain highly efficient power generation. <P>SOLUTION: The waste power generation device utilizing solar heat includes: a radiation boiler 2 recovering heat from exhaust gas exhausted from an incinerator to generate steam; a piping group boiler 3 heating the steam generated by the radiation boiler 2 to be a temperature higher than a saturated steam temperature to generate superheated steam; a solar heat collecting device 19 collecting solar heat; and a solar heat receiving/storing device 20 receiving the collected solar heat and storing the solar heat into a heat storing body, heating the superheated steam generated by the piping group boiler 3 furthermore by heat exchange with the solar heat stored in the heat storing body to generate high-temperature superheated steam; and a steam turbine generator 15 generating power by the generated high-temperature superheated steam. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設けられる廃棄物発電装置に関する。   The present invention relates to a waste power generation apparatus provided in a waste treatment furnace facility that incinerates or gasifies and melts waste.

廃棄物発電設備は、供給する廃棄物の種類によって、廃棄物の燃焼により発生する熱量が変動する(例えば、1200kcal/kg〜2800kcal/kg−湿ベース)ことを考慮して、高カロリー廃棄物に対応した廃熱回収発電設備を備えている。近年は、廃棄物の分別収集が進行し、高カロリーのプラスチックごみが分別され、焼却炉へ供給される廃棄物のカロリーが低下しているため、廃熱回収発電設備能力に相当余裕ができており、換言すれば、廃熱回収発電設備能力が有効に利用されていない。このような事情から、既設の廃棄物発電設備の廃熱回収発電設備能力を有効に活用することが要望されている。さりとて、化石燃料を燃焼して過熱蒸気量を増大させ、発電量を増大させることは、地球温暖化への対応に反するので望ましくない。   In consideration of the fact that the amount of heat generated by combustion of waste varies depending on the type of waste supplied (for example, 1200 kcal / kg to 2800 kcal / kg-humid basis), Equipped with a corresponding waste heat recovery power generation facility. In recent years, separate collection of waste has progressed, high-calorie plastic waste has been separated, and the calories of waste supplied to the incinerator have decreased, so there is a considerable margin in waste heat recovery power generation equipment capacity. In other words, the waste heat recovery power generation facility capacity is not utilized effectively. Under such circumstances, it is demanded to effectively utilize the waste heat recovery power generation facility capacity of the existing waste power generation facility. On the other hand, it is not desirable to burn fossil fuels to increase the amount of superheated steam and increase the amount of power generation because it is against the response to global warming.

廃棄物発電設備の一例として、廃棄物焼却炉にボイラを備え、焼却炉から排出される排ガスの廃熱を回収し該ボイラにて水を加熱して蒸発させて飽和蒸気を生成し、燃焼式過熱器にて該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電することが行われている。(特許文献1参照)。   As an example of a waste power generation facility, a waste incinerator is equipped with a boiler, the waste heat of exhaust gas discharged from the incinerator is recovered, water is heated and evaporated in the boiler to produce saturated steam, a combustion type The saturated steam is further heated by a superheater to generate superheated steam, and the superheated steam is supplied to a steam turbine for power generation. (See Patent Document 1).

上記特許文献1に開示されている発電装置は、例えば、図4に示される構成で実施される。すなわち、まず、内部に蒸発管が配された輻射ボイラ2において、廃棄物焼却炉(図示せず)から排出された排ガスによって蒸発管内の水が加熱されて飽和蒸気が生成された後、蒸気溜り12において気水分離される。そして、飽和蒸気は、過熱管が配された管群ボイラ3にてさらに過熱されて過熱蒸気となる。一方、上記蒸気溜り12で分離された水は上記輻射ボイラ2に戻される。上記過熱蒸気は、過熱蒸気ヘッダ14を通った後、蒸気タービン発電機15へ供給され、該蒸気タービン発電機15を駆動することにより発電に寄与する。上記蒸気タービン発電機15を駆動した過熱蒸気は復水器16で凝縮されて水に戻り、給水予熱エコノマイザ17にて予熱された後、上記輻射ボイラ2へ送られる。また、上記給水予熱エコノマイザ17には、軟水器18によって軟水化された補給水が供給されている。   The power generation device disclosed in Patent Document 1 is implemented, for example, with the configuration shown in FIG. That is, first, in the radiant boiler 2 in which the evaporation pipe is arranged, after the water in the evaporation pipe is heated by the exhaust gas discharged from the waste incinerator (not shown) to generate saturated steam, In FIG. The saturated steam is further superheated by the tube group boiler 3 in which the superheated tubes are arranged, and becomes superheated steam. On the other hand, the water separated by the steam reservoir 12 is returned to the radiation boiler 2. After passing through the superheated steam header 14, the superheated steam is supplied to the steam turbine generator 15, and contributes to power generation by driving the steam turbine generator 15. The superheated steam that has driven the steam turbine generator 15 is condensed by the condenser 16 and returned to the water, preheated by the feed water preheating economizer 17, and then sent to the radiation boiler 2. The water supply preheating economizer 17 is supplied with makeup water softened by the water softener 18.

一方、発電装置の他の形態として、太陽熱を利用した発電装置が用いられることもある。このような太陽熱利用発電装置として、特許文献2に開示されたものが知られている。特許文献2には、太陽熱で液体熱媒体を加熱し、該熱媒体を介して水を加熱蒸発することにより飽和蒸気を生成した後、ガスタービンの駆動に使用された燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電を行う発電装置が開示されている。   On the other hand, as another form of the power generation apparatus, a power generation apparatus using solar heat may be used. As such a solar thermal power generation device, one disclosed in Patent Document 2 is known. In Patent Document 2, a liquid heat medium is heated by solar heat, water is evaporated through the heat medium to generate saturated steam, and then the saturated steam is generated by the combustion gas used to drive the gas turbine. Further, there is disclosed a power generation apparatus that generates heat by generating superheated steam by supplying the superheated steam to a steam turbine.

特開平7−035311JP 7-035311 A 特開2008−039367JP2008-039367

しかし、特許文献2の発電装置では、太陽熱で加熱された熱媒体によって水を加熱して飽和蒸気を生成し、燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成するので、太陽熱の大部分が水の蒸発潜熱に消費される。この結果、発電に対する太陽熱の寄与が小さくなってしまう。例えば、廃棄物発電施設の発電装置として上記特許文献2の発電装置を適用しても、発電に寄与するのは受熱した太陽熱の10%程度であり、効率が低く望ましくない。   However, in the power generation device of Patent Document 2, water is heated by a heat medium heated by solar heat to generate saturated steam, and the saturated steam is further heated by combustion gas to generate superheated steam. Part is consumed by the latent heat of vaporization of water. As a result, the contribution of solar heat to power generation is reduced. For example, even if the power generation device of Patent Document 2 described above is applied as a power generation device for a waste power generation facility, only about 10% of the received solar heat contributes to power generation, which is not desirable because of low efficiency.

