JPH11218005A - Combined power generation system utilizing waster as fuel - Google Patents

Combined power generation system utilizing waster as fuel

Info

Publication number
JPH11218005A
JPH11218005A JP3435098A JP3435098A JPH11218005A JP H11218005 A JPH11218005 A JP H11218005A JP 3435098 A JP3435098 A JP 3435098A JP 3435098 A JP3435098 A JP 3435098A JP H11218005 A JPH11218005 A JP H11218005A
Authority
JP
Japan
Prior art keywords
air
power generation
exhaust
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3435098A
Other languages
Japanese (ja)
Inventor
Takahiro Oshita
孝裕 大下
Nobuo Nakada
信夫 中田
Tetsuhisa Hirose
哲久 広勢
Kousuke Taguchi
光助 田口
Yutaka Mori
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3435098A priority Critical patent/JPH11218005A/en
Publication of JPH11218005A publication Critical patent/JPH11218005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of an externally heating system waste utilizing combined power generation, without using additional fuels such as natural gas under current restrictions on raw materials. SOLUTION: The combined power generation system is provided with an exhaust gas source 1, an open cycle regenerative type gas turbine 3 in which exhaust gas from the exhaust gas source 1 and compressed air are heat-exchanged and externally heated by an outside air heater 2, a high temperature air preheater 13 for waste burning air, a steam boiler 4 arranged in the downstream of the outside air heater 2 and the high temperature preheater 13, and an air preheater 5 for waste burning air, arranged in the downstream of the steam boiler 4. Then, a feed water heater 8 for heating condensed water 7 of a steam turbine 6 consuming stream generated from the steam turbine 4 by means of the exhaust air at the outlet of a regenerator of the gas turbine, is provided to evaporate-heat ammonia-water mixed fluid 10 of a kalina cycle 20 by means of temperature-reduced exhaust air 9 to generate electricity by means of an ammonia-water mixed fluid steam turbine 12, and to supply a part of exhaust air in the downstream of the heat exchanger to the air preheater 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温の腐食性燃焼
ガスと空気の熱交換を行う外部加熱式ガスタービン、蒸
気タービン、アンモニア−水混合流体タービンにより動
力を回収する廃棄物を燃料とする複合発電システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste fuel whose power is recovered by an externally heated gas turbine, a steam turbine, and an ammonia-water mixed fluid turbine for exchanging heat between high-temperature corrosive combustion gas and air. It relates to a combined power generation system.

【0002】[0002]

【従来の技術】廃棄物発電における水−蒸気を使うラン
キンサイクルを使う発電システムは排ガスが激しい腐食
性を持つことより、石炭などの固体燃料発電に比較する
と蒸気温度は300℃以下に押さえられていた。近年、
地球温暖化防止行動計画により廃棄物発電の高効率化が
推進され、4MPa、400℃の蒸気条件も実用化され
てきた。一方、廃棄物燃焼におけるダイオキシン排出低
減、焼却灰の溶融化による飛灰の減容化、無害化を目的
とするガス化溶解炉も実用化され、廃棄物燃焼ガス温度
は800℃から1350℃と高温化している。
2. Description of the Related Art In a power generation system using water-steam in waste power generation, since the exhaust gas has severe corrosiveness, the steam temperature is suppressed to 300 ° C. or less as compared with solid fuel power generation such as coal. Was. recent years,
Higher efficiency of waste power generation has been promoted by the Global Warming Prevention Action Plan, and steam conditions of 4 MPa and 400 ° C. have been put to practical use. On the other hand, gasification and melting furnaces for the purpose of reducing dioxin emission in waste combustion, reducing fly ash volume by melting incinerated ash, and making it harmless have also been put into practical use. High temperature.

【0003】固体燃料の高効率発電システムとしては、
固体燃料を燃焼ガス化して、ガスタービン発電を行い、
ガスタービンの排ガスを熱源として蒸気タービン発電を
行う複合発電がある。ガスタービン技術の進歩により2
1世紀には天然ガスを燃料とする複合発電の発電効率は
60%を超すと見込まれている。廃棄物発電において
も、出力30MW規模で発電効率44%以上のガス化複
合発電システムが実用化されるのも間近い現状である。
しかしながら、現在の廃棄物ガス化は加圧状態でガス燃
料を製造する方法であり、廃棄物燃料はロックホッパー
から投入できる大きさまでにRDF化してガス化炉に供
給する必要がある。また、ガス化には酸素プラントおよ
び湿式ガス洗浄の廃水処理も必要である。
As a high-efficiency power generation system for solid fuel,
Combustion gasification of solid fuel, gas turbine power generation,
There is a combined power generation that performs steam turbine power generation using the exhaust gas of a gas turbine as a heat source. Due to advances in gas turbine technology, 2
In the first century, the combined power generation efficiency using natural gas as fuel is expected to exceed 60%. In waste power generation, a combined gasification power generation system with an output of 30 MW and a power generation efficiency of 44% or more is about to be put into practical use.
However, the current waste gasification is a method of producing gaseous fuel in a pressurized state, and the waste fuel needs to be converted into RDF to a size that can be introduced from a lock hopper and supplied to a gasification furnace. Gasification also requires the treatment of wastewater from oxygen plants and wet gas scrubbing.

