JP2011169186A - Waste power generator utilizing solar heat - Google Patents

Waste power generator utilizing solar heat Download PDF

Info

Publication number
JP2011169186A
JP2011169186A JP2010032242A JP2010032242A JP2011169186A JP 2011169186 A JP2011169186 A JP 2011169186A JP 2010032242 A JP2010032242 A JP 2010032242A JP 2010032242 A JP2010032242 A JP 2010032242A JP 2011169186 A JP2011169186 A JP 2011169186A
Authority
JP
Japan
Prior art keywords
solar heat
heat
superheated steam
power generation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032242A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwasaki
克博 岩崎
Hiroshi Yamamoto
浩 山本
Norihito Uetake
規人 植竹
Takeshi Nakayama
剛 中山
Takeshi Uchiyama
武 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010032242A priority Critical patent/JP2011169186A/en
Publication of JP2011169186A publication Critical patent/JP2011169186A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste power generator utilizing solar heat capable of effectively utilizing the waste heat recovery power generation capacity of a waste power generation facility and improving an electricity generation efficiency when utilizing solar heat for waste power generation. <P>SOLUTION: The waste power generator utilizing solar heat comprises a radiation boiler 2 which forms steam by recovering heat from an exhaust gas discharged from an incinerator, a tube bundle boiler 3 which forms superheated steam by heating the steam formed by the radiation boiler 2 to a higher temperature than a saturated steam temperature, a solar heat collector 19 for collecting solar heat, a solar heat receiver 20 which receives the collected solar heat and thereby further heats the superheated steam formed by the tube bundle boiler 3 to form high temperature superheated steam by heat exchange with the received solar heat, and a steam turbine dynamo 15 which generates electricity by using the formed high temperature superheated steam. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設けられる廃棄物発電装置に関する。   The present invention relates to a waste power generation apparatus provided in a waste treatment furnace facility that incinerates or gasifies and melts waste.

廃棄物発電設備は、供給する廃棄物の種類によって、廃棄物の燃焼により発生する熱量が変動する(例えば、1200kcal/kg〜2800kcal/kg−湿ベース)ことを考慮して、高カロリー廃棄物に対応した廃熱回収発電設備を備えている。近年は、廃棄物の分別収集が進行し、高カロリーのプラスチックごみが分別され、焼却炉へ供給される廃棄物のカロリーが低下しているため、廃熱回収発電設備能力に相当余裕ができており、換言すれば、廃熱回収発電設備能力が有効に利用されていない。このような事情から、既設の廃棄物発電設備の廃熱回収発電設備能力を有効に活用することが要望されている。さりとて、化石燃料を燃焼して過熱蒸気量を増大させ、発電量を増大させることは、地球温暖化への対応に反するので望ましくない。   In consideration of the fact that the amount of heat generated by combustion of waste varies depending on the type of waste supplied (for example, 1200 kcal / kg to 2800 kcal / kg-humid basis), Equipped with a corresponding waste heat recovery power generation facility. In recent years, separate collection of waste has progressed, high-calorie plastic waste has been separated, and the calories of waste supplied to the incinerator have decreased, so there is a considerable margin in waste heat recovery power generation equipment capacity. In other words, the waste heat recovery power generation facility capacity is not utilized effectively. Under such circumstances, it is demanded to effectively utilize the waste heat recovery power generation facility capacity of the existing waste power generation facility. On the other hand, it is not desirable to burn fossil fuels to increase the amount of superheated steam and increase the amount of power generation because it is against the response to global warming.

廃棄物発電設備の一例として、廃棄物焼却炉にボイラを備え、焼却炉から排出される排ガスの廃熱を回収し該ボイラにて水を加熱して蒸発させて飽和蒸気を生成し、燃焼式過熱器にて該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電することが行われている。(特許文献1参照)。   As an example of a waste power generation facility, a waste incinerator is equipped with a boiler, the waste heat of exhaust gas discharged from the incinerator is recovered, water is heated and evaporated in the boiler to produce saturated steam, a combustion type The saturated steam is further heated by a superheater to generate superheated steam, and the superheated steam is supplied to a steam turbine for power generation. (See Patent Document 1).

上記特許文献1に開示されている発電装置は、例えば、図7に示される構成で実施される。すなわち、まず、内部に蒸発管が配された輻射ボイラ2において、廃棄物焼却炉(図示せず)から排出された排ガスによって蒸発管内の水が加熱されて飽和蒸気が生成された後、蒸気溜り12において気水分離される。そして、飽和蒸気は、過熱管が配された管群ボイラ3にてさらに過熱されて過熱蒸気となる。一方、上記蒸気溜り12で分離された水は上記輻射ボイラ2に戻される。上記過熱蒸気は、過熱蒸気ヘッダ14を通った後、蒸気タービン発電機15へ供給され、該蒸気タービン発電機15を駆動することにより発電に寄与する。上記蒸気タービン発電機15を駆動した過熱蒸気は復水器16で凝縮されて水に戻り、給水予熱エコノマイザ17にて予熱された後、上記輻射ボイラ2へ送られる。また、上記給水予熱エコノマイザ17には、軟水器18によって軟水化された補給水が供給されている。   The power generation device disclosed in Patent Document 1 is implemented, for example, with the configuration shown in FIG. That is, first, in the radiant boiler 2 in which the evaporation pipe is arranged, after the water in the evaporation pipe is heated by the exhaust gas discharged from the waste incinerator (not shown) to generate saturated steam, In FIG. The saturated steam is further superheated by the tube group boiler 3 in which the superheated tubes are arranged, and becomes superheated steam. On the other hand, the water separated by the steam reservoir 12 is returned to the radiation boiler 2. After passing through the superheated steam header 14, the superheated steam is supplied to the steam turbine generator 15, and contributes to power generation by driving the steam turbine generator 15. The superheated steam that has driven the steam turbine generator 15 is condensed by the condenser 16 and returned to the water, preheated by the feed water preheating economizer 17, and then sent to the radiation boiler 2. The water supply preheating economizer 17 is supplied with makeup water softened by the water softener 18.

一方、発電装置の他の形態として、太陽熱を利用した発電装置が用いられることもある。このような太陽熱利用発電装置として、特許文献2に開示されたものが知られている。特許文献2には、太陽熱で液体熱媒体を加熱し、該熱媒体を介して水を加熱蒸発することにより飽和蒸気を生成した後、ガスタービンの駆動に使用された燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電を行う発電装置が開示されている。   On the other hand, as another form of the power generation apparatus, a power generation apparatus using solar heat may be used. As such a solar thermal power generation device, one disclosed in Patent Document 2 is known. In Patent Document 2, a liquid heat medium is heated by solar heat, water is evaporated through the heat medium to generate saturated steam, and then the saturated steam is generated by the combustion gas used to drive the gas turbine. Further, there is disclosed a power generation apparatus that generates heat by generating superheated steam by supplying the superheated steam to a steam turbine.

特開平7−035311JP 7-035311 A 特開2008−039367JP2008-039367

しかし、特許文献2の発電装置では、太陽熱で加熱された熱媒体によって水を加熱して飽和蒸気を生成し、燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成するので、太陽熱の大部分が水の蒸発潜熱に消費される。この結果、発電に対する太陽熱の寄与が小さくなってしまう。例えば、廃棄物発電施設の発電装置として上記特許文献2の発電装置を適用しても、発電に寄与するのは受熱した太陽熱の10%程度であり、効率が低く望ましくない。   However, in the power generation device of Patent Document 2, water is heated by a heat medium heated by solar heat to generate saturated steam, and the saturated steam is further heated by combustion gas to generate superheated steam. Part is consumed by the latent heat of vaporization of water. As a result, the contribution of solar heat to power generation is reduced. For example, even if the power generation device of Patent Document 2 described above is applied as a power generation device for a waste power generation facility, only about 10% of the received solar heat contributes to power generation, which is not desirable because of low efficiency.

また、熱媒体を用いることにより設備が過大となってしまう。さらに、熱媒体により蓄熱機能を保有させようとすると、該熱媒体を貯留するタンクや循環ポンプ、それらの装置の断熱材、熱媒体流量制御装置等の高価な設備が必要となり、その分、コストが増大してしまう。   In addition, the use of a heat medium results in excessive facilities. Furthermore, if the heat storage function is to be held by the heat medium, expensive equipment such as a tank for storing the heat medium, a circulation pump, a heat insulating material for those apparatuses, a heat medium flow control device, etc. is required. Will increase.