また、昼夜間や天候(晴天・曇天・雨天・他)による日射量の変動により、太陽熱受熱量が変動するが、このような太陽熱受熱量の変動を平滑化して、高効率発電を維持することが要望されている。   Also, the amount of solar heat received varies depending on the amount of solar radiation due to daytime and nighttime and the weather (clear weather, cloudy weather, rainy weather, etc.). To maintain high-efficiency power generation by smoothing such variations in the amount of solar heat received Is desired.

本発明は上記の問題に鑑み、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができ、また、太陽熱を廃棄物発電に利用する際に発電効率を高めることができ、さらに、太陽熱受熱量の変動を平滑化して高効率発電を維持することができる太陽熱利用廃棄物発電装置を提供することを課題とする。   In view of the above problems, the present invention can effectively utilize the waste heat recovery power generation facility capacity of the waste power generation facility, and can improve the power generation efficiency when using solar heat for waste power generation, It is an object of the present invention to provide a solar heat-generating waste power generation apparatus capable of smoothing fluctuations in the amount of solar heat received and maintaining high-efficiency power generation.

廃熱回収蒸気を用いた蒸気タービンによる発電に有効な熱エネルギーについて図5を用いて説明する。図5は、40気圧に加圧された温水が249℃で蒸発して飽和蒸気となった後、さらに加熱されて過熱蒸気状態となる場合における温度とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。   Thermal energy effective for power generation by a steam turbine using waste heat recovery steam will be described with reference to FIG. FIG. 5 shows a water-steam enthalpy line showing the relationship between temperature and enthalpy when hot water pressurized to 40 atm is evaporated at 249 ° C. to become saturated steam and then heated to become superheated steam. FIG.

図5に示されているように、蒸気タービンでの発電に有効な蒸気のエンタルピーは、過熱蒸気部分が主体となっている。これは、蒸気タービンのタービンブレードの強度と耐久性の制約より、湿り蒸気を使うことが困難なためである。ここで、復水器の適用により、図5の加圧条件下における飽和蒸気温度の蒸気エンタルピー部分も一部活用できる。   As shown in FIG. 5, the superheated steam portion is mainly used for the enthalpy of steam effective for power generation in the steam turbine. This is because it is difficult to use wet steam due to restrictions on the strength and durability of the turbine blade of the steam turbine. Here, by applying the condenser, a part of the steam enthalpy portion of the saturated steam temperature under the pressurization condition of FIG.

発電効率向上のため、復水器を設けてタービン出口圧力を低減させ、蒸気の湿り度を低減することにより、より多くの蒸気のエンタルピーを電力に変換できるが、それでも蒸気の保有するエンタルピーのうち電力に変換できるのは、その20%前後である。   In order to improve power generation efficiency, it is possible to convert more steam enthalpy into electricity by installing a condenser to reduce turbine outlet pressure and reducing steam wetness. About 20% can be converted into electric power.

発明者は、廃棄物発電においては燃焼炉又はガス化溶融炉からの排ガスによって既に飽和蒸気が発生していることに着目し、該飽和蒸気から過熱蒸気を得る過程及び過熱蒸気量を増大させる過程に太陽熱を活用することにより、従来のような、太陽熱によって飽和蒸気を生成した後に、燃焼ガスによって過熱蒸気を生成して発電する場合よりも、倍以上高い効率で太陽熱の受熱熱量を電力へ変換できることを見出した。   The inventors pay attention to the fact that saturated steam is already generated by exhaust gas from a combustion furnace or gasification melting furnace in waste power generation, and a process of obtaining superheated steam from the saturated steam and a process of increasing the amount of superheated steam. By using solar heat, it is possible to convert the amount of heat received from solar heat into electric power with a efficiency that is more than twice as high as when generating saturated steam with solar heat and then generating superheated steam with combustion gas. I found out that I can do it.

この太陽熱の利用による効果は、太陽熱の集熱による熱量を蒸気の直接加熱に利用すること、そして、少なくとも飽和蒸気温度を超える温度の熱供給が可能であることを条件として得られる。   This effect of using solar heat is obtained on the condition that the amount of heat generated by collecting solar heat is used for direct heating of steam, and that heat supply at a temperature exceeding at least the saturated steam temperature is possible.

本発明に係る太陽熱利用廃棄物発電装置は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、太陽熱を集熱する太陽熱集熱装置と、蓄熱体を有し集熱された太陽熱を受熱するとともに蓄熱体に蓄熱し、該蓄熱体に蓄熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱蓄熱装置と、生成された過熱蒸気により発電する蒸気タービン発電装置とを備えることを特徴としている。   A solar heat-generating waste power generation apparatus according to the present invention is a waste power generation apparatus provided in a waste treatment furnace facility for incinerating or gasifying and melting waste, and recovers heat from exhaust gas discharged from the waste treatment furnace. By heat exchange with a boiler that generates steam, a solar heat collection device that collects solar heat, and a solar storage unit that receives the collected solar heat and stores the heat in the heat storage body, and the heat stored in the heat storage body , A solar thermal energy storage device that performs at least one of superheated steam generation that generates superheated steam by heating the steam generated in the boiler to a temperature higher than the saturated steam temperature and superheated steam heating that further heats the superheated steam generated in the boiler And a steam turbine power generator that generates electric power using the generated superheated steam.

本発明では、ボイラで飽和蒸気又は過熱蒸気を生成し、該ボイラで飽和蒸気が生成される場合には過熱蒸気の生成そして加熱に太陽熱を活用し、該ボイラで過熱蒸気が生成される場合には該過熱蒸気の加熱に太陽熱を活用する。このように、太陽熱を過熱蒸気の生成あるいは加熱に活用することにより、該太陽熱の電気変換効率が大幅に高められる。また、太陽熱は蓄熱体に蓄熱されるので、太陽熱受熱量の変動を平滑化して高効率発電を維持することができる。   In the present invention, when saturated steam or superheated steam is generated in a boiler, and when saturated steam is generated in the boiler, solar heat is used for generation and heating of the superheated steam, and when superheated steam is generated in the boiler Uses solar heat to heat the superheated steam. Thus, by utilizing solar heat for the generation or heating of superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased. Moreover, since solar heat is stored in the heat storage body, fluctuations in the amount of solar heat received can be smoothed to maintain high-efficiency power generation.

本発明によれば、既存の廃棄物発電設備に太陽熱を利用する装置を付加することで発電設備能力を有効活用できるばかりでなく、新規の廃棄物発電設備においてもさらに発電効率を向上できる効果がある。   According to the present invention, it is possible not only to effectively utilize the power generation facility capacity by adding a device using solar heat to the existing waste power generation facility, but also to improve the power generation efficiency even in the new waste power generation facility. is there.