【0004】複合発電サイクルを廃棄物発電に導入する
方法として、排ガスと圧縮空気との熱交換による外部加
熱式ガスタービンがあり、廃棄物排ガス温度が1350
℃に達する常圧ガス化溶融炉では、空気加熱温度は最新
式商用ガスタービンのタービン入口温度1150℃まで
上げることにより、発電効率が廃棄物ガス化複合発電と
同レベルまで向上することを本件出願人が特願平8−3
1412号「廃棄物を燃料とする複合発電」で提案して
いる。この方法は、高温高圧のセラミック熱交換器を必
要とし、多量の水蒸気、塩化水素を含む廃棄物ガス化溶
融炉における1350℃の燃焼ガスに耐える材料および
構造は実用化されていない。
As a method for introducing a combined cycle to waste power generation, there is an externally heated gas turbine by exchanging heat between exhaust gas and compressed air.
The present application is to raise the power generation efficiency to the same level as waste gasification combined cycle power generation by raising the air heating temperature to 1150 ° C at the inlet of the latest commercial gas turbine in a normal pressure gasification and melting furnace that reaches ℃. People apply for Japanese Patent Application 8-3
No. 1412, "Combined power generation using waste as fuel". This method requires a high-temperature and high-pressure ceramic heat exchanger, and materials and structures that can withstand a combustion gas at 1350 ° C. in a waste gasification and melting furnace containing a large amount of steam and hydrogen chloride have not been put into practical use.

【0005】石炭発電の高効率化手法として、外部加熱
式ガスタービンの研究が米国、ヨーロッパで行われてお
り、加熱空気温度を1000℃以下とし、天然ガスの追
加燃焼により、タービン入口温度を1150℃まで上げ
ている。外部より、天然ガスを追加加熱して発電効率を
上げる方法は、天然ガスが安価に得られ、かつ施設がパ
イプライン近傍に立地できる場合には有効であるが、経
済性に問題がある。
[0005] As a method for improving the efficiency of coal power generation, research on an externally heated gas turbine has been conducted in the United States and Europe. The temperature of the heated air is set to 1000 ° C or lower, and the turbine inlet temperature is set to 1150 by additional combustion of natural gas. ℃. A method of increasing the power generation efficiency by additionally heating natural gas from the outside is effective when natural gas can be obtained at low cost and the facility can be located near the pipeline, but there is a problem in economics.

【0006】本件出願人は特願平9−214064号
「廃棄物を燃料とする複合発電システム」において、空
気加熱温度が742℃の外部加熱式ガスタービンとカリ
ーナサイクルとを組み合わせ、出力規模20MW程度で
発電効率35%のシステムを提案している。このシステ
ムの問題点は、ガスタービン圧縮機出口の空気温度をガ
ス化溶融炉のバグフィルタ入口温度より低くするため
に、空気−空気の熱交換が従来の空気−蒸気の熱交換伝
熱面積より、3倍程度になるため、熱交換器コストが増
えることである。
[0006] The applicant of the present application discloses in Japanese Patent Application No. 9-214064 "combined power generation system using waste as fuel," a combination of an externally heated gas turbine having an air heating temperature of 742 ° C and a carina cycle, and an output scale of about 20 MW. Has proposed a system with a power generation efficiency of 35%. The problem with this system is that the air-air heat exchange is lower than the conventional air-steam heat exchange heat transfer area in order to keep the air temperature at the gas turbine compressor outlet below the bag filter inlet temperature of the gasification and melting furnace. Approximately three times, so that the cost of the heat exchanger increases.