本発明は上記の問題に鑑み、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができ、また、太陽熱を廃棄物発電に利用する際に発電効率を高めることができる太陽熱利用廃棄物発電装置を提供することを課題とする。   In view of the above problems, the present invention can effectively utilize the waste heat recovery power generation facility capacity of the waste power generation facility, and can also improve the power generation efficiency when using solar heat for waste power generation. It is an object to provide a waste power generation apparatus.

廃熱回収蒸気を用いた蒸気タービンによる発電に有効な熱エネルギーについて図8を用いて説明する。図8は、40気圧に加圧された温水が249℃で蒸発して飽和蒸気となった後、さらに加熱されて過熱蒸気状態となる場合における温度とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。   Thermal energy effective for power generation by a steam turbine using waste heat recovery steam will be described with reference to FIG. FIG. 8 is a water-steam enthalpy line showing the relationship between temperature and enthalpy when hot water pressurized to 40 atm is evaporated at 249 ° C. to become saturated steam and then heated to become superheated steam. FIG.

図8に示されているように、蒸気タービンでの発電に有効な蒸気のエンタルピーは、過熱蒸気部分が主体となっている。これは、蒸気タービンのタービンブレードの強度と耐久性の制約より、湿り蒸気を使うことが困難なためである。ここで、復水器の適用により、図8の加圧条件下における飽和蒸気温度の蒸気エンタルピー部分も一部活用できる。   As shown in FIG. 8, the superheated steam portion is mainly used for the enthalpy of steam effective for power generation in the steam turbine. This is because it is difficult to use wet steam due to restrictions on the strength and durability of the turbine blade of the steam turbine. Here, by applying the condenser, a part of the steam enthalpy portion of the saturated steam temperature under the pressurizing condition of FIG. 8 can be utilized.

発電効率向上のため、復水器を設けてタービン出口圧力を低減させ、蒸気の湿り度を低減することにより、より多くの蒸気のエンタルピーを電力に変換できるが、それでも蒸気の保有するエンタルピーのうち電力に変換できるのは、その20%前後である。   In order to improve power generation efficiency, it is possible to convert more steam enthalpy into electricity by installing a condenser to reduce turbine outlet pressure and reducing steam wetness. About 20% can be converted into electric power.

発明者は、廃棄物発電においては燃焼炉又はガス化溶融炉からの排ガスによって既に飽和蒸気が発生していることに着目し、該飽和蒸気から過熱蒸気を得る過程及び過熱蒸気量を増大させる過程に太陽熱を活用することにより、従来のような、太陽熱によって飽和蒸気を生成した後に、燃焼ガスによって過熱蒸気を生成して発電する場合よりも、倍以上高い効率で太陽熱の受熱熱量を電力へ変換できることを見出した。   The inventors pay attention to the fact that saturated steam is already generated by exhaust gas from a combustion furnace or gasification melting furnace in waste power generation, and a process of obtaining superheated steam from the saturated steam and a process of increasing the amount of superheated steam. By using solar heat, it is possible to convert the amount of heat received from solar heat into electric power with a efficiency that is more than twice as high as when generating saturated steam with solar heat and then generating superheated steam with combustion gas. I found out that I can do it.

この太陽熱の利用による効果は、太陽熱の集熱による熱量を蒸気の直接加熱に利用すること、そして、少なくとも飽和蒸気温度を超える温度の熱供給が可能であることを条件として得られる。   This effect of using solar heat is obtained on the condition that the amount of heat generated by collecting solar heat is used for direct heating of steam, and that heat supply at a temperature exceeding at least the saturated steam temperature is possible.

本発明に係る太陽熱利用廃棄物発電装置は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、太陽熱を集熱する太陽熱集熱装置と、集熱された太陽熱を受熱し、受熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱装置と、生成された過熱蒸気により発電する蒸気タービン発電装置とを備えることを特徴としている。   A solar heat-generating waste power generation apparatus according to the present invention is a waste power generation apparatus provided in a waste treatment furnace facility for incinerating or gasifying and melting waste, and recovers heat from exhaust gas discharged from the waste treatment furnace. Steam generated by the boiler, a solar heat collector that collects solar heat, and the collected solar heat are received, and the steam generated by the boiler is heated to a temperature higher than the saturated steam temperature by heat exchange with the received solar heat. A solar heat receiving device that performs at least one of superheated steam generation that generates superheated steam and superheated steam heating that further heats the superheated steam generated by the boiler, and a steam turbine power generator that generates electric power using the generated superheated steam. It is characterized by providing.

本発明では、ボイラで飽和蒸気又は過熱蒸気を生成し、該ボイラで飽和蒸気が生成される場合には過熱蒸気の生成そして加熱に太陽熱を活用し、該ボイラで過熱蒸気が生成される場合には該過熱蒸気の加熱に太陽熱を活用する。このように、太陽熱を過熱蒸気の生成あるいは加熱に活用することにより、該太陽熱の電気変換効率が大幅に高められる。   In the present invention, when saturated steam or superheated steam is generated in a boiler, and when saturated steam is generated in the boiler, solar heat is used for generation and heating of the superheated steam, and when superheated steam is generated in the boiler Uses solar heat to heat the superheated steam. Thus, by utilizing solar heat for the generation or heating of superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased.

本発明によれば、既存の廃棄物発電設備に太陽熱を利用する装置を付加することで発電設備能力を有効活用できるばかりでなく、新規の廃棄物発電設備においてもさらに発電効率を向上できる効果がある。   According to the present invention, it is possible not only to effectively utilize the power generation facility capacity by adding a device using solar heat to the existing waste power generation facility, but also to improve the power generation efficiency even in the new waste power generation facility. is there.

太陽熱受熱装置にて受熱した太陽熱と過熱蒸気との熱交換を行う機構が、ボイラで生成した過熱蒸気を蒸気タービンに供給する流路に設置されていることが好ましい。上記機構が該流路に設置されることにより、太陽熱が過熱蒸気の生成あるいは加熱に確実に活用されるので、発電効率をさらに高めることができる。   It is preferable that the mechanism for performing heat exchange between the solar heat received by the solar heat receiving device and the superheated steam is installed in a flow path for supplying the superheated steam generated by the boiler to the steam turbine. Since the mechanism is installed in the flow path, solar heat is reliably utilized for generation or heating of superheated steam, so that power generation efficiency can be further increased.

太陽熱利用廃棄物発電装置は、太陽熱受熱装置での太陽熱の受熱を検知するセンサと、上記センサが太陽熱の受熱を検知しているとき又は該センサが検知した太陽熱受熱量が所定値以上であるときに太陽熱受熱装置へ蒸気を供給する蒸気供給制御手段とを備えることが好ましい。   A solar thermal waste power generation device is a sensor that detects solar heat reception in a solar heat receiving device, and when the sensor detects solar heat reception or when the amount of solar heat received by the sensor is greater than or equal to a predetermined value. It is preferable to provide steam supply control means for supplying steam to the solar heat receiving device.

太陽熱受熱装置が太陽熱を受熱していなかったり、受熱していたとしても受熱量が十分でなかったりするときに蒸気や水を太陽熱受熱部分に流すと熱ロスが生じてしまうので、太陽熱を受熱しているときあるいは受熱量が十分であるときにのみ蒸気や水を太陽熱受熱部分に流すことにより熱ロスの発生を回避できる。また、受熱量が十分であるときに過熱蒸気を太陽熱受熱装置に供給することにより該太陽熱受熱装置の過熱による損傷を回避できる。   Even if the solar heat receiving device is not receiving solar heat, or even if it is receiving heat, the heat loss will occur if steam or water is passed through the solar heat receiving portion when the amount of heat received is insufficient. The generation of heat loss can be avoided by flowing steam or water through the solar heat receiving part only when the amount of heat received is sufficient. Further, by supplying superheated steam to the solar heat receiving device when the amount of heat received is sufficient, damage to the solar heat receiving device due to overheating can be avoided.

太陽熱受熱装置での太陽熱の受熱を検知するセンサを備え、太陽熱受熱装置は、上記センサが太陽熱の受熱を検知していないとき又は該センサが検知した太陽熱受熱量が所定値以下であるときに、太陽熱受熱装置の受熱面からの熱放散を抑制する保熱材又は断熱材により受熱面を覆う機構を有していることが好ましい。   Provided with a sensor that detects solar heat reception in the solar heat receiving device, the solar heat receiving device, when the sensor does not detect solar heat received or when the amount of solar heat received by the sensor is less than a predetermined value, It is preferable to have a mechanism that covers the heat receiving surface with a heat insulating material or a heat insulating material that suppresses heat dissipation from the heat receiving surface of the solar heat receiving device.