太陽熱受熱蓄熱装置にて蓄熱した太陽熱と過熱蒸気との熱交換を行う機構が、ボイラで生成した過熱蒸気を蒸気タービンに供給する流路に設置されていることが好ましい。上記機構が該流路に設置されることにより、太陽熱が過熱蒸気の生成あるいは加熱に確実に活用されるので、発電効率をさらに高めることができる。   It is preferable that the mechanism for exchanging heat between the solar heat stored in the solar heat receiving heat storage device and the superheated steam is installed in a flow path for supplying the superheated steam generated by the boiler to the steam turbine. Since the mechanism is installed in the flow path, solar heat is reliably utilized for generation or heating of superheated steam, so that power generation efficiency can be further increased.

太陽熱利用廃棄物発電装置は、太陽熱受熱蓄熱装置が、蓄熱体の温度を検知する蓄熱体温度センサと、該蓄熱体温度センサが検知した蓄熱体の温度が所定値以上であるときに太陽熱受熱蓄熱装置へ蒸気を供給し、該蓄熱体の温度が所定値より低いときに太陽熱受熱蓄熱装置への蒸気の供給を停止する蒸気供給制御手段とを備えることが好ましい。所定値として飽和蒸気温度又は飽和蒸気温度に補正値を付加した温度を用いることが好ましい。   The solar heat-generated waste power generation device is a solar heat receiving heat storage device when the solar heat receiving heat storage device detects the temperature of the heat storage body and the temperature of the heat storage body detected by the heat storage body temperature sensor is equal to or higher than a predetermined value. It is preferable to provide steam supply control means for supplying steam to the device and stopping the supply of steam to the solar heat receiving heat storage device when the temperature of the heat storage body is lower than a predetermined value. It is preferable to use a saturated steam temperature or a temperature obtained by adding a correction value to the saturated steam temperature as the predetermined value.

太陽熱受熱蓄熱装置の蓄熱体の温度が所定値(例えば飽和蒸気温度)より低いときに蒸気や水を太陽熱受熱部分に流すと熱ロスが生じてしまうので、蓄熱体の温度が飽和蒸気温度以上であるときにのみ蒸気や水を太陽熱受熱蓄熱装置に供給することにより熱ロスの発生を回避できる。また、蓄熱体の温度が飽和蒸気温度以上であるときに過熱蒸気を太陽熱受熱蓄熱装置に供給することにより該太陽熱受熱蓄熱装置の過熱による損傷を回避できる。   When steam or water is passed through the solar heat receiving part when the temperature of the heat storage body of the solar heat receiving heat storage device is lower than a predetermined value (for example, saturated steam temperature), heat loss occurs, so the temperature of the heat storing body is higher than the saturated steam temperature. The heat loss can be avoided by supplying steam and water to the solar heat receiving and storing device only at certain times. Further, by supplying superheated steam to the solar heat receiving heat storage device when the temperature of the heat storage body is equal to or higher than the saturated steam temperature, damage due to overheating of the solar heat receiving heat storage device can be avoided.

太陽熱利用廃棄物発電装置は、太陽熱受熱蓄熱装置が、蓄熱体の温度を検知する蓄熱体温度センサを備え、該蓄熱体温度センサが検知した該蓄熱体の温度が所定値(例えば飽和蒸気温度)より低いときに、太陽熱受熱蓄熱装置の蓄熱体及び受熱面のうち少なくとも一つからからの熱放散を抑制する保熱材又は断熱材により蓄熱体及び受熱面のうち少なくとも一つを覆う機構を有していることが好ましい。   The solar thermal waste power generation apparatus includes a thermal storage temperature sensor that detects the temperature of the thermal storage body, and the temperature of the thermal storage body detected by the thermal storage temperature sensor is a predetermined value (for example, saturated steam temperature). When the temperature is lower, there is a mechanism for covering at least one of the heat storage body and the heat receiving surface with a heat insulating material or a heat insulating material that suppresses heat dissipation from at least one of the heat storage body and the heat receiving surface of the solar heat receiving heat storage device. It is preferable.

日中、天候の変化(例えば、曇りやにわか雨等)の影響で日射量が低減して、太陽熱受熱蓄熱装置の太陽熱受熱部分に太陽光が十分に入射しておらず、蓄熱体の温度が飽和蒸気温度より低いときであっても、上記機構を設けることにより上記蓄熱体からの熱放散を抑制して熱ロスを低減することができる。この結果、太陽熱の受熱を再開したときあるいは受熱量が十分な量に戻ったときに、過熱蒸気生成や過熱蒸気加熱の加熱熱量を短時間で所定のレベルに戻すことができ、太陽熱による加熱熱量の変動を小さく抑制することができる。   During the day, the amount of solar radiation is reduced due to weather changes (for example, cloudy weather and showers), so that sunlight is not sufficiently incident on the solar heat receiving part of the solar heat receiving heat storage device and the temperature of the heat storage body is saturated. Even when the temperature is lower than the steam temperature, by providing the mechanism, heat dissipation from the heat storage body can be suppressed and heat loss can be reduced. As a result, when the heat reception of solar heat is resumed or when the heat reception amount returns to a sufficient amount, the heating heat amount of superheated steam generation or superheated steam heating can be returned to a predetermined level in a short time, and the heating heat amount by solar heat Fluctuations can be suppressed.

太陽熱受熱蓄熱装置は、蓄熱体の温度を検知する蓄熱体温度センサを備え、該蓄熱体温度センサが検知した該蓄熱体の温度が所定値より低いときに、過熱蒸気生成及び過熱蒸気加熱のうち少なくとも一つを行う燃焼機器を備えることが好ましい。これによって、太陽熱受熱蓄熱装置の蓄熱体の温度が所定値より低い場合であっても、上記燃焼機器によって過熱蒸気生成や過熱蒸気加熱を行うことができる。   The solar heat receiving heat storage device includes a heat storage body temperature sensor that detects the temperature of the heat storage body, and when the temperature of the heat storage body detected by the heat storage body temperature sensor is lower than a predetermined value, of the superheated steam generation and the superheated steam heating It is preferable to provide a combustion device that performs at least one. Thereby, even if it is a case where the temperature of the thermal storage body of a solar heat receiving thermal storage apparatus is lower than predetermined value, superheated steam production | generation and superheated steam heating can be performed with the said combustion apparatus.

本発明によれば、太陽熱を廃棄物発電に利用する際に発電効率を高めることができ、その結果、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができ、さらに、太陽熱受熱量の変動を平滑化して高効率発電を維持することができる。また、既存の廃棄物発電設備に太陽熱を利用する装置を付加することで発電設備能力を有効活用できるばかりでなく、新規の廃棄物発電設備においてもさらに発電効率を向上できる効果がある。   According to the present invention, it is possible to increase power generation efficiency when using solar heat for waste power generation, and as a result, it is possible to effectively utilize the waste heat recovery power generation facility capacity of the waste power generation facility. The variation in the amount of heat received can be smoothed to maintain high-efficiency power generation. Moreover, not only can the power generation facility capacity be effectively utilized by adding a device that uses solar heat to the existing waste power generation facility, but there is also an effect that the power generation efficiency can be further improved in the new waste power generation facility.