【0007】本件出願人が特願平9−296313号
「廃棄物燃焼発電方式」で提案した10MPa、540
℃の蒸気を得る方法は、発電効率35%が得られるた
め、発電効率35%の外部加熱式複合発電は性能上の優
位性を失った。
[0007] The applicant proposed 10 MPa, 540 proposed in Japanese Patent Application No. 9-296313 "Waste combustion power generation system".
Since the method of obtaining steam at a temperature of 35 ° C. yields a power generation efficiency of 35%, the externally-heated combined power generation with a power generation efficiency of 35% has lost its superiority in performance.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するために創案されたものであり、天然ガス等
の追加燃料を使用せずに、現状の材料の制約の中で、外
部加熱方式廃棄物複合発電の効率向上を図ることができ
る廃棄物を燃料とする複合発電システムを提供すること
を目的とする。また、本発明は、空気加熱器の伝熱面積
を減らし、経済性を向上させることができる複合発電シ
ステムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and does not use an additional fuel such as natural gas and is limited by the limitations of current materials. It is an object of the present invention to provide a combined power generation system using waste as a fuel, which can improve the efficiency of the externally heated waste combined power generation. Another object of the present invention is to provide a combined power generation system that can reduce the heat transfer area of an air heater and improve economic efficiency.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
め、本発明は廃棄物を燃料とする排ガス源と、該排ガス
源からの排ガスと圧縮空気を熱交換する外部空気加熱器
により外部加熱する開放サイクル再生式ガスタービン
と、廃棄物燃焼用空気の高温空気予熱器と、前記外部空
気加熱器と高温空気予熱器の後流側に配置される蒸気ボ
イラと、該蒸気ボイラの後流に廃棄物燃焼用空気の空気
予熱器とを備えた排熱回収システムにおいて、蒸気ボイ
ラから発生した蒸気を消費する蒸気タービンの復水を前
記ガスタービン再生器出口の排気空気で加熱する給水加
熱器を設け、降温した排気空気によりカリーナサイクル
のアンモニア−水混合流体を熱交換器で蒸発加熱し、ア
ンモニア−水混合流体蒸気タービンで発電し、当該熱交
換器の後流側排気空気の一部を前記空気予熱器に供給す
ることを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides an exhaust gas source using waste as fuel and an external air heater for exchanging heat between the exhaust gas from the exhaust gas source and compressed air. An open-cycle regenerative gas turbine, a high-temperature air preheater for waste combustion air, a steam boiler disposed downstream of the external air heater and the high-temperature air preheater, and a downstream side of the steam boiler. In a waste heat recovery system comprising an air preheater for waste combustion air, a feedwater heater for heating condensate of a steam turbine consuming steam generated from a steam boiler with exhaust air at an outlet of the gas turbine regenerator. The ammonia-water mixed fluid of the carina cycle is evaporated and heated by the heat exchanger using the cooled exhaust air, the power is generated by the ammonia-water mixed fluid steam turbine, and the exhaust air downstream of the heat exchanger is provided. It is characterized in supplying a part of the air preheater.

【0010】本発明の複合発電システムは、再熱再生蒸
気タービンと、外部加熱方式開放サイクル再生式ガスタ
ービンと、ガスタービン排気空気を熱源とする当該蒸気
タービンの給水加熱器と、200℃以下のガスタービン
排気空気を熱源とするアンモニア−水混合流体カリーナ
サイクルとから構成され、廃棄物燃焼排ガスは、ガスタ
ービン外部加熱器と、蒸気ボイラと、ガス化溶融炉の燃
焼空気用予熱器とにより熱回収される。
The combined power generation system of the present invention comprises a reheat regeneration steam turbine, an external heating type open cycle regeneration type gas turbine, a feed heater for the steam turbine using gas turbine exhaust air as a heat source, and a temperature of 200 ° C. or less. It consists of an ammonia-water mixed fluid carina cycle using gas turbine exhaust air as a heat source, and waste combustion exhaust gas is heated by a gas turbine external heater, a steam boiler, and a combustion air preheater of a gasification and melting furnace. Collected.

【0011】ガスタービンの圧縮機出口空気は、ガスタ
ービン排気に設置された再生器により昇温され、廃棄物
燃焼排ガスと空気加熱器を介して、昇温され、ガスター
ビンの膨脹タービンにより動力回収される。ガスタービ
ン再生器の出口空気温度は、圧縮機出口空気温度より約
30℃高く、この空気を熱源として、再熱再生蒸気ター
ビンの給水を加熱し、昇温されたボイラ給水は廃棄物排
ガスのボイラへ導かれる。ガスタービンの排熱により、
ボイラ給水温度が上がるため、ボイラ蒸発量が増加す
る。
[0011] The air at the compressor outlet of the gas turbine is heated by a regenerator installed in the exhaust gas of the gas turbine, is heated through waste combustion exhaust gas and an air heater, and is recovered in power by an expansion turbine of the gas turbine. Is done. The outlet air temperature of the gas turbine regenerator is about 30 ° C. higher than the compressor outlet air temperature, and this air is used as a heat source to heat the feed water of the reheat regenerative steam turbine. Led to. Due to the exhaust heat of the gas turbine,
Since the boiler feedwater temperature rises, the amount of boiler evaporation increases.

【0012】400℃以上の蒸気過熱は、ボイラから独
立した清浄な高温のガス化溶融炉燃焼空気で行われ、前
記燃焼空気の加温はセラミック性のバヨネット形空気加
熱器を介して排ガスと熱交換されることによる。この方
式は本件出願人により特願平9−296313号「廃棄
物燃焼発電方式」で提案されている。500℃まで過熱
された蒸気は、高圧蒸気タービンで動力回収し、背圧側
の蒸気はボイラに戻され400℃まで再熱される。高圧
蒸気タービンには、ラジアル形タービンを使用すると高
効率が得られる。再熱された蒸気は高温化された燃焼空
気により、500℃まで過熱され、低圧蒸気タービンに
導かれ、動力回収される。燃焼空気はガス化溶融炉の2
次空気として使用されるので、2次空気顕熱はボイラに
回収される。
The superheating of steam at 400 ° C. or higher is performed by using a clean high-temperature gasification / melting furnace combustion air independent of a boiler, and the combustion air is heated by a ceramic bayonet type air heater. By being replaced. This method has been proposed by the present applicant in Japanese Patent Application No. 9-296313, entitled "Waste combustion power generation method". The steam superheated to 500 ° C is recovered by a high-pressure steam turbine, and the steam on the back pressure side is returned to the boiler and reheated to 400 ° C. High efficiency is obtained by using a radial type turbine for the high pressure steam turbine. The reheated steam is superheated to 500 ° C. by the high-temperature combustion air, guided to a low-pressure steam turbine, and recovered for power. The combustion air is the gasification and melting furnace 2
Since it is used as secondary air, the secondary air sensible heat is recovered in the boiler.