日中、天候の変化(例えば、曇りやにわか雨等)の影響で日射量が低減して、太陽熱受熱装置の太陽熱受熱部分に太陽光が十分に入射しないとき、すなわち、太陽熱を受熱していないときあるいは受熱量が十分でないときであっても、上記機構を設けることにより上記受熱面からの熱放散を抑制して熱ロスを低減することができる。この結果、太陽熱の受熱を再開したときあるいは受熱量が十分な量に戻ったときに、過熱蒸気生成や過熱蒸気加熱の加熱熱量を短時間で所定のレベルに戻すことができ、太陽熱による加熱熱量の変動を小さく抑制することができる。   During the day, when the amount of solar radiation is reduced due to weather changes (for example, cloudy weather or showers), and sunlight is not sufficiently incident on the solar heat receiving part of the solar heat receiving device, that is, when solar heat is not received Alternatively, even when the amount of heat received is not sufficient, by providing the mechanism, heat dissipation from the heat receiving surface can be suppressed and heat loss can be reduced. As a result, when the heat reception of solar heat is resumed or when the heat reception amount returns to a sufficient amount, the heating heat amount of superheated steam generation or superheated steam heating can be returned to a predetermined level in a short time, and the heating heat amount by solar heat Fluctuations can be suppressed.

太陽熱受熱装置が太陽熱を受熱していないとき又は太陽熱受熱量が所定値以下のとき、過熱蒸気生成及び過熱蒸気加熱のうち少なくとも一つを行う燃焼機器を備えることが好ましい。これによって、太陽熱受熱装置が太陽熱を受熱していない場合や、受熱していたとしても受熱量が十分でない場合であっても、上記燃焼機器によって過熱蒸気生成や過熱蒸気加熱を行うことができる。   When the solar heat receiving device is not receiving solar heat or when the solar heat receiving amount is not more than a predetermined value, it is preferable to include a combustion device that performs at least one of superheated steam generation and superheated steam heating. As a result, even when the solar heat receiving device does not receive solar heat or when the amount of heat received is not sufficient even if the solar heat receiving device receives heat, superheated steam generation or superheated steam heating can be performed by the combustion device.

太陽熱受熱装置は、過熱蒸気を生成する過熱蒸気配管が受熱面側に設けられているとともに、加圧温水配管又は蒸発管が該過熱蒸気配管の背面に接触して設けられていることが好ましい。   In the solar heat receiving device, it is preferable that a superheated steam pipe for generating superheated steam is provided on the heat receiving surface side, and a pressurized hot water pipe or an evaporation pipe is provided in contact with the back surface of the superheated steam pipe.

このような構成によれば、太陽熱は、まず、受熱面側に位置する過熱蒸気配管においてその大部分が過熱蒸気の生成又は加熱に活用されて消費される。そして、過熱蒸気配管で消費されなかった太陽熱は、該過熱蒸気配管から、飽和蒸気温度で維持されている加圧温水配管又は蒸発管(加圧水配管)側へ熱伝導する。この結果、太陽熱受熱面は、太陽熱入射量が大幅に増大しても過熱されることがなく損傷が防止される。また、該加圧温水配管又は蒸発管では、熱伝導した太陽熱は水の加熱及び蒸発に消費される。飽和蒸気温度は一定であり、蒸気の比熱・顕熱と比べて蒸発潜熱が大きいので、該加圧温水配管又は蒸発管では蒸気が飽和蒸気温度で維持される。   According to such a configuration, the solar heat is first consumed and consumed in the production or heating of the superheated steam in the superheated steam pipe located on the heat receiving surface side. The solar heat that has not been consumed in the superheated steam pipe conducts heat from the superheated steam pipe to the pressurized hot water pipe or the evaporation pipe (pressurized water pipe) that is maintained at the saturated steam temperature. As a result, the solar heat receiving surface is not overheated even if the amount of solar heat incident is greatly increased, and damage is prevented. In the pressurized hot water pipe or the evaporation pipe, the heat-transferred solar heat is consumed for heating and evaporation of water. The saturated steam temperature is constant, and the latent heat of vaporization is larger than the specific heat / sensible heat of the steam. Therefore, the steam is maintained at the saturated steam temperature in the pressurized hot water pipe or the evaporation pipe.

太陽熱受熱装置は、過熱蒸気を生成する過熱蒸気配管が受熱面側に設けられているとともに、加圧温水配管又は蒸発管が該過熱蒸気配管の背面に間隙をもって設けられていてもよい。   In the solar heat receiving device, a superheated steam pipe for generating superheated steam is provided on the heat receiving surface side, and a pressurized hot water pipe or an evaporation pipe may be provided with a gap on the back surface of the superheated steam pipe.

このような構成によれば、過熱蒸気配管の温度が所定温度以下で太陽熱受熱を行うときには、間隙により過熱蒸気配管と加圧温水配管又は蒸発管とが断熱されている。そして、過熱蒸気配管の温度が所定温度を超えると、過熱蒸気配管の熱膨張により上記間隙が無くなり過熱蒸気配管が加圧温水配管又は蒸発管に接触して抜熱される。この結果、過熱蒸気配管が所定温度より高く加熱され損傷することを防止するとともに、過熱蒸気配管から加圧温水配管又は蒸発管に伝熱された太陽熱を加圧温水加熱又は蒸発熱として利用できる。上記過熱蒸気配管の所定温度は、該過熱蒸気配管の高温強度が低下する限界温度などに基づき設定される。   According to such a configuration, when performing solar heat receiving when the temperature of the superheated steam pipe is equal to or lower than a predetermined temperature, the superheated steam pipe and the pressurized hot water pipe or the evaporation pipe are insulated by the gap. When the temperature of the superheated steam pipe exceeds a predetermined temperature, the gap is eliminated due to the thermal expansion of the superheated steam pipe, and the superheated steam pipe is brought into contact with the pressurized hot water pipe or the evaporation pipe to remove heat. As a result, it is possible to prevent the superheated steam pipe from being heated and damaged at a temperature higher than a predetermined temperature, and to use the solar heat transferred from the superheated steam pipe to the pressurized hot water pipe or the evaporation pipe as pressurized hot water heating or evaporation heat. The predetermined temperature of the superheated steam pipe is set based on a limit temperature at which the high temperature strength of the superheated steam pipe decreases.

太陽熱受熱装置は、該太陽熱受熱装置の内部に蓄熱材を有していることが好ましい。このように、太陽熱受熱装置の内部に蓄熱材を設けることにより、太陽熱の受熱量が変化しても該太陽熱を該蓄熱材に蓄熱できるので、液体熱媒体を循環したり貯留する装置等を用いずに受熱量を平滑化できる。また、熱媒体を用いない分、設備の小型化そして低コスト化を図ることができる。   The solar heat receiving device preferably has a heat storage material inside the solar heat receiving device. In this way, by providing a heat storage material inside the solar heat receiving device, the solar heat can be stored in the heat storage material even if the amount of solar heat received changes, so a device that circulates or stores the liquid heat medium is used. The amount of heat received can be smoothed. Moreover, since the heat medium is not used, the equipment can be reduced in size and cost.

本発明によれば、太陽熱を廃棄物発電に利用する際に発電効率を高めることができ、その結果、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができる。また、既存の廃棄物発電設備に太陽熱を利用する装置を付加することで発電設備能力を有効活用できるばかりでなく、新規の廃棄物発電設備においてもさらに発電効率を向上できる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, when using solar heat for waste power generation, power generation efficiency can be improved, As a result, the waste heat recovery power generation equipment capability of a waste power generation equipment can be utilized effectively. Moreover, not only can the power generation facility capacity be effectively utilized by adding a device that uses solar heat to the existing waste power generation facility, but there is also an effect that the power generation efficiency can be further improved in the new waste power generation facility.