第一実施形態における廃棄物処理炉施設の概略を示す図である。It is a figure which shows the outline of the waste processing furnace facility in 1st embodiment. 図1の廃棄物処理炉施設に設けられる発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generating apparatus provided in the waste processing furnace facility of FIG. 第二実施形態に係る発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generating apparatus which concerns on 2nd embodiment. 従来の発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional electric power generating apparatus. 水温とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。It is a water-steam enthalpy diagram which shows the relationship between water temperature and enthalpy.

以下、添付図面に基づいて本発明に係る太陽熱利用廃棄物発電装置の実施形態を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a solar thermal power generation apparatus according to the present invention will be described with reference to the accompanying drawings.

<第一実施形態>
図1は、本実施形態における廃棄物処理炉施設の概略を示す図である。図2は、図1の廃棄物処理炉施設に設けられる発電装置の構成を示すブロック図である。
<First embodiment>
FIG. 1 is a diagram showing an outline of a waste treatment furnace facility in the present embodiment. FIG. 2 is a block diagram showing a configuration of a power generation apparatus provided in the waste treatment furnace facility of FIG.

図1に示されているように、上記廃棄物処理炉施設は、廃棄物を焼却する焼却炉1と、該焼却炉1の下流側に設置された輻射ボイラ2及び管群ボイラ3を一部に含む後述の太陽熱利用廃棄物発電装置10(以下、単に「発電装置10」という)と、該管群ボイラ3の下流側に設置された排ガス処理装置4とを有している。なお、上記焼却炉1に代えて、ガス化溶融炉が設けられていてもよい。   As shown in FIG. 1, the waste treatment furnace facility partially includes an incinerator 1 for incinerating waste, and a radiant boiler 2 and a tube group boiler 3 installed on the downstream side of the incinerator 1. And a later-described solar heat waste generation device 10 (hereinafter simply referred to as “power generation device 10”) and an exhaust gas treatment device 4 installed on the downstream side of the tube group boiler 3. Instead of the incinerator 1, a gasification melting furnace may be provided.

図1に見られるように、発電装置10は、蒸気溜り12の上流側で該蒸気溜り12に接続される蒸発管11と、該蒸気溜り12の下流側で該蒸気溜り12に接続される過熱管13とを一部に有している。また、蒸発管11は輻射ボイラ2内に配され、過熱管13は管群ボイラ3内に配されている。   As shown in FIG. 1, the power generation device 10 includes an evaporation pipe 11 connected to the steam reservoir 12 on the upstream side of the steam reservoir 12, and an overheat connected to the steam reservoir 12 on the downstream side of the steam reservoir 12. It has a tube 13 in part. The evaporation pipe 11 is arranged in the radiation boiler 2, and the superheated pipe 13 is arranged in the tube group boiler 3.

上記発電装置10は、図2に示されているように、図4における従来の発電装置に太陽熱集熱装置19及び太陽熱受熱蓄熱装置20を付加した構成となっている。ここでは、該太陽熱集熱装置19及び太陽熱受熱蓄熱装置20を中心に説明し、上記従来の発電装置と同一の部分については同一符号を付して説明を省略する。   As shown in FIG. 2, the power generation device 10 has a configuration in which a solar heat collecting device 19 and a solar heat receiving heat storage device 20 are added to the conventional power generation device in FIG. 4. Here, the solar heat collecting device 19 and the solar heat receiving and storing device 20 will be mainly described, and the same parts as those of the conventional power generating device will be denoted by the same reference numerals and the description thereof will be omitted.

上記太陽熱集熱装置19は、廃棄物処理炉施設の屋根上又は敷地内に複数設置されている。該太陽熱集熱装置19は、反射鏡と、該反射鏡の方向や傾きを太陽の動きに合わせて制御する方向制御装置(図示せず)とを有している。   A plurality of the solar heat collecting devices 19 are installed on the roof or site of the waste treatment furnace facility. The solar heat collecting device 19 includes a reflecting mirror and a direction control device (not shown) that controls the direction and inclination of the reflecting mirror in accordance with the movement of the sun.

また、太陽熱受熱蓄熱装置20は、太陽熱集熱装置19によって集熱された太陽熱を受熱するとともに蓄熱する。該太陽熱受熱蓄熱装置20は、上記太陽熱を蓄熱するための蓄熱体を内部に有している。図1に示されるように、該太陽熱受熱蓄熱装置20は、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機15に供給する流路に設置されている。   Further, the solar heat receiving and storing device 20 receives the solar heat collected by the solar heat collecting device 19 and stores it. The solar heat receiving and storing apparatus 20 has a heat storage body for storing the solar heat inside. As shown in FIG. 1, the solar heat receiving and storing apparatus 20 is installed in a flow path for supplying superheated steam generated by a superheated pipe 13 arranged in the tube group boiler 3 to the steam turbine generator 15.

上記蓄熱体は蓄熱物質で形成されており、蓄熱物質としては、例えば、固体金属酸化物や熱媒油類や、好ましくは熱容量の大きい相変態物質としての溶融塩類(NaNO、KNO、NaCl、NaCO等)や、さらに好ましくは、金属水酸化物(水酸化鉄(蓄熱温度300〜400℃))、アルカリ土類炭酸塩(MgCO(蓄熱温度450℃))、アルカリ土類水酸化物(Ca(OH)(蓄熱温度540℃))等、化学反応による吸熱反応が得られる蓄熱物質を用いる。 The heat storage body is formed of a heat storage material. Examples of the heat storage material include solid metal oxides and heat transfer oils, and preferably molten salts (NaNO 3 , KNO 3 , NaCl as phase change materials having a large heat capacity). , Na 2 CO 3 etc.), more preferably metal hydroxide (iron hydroxide (heat storage temperature 300 to 400 ° C.)), alkaline earth carbonate (MgCO 3 (heat storage temperature 450 ° C.)), alkaline earth A heat storage material capable of obtaining an endothermic reaction by a chemical reaction such as hydroxide (Ca (OH) 2 (heat storage temperature 540 ° C.)) is used.

本実施形態では、図2に示されているように、管群ボイラ3で生成された過熱蒸気は過熱蒸気ヘッダ14を経て太陽熱受熱蓄熱装置20へ送られる。該過熱蒸気は、太陽熱受熱蓄熱装置20の蓄熱体に蓄熱された太陽熱によってさらに加熱される。そして、該太陽熱で加熱された過熱蒸気(以下「高温過熱蒸気」という)は、蒸気タービン発電機15へ供給され、該蒸気タービン発電機15を駆動することにより発電に寄与する。   In the present embodiment, as shown in FIG. 2, the superheated steam generated in the tube group boiler 3 is sent to the solar heat receiving heat storage device 20 via the superheated steam header 14. The superheated steam is further heated by solar heat stored in the heat storage body of the solar heat receiving heat storage device 20. The superheated steam heated by the solar heat (hereinafter referred to as “high temperature superheated steam”) is supplied to the steam turbine generator 15 and contributes to power generation by driving the steam turbine generator 15.