【0013】給水加熱器で降温された空気はカリーナサ
イクルのアンモニア−水混合流体を蒸発および過熱させ
る熱源となり、アンモニア−水蒸気タービンにより動力
回収される。空気温度が200℃以下の場合、非等温蒸
発が生じるアンモニア−水混合流体は蒸気回収よりもよ
り低い温度まで熱を回収できる。アンモニア−水混合流
体熱交換器出口の空気温度は70℃になり、空気の一部
をガス化溶融炉の燃焼空気として、ボイラ内の空気予熱
器に導く。外気温と空気温度70℃の顕熱はガスタービ
ン排気顕熱の一部であり、ガスタービン外部加熱器から
得られた熱の一部がボイラに回収されたことになる。
The air cooled by the feed water heater serves as a heat source for evaporating and superheating the ammonia-water mixed fluid in the carina cycle, and is powered by an ammonia-steam turbine. When the air temperature is 200 ° C. or less, the ammonia-water mixed fluid in which non-isothermal evaporation occurs can recover heat to a lower temperature than steam recovery. The air temperature at the outlet of the ammonia-water mixed fluid heat exchanger becomes 70 ° C., and a part of the air is led to the air preheater in the boiler as combustion air of the gasification and melting furnace. The sensible heat at the outside air temperature and the air temperature of 70 ° C. is a part of the sensible heat of the gas turbine exhaust gas, and a part of the heat obtained from the gas turbine external heater is recovered by the boiler.

【0014】上述した本発明によれば、外部加熱式ガス
タービンの再生器を通過した排気空気の顕熱は蒸気ター
ビンサイクルの給水加熱に使用し、さらにカリーナサイ
クルで動力回収している。最後に、燃焼空気として顕熱
利用するため、ボイラ蒸発量が増加する。ガスタービン
は、750℃のタービン入口温度であっても、圧縮機効
率、膨脹タービン効率を最新式ガスタービンに使用され
る水準まで上げ、再生器の伝熱面積を経済的に許容でき
る限界まで大きくとれば、蒸気タービンのサイクル効率
と同水準とできる。ガスタービン排気の排熱が蒸気ター
ビンサイクルの入熱として再利用される以外の残熱は、
カリーナサイクルで動力回収され、ガスタービン排気熱
は有効に利用される。
According to the present invention described above, the sensible heat of the exhaust air passing through the regenerator of the externally heated gas turbine is used for heating the feed water of the steam turbine cycle, and the power is recovered in the carina cycle. Finally, since sensible heat is used as combustion air, the amount of boiler evaporation increases. Gas turbines, even at turbine inlet temperatures of 750 ° C, increase compressor and expansion turbine efficiencies to levels used in modern gas turbines and increase the heat transfer area of the regenerator to an economically acceptable limit. Then, it can be set to the same level as the cycle efficiency of the steam turbine. Residual heat other than that the exhaust heat of the gas turbine exhaust is reused as heat input of the steam turbine cycle,
Power is recovered in the Kalina cycle, and the exhaust heat of the gas turbine is used effectively.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明に係る複合発電シス
テムの系統図である。複合発電システムは、廃棄物を燃
料とする腐食性排ガス源1と、排ガス源1からの排ガス
と圧縮空気を熱交換する外部空気加熱器2により外部加
熱する開放サイクル再生式ガスタービン3と、廃棄物燃
焼用空気の高温空気予熱器13と、外部空気加熱器2と
高温空気予熱器13の後流側に配置される蒸気ボイラ4
と、さらに後流に廃棄物燃焼用空気の空気予熱器5とを
備えている。本実施例においては、腐食性排ガス源1
は、ごみ燃料をガス化炉50で部分燃焼させてガス化
し、生成された未燃ガスやチャー等を旋回溶融炉60で
高温で燃焼させる構成を有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a combined cycle power generation system according to the present invention. The combined cycle power generation system includes a corrosive exhaust gas source 1 using waste as a fuel, an open cycle regenerative gas turbine 3 that is externally heated by an external air heater 2 that exchanges heat between the exhaust gas from the exhaust gas source 1 and compressed air, A high-temperature air preheater 13 for the air for burning matter, a steam boiler 4 arranged on the downstream side of the external air heater 2 and the high-temperature air preheater 13
And an air preheater 5 for waste combustion air in the downstream. In this embodiment, the corrosive exhaust gas source 1
Has a configuration in which refuse fuel is partially burned in a gasification furnace 50 to be gasified, and the generated unburned gas, char, and the like are burned in a swirling melting furnace 60 at a high temperature.