第一実施形態における廃棄物処理炉施設の概略を示す図である。It is a figure which shows the outline of the waste processing furnace facility in 1st embodiment. 図1の廃棄物処理炉施設に設けられる発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generating apparatus provided in the waste processing furnace facility of FIG. (A)は図2の発電装置における太陽熱集熱装置及び太陽熱受熱装置の構成を示す図であり、(B)は該太陽熱受熱装置の拡大図である。(A) is a figure which shows the structure of the solar thermal collector and solar thermal receiver in the electric power generating apparatus of FIG. 2, (B) is an enlarged view of this solar thermal receiver. 第二実施形態に係る発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generating apparatus which concerns on 2nd embodiment. 第三実施形態に係る発電装置における太陽熱受熱装置を示す図である。It is a figure which shows the solar heat receiving device in the electric power generating apparatus which concerns on 3rd embodiment. 第四実施形態に係る発電装置における太陽熱受熱装置を示す図である。It is a figure which shows the solar heat receiving device in the electric power generating apparatus which concerns on 4th embodiment. 従来の発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional electric power generating apparatus. 水温とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。It is a water-steam enthalpy diagram which shows the relationship between water temperature and enthalpy.

以下、添付図面に基づいて本発明に係る太陽熱利用廃棄物発電装置の実施形態を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a solar thermal power generation apparatus according to the present invention will be described with reference to the accompanying drawings.

<第一実施形態>
図1は、本実施形態における廃棄物処理炉施設の概略を示す図である。図2は、図1の廃棄物処理炉施設に設けられる発電装置の構成を示すブロック図である。図3(A)は、図2の発電装置における太陽熱集熱装置及び太陽熱受熱装置の構成を示す図であり、図3(B)は、該太陽熱受熱装置の拡大図である。該図3(A),(B)では、過熱蒸気配管及び加圧温水配管はその軸線に対して直角な断面で示されている。
<First embodiment>
FIG. 1 is a diagram showing an outline of a waste treatment furnace facility in the present embodiment. FIG. 2 is a block diagram showing a configuration of a power generation apparatus provided in the waste treatment furnace facility of FIG. FIG. 3A is a diagram illustrating a configuration of the solar heat collecting device and the solar heat receiving device in the power generation device of FIG. 2, and FIG. 3B is an enlarged view of the solar heat receiving device. 3A and 3B, the superheated steam pipe and the pressurized hot water pipe are shown in a cross section perpendicular to the axis.

図1に示されているように、上記廃棄物処理炉施設は、廃棄物を焼却する焼却炉1と、該焼却炉1の下流側に設置された輻射ボイラ2及び管群ボイラ3を一部に含む後述の太陽熱利用廃棄物発電装置10(以下、単に「発電装置10」という)と、該管群ボイラ3の下流側に設置された排ガス処理装置4とを有している。なお、上記焼却炉1に代えて、ガス化溶融炉が設けられていてもよい。   As shown in FIG. 1, the waste treatment furnace facility partially includes an incinerator 1 for incinerating waste, and a radiant boiler 2 and a tube group boiler 3 installed on the downstream side of the incinerator 1. And a later-described solar heat waste generation device 10 (hereinafter simply referred to as “power generation device 10”) and an exhaust gas treatment device 4 installed on the downstream side of the tube group boiler 3. Instead of the incinerator 1, a gasification melting furnace may be provided.

図1に見られるように、発電装置10は、蒸気溜り12の上流側で該蒸気溜り12に接続される蒸発管11と、該蒸気溜り12の下流側で該蒸気溜り12に接続される過熱管13とを一部に有している。また、蒸発管11は輻射ボイラ2内に配され、過熱管13は管群ボイラ3内に配されている。   As shown in FIG. 1, the power generation device 10 includes an evaporation pipe 11 connected to the steam reservoir 12 on the upstream side of the steam reservoir 12, and an overheat connected to the steam reservoir 12 on the downstream side of the steam reservoir 12. It has a tube 13 in part. The evaporation pipe 11 is arranged in the radiation boiler 2, and the superheated pipe 13 is arranged in the tube group boiler 3.

上記発電装置10は、図2に示されているように、図7における従来の発電装置に太陽熱集熱装置19及び太陽熱受熱装置20を付加した構成となっている。ここでは、該太陽熱集熱装置19及び太陽熱受熱装置20を中心に説明し、上記従来の発電装置と同一の部分については同一符号を付して説明を省略する。   As shown in FIG. 2, the power generation device 10 has a configuration in which a solar heat collecting device 19 and a solar heat receiving device 20 are added to the conventional power generation device in FIG. 7. Here, the solar heat collecting device 19 and the solar heat receiving device 20 will be mainly described, and the same parts as those of the conventional power generating device will be denoted by the same reference numerals and the description thereof will be omitted.

上記太陽熱集熱装置19は、廃棄物処理炉施設の屋根上又は敷地内に複数設置されている。該太陽熱集熱装置19は、反射鏡と、該反射鏡の方向や傾きを太陽の動きに合わせて制御する方向制御装置(図示せず)とを有している。   A plurality of the solar heat collecting devices 19 are installed on the roof or site of the waste treatment furnace facility. The solar heat collecting device 19 includes a reflecting mirror and a direction control device (not shown) that controls the direction and inclination of the reflecting mirror in accordance with the movement of the sun.

図1に示されるように、上記太陽熱受熱装置20は、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機15に供給する流路に設置されている。また、該太陽熱受熱装置20は、図3に示されるように、互いに平行して延びる過熱蒸気配管21および加圧温水配管22の二つの配管を内部に有している。該過熱蒸気配管21は、太陽熱集熱装置19の反射鏡で反射した太陽光を受けて受熱するための受熱面側に位置している。図3(B)によく見られるように、上記加圧温水配管22は、過熱蒸気配管21の背面(受熱面と反対側)にて該過熱蒸気配管21に接触して配されており、その内部には温水が通っている。   As shown in FIG. 1, the solar heat receiving device 20 is installed in a flow path for supplying superheated steam generated by a superheated pipe 13 disposed in the tube group boiler 3 to the steam turbine generator 15. In addition, as shown in FIG. 3, the solar heat receiving device 20 has two pipes, that is, a superheated steam pipe 21 and a pressurized hot water pipe 22 that extend in parallel to each other. The superheated steam pipe 21 is located on the heat receiving surface side for receiving and receiving sunlight reflected by the reflecting mirror of the solar heat collector 19. As is often seen in FIG. 3B, the pressurized hot water pipe 22 is arranged in contact with the superheated steam pipe 21 on the back surface (opposite to the heat receiving surface) of the superheated steam pipe 21. There is warm water inside.

本実施形態では、図2に示されているように、管群ボイラ3で生成された過熱蒸気は過熱蒸気ヘッダ14を経て太陽熱受熱装置20の過熱蒸気配管21へ送られる。上述したように、該過熱蒸気配管21は上記受熱面にて太陽光を受けて受熱しているので、上記過熱蒸気は該過熱蒸気配管21内にて太陽熱によってさらに加熱される。そして、該太陽熱で加熱された過熱蒸気(以下「高温過熱蒸気」という)は、蒸気タービン発電機15へ供給され、該蒸気タービン発電機15を駆動することにより発電に寄与する。   In the present embodiment, as shown in FIG. 2, the superheated steam generated in the tube group boiler 3 is sent to the superheated steam pipe 21 of the solar heat receiving device 20 through the superheated steam header 14. As described above, since the superheated steam pipe 21 receives and receives sunlight from the heat receiving surface, the superheated steam is further heated in the superheated steam pipe 21 by solar heat. The superheated steam heated by the solar heat (hereinafter referred to as “high temperature superheated steam”) is supplied to the steam turbine generator 15 and contributes to power generation by driving the steam turbine generator 15.

本実施形態では、上記太陽熱受熱装置20の受熱面で受熱された太陽熱は、まず、受熱面側に位置する過熱蒸気配管21においてその大部分が過熱蒸気の加熱による高温過熱蒸気の生成に活用されて消費される。そして、過熱蒸気配管21で消費されなかった太陽熱は、該過熱蒸気配管21から、該過熱蒸気配管21に接触して配される加圧温水配管22へ熱伝導する。したがって、太陽熱受熱装置20の受熱面が受熱する太陽熱が大幅に増大しても、上記過熱蒸気配管21は過大に過熱されることがなく損傷が防止される。   In the present embodiment, most of the solar heat received by the heat receiving surface of the solar heat receiving device 20 is first used for generating high-temperature superheated steam by heating the superheated steam in the superheated steam pipe 21 located on the heat receiving surface side. Is consumed. Then, the solar heat that has not been consumed in the superheated steam pipe 21 conducts heat from the superheated steam pipe 21 to the pressurized hot water pipe 22 arranged in contact with the superheated steam pipe 21. Therefore, even if the solar heat received by the heat receiving surface of the solar heat receiving device 20 is greatly increased, the superheated steam pipe 21 is not overheated and is prevented from being damaged.