本実施形態では、焼却炉1からの排ガスの回収廃熱によって飽和蒸気そして過熱蒸気を生成し、太陽熱によって該過熱蒸気を加熱して高温過熱蒸気を生成する。このように、高温過熱蒸気の生成にのみ太陽熱を活用することにより、該太陽熱の電気変換効率が大幅に高められ、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができる。具体的には、本実施形態に係る発電装置によって、太陽熱の電力変換効率を従来の4倍以上、すなわち、40%以上にまで高めることができる。   In this embodiment, saturated steam and superheated steam are generated by the recovered waste heat of the exhaust gas from the incinerator 1, and the superheated steam is heated by solar heat to generate high-temperature superheated steam. Thus, by using solar heat only for the production of high-temperature superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased, and the waste heat recovery power generation facility capacity of the waste power generation facility can be effectively utilized. Specifically, the power conversion efficiency of solar heat can be increased to 4 times or more, that is, 40% or more of the conventional thermal power conversion apparatus according to the present embodiment.

また、本実施形態では、太陽熱受熱蓄熱装置20の蓄熱体に太陽熱を蓄熱し、該太陽熱を高温過熱蒸気の生成に活用するので、太陽熱受熱量の変動を平滑化して高効率発電を維持することができる。   Further, in the present embodiment, solar heat is stored in the heat storage body of the solar heat receiving heat storage device 20, and the solar heat is utilized for generation of high-temperature superheated steam, so that fluctuations in the amount of solar heat received are smoothed to maintain high-efficiency power generation. Can do.

また、本実施形態では、太陽熱受熱蓄熱装置20が、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機15に供給する流路に設置されており、太陽熱を高温過熱蒸気の生成に確実に活用できるので、発電効率をさらに高めることができる。   Moreover, in this embodiment, the solar heat receiving and storing apparatus 20 is installed in the flow path which supplies the superheated steam produced | generated by the superheat pipe 13 distribute | arranged in the tube group boiler 3 to the steam turbine generator 15, and solar heat is supplied. Since it can be reliably used to generate high-temperature superheated steam, the power generation efficiency can be further increased.

従来の廃棄物発電設備における廃熱回収ボイラは、ハロゲン化合物や硫黄化合物やその他の腐食性成分が排ガスに含まれるため、ボイラの腐食が発生しない温度で廃熱回収することが行われており、得られる蒸気温度は400℃が限界であった。本実施形態によれば、太陽熱受熱装置20では、排ガス中の腐食成分に対する対策が不要であるので、集熱を効率的に行うことにより、過熱蒸気を450℃〜550℃まで高めることができ、さらに高い発電効率を得ることができる。   Waste heat recovery boilers in conventional waste power generation facilities contain exhaust gas containing halogen compounds, sulfur compounds and other corrosive components, so waste heat recovery is performed at a temperature where boiler corrosion does not occur. The steam temperature obtained was limited to 400 ° C. According to this embodiment, since the solar heat receiving device 20 does not require a countermeasure against the corrosive component in the exhaust gas, the superheated steam can be increased to 450 ° C. to 550 ° C. by efficiently collecting heat, Higher power generation efficiency can be obtained.

本実施形態では、太陽熱を高温過熱蒸気の生成に活用したが、これに代えて、該太陽熱を過熱蒸気および高温過熱蒸気の両方の生成に活用してもよい。すなわち、太陽熱受熱蓄熱装置20へ飽和蒸気を供給して、太陽熱受熱蓄熱装置20の蓄熱体に蓄熱された太陽熱によって該飽和蒸気を過熱して、過熱蒸気、さらには高温過熱蒸気を生成することができる。   In the present embodiment, solar heat is used to generate high-temperature superheated steam, but instead, this solar heat may be used to generate both superheated steam and high-temperature superheated steam. That is, the saturated steam is supplied to the solar heat receiving heat storage device 20, and the saturated steam is superheated by the solar heat stored in the heat storage body of the solar heat receiving heat storage device 20, thereby generating superheated steam and further high-temperature superheated steam. it can.

<第二実施形態>
本実施形態に係る発電装置は、太陽熱受熱蓄熱装置の蓄熱体の温度を検知する蓄熱体温度センサと、該センサにより検知された蓄熱体の温度に応じて太陽熱受熱蓄熱装置及び蒸気タービン発電機への蒸気の供給を制御する蒸気供給制御手段としての蒸気供給制御装置とを有している点で、該センサ及び蒸気供給制御装置を有していない第一実施形態の発電装置と相違している。ここでは、上記センサ及び蒸気供給制御装置を中心に説明し、第一実施形態と同一の部分については同一符号を付して説明を省略する。
<Second embodiment>
The power generator according to the present embodiment includes a heat storage body temperature sensor that detects the temperature of the heat storage body of the solar heat reception heat storage apparatus, and the solar heat reception heat storage apparatus and the steam turbine generator according to the temperature of the heat storage body detected by the sensor. It differs from the power generator of the first embodiment that does not have the sensor and the steam supply control device in that it has a steam supply control device as a steam supply control means for controlling the supply of steam. . Here, it demonstrates centering on the said sensor and a vapor | steam supply control apparatus, and attaches | subjects the same code | symbol about the part same as 1st embodiment, and abbreviate | omits description.

図3は、本実施形態に係る発電装置の構成を示すブロック図である。図3に示されるように、本実施形態に係る発電装置10’には、太陽熱受熱蓄熱装置20の蓄熱体の温度を検知する蓄熱体温度センサ23と、蓄熱体温度センサ23により検知された蓄熱体の温度に応じて太陽熱受熱蓄熱装置20及び蒸気タービン発電機15への蒸気の供給を制御する蒸気供給制御装置24とを有している。   FIG. 3 is a block diagram illustrating a configuration of the power generation device according to the present embodiment. As shown in FIG. 3, the power generation apparatus 10 ′ according to the present embodiment includes a heat storage body temperature sensor 23 that detects the temperature of the heat storage body of the solar heat receiving heat storage apparatus 20, and a heat storage detected by the heat storage body temperature sensor 23. It has a steam supply control device 24 that controls the supply of steam to the solar heat receiving heat storage device 20 and the steam turbine generator 15 according to the temperature of the body.

また、本実施形態では、過熱蒸気ヘッダ14と太陽熱受熱蓄熱装置20とを接続する配管にバルブ25が設けられ、該過熱蒸気ヘッダ14と蒸気タービン発電機15とを接続する配管にバルブ26が設けられている。そして、上記蒸気供給制御装置24がバルブ25,26の作動を制御することにより蒸気の供給量を調整できるようになっている。   Further, in the present embodiment, a valve 25 is provided in a pipe connecting the superheated steam header 14 and the solar heat receiving heat storage device 20, and a valve 26 is provided in a pipe connecting the superheated steam header 14 and the steam turbine generator 15. It has been. The steam supply control device 24 can control the operation of the valves 25 and 26 to adjust the steam supply amount.