【0016】複合発電システムは、蒸気ボイラ4から発
生した蒸気を消費する蒸気タービン6の復水7を前記ガ
スタービン再生器出口の排気空気で加熱する給水加熱器
8を備え、降温した排気空気9によりカリーナサイクル
20のアンモニア−水混合流体10を熱交換器11で蒸
発加熱し、アンモニア−水混合流体蒸気タービン12で
発電し、当該熱交換器11の後流側排気空気の一部を空
気予熱器5に供給する。
The combined power generation system includes a feed water heater 8 for heating the condensate 7 of the steam turbine 6 that consumes the steam generated from the steam boiler 4 with the exhaust air at the outlet of the gas turbine regenerator. , The ammonia-water mixed fluid 10 of the carina cycle 20 is evaporated and heated by the heat exchanger 11, the ammonia-water mixed fluid steam turbine 12 generates electric power, and a part of the exhaust air downstream of the heat exchanger 11 is preheated by air. To the vessel 5.

【0017】複合発電システムにおいては、腐食性排ガ
スが上向き流れとなる垂直ダクトに耐火材で被覆された
金属性の輻射形伝熱部からなるガスタービン外部空気加
熱器30を配置している。前記外部空気加熱器2は、排
ガス温度が低下した下向き流れ部に炭化珪素繊維ででき
た保護管で被覆された金属製管からなる対流伝熱部を有
するガスタービン外部空気加熱器から構成されている。
また高温空気予熱器13は、排ガスダクト天井部に吊り
下げ状のセラミック製バヨネット形高温空気予熱器から
構成されている。
In the combined power generation system, a gas turbine external air heater 30 comprising a metallic radiant heat transfer section coated with a refractory material is disposed in a vertical duct in which corrosive exhaust gas flows upward. The external air heater 2 is constituted by a gas turbine external air heater having a convection heat transfer portion composed of a metal tube covered with a protective tube made of silicon carbide fiber in a downward flow portion where the exhaust gas temperature is lowered. I have.
The high-temperature air preheater 13 is composed of a ceramic bayonet-type high-temperature air preheater suspended from the exhaust gas duct ceiling.

【0018】上述の構成の複合発電システムにおいて、
腐食性排ガス源1は廃棄物焼却炉からの高温排ガスであ
る。日量331トンの廃棄物ガス化溶融焼却炉があり、
排ガス量は110t/h、排ガス温度1350℃が与え
られたとして説明する。ここであげる数値は1例であ
り、これに限るものではない。
In the combined power generation system having the above configuration,
The corrosive exhaust gas source 1 is high-temperature exhaust gas from a waste incinerator. There is a waste gasification melting incinerator of 331 tons / day,
The description will be made on the assumption that the exhaust gas amount is 110 t / h and the exhaust gas temperature is 1350 ° C. The numerical values given here are merely examples, and the present invention is not limited to these.

【0019】再生器31を持つ開放サイクルガスタービ
ン3において、軸流圧縮機32への入口温度15℃、入
口空気流量302t/h、圧縮機出口圧力は0.43M
Pa・abs、回転数4700rpm、断熱効率は90
%とすると、出口温度175℃、圧縮機所要動力は1
3.6MWとする。
In the open cycle gas turbine 3 having the regenerator 31, the inlet temperature to the axial compressor 32 is 15 ° C., the inlet air flow rate is 302 t / h, and the compressor outlet pressure is 0.43M.
Pa · abs, rotation speed 4700 rpm, adiabatic efficiency 90
%, The outlet temperature is 175 ° C, and the required power of the compressor is 1
It is assumed to be 3.6 MW.

【0020】圧縮機出口空気は温度効率90%の再生器
31により453℃まで昇温され、排ガスダクト40内
の外部空気加熱器2に導かれる。排ガス温度が1000
℃から600℃の領域において、圧縮空気は453℃よ
り636℃まで昇温される。外部加熱器2における熱交
換器の形式は対流式とし、金属管の外側にセラミックス
保護管を装着した2重管を用いる。炭化珪素系セラミッ
クスは表面温度が1000℃以下であれば酸化腐食がな
い。炭化珪素系セラミックスは熱衝撃性に優れた炭化珪
素繊維からなる複合材料を用いると保護管の厚さは1m
mとすることができ、保護管の伝熱損失を少なくするこ
とができる。
The outlet air of the compressor is heated to 453 ° C. by the regenerator 31 having a temperature efficiency of 90% and guided to the external air heater 2 in the exhaust gas duct 40. Exhaust gas temperature 1000
In the range from ℃ to 600 ℃, the compressed air is heated from 453 ℃ to 636 ℃. The type of the heat exchanger in the external heater 2 is a convection type, and a double pipe having a ceramic protection pipe mounted on the outside of a metal pipe is used. Silicon carbide-based ceramics have no oxidative corrosion if the surface temperature is 1000 ° C. or less. When the silicon carbide ceramics uses a composite material made of silicon carbide fiber with excellent thermal shock resistance, the protective tube thickness is 1 m
m, and the heat transfer loss of the protection tube can be reduced.