また、加圧温水配管22において、熱伝導した太陽熱は水の加熱及び蒸発に消費される。飽和蒸気温度は一定であり、蒸気の比熱・顕熱と比べて蒸発潜熱が大きいので、該加圧温水配管22内では蒸気が飽和蒸気温度で維持される。   Further, in the pressurized hot water pipe 22, the heat-transferred solar heat is consumed for water heating and evaporation. The saturated steam temperature is constant, and the latent heat of vaporization is larger than the specific heat / sensible heat of the steam, so that the steam is maintained at the saturated steam temperature in the pressurized hot water pipe 22.

本実施形態では、焼却炉1からの排ガスの回収廃熱によって飽和蒸気そして過熱蒸気を生成し、太陽熱によって該過熱蒸気を加熱して高温過熱蒸気を生成する。このように、高温過熱蒸気の生成にのみ太陽熱を活用することにより、該太陽熱の電気変換効率が大幅に高められ、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができる。具体的には、本実施形態に係る発電装置によって、太陽熱の電力変換効率を従来の4倍以上、すなわち、40%以上にまで高めることができる。   In this embodiment, saturated steam and superheated steam are generated by the recovered waste heat of the exhaust gas from the incinerator 1, and the superheated steam is heated by solar heat to generate high-temperature superheated steam. Thus, by using solar heat only for the production of high-temperature superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased, and the waste heat recovery power generation facility capacity of the waste power generation facility can be effectively utilized. Specifically, the power conversion efficiency of solar heat can be increased to 4 times or more, that is, 40% or more of the conventional thermal power conversion apparatus according to the present embodiment.

また、本実施形態では、太陽熱受熱装置20が、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機15に供給する流路に設置されており、太陽熱を高温過熱蒸気の生成に確実に活用できるので、発電効率をさらに高めることができる。   Moreover, in this embodiment, the solar heat receiving device 20 is installed in the flow path which supplies the superheated steam produced | generated by the superheat pipe 13 distribute | arranged in the tube group boiler 3 to the steam turbine generator 15, and solar heat is made into high temperature. Since it can be reliably used for the generation of superheated steam, the power generation efficiency can be further increased.

従来の廃棄物発電設備における廃熱回収ボイラは、ハロゲン化合物や硫黄化合物やその他の腐食性成分が排ガスに含まれるため、ボイラの腐食が発生しない温度で廃熱回収することが行われており、得られる蒸気温度は400℃が限界であった。本実施形態によれば、太陽熱受熱装置20では、排ガス中の腐食成分に対する対策が不要であるので、集熱を効率的に行うことにより、過熱蒸気を450℃〜550℃まで高めることができ、さらに高い発電効率を得ることができる。   Waste heat recovery boilers in conventional waste power generation facilities contain exhaust gas containing halogen compounds, sulfur compounds and other corrosive components, so waste heat recovery is performed at a temperature where boiler corrosion does not occur. The steam temperature obtained was limited to 400 ° C. According to this embodiment, since the solar heat receiving device 20 does not require a countermeasure against the corrosive component in the exhaust gas, the superheated steam can be increased to 450 ° C. to 550 ° C. by efficiently collecting heat, Higher power generation efficiency can be obtained.

本実施形態では、太陽熱を高温過熱蒸気の生成に活用したが、これに代えて、該太陽熱を過熱蒸気および高温過熱蒸気の両方の生成に活用してもよい。すなわち、過熱蒸気配管21内へ飽和蒸気を供給して、該過熱蒸気配管21にて太陽熱によって該飽和蒸気を過熱して、過熱蒸気、さらには高温過熱蒸気を生成することができる。   In the present embodiment, solar heat is used to generate high-temperature superheated steam, but instead, this solar heat may be used to generate both superheated steam and high-temperature superheated steam. That is, it is possible to supply saturated steam into the superheated steam pipe 21 and superheat the saturated steam with solar heat in the superheated steam pipe 21 to generate superheated steam and further high-temperature superheated steam.

本実施形態では、過熱蒸気配管の背面に加圧温水配管が配されたが、これに代えて、蒸発管が設けられていてもよい。   In the present embodiment, the pressurized hot water pipe is arranged on the back surface of the superheated steam pipe, but an evaporation pipe may be provided instead.

<第二実施形態>
本実施形態に係る発電装置は、太陽熱受熱装置での太陽熱の受熱量を検知するセンサと、該センサにより検知された受熱量に応じて太陽熱受熱装置及び蒸気タービン発電機への蒸気の供給を制御する蒸気供給制御手段としての蒸気供給制御装置とを有している点で、該センサ及び蒸気供給制御装置を有していない第一実施形態の発電装置と相違している。ここでは、上記センサ及び蒸気供給制御装置を中心に説明し、第一実施形態と同一の部分については同一符号を付して説明を省略する。
<Second embodiment>
The power generation device according to the present embodiment controls a sensor that detects the amount of solar heat received by the solar heat receiving device, and the supply of steam to the solar heat receiving device and the steam turbine generator in accordance with the amount of heat detected by the sensor. It differs from the electric power generating apparatus of 1st Embodiment which does not have this sensor and a steam supply control apparatus by the point which has the steam supply control apparatus as a steam supply control means to perform. Here, it demonstrates centering on the said sensor and a vapor | steam supply control apparatus, and attaches | subjects the same code | symbol about the part same as 1st embodiment, and abbreviate | omits description.

図4は、本実施形態に係る発電装置の構成を示すブロック図である。図4に示されるように、本実施形態に係る発電装置10’には、太陽熱受熱装置20での太陽熱の受熱量を検知するセンサ23と、センサ23により検知された受熱量に応じて太陽熱受熱装置20及び蒸気タービン発電機15への蒸気の供給を制御する蒸気供給制御装置24とを有している。   FIG. 4 is a block diagram illustrating a configuration of the power generation device according to the present embodiment. As shown in FIG. 4, the power generation device 10 ′ according to the present embodiment includes a sensor 23 that detects the amount of solar heat received by the solar heat receiving device 20, and solar heat reception according to the amount of heat received by the sensor 23. And a steam supply control device 24 that controls the supply of steam to the apparatus 20 and the steam turbine generator 15.

また、本実施形態では、過熱蒸気ヘッダ14と太陽熱受熱装置20とを接続する配管にバルブ25が設けられ、該過熱蒸気ヘッダ14と蒸気タービン発電機15とを接続する配管にバルブ26が設けられている。そして、上記蒸気供給制御装置24がバルブ25,26の作動を制御することにより蒸気の供給量を調整できるようになっている。   In the present embodiment, a valve 25 is provided in a pipe connecting the superheated steam header 14 and the solar heat receiving device 20, and a valve 26 is provided in a pipe connecting the superheated steam header 14 and the steam turbine generator 15. ing. The steam supply control device 24 can control the operation of the valves 25 and 26 to adjust the steam supply amount.

上記蒸気供給制御装置24は、上記センサ23が検知した受熱量が、予め設定された閾値以上であるときにバルブ25を開き、太陽熱受熱装置20へ過熱蒸気を供給する。   The steam supply control device 24 opens the valve 25 to supply superheated steam to the solar heat receiving device 20 when the amount of heat received by the sensor 23 is equal to or greater than a preset threshold value.

太陽熱受熱装置20への受熱量が十分でない場合、過熱蒸気を太陽熱受熱装置20に供給すると熱ロスが生じてしまうが、本実施形態では、予め受熱量の閾値を設定しておき、受熱量が該閾値以上であるときのみ過熱蒸気を太陽熱受熱装置20に供給するので、上記熱ロスの発生を回避できる。また、受熱量が十分であるときに過熱蒸気を太陽熱受熱装置20に供給することにより該太陽熱受熱装置20の過熱による損傷を回避できる。   When the amount of heat received by the solar heat receiving device 20 is not sufficient, heat loss occurs when superheated steam is supplied to the solar heat receiving device 20, but in this embodiment, a threshold for the amount of heat received is set in advance, and the amount of received heat is Since the superheated steam is supplied to the solar heat receiving device 20 only when it is equal to or higher than the threshold, the occurrence of the heat loss can be avoided. Further, when the amount of heat received is sufficient, supplying the superheated steam to the solar heat receiving device 20 can avoid damage to the solar heat receiving device 20 due to overheating.