上記蒸気供給制御装置24は、上記蓄熱体温度センサ23が検知した蓄熱体の温度が、予め設定された閾値、例えば飽和蒸気温度以上であるときにバルブ25を開いて、太陽熱受熱蓄熱装置20へ蒸気を供給し、該蓄熱体の温度が閾値より低いときにバルブ25を閉じて、太陽熱受熱蓄熱装置20への蒸気供給を停止する。   The steam supply control device 24 opens the valve 25 when the temperature of the heat storage body detected by the heat storage body temperature sensor 23 is equal to or higher than a preset threshold, for example, a saturated steam temperature, to the solar heat receiving heat storage device 20. Steam is supplied, and when the temperature of the heat storage body is lower than the threshold value, the valve 25 is closed and supply of steam to the solar heat receiving heat storage device 20 is stopped.

太陽熱受熱蓄熱装置20の蓄熱体の温度が閾値より低いときに、過熱蒸気を太陽熱受熱蓄熱装置20に供給すると熱ロスが生じてしまうが、本実施形態では、蓄熱体の温度が閾値以上であるときのみ過熱蒸気を太陽熱受熱蓄熱装置20に供給するので、上記熱ロスの発生を回避できる。また、蓄熱体の温度が閾値以上であるときに過熱蒸気を太陽熱受熱蓄熱装置20に供給することにより該太陽熱受熱蓄熱装置20の過熱による損傷を回避できる。   When the temperature of the heat storage body of the solar heat receiving heat storage device 20 is lower than the threshold, heat loss occurs when superheated steam is supplied to the solar heat receiving heat storage device 20, but in this embodiment, the temperature of the heat storage body is equal to or higher than the threshold. Only when the superheated steam is supplied to the solar heat receiving heat storage device 20, the occurrence of the heat loss can be avoided. In addition, when the temperature of the heat storage body is equal to or higher than the threshold, supplying the superheated steam to the solar heat receiving heat storage device 20 can prevent damage to the solar heat receiving heat storage device 20 due to overheating.

蒸気供給制御装置24は、バルブ26の開閉を以下のように制御する。太陽熱受熱蓄熱装置20へ供給される過熱蒸気の温度(Ti)を計測する温度センサ(図示せず)、太陽熱受熱蓄熱装置から払い出される過熱蒸気の温度(To)を計測する温度センサ(図示せず)及び太陽熱受熱蓄熱装置20内の過熱蒸気の温度(Ts)を計測する温度センサ(図示せず)を設け、太陽熱受熱蓄熱装置20へ過熱蒸気を供給する際に、Ti≧ToとTi≧Tsのうち少なくとも一つの場合には、バルブ26を閉じ過熱蒸気ヘッダ14から払い出される全ての過熱蒸気を太陽熱受熱蓄熱装置20へ供給し、Ti<ToとTi<Tsのうち少なくとも一つの場合に、バルブ26を適切な開度で開き過熱蒸気ヘッダ14から払い出される過熱蒸気の一部を太陽熱受熱蓄熱装置20を介さず蒸気タービン発電機15へ供給するようにして、太陽熱受熱蓄熱装置20へ供給される過熱蒸気量を調整して太陽熱受熱蓄熱装置20の過熱による損傷を回避する。バルブ26の開度は、太陽熱受熱蓄熱装置20内の過熱蒸気の温度(Ts)を所定の範囲とするように調整される。   The steam supply control device 24 controls the opening and closing of the valve 26 as follows. A temperature sensor (not shown) for measuring the temperature (Ti) of superheated steam supplied to the solar heat receiving heat storage device 20 and a temperature sensor (not shown) for measuring the temperature (To) of superheated steam delivered from the solar heat receiving heat storage device. ) And a temperature sensor (not shown) for measuring the temperature (Ts) of the superheated steam in the solar heat receiving heat storage device 20, and when supplying the superheated steam to the solar heat receiving heat storage device 20, Ti ≧ To and Ti ≧ Ts In the case of at least one of the above, the valve 26 is closed and all the superheated steam discharged from the superheated steam header 14 is supplied to the solar heat receiving heat storage device 20, and when at least one of Ti <To and Ti <Ts, 26 is opened at an appropriate opening so that a part of the superheated steam discharged from the superheated steam header 14 is supplied to the steam turbine generator 15 without passing through the solar heat receiving heat storage device 20. And, to avoid damage due to overheating of the solar heat receiving heat storage device 20 to adjust the superheated steam amount supplied to the solar heat receiving heat storage device 20. The opening degree of the valve 26 is adjusted so that the temperature (Ts) of the superheated steam in the solar heat receiving heat storage device 20 falls within a predetermined range.

太陽熱受熱蓄熱装置20は、蓄熱体温度センサ23が検知した蓄熱体の温度が予め設定された閾値、例えば飽和蒸気温度より低いときに、太陽熱受熱蓄熱装置20の蓄熱体及び受熱面のうち少なくとも一つを保熱材あるいは断熱材によって覆う機構を有していてもよい。例えば、上記蓄熱体温度センサ23に検知された蓄熱体の温度に基づいて、上記蒸気供給制御装置24により上記機構の作動を制御するような構成にすることが可能である。   When the temperature of the heat storage body detected by the heat storage body temperature sensor 23 is lower than a preset threshold, for example, the saturated steam temperature, the solar heat reception heat storage apparatus 20 is at least one of the heat storage body and the heat reception surface of the solar heat reception heat storage apparatus 20. You may have the mechanism which covers one with a heat insulating material or a heat insulating material. For example, the operation of the mechanism can be controlled by the steam supply control device 24 based on the temperature of the heat storage body detected by the heat storage body temperature sensor 23.

このような機構を設けることにより、日中、天候の変化(例えば、曇りやにわか雨等)の影響で日射量が低減して、太陽熱受熱蓄熱装置20の受熱面に太陽光が十分に入射しておらず、蓄熱体の温度が閾値より低いときであっても、上記機構によって上記受熱面を保熱材あるいは断熱材で覆って該受熱面からの熱放散を抑制して熱ロスを低減することができる。この結果、太陽熱の受熱を再開したときあるいは受熱量が十分な量に戻ったときに、過熱蒸気生成や過熱蒸気加熱の加熱熱量を短時間で所定のレベルに戻すことができ、太陽熱による加熱熱量の変動を小さく抑制することができる。   By providing such a mechanism, the amount of solar radiation is reduced due to the influence of changes in weather (for example, cloudy weather or rain showers) during the daytime, and sunlight is sufficiently incident on the heat receiving surface of the solar heat receiving and storing device 20. Even when the temperature of the heat storage body is lower than the threshold value, the heat receiving surface is covered with a heat insulating material or a heat insulating material by the mechanism to suppress heat dissipation from the heat receiving surface and reduce heat loss. Can do. As a result, when the heat reception of solar heat is resumed or when the heat reception amount returns to a sufficient amount, the heating heat amount of superheated steam generation or superheated steam heating can be returned to a predetermined level in a short time, and the heating heat amount by solar heat Fluctuations can be suppressed.