【0021】セラミックスの表面温度は溶融塩の付着成
長が最も激しい400℃付近よりも高い温度領域である
500℃である。排ガス温度770℃において空気予熱
温度300℃をえている廃棄物焼却施設のバヨネット形
セラミックス加熱管表面の付着物成長は排ガス温度55
0℃において過熱蒸気温度400℃をえている廃棄物焼
却炉のステンレス管の溶融塩付着に較べるとはるかに少
なく、付着物による伝熱性能劣化も少なくなる。溶融塩
付着成長を防止するためには、伝熱管への排ガス流速を
8m/s以下にし、管ピッチを110mm以上とるとよ
い。
The surface temperature of the ceramic is 500.degree. C., which is a temperature range higher than around 400.degree. At the exhaust gas temperature of 770 ° C., the growth of deposits on the surface of the bayonet-type ceramics heating tube in the waste incineration facility having an air preheating temperature of 300 ° C. was caused by the exhaust gas temperature of 55 ° C.
Compared to the adhesion of molten salt to the stainless steel tube of a waste incinerator having a superheated steam temperature of 400 ° C. at 0 ° C., the heat transfer performance deterioration due to the adhering matter is much less. In order to prevent the molten salt from adhering and growing, the flow rate of the exhaust gas to the heat transfer tube is preferably 8 m / s or less, and the tube pitch is preferably 110 mm or more.

【0022】対流空気加熱器2をでた圧縮空気は排ガス
温度が1350℃から1100℃の領域で輻射形空気加
熱器30で653℃より750℃まで昇温される。輻射
形空気加熱器30はガス化溶融炉からの排ガスが上方に
向かうダクト内に輻射室を形成することにより得られ
る。輻射壁は金属管が直接排ガスと接触しないように耐
火材で被覆する。耐火材は熱抵抗を有し、金属管表面温
度を高温ステンレス鋼の許容温度860℃以下とする。
耐火材の材質は1350℃の排ガス中でも酸化劣化が少
ないジルコニア−クロム系を用いるとよい。
The compressed air leaving the convection air heater 2 is heated from 653 ° C. to 750 ° C. by the radiant air heater 30 in a region where the temperature of the exhaust gas ranges from 1350 ° C. to 1100 ° C. The radiant air heater 30 is obtained by forming a radiant chamber in a duct in which exhaust gas from the gasification and melting furnace is directed upward. The radiation wall is covered with a refractory material so that the metal tube does not come into direct contact with the exhaust gas. The refractory material has thermal resistance, and the surface temperature of the metal tube is set to 860 ° C. or lower, which is the allowable temperature of high-temperature stainless steel.
The material of the refractory material is preferably a zirconia-chromium-based material that is less oxidatively degraded even in an exhaust gas at 1350 ° C.

【0023】輻射形空気加熱器30と対流空気加熱器2
をつなぐダクトは流れ方向を上向きより下向きに変える
曲がりダクトであり、天井部にガス化溶融炉燃焼空気の
高温空気予熱器13を設置する。高温空気予熱器13は
排ガス温度が1100℃から1000℃の領域に設置さ
れ、200℃の予熱空気を625℃まで昇温する。62
5℃の予熱空気は独立過熱器61および独立再熱器62
に導かれ400℃の過熱蒸気を500℃まで過熱し、4
50℃まで降温された予熱空気はガス化溶融炉の2次空
気として利用される。
Radiant air heater 30 and convection air heater 2
Is a bent duct that changes the flow direction from upward to downward, and a high-temperature air preheater 13 for the gasification and melting furnace combustion air is installed on the ceiling. The high-temperature air preheater 13 is installed in a region where the exhaust gas temperature ranges from 1100 ° C. to 1000 ° C., and heats preheated air at 200 ° C. to 625 ° C. 62
The preheated air of 5 ° C. is supplied to the independent superheater 61 and the independent reheater 62.
And the superheated steam of 400 ° C. is heated to 500 ° C.
The preheated air cooled to 50 ° C. is used as secondary air in a gasification and melting furnace.

【0024】ガスタービン3の膨脹タービン33は入口
圧力0.402MPa・abs、入口温度750℃で出
口圧力は0.106MPa・abs、回転数3000r
pm、タービン断熱効率89%とすると、出口温度48
3℃、回収動力は24.9MWとなる。この空気膨脹タ
ービン33は商用の2軸式ガスタービンの出力タービン
を転用すると、高効率が得られる。膨脹タービン出力か
ら圧縮機動力、減速機損失、発電機損失を差し引くとガ
スタービン発電量は10.4MWとなる。
The expansion turbine 33 of the gas turbine 3 has an inlet pressure of 0.402 MPa · abs, an inlet temperature of 750 ° C., an outlet pressure of 0.106 MPa · abs, and a rotation speed of 3000 r.
pm, turbine insulation efficiency 89%, outlet temperature 48
At 3 ° C., the recovery power is 24.9 MW. If the output turbine of a commercial two-shaft gas turbine is diverted to the air expansion turbine 33, high efficiency can be obtained. Subtracting compressor power, reduction gear loss, and generator loss from the expansion turbine output gives a gas turbine power generation of 10.4 MW.