蒸気供給制御装置24は、バルブ26の開閉を以下のように制御する。太陽熱受熱装置20へ供給される過熱蒸気の温度(Ti)を計測する温度センサ(図示せず)、太陽熱受熱装置から払い出される過熱蒸気の温度(To)を計測する温度センサ(図示せず)及び太陽熱受熱装置20内の過熱蒸気の温度(Ts)を計測する温度センサ(図示せず)を設け、太陽熱受熱装置20へ過熱蒸気を供給する際に、Ti≧ToとTi≧Tsのうち少なくとも一つの場合には、バルブ26を閉じ過熱蒸気ヘッダ14から払い出される全ての過熱蒸気を太陽熱受熱装置20へ供給し、Ti<ToとTi<Tsのうち少なくとも一つの場合に、バルブ26を適切な開度で開き過熱蒸気ヘッダ14から払い出される過熱蒸気の一部を太陽熱受熱装置20を介さず蒸気タービン発電機15へ供給するようにして、太陽熱受熱装置20へ供給される過熱蒸気量を調整して太陽熱受熱装置20の過熱による損傷を回避する。バルブ26の開度は、太陽熱受熱装置20内の過熱蒸気の温度(Ts)を所定の範囲とするように調整される。   The steam supply control device 24 controls the opening and closing of the valve 26 as follows. A temperature sensor (not shown) for measuring the temperature (Ti) of superheated steam supplied to the solar heat receiving device 20, a temperature sensor (not shown) for measuring the temperature (To) of superheated steam discharged from the solar heat receiving device, and When a temperature sensor (not shown) for measuring the temperature (Ts) of the superheated steam in the solar heat receiving device 20 is provided and the superheated steam is supplied to the solar heat receiving device 20, at least one of Ti ≧ To and Ti ≧ Ts. In one case, the valve 26 is closed and all the superheated steam discharged from the superheated steam header 14 is supplied to the solar heat receiving device 20, and when at least one of Ti <To and Ti <Ts, the valve 26 is appropriately opened. A portion of the superheated steam that opens at a high temperature and is discharged from the superheated steam header 14 is supplied to the steam turbine generator 15 without passing through the solar heat receiving device 20, so that the solar heat receiving device 2. Adjust the superheated steam amount supplied to avoid damage due to overheating of the solar heat receiving unit 20. The opening degree of the valve 26 is adjusted so that the temperature (Ts) of the superheated steam in the solar heat receiving device 20 falls within a predetermined range.

なお、本実施形態では、上記蒸気供給制御装置24は、受熱量が所定の閾値以上であるときに過熱蒸気を供給するように制御を行うが、これに代えて、単に太陽熱受熱装置20が太陽熱を受熱しているとき、すなわちセンサ23が受熱を検知したときに過熱蒸気を太陽熱受熱装置20に供給するように制御することとしてもよい。   In the present embodiment, the steam supply control device 24 performs control so that superheated steam is supplied when the amount of heat received is equal to or greater than a predetermined threshold value. It is good also as controlling so that superheated steam may be supplied to the solar heat receiving apparatus 20, when the sensor 23 detects heat reception.

太陽熱受熱装置20は、センサ23に検知された受熱量を検知した太陽熱受熱量が予め設定された閾値以下であるときに、太陽熱受熱装置20の受熱面を保熱材あるいは断熱材によって覆う機構を有していてもよい。例えば、上記センサ23に検知された受熱量に基づいて、上記蒸気供給制御装置24により上記機構の作動を制御するような構成にすることが可能である。   The solar heat receiving device 20 has a mechanism that covers the heat receiving surface of the solar heat receiving device 20 with a heat insulating material or a heat insulating material when the solar heat received amount detected by the sensor 23 is equal to or less than a preset threshold value. You may have. For example, the operation of the mechanism can be controlled by the steam supply control device 24 based on the amount of heat received by the sensor 23.

このような機構を設けることにより、日中、天候の変化(例えば、曇りやにわか雨等)の影響で日射量が低減して、太陽熱受熱装置20の受熱面に太陽光が十分に入射しないた場合であっても、上記機構によって上記受熱面を保熱材あるいは断熱材で覆って該受熱面からの熱放散を抑制して熱ロスを低減することができる。この結果、太陽熱の受熱を再開したときあるいは受熱量が十分な量に戻ったときに、過熱蒸気生成や過熱蒸気加熱の加熱熱量を短時間で所定のレベルに戻すことができ、太陽熱による加熱熱量の変動を小さく抑制することができる。また、上記センサ23が太陽熱の受熱を全く検知していないときに上記受熱面が保熱材あるいは断熱材で覆われるようにしてもよいことは言うまでもない。   By providing such a mechanism, the amount of solar radiation is reduced due to the influence of changes in the weather (for example, cloudy weather or showers) during the day, and sunlight does not sufficiently enter the heat receiving surface of the solar heat receiving device 20. Even so, the heat receiving surface can be covered with a heat insulating material or a heat insulating material by the mechanism to suppress heat dissipation from the heat receiving surface to reduce heat loss. As a result, when the heat reception of solar heat is resumed or when the heat reception amount returns to a sufficient amount, the heating heat amount of superheated steam generation or superheated steam heating can be returned to a predetermined level in a short time, and the heating heat amount by solar heat Fluctuations can be suppressed. It goes without saying that the heat receiving surface may be covered with a heat insulating material or a heat insulating material when the sensor 23 does not detect any heat received by solar heat.

また、太陽熱受熱装置20は、センサ23に検知された受熱量を検知した太陽熱受熱量が予め設定された閾値以下であるときに過熱蒸気加熱を行う燃焼バーナ等の燃焼機器を有していていもよい。例えば、上記センサ23に検知された受熱量に基づいて、上記蒸気供給制御装置24によって、上記燃焼機器への燃料の供給そして該燃焼機器の作動を制御するような構成にすることが可能である。   Further, the solar heat receiving device 20 may have a combustion device such as a combustion burner that performs superheated steam heating when the solar heat received amount detected by the sensor 23 is equal to or less than a preset threshold value. Good. For example, based on the amount of heat received by the sensor 23, the steam supply control device 24 can control the supply of fuel to the combustion equipment and the operation of the combustion equipment. .

このような燃焼機器を設けることにより、受熱量が十分でない場合であっても、該燃焼機器によって過熱蒸気加熱を行うことができる。また、上記センサ23が太陽熱の受熱を全く検知していないときに上記燃焼機器による過熱蒸気加熱が行われるようにしてもよいことは言うまでもない。   By providing such a combustion device, even if the amount of heat received is not sufficient, superheated steam heating can be performed by the combustion device. It goes without saying that the superheated steam heating by the combustion device may be performed when the sensor 23 does not detect any heat received from the solar heat.

<第三実施形態>
本実施形態に係る発電装置は、太陽熱受熱装置の内部に蓄熱材が設けられている点で、該蓄熱材が設けられていない第一実施形態に係る発電装置と異なっている。本実施形態では、該太陽熱受熱装置を中心に説明し、第一実施形態と同一の部分には、同一符号を付して説明を省略する。
<Third embodiment>
The power generation device according to the present embodiment is different from the power generation device according to the first embodiment in which the heat storage material is not provided in that the heat storage material is provided inside the solar heat receiving device. In this embodiment, it demonstrates centering on this solar heat receiving apparatus, and attaches | subjects the same code | symbol to the part same as 1st embodiment, and abbreviate | omits description.

図5は、本実施形態における太陽熱受熱装置を示す図である。図5に見られるように、該太陽熱受熱装置20の内部において、過熱蒸気配管21における受熱面側部分を除く部分(図5にて右半部)及び加圧温水配管22の全体の周囲が蓄熱材27で覆われている。   FIG. 5 is a diagram showing a solar heat receiving device in the present embodiment. As shown in FIG. 5, in the solar heat receiving device 20, a portion (a right half portion in FIG. 5) excluding the heat receiving surface side portion in the superheated steam pipe 21 and the entire periphery of the pressurized hot water pipe 22 store heat. It is covered with a material 27.

蓄熱材27は、例えば、固体金属酸化物や熱媒油類や、好ましくは熱容量の大きい相変態物質としての溶融塩類(NaNO、KNO、NaCl、NaCO等)や、さらに好ましくは、金属水酸化物(水酸化鉄(蓄熱温度300〜400℃))、アルカリ土類炭酸塩(MgCO(蓄熱温度450℃))、アルカリ土類水酸化物(Ca(OH)(蓄熱温度540℃))等、化学反応による吸熱反応が得られる蓄熱物質で形成されている。 The heat storage material 27 is, for example, a solid metal oxide or a heat transfer oil, preferably a molten salt (NaNO 3 , KNO 3 , NaCl, Na 2 CO 3 or the like) as a phase change material having a large heat capacity, and more preferably , Metal hydroxide (iron hydroxide (heat storage temperature 300 to 400 ° C.)), alkaline earth carbonate (MgCO 3 (heat storage temperature 450 ° C.)), alkaline earth hydroxide (Ca (OH) 2 (heat storage temperature) 540 [deg.] C.)) and the like.