また、太陽熱受熱蓄熱装置20は、蓄熱体温度センサ23に検知された蓄熱体の温度が予め設定された閾値、例えば飽和蒸気温度より低いときに過熱蒸気加熱を行う燃焼バーナ等の燃焼機器を有していていもよい。例えば、上記蓄熱体温度センサ23に検知された蓄熱体の温度に基づいて、上記蒸気供給制御装置24によって、上記燃焼機器への燃料の供給そして該燃焼機器の作動を制御するような構成にすることが可能である。このような燃焼機器を設けることにより、蓄熱体の温度が閾値より低い場合であっても、該燃焼機器によって過熱蒸気加熱を行うことができる。
本発明は、廃棄物発電装置に関するものであるが、廃棄物と同様の低カロリー燃料といえる汚泥やバイオマス、泥炭等を焼却又はガス化溶融する処理炉からの廃熱を利用する発電装置に適用することができ、廃棄物発電装置と同様に、発電効率向上効果を得ることができる。
Further, the solar heat receiving and storing apparatus 20 has a combustion device such as a combustion burner that performs heating of superheated steam when the temperature of the heat storage body detected by the heat storage body temperature sensor 23 is lower than a preset threshold, for example, a saturated steam temperature. You may do it. For example, based on the temperature of the heat storage body detected by the heat storage body temperature sensor 23, the steam supply control device 24 controls the supply of fuel to the combustion equipment and the operation of the combustion equipment. It is possible. By providing such a combustion device, even when the temperature of the heat storage body is lower than the threshold value, superheated steam heating can be performed by the combustion device.
The present invention relates to a waste power generation apparatus, but is applied to a power generation apparatus that uses waste heat from a processing furnace that incinerates or gasifies and melts sludge, biomass, peat, etc., which can be said to be a low-calorie fuel similar to waste. As with the waste power generation apparatus, the power generation efficiency improvement effect can be obtained.

第一実施形態に係る発電装置を実施した実施例を説明する。該発電装置の太陽熱集熱装置の敷地面積は10000mである。敷地有効面積率が50%、面積当りの受熱量が68.32w/mであることを前提とすると太陽熱受熱蓄熱装置の受熱量は341kwであり、受熱効率を75%とすると受熱した太陽熱で加熱された過熱蒸気による発電量は256kwである。 The Example which implemented the electric power generating apparatus which concerns on 1st embodiment is described. The site area of the solar heat collector of the power generator is 10,000 m 2 . Assuming that the site effective area rate is 50% and the amount of heat received per area is 68.32 w / m 2 , the amount of heat received by the solar heat receiving and storing device is 341 kw, and the heat receiving efficiency is 75%. The amount of power generated by the heated superheated steam is 256 kw.

上述の太陽熱受熱蓄熱装置を有する発電装置を焼却炉能力が200t/日のごみ焼却炉に適用した場合について述べる。ここで、ごみ発熱量が2200kcal/kgであることを前提にすると、ごみ焼却により発生するごみ熱量は21300kwとなり、廃熱回収による発電量は3200kwであり、発電量の入熱量に対する比である発電効率は15.0%である。上記太陽熱受熱蓄熱装置を有する発電装置を適用した結果、ごみ熱量と太陽熱受熱量との合計入熱量が21641kwであり、合計発電量が3456kwであるので、発電効率は16.0%となり、太陽熱受熱蓄熱装置を有するごみ発電装置とすることにより、発電効率を1.0%増加させることができた。   A case will be described in which the power generation device having the above-described solar heat receiving heat storage device is applied to a waste incinerator having an incinerator capacity of 200 t / day. Here, assuming that the waste heat generation amount is 2200 kcal / kg, the waste heat amount generated by waste incineration is 21300 kw, the power generation amount by waste heat recovery is 3200 kw, and the power generation is a ratio of the power generation amount to the heat input amount. The efficiency is 15.0%. As a result of applying the power generation device having the solar heat receiving heat storage device, the total heat input amount of the waste heat amount and the solar heat received amount is 21642 kw, and the total power generation amount is 3456 kw, so that the power generation efficiency is 16.0% and the solar heat receiving heat By using a waste power generation device having a heat storage device, the power generation efficiency could be increased by 1.0%.

1 焼却炉(廃棄物処理炉)
2 輻射ボイラ
3 管群ボイラ
10,10’ 発電装置(廃棄物発電装置)
15 蒸気タービン発電機(蒸気タービン発電装置)
19 太陽熱集熱装置
20 太陽熱受熱蓄熱装置
21 過熱蒸気配管
22 加圧温水配管
23 蓄熱体温度センサ
24 蒸気供給制御装置(蒸気供給制御手段)
1 Incinerator (waste treatment furnace)
2 Radiation boiler 3 Tube group boiler 10, 10 'Power generator (waste power generator)
15 Steam turbine generator (steam turbine generator)
DESCRIPTION OF SYMBOLS 19 Solar heat collecting device 20 Solar heat receiving heat storage device 21 Superheated steam piping 22 Pressurized hot water piping 23 Heat storage body temperature sensor 24 Steam supply control apparatus (steam supply control means)

Claims (5)

廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、
廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、
太陽熱を集熱する太陽熱集熱装置と、
蓄熱体を有し集熱された太陽熱を受熱するとともに蓄熱体に蓄熱し、該蓄熱体に蓄熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱蓄熱装置と、
生成された過熱蒸気により発電する蒸気タービン発電装置と、
を備えることを特徴とする太陽熱利用廃棄物発電装置。
A waste power generation apparatus installed in a waste treatment furnace facility for incineration or gasification melting of waste,
A boiler that generates steam by recovering heat from the exhaust gas discharged from the waste treatment furnace;
A solar heat collector for collecting solar heat;
It has a heat storage body and receives the collected solar heat and stores it in the heat storage body, and heats the steam generated in the boiler to a temperature higher than the saturated steam temperature by heat exchange with the solar heat stored in the heat storage body. A solar heat storage device that performs at least one of superheated steam generation that generates steam and superheated steam heating that further heats the superheated steam generated in the boiler;
A steam turbine power generation device that generates electric power using the generated superheated steam;
A waste heat power generation apparatus using solar heat.
太陽熱受熱蓄熱装置にて蓄熱した太陽熱と過熱蒸気との熱交換を行う機構が、ボイラで生成した過熱蒸気を蒸気タービンに供給する流路に設置されていることを特徴とする請求項1に記載の太陽熱利用廃棄物発電装置。   The mechanism for performing heat exchange between solar heat stored in a solar heat receiving heat storage device and superheated steam is installed in a flow path for supplying superheated steam generated by a boiler to a steam turbine. Solar thermal power generation system. 太陽熱受熱蓄熱装置は、蓄熱体の温度を検知する蓄熱体温度センサと、
該蓄熱体温度センサが検知した蓄熱体の温度が所定値以上であるときに太陽熱受熱蓄熱装置へ蒸気を供給し、該蓄熱体の温度が所定値より低いときに太陽熱受熱蓄熱装置への蒸気の供給を停止する蒸気供給制御手段と、
を備えることを特徴とする請求項1又は請求項2に記載の太陽熱利用廃棄物発電装置。
The solar heat receiving heat storage device includes a heat storage body temperature sensor that detects the temperature of the heat storage body,
When the temperature of the heat storage body detected by the heat storage body temperature sensor is equal to or higher than a predetermined value, steam is supplied to the solar heat receiving heat storage device, and when the temperature of the heat storage body is lower than the predetermined value, steam is supplied to the solar heat receiving heat storage device. Steam supply control means for stopping supply;
The solar-powered waste power generation apparatus according to claim 1 or 2, wherein
太陽熱受熱蓄熱装置は、蓄熱体の温度を検知する蓄熱体温度センサを備え、
該蓄熱体温度センサが検知した該蓄熱体の温度が所定値より低いときに、太陽熱受熱蓄熱装置の蓄熱体及び受熱面のうち少なくとも一つからの熱放散を抑制する保熱材又は断熱材により蓄熱体及び受熱面のうち少なくとも一つを覆う機構を有していることを特徴とする請求項1乃至請求項3のうちいずれかに記載の太陽熱利用廃棄物発電装置。
The solar heat receiving heat storage device includes a heat storage body temperature sensor that detects the temperature of the heat storage body,
When the temperature of the heat storage body detected by the heat storage body temperature sensor is lower than a predetermined value, a heat insulating material or a heat insulating material that suppresses heat dissipation from at least one of the heat storage body and the heat receiving surface of the solar heat receiving heat storage device The solar power waste power generation apparatus according to any one of claims 1 to 3, further comprising a mechanism that covers at least one of the heat storage body and the heat receiving surface.
太陽熱受熱蓄熱装置は、蓄熱体の温度を検知する蓄熱体温度センサを備え、該蓄熱体温度センサが検知した該蓄熱体の温度が所定値より低いときに、過熱蒸気生成及び過熱蒸気加熱のうち少なくとも一つを行う燃焼機器を備えることを特徴とする請求項1乃至請求項4のうちいずれかに記載の太陽熱利用廃棄物発電装置。   The solar heat receiving heat storage device includes a heat storage body temperature sensor that detects the temperature of the heat storage body, and when the temperature of the heat storage body detected by the heat storage body temperature sensor is lower than a predetermined value, of the superheated steam generation and the superheated steam heating The solar thermal waste power generation apparatus according to any one of claims 1 to 4, further comprising a combustion device that performs at least one.
JP2010032245A 2010-02-17 2010-02-17 Waste power generation device utilizing solar heat Pending JP2011169187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032245A JP2011169187A (en) 2010-02-17 2010-02-17 Waste power generation device utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032245A JP2011169187A (en) 2010-02-17 2010-02-17 Waste power generation device utilizing solar heat

Publications (1)

Publication Number Publication Date
JP2011169187A true JP2011169187A (en) 2011-09-01

Family

ID=44683563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032245A Pending JP2011169187A (en) 2010-02-17 2010-02-17 Waste power generation device utilizing solar heat

Country Status (1)

Country Link
JP (1) JP2011169187A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233785A (en) * 2013-04-02 2013-08-07 山东科技大学 Combined double-energy-source power generation system utilizing solar power and methane
JP2013542359A (en) * 2010-09-29 2013-11-21 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Photovoltaic power generation method and system using biomass boiler as auxiliary heat source
JP2014145321A (en) * 2013-01-30 2014-08-14 Akira Nagao Power generator
CN105927963B (en) * 2016-04-29 2018-07-13 江苏威孚智造科技有限公司 A kind of chemical industry boiler efficient waste heat recovery process flow
CN111156106A (en) * 2020-01-13 2020-05-15 黄菊青 Heat accumulating type waste gas incinerator
CN113586182A (en) * 2021-08-16 2021-11-02 孟金来 Heat storage peak regulation power generation device
WO2022264450A1 (en) * 2021-06-17 2022-12-22 株式会社 東芝 Heat storage power generation system and power generation control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542359A (en) * 2010-09-29 2013-11-21 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Photovoltaic power generation method and system using biomass boiler as auxiliary heat source
JP2014145321A (en) * 2013-01-30 2014-08-14 Akira Nagao Power generator
CN103233785A (en) * 2013-04-02 2013-08-07 山东科技大学 Combined double-energy-source power generation system utilizing solar power and methane
CN105927963B (en) * 2016-04-29 2018-07-13 江苏威孚智造科技有限公司 A kind of chemical industry boiler efficient waste heat recovery process flow
CN111156106A (en) * 2020-01-13 2020-05-15 黄菊青 Heat accumulating type waste gas incinerator
CN111156106B (en) * 2020-01-13 2021-07-20 绍兴钱康机械科技有限公司 Heat accumulating type waste gas incinerator
WO2022264450A1 (en) * 2021-06-17 2022-12-22 株式会社 東芝 Heat storage power generation system and power generation control system
CN113586182A (en) * 2021-08-16 2021-11-02 孟金来 Heat storage peak regulation power generation device

Similar Documents

Publication Publication Date Title
JP2011169186A (en) Waste power generator utilizing solar heat
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP2011169187A (en) Waste power generation device utilizing solar heat
KR101821333B1 (en) Optimized integrated system for solar-biomass hybrid electricity generation
JP5596715B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP5812955B2 (en) Power generator / heater
EP3475380B1 (en) Waste-to-energy plant
CN104832229A (en) Britten-organic Rankine type solar thermal power generation method and device
WO2013038423A2 (en) Combined cooling/heating and power generation system utilizing sustainable energy
JP5447096B2 (en) Solar thermal waste power generation apparatus and operation method thereof
JP5534427B2 (en) Solar thermal power generation system
CN114909193B (en) Thermal power generating unit flexible operation system based on fused salt heat storage
Khan et al. Techno-economic and exergo-economic evaluation of a novel solar integrated waste-to-energy power plant
US10883390B2 (en) Cogeneration system for integration into solar water heating systems
JPH09203305A (en) Power generating system utilizing waste incinerating heat
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
JPH11218005A (en) Combined power generation system utilizing waster as fuel
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
CN102966495A (en) Tower type solar energy-steam combustion gas combined cycle power generation system
US20140216032A1 (en) Solar direct steam generation power plant combined with heat storage unit
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
CN105247208B (en) Solar thermal collector factory with storage heater
US20100089059A1 (en) Hybrid Power Facilities
JPH11325406A (en) Feed water heating device for thermal power generation facility
JP2021177107A (en) Coal-fired power generation system