【0025】ガスタービン3の排気空気は温度効率90
%のセレートフィンチューブを有する再生器31で48
3℃から205℃まで降温される。205℃の排気空気
は蒸気タービンの給水加熱器8に導かれ、復水7の給水
温度を110℃より185℃まで昇温させる。給水温度
を上げることによりボイラ蒸発量が増加し、蒸気タービ
ンからの抽気蒸気で昇温するよりも蒸気タービン出力は
増加する。
The exhaust air of the gas turbine 3 has a temperature efficiency of 90.
48% in the regenerator 31 with the
The temperature is lowered from 3 ° C to 205 ° C. The 205 ° C. exhaust air is guided to the feed water heater 8 of the steam turbine, and raises the feed water temperature of the condensate 7 from 110 ° C. to 185 ° C. Increasing the feedwater temperature increases the amount of boiler evaporation, and the steam turbine output increases as compared to the case where the temperature is increased by the extracted steam from the steam turbine.

【0026】給水加熱器8を通過した排気空気9は17
9℃の温度を持ち、カリーナサイクル20のアンモニア
−水混合流体10の蒸発過熱の熱源となる。アンモニア
−水混合流体10は非等温蒸発が行なわれ、排気空気は
カリーナ熱交換器11により70℃まで熱回収される。
熱源温度が179℃の場合のカリーナサイクル20のサ
イクル効率を15%とすると、回収発電量は1.4MW
となる。カリーナ熱交換器11はセレートフィンチュー
ブが用いられ、混合流体はアンモニア80%、水20%
が用いられる。
The exhaust air 9 that has passed through the feed water heater 8 is 17
It has a temperature of 9 ° C. and serves as a heat source for evaporating and superheating the ammonia-water mixed fluid 10 of the carina cycle 20. The ammonia-water mixed fluid 10 is subjected to non-isothermal evaporation, and the exhaust air is heat-recovered to 70 ° C. by the carina heat exchanger 11.
Assuming that the cycle efficiency of the carina cycle 20 when the heat source temperature is 179 ° C. is 15%, the amount of recovered power generation is 1.4 MW.
Becomes Serina fin tubes are used for the carina heat exchanger 11, and the mixed fluid is 80% ammonia and 20% water.
Is used.

【0027】カリーナ熱交換器11を通過したガスター
ビン排気空気は70℃の顕熱を持ち、排気空気302t
/hのうち約30%はガス化溶融炉の流動空気と燃焼空
気に再利用される。ガス化溶融炉のバグフィルタ45の
手前に設置された空気予熱器5により、ガスタービン排
気空気は昇温され、ボイラ顕熱入熱として熱回収され
る。
The gas turbine exhaust air passing through the carina heat exchanger 11 has a sensible heat of 70 ° C.
About 30% of / h is recycled to the flowing air and combustion air of the gasification and melting furnace. The temperature of the gas turbine exhaust air is increased by the air preheater 5 installed before the bag filter 45 of the gasification and melting furnace, and heat is recovered as boiler sensible heat input.

【0028】ガス化溶融炉の排熱はガスタービンサイク
ルの入熱となるガスタービン外部加熱器を除いて、蒸気
タービンサイクルの入熱となる。高温空気予熱器2と空
気予熱器5からの顕熱は排ガスダクトの水冷壁によりボ
イラドラムに吸熱される。蒸気タービンサイクルの10
MPa・abs、500℃の高圧蒸気は28.9t/h
であり、排圧2.0MPa・abs、出口蒸気温度30
5℃とすると高圧蒸気タービンの発電量は2.5MWと
なる。蒸気量が比較的少ない場合は高速回転のラジアル
タービンを用いると高効率が得られる。
Exhaust heat of the gasification and melting furnace becomes heat input of the steam turbine cycle except for a gas turbine external heater which becomes heat input of the gas turbine cycle. The sensible heat from the high-temperature air preheater 2 and the air preheater 5 is absorbed by the boiler drum by the water cooling wall of the exhaust gas duct. 10 of the steam turbine cycle
MPa · abs, high-pressure steam at 500 ° C is 28.9 t / h
With an exhaust pressure of 2.0 MPa · abs and an outlet steam temperature of 30
When the temperature is set to 5 ° C., the power generation amount of the high-pressure steam turbine becomes 2.5 MW. When the steam amount is relatively small, high efficiency can be obtained by using a high-speed rotating radial turbine.