本実施形態では、このように過熱蒸気配管21及び加圧温水配管22を蓄熱材27で覆うことにより、太陽熱の受熱量が変化しても該太陽熱を該蓄熱材27に蓄熱できるので、液体熱媒体を循環したり貯留する装置を用いずに受熱量を平滑化できる。   In this embodiment, by covering the superheated steam pipe 21 and the pressurized hot water pipe 22 with the heat storage material 27 in this way, the solar heat can be stored in the heat storage material 27 even if the amount of received heat of the solar heat changes. The amount of heat received can be smoothed without using a device that circulates or stores the medium.

<第四実施形態>
本実施形態に係る発電装置は、太陽熱受熱装置において過熱蒸気配管と加圧温水配管とが互いに間隙をもって配されている点で、第三実施形態に係る発電装置と異なっている。
<Fourth embodiment>
The power generator according to this embodiment is different from the power generator according to the third embodiment in that the superheated steam pipe and the pressurized hot water pipe are arranged with a gap in the solar heat receiving device.

図6は、本実施形態に係る発電装置における太陽熱受熱装置を示す図である。図6に見られるように、加圧温水配管22は過熱蒸気配管21の背面に間隙をもって設けられている。また、該加圧温水配管22の周囲には蓄熱材27が設けられている。   FIG. 6 is a diagram illustrating a solar heat receiving device in the power generation device according to the present embodiment. As shown in FIG. 6, the pressurized hot water pipe 22 is provided with a gap on the back surface of the superheated steam pipe 21. A heat storage material 27 is provided around the pressurized hot water pipe 22.

本実施形態における太陽熱受熱装置20では、過熱蒸気配管21の温度が所定温度以下であるときには、上記間隙により過熱蒸気配管21と加圧温水配管22とが断熱されている。そして、太陽熱を受熱したことにより該過熱蒸気配管21の温度が所定温度を超えると、過熱蒸気配管21の熱膨張により上記間隙が無くなり該過熱蒸気配管21が加圧温水配管22接触して抜熱される。この結果、過熱蒸気配管21が所定温度より高く加熱されて損傷することを防止するとともに、過熱蒸気配管21から加圧温水配管22に伝熱された太陽熱を加圧温水の加熱に利用できる。上記過熱蒸気配管21の所定温度は、過熱蒸気配管21の高温強度が低下する限界温度などに基づき設定される。   In the solar heat receiving device 20 in the present embodiment, when the temperature of the superheated steam pipe 21 is equal to or lower than a predetermined temperature, the superheated steam pipe 21 and the pressurized hot water pipe 22 are insulated by the gap. When the temperature of the superheated steam pipe 21 exceeds a predetermined temperature due to receiving solar heat, the above-mentioned gap disappears due to the thermal expansion of the superheated steam pipe 21, and the superheated steam pipe 21 comes into contact with the pressurized hot water pipe 22 to remove heat. It is. As a result, it is possible to prevent the superheated steam pipe 21 from being heated and damaged at a temperature higher than a predetermined temperature, and to use solar heat transferred from the superheated steam pipe 21 to the pressurized hot water pipe 22 for heating the pressurized hot water. The predetermined temperature of the superheated steam pipe 21 is set based on a limit temperature at which the high temperature strength of the superheated steam pipe 21 decreases.

本発明は、廃棄物発電装置に関するものであるが、廃棄物と同様の低カロリー燃料といえる汚泥やバイオマス、泥炭等を焼却又はガス化溶融する処理炉からの廃熱を利用する発電装置に適用することができ、廃棄物発電装置と同様に、発電効率向上効果を得ることができる。   The present invention relates to a waste power generation apparatus, but is applied to a power generation apparatus that uses waste heat from a processing furnace that incinerates or gasifies and melts sludge, biomass, peat, etc., which can be said to be a low-calorie fuel similar to waste. As with the waste power generation apparatus, the power generation efficiency improvement effect can be obtained.

第一実施形態に係る発電装置を実施した実施例を説明する。該発電装置の太陽熱集熱装置の敷地面積は10000mである。敷地有効面積率が50%、面積当りの受熱量が68.32w/mであることを前提とすると太陽熱受熱装置の受熱量は341kwであり、受熱効率を75%とすると受熱した太陽熱で加熱された過熱蒸気による発電量は256kwである。 The Example which implemented the electric power generating apparatus which concerns on 1st embodiment is described. The site area of the solar heat collector of the power generator is 10,000 m 2 . Assuming that the site effective area rate is 50% and the amount of heat received per area is 68.32w / m 2 , the amount of heat received by the solar heat receiving device is 341kw, and if the heat receiving efficiency is 75%, it is heated by the received solar heat. The amount of power generated by the superheated steam is 256 kw.

上述の太陽熱受熱装置を有する発電装置を焼却炉能力が200t/日のごみ焼却炉に適用した場合について述べる。ここで、ごみ発熱量が2200kcal/kgであることを前提にすると、ごみ焼却により発生するごみ熱量は21300kwとなり、廃熱回収による発電量は3200kwであり、発電量の入熱量に対する比である発電効率は15.0%である。上記太陽熱受熱装置を有する発電装置を適用した結果、ごみ熱量と太陽熱受熱量との合計入熱量が21641kwであり、合計発電量が3456kwであるので、発電効率は16.0%となり、太陽熱受熱装置を有するごみ発電装置とすることにより、発電効率を1.0%増加させることができた。   The case where the power generation device having the above-described solar heat receiving device is applied to a waste incinerator having an incinerator capacity of 200 t / day will be described. Here, assuming that the waste heat generation amount is 2200 kcal / kg, the waste heat amount generated by waste incineration is 21300 kw, the power generation amount by waste heat recovery is 3200 kw, and the power generation is a ratio of the power generation amount to the heat input amount. The efficiency is 15.0%. As a result of applying the power generation device having the solar heat receiving device, the total heat input amount of the waste heat amount and the solar heat received amount is 21642 kw, and the total power generation amount is 3456 kw, so the power generation efficiency is 16.0%, and the solar heat heat receiving device The power generation efficiency can be increased by 1.0%.

1 焼却炉(廃棄物処理炉)
2 輻射ボイラ
3 管群ボイラ
10,10’ 発電装置(廃棄物発電装置)
15 蒸気タービン発電機(蒸気タービン発電装置)
19 太陽熱集熱装置
20 太陽熱受熱装置
21 過熱蒸気配管
22 加圧温水配管
23 センサ
24 蒸気供給制御装置(蒸気供給制御手段)
26 蓄熱材
1 Incinerator (waste treatment furnace)
2 Radiation boiler 3 Tube group boiler 10, 10 'Power generator (waste power generator)
15 Steam turbine generator (steam turbine generator)
DESCRIPTION OF SYMBOLS 19 Solar thermal collector 20 Solar thermal receiver 21 Superheated steam piping 22 Pressurized hot water piping 23 Sensor 24 Steam supply control apparatus (steam supply control means)
26 Heat storage material

Claims (8)

廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、
廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、
太陽熱を集熱する太陽熱集熱装置と、
集熱された太陽熱を受熱し、受熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱装置と、
生成された過熱蒸気により発電する蒸気タービン発電装置と、
を備えることを特徴とする太陽熱利用廃棄物発電装置。
A waste power generation apparatus installed in a waste treatment furnace facility for incineration or gasification melting of waste,
A boiler that generates steam by recovering heat from the exhaust gas discharged from the waste treatment furnace;
A solar heat collector for collecting solar heat;
The superheated steam generated by the boiler that generates the superheated steam by heating the steam generated in the boiler to a temperature higher than the saturated steam temperature by receiving the collected solar heat and heat exchange with the received solar heat. Further, a solar heat receiving device that performs at least one of heating superheated steam heating,
A steam turbine power generation device that generates electric power using the generated superheated steam;
A waste heat power generation apparatus using solar heat.
太陽熱受熱装置にて受熱した太陽熱と過熱蒸気との熱交換を行う機構が、ボイラで生成した過熱蒸気を蒸気タービンに供給する流路に設置されていることを特徴とする請求項1に記載の太陽熱利用廃棄物発電装置。   The mechanism for performing heat exchange between solar heat received by the solar heat receiving device and superheated steam is installed in a flow path for supplying superheated steam generated by a boiler to a steam turbine. Solar thermal waste power generation system. 太陽熱受熱装置での太陽熱の受熱を検知するセンサと、
上記センサが太陽熱の受熱を検知しているとき又は該センサが検知した太陽熱受熱量が所定値以上であるときに太陽熱受熱装置へ蒸気を供給する蒸気供給制御手段と、
を備えることを特徴とする請求項1又は請求項2に記載の太陽熱利用廃棄物発電装置。
A sensor for detecting the heat received by the solar heat receiving device;
Steam supply control means for supplying steam to the solar heat receiving device when the sensor detects solar heat reception or when the amount of solar heat received by the sensor is equal to or greater than a predetermined value;
The solar-powered waste power generation apparatus according to claim 1 or 2, wherein
太陽熱受熱装置での太陽熱の受熱を検知するセンサを備え、
太陽熱受熱装置は、上記センサが太陽熱の受熱を検知していないとき又は該センサが検知した太陽熱受熱量が所定値以下であるときに、太陽熱受熱装置の受熱面からの熱放散を抑制する保熱材又は断熱材により受熱面を覆う機構を有していることを特徴とする請求項1乃至請求項3のうちいずれかに記載の太陽熱利用廃棄物発電装置。
It is equipped with a sensor that detects the heat received by the solar heat receiving device,
The solar heat receiving device is a heat retaining device that suppresses heat dissipation from the heat receiving surface of the solar heat receiving device when the sensor does not detect solar heat receiving or when the amount of solar heat received by the sensor is a predetermined value or less. The solar thermal waste power generation apparatus according to any one of claims 1 to 3, further comprising a mechanism for covering the heat receiving surface with a material or a heat insulating material.
太陽熱受熱装置が太陽熱を受熱していないとき又は太陽熱受熱量が所定値以下のとき、過熱蒸気生成及び過熱蒸気加熱のうち少なくとも一つを行う燃焼機器を備えることを特徴とする請求項1乃至請求項4のうちいずれかに記載の太陽熱利用廃棄物発電装置。   A combustion apparatus that performs at least one of superheated steam generation and superheated steam heating when the solar heat receiving device is not receiving solar heat or when the amount of solar heat received is a predetermined value or less. Item 5. A solar thermal power generation power generation device according to any one of Items 4 to 4. 太陽熱受熱装置は、過熱蒸気を生成する過熱蒸気配管が受熱面側に設けられているともに、加圧温水配管又は蒸発管が該過熱蒸気配管の背面に接触して設けられていることを特徴とする請求項1乃至請求項5のうちいずれかに記載の太陽熱利用廃棄物発電装置。   The solar heat receiving device is characterized in that a superheated steam pipe for generating superheated steam is provided on the heat receiving surface side, and a pressurized hot water pipe or an evaporation pipe is provided in contact with the back surface of the superheated steam pipe. The solar-powered waste power generation apparatus according to any one of claims 1 to 5. 太陽熱受熱装置は、過熱蒸気を生成する過熱蒸気配管が受熱面側に設けられているとともに、加圧温水配管又は蒸発管が該過熱蒸気配管の背面に間隙をもって設けられていることを特徴とする請求項1乃至請求項5のうちいずれかに記載の太陽熱利用廃棄物発電装置。   The solar heat receiving device is characterized in that a superheated steam pipe for generating superheated steam is provided on the heat receiving surface side, and a pressurized hot water pipe or an evaporation pipe is provided with a gap at the back of the superheated steam pipe. The solar heat-utilized waste power generation apparatus according to any one of claims 1 to 5. 太陽熱受熱装置は、該太陽熱受熱装置の内部に蓄熱材を有していることを特徴とする請求項1乃至請求項7のうちいずれかに記載の太陽熱利用廃棄物発電装置。   The solar heat receiving device has a heat storage material inside the solar heat receiving device, and the solar heat-use waste power generation device according to any one of claims 1 to 7.
JP2010032242A 2010-02-17 2010-02-17 Waste power generator utilizing solar heat Pending JP2011169186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032242A JP2011169186A (en) 2010-02-17 2010-02-17 Waste power generator utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032242A JP2011169186A (en) 2010-02-17 2010-02-17 Waste power generator utilizing solar heat

Publications (1)

Publication Number Publication Date
JP2011169186A true JP2011169186A (en) 2011-09-01

Family

ID=44683562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032242A Pending JP2011169186A (en) 2010-02-17 2010-02-17 Waste power generator utilizing solar heat

Country Status (1)

Country Link
JP (1) JP2011169186A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777950A (en) * 2012-01-10 2012-11-14 叶崇明 Light, electricity and gas three-purpose kitchen range
JP2013133759A (en) * 2011-12-27 2013-07-08 Hiroaki Uemura Power generation method using both solar light heat and heat excluding solar light heat
JP2015014248A (en) * 2013-07-05 2015-01-22 浩明 植村 Power generation method
JP2016509149A (en) * 2012-12-07 2016-03-24 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Concentrating solar power plant and method
CN106642141A (en) * 2016-12-29 2017-05-10 陶煜民 Multifunctional electricity generating station
KR101918632B1 (en) * 2016-09-29 2019-02-08 한국건설기술연구원 Plant using waste fuel and solar heat and method for controlling the same
WO2019188517A1 (en) * 2018-03-29 2019-10-03 愛知製鋼株式会社 Solar thermal power generation system
WO2020116167A1 (en) * 2018-12-07 2020-06-11 愛知製鋼株式会社 Solar thermal power generation system
JP7406335B2 (en) 2019-10-10 2023-12-27 株式会社熊谷組 solar heat collector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133759A (en) * 2011-12-27 2013-07-08 Hiroaki Uemura Power generation method using both solar light heat and heat excluding solar light heat
CN102777950A (en) * 2012-01-10 2012-11-14 叶崇明 Light, electricity and gas three-purpose kitchen range
JP2016509149A (en) * 2012-12-07 2016-03-24 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Concentrating solar power plant and method
JP2015014248A (en) * 2013-07-05 2015-01-22 浩明 植村 Power generation method
KR101918632B1 (en) * 2016-09-29 2019-02-08 한국건설기술연구원 Plant using waste fuel and solar heat and method for controlling the same
CN106642141A (en) * 2016-12-29 2017-05-10 陶煜民 Multifunctional electricity generating station
WO2019188517A1 (en) * 2018-03-29 2019-10-03 愛知製鋼株式会社 Solar thermal power generation system
JP2019173699A (en) * 2018-03-29 2019-10-10 愛知製鋼株式会社 Solar heat power generation system
WO2020116167A1 (en) * 2018-12-07 2020-06-11 愛知製鋼株式会社 Solar thermal power generation system
JP2020090943A (en) * 2018-12-07 2020-06-11 愛知製鋼株式会社 Solar power generation system
JP7406335B2 (en) 2019-10-10 2023-12-27 株式会社熊谷組 solar heat collector

Similar Documents

Publication Publication Date Title
JP2011169186A (en) Waste power generator utilizing solar heat
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP6340473B2 (en) Solar and biomass energy integrated power generation optimization combined system
JP2011169187A (en) Waste power generation device utilizing solar heat
JP2011117447A (en) Power generation system using solar energy
JP2011169188A (en) Geothermal power generator utilizing solar heat
JP5812955B2 (en) Power generator / heater
ES2382939T3 (en) Operating procedure of a power plant
US20100089060A1 (en) Hybrid power facilities
KR101135685B1 (en) Control method of Organic Rankine Cycle System Pump
JP5447096B2 (en) Solar thermal waste power generation apparatus and operation method thereof
JP5534427B2 (en) Solar thermal power generation system
Khan et al. Techno-economic and exergo-economic evaluation of a novel solar integrated waste-to-energy power plant
KR101199525B1 (en) Organic Rankine Cycle System
US10883390B2 (en) Cogeneration system for integration into solar water heating systems
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
JPH11218005A (en) Combined power generation system utilizing waster as fuel
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
US20140216032A1 (en) Solar direct steam generation power plant combined with heat storage unit
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
US20100089059A1 (en) Hybrid Power Facilities
WO2009152494A1 (en) Hybrid power facilities
JPH11325406A (en) Feed water heating device for thermal power generation facility
JP5142817B2 (en) Operation method of condensate system in steam power plant
US20110203575A1 (en) Thermodynamic/Solar Steam Generator