【0029】高圧蒸気タービンをでた蒸気は排ガスダク
ト内の再熱器で金属管許容温度の400℃まで再熱され
る。高温空気予熱器2の625℃の予熱空気により、蒸
気は500℃まで再熱される。低圧蒸気タービンの排圧
を5kPa・absとし、脱気器46に0.219MP
a・abs、3.5t/hの蒸気を抽気すると低圧蒸気
タービンの発電量は6.8MWとなる。低圧蒸気タービ
ン形式は軸流タービンが用いられる。
The steam leaving the high-pressure steam turbine is reheated to a permissible temperature of the metal pipe of 400 ° C. by a reheater in the exhaust gas duct. The steam is reheated to 500 ° C. by the 625 ° C. preheated air of the hot air preheater 2. The exhaust pressure of the low-pressure steam turbine was set to 5 kPa · abs, and the deaerator 46 was set to 0.219MPa.
When a / abs and 3.5 t / h steam are extracted, the power generation amount of the low-pressure steam turbine becomes 6.8 MW. An axial flow turbine is used for the low-pressure steam turbine type.

【0030】ガス化溶融炉のボイラ効率を88%とする
と、廃棄物低位発熱量基準の入熱は56.2MWthと
なり、ガスタービンとカリーナサイクルタービンと蒸気
タービンの発電量合計21.5MWに対して38.3%
が得られた。
Assuming that the boiler efficiency of the gasification and melting furnace is 88%, the heat input based on the lower calorific value of the waste is 56.2 MWth, which corresponds to the total power generation of the gas turbine, carina cycle turbine, and steam turbine of 21.5 MW. 38.3%
was gotten.

【0031】[0031]

【発明の効果】以上説明したように本発明は、以下に列
挙する効果を奏する。 1)天然ガス等の追加燃料を使用せずに、現状の材料の
制約の中で、外部加熱方式廃棄物複合発電の効率向上を
図ることができるとともに、空気加熱器の伝熱面積を減
らし、経済性を向上させることができる。 2)廃棄物燃料低位発熱量を入熱値とした時の合計発電
端効率は38%になる。これは、10MPa、540℃
蒸気タービンサイクルの発電端効率35%を上回る。蒸
気タービンのサイクル効率が同一とすれば、再生器付き
ガスタービンのサイクル効率が蒸気タービンのサイクル
効率と同等以上であれば、ガスタービンの排気の排熱利
用分だけ確実に効率は上昇する。 3)排ガスで加熱される空気は再生器で昇温されている
ため、再生器がない場合に較べて外部加熱器の伝熱量が
減少し伝熱面積を小さくできる。
As described above, the present invention has the following effects. 1) Without the use of additional fuel such as natural gas, the efficiency of the externally-heated waste combined power generation can be improved and the heat transfer area of the air heater can be reduced in the current material constraints, Economy can be improved. 2) The total power generation end efficiency is 38% when the lower heat value of waste fuel is used as the heat input value. This is 10MPa, 540 ° C
The power generation efficiency of the steam turbine cycle exceeds 35%. Assuming that the cycle efficiency of the steam turbine is the same, if the cycle efficiency of the gas turbine with the regenerator is equal to or more than the cycle efficiency of the steam turbine, the efficiency surely increases by the amount of the exhaust heat of the exhaust gas of the gas turbine. 3) Since the temperature of the air heated by the exhaust gas is raised in the regenerator, the amount of heat transfer of the external heater is reduced and the heat transfer area can be reduced as compared with the case where there is no regenerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る複合発電システムの実施の形態を
示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a combined cycle power generation system according to the present invention.

【符号の説明】[Explanation of symbols]

1 排ガス源 2 外部空気加熱器 3 開放サイクル再生式ガスタービン 4 蒸気ボイラ 5 空気予熱器 6 蒸気タービン 7 復水 8 給水加熱器 9 排気空気 10 アンモニア−水混合流体 11 カリーナ熱交換器 12 アンモニア−水混合流体蒸気タービン 13 高温空気予熱器 20 カリーナサイクル 30 輻射形空気加熱器 40 排ガスダクト 50 ガス化炉 61 過熱器 62 再生器 DESCRIPTION OF SYMBOLS 1 Exhaust gas source 2 External air heater 3 Open cycle regenerative gas turbine 4 Steam boiler 5 Air preheater 6 Steam turbine 7 Condensate 8 Feedwater heater 9 Exhaust air 10 Ammonia-water mixed fluid 11 Carina heat exchanger 12 Ammonia-water Mixed fluid steam turbine 13 High temperature air preheater 20 Carina cycle 30 Radiation type air heater 40 Exhaust gas duct 50 Gasifier 61 Superheater 62 Regenerator

フロントページの続き (51)Int.Cl.6 識別記号 FI // F02C 1/04 F02C 1/04 (72)発明者 田口 光助 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 森 豊 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Continued on the front page (51) Int.Cl. 6 Identification code FI // F02C 1/04 F02C 1/04 (72) Inventor Kosuke Taguchi 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation ( 72) Inventor Yutaka Mori 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を燃料とする排ガス源と、該排ガ
ス源からの排ガスと圧縮空気を熱交換する外部空気加熱
器により外部加熱する開放サイクル再生式ガスタービン
と、廃棄物燃焼用空気の高温空気予熱器と、前記外部空
気加熱器と高温空気予熱器の後流側に配置される蒸気ボ
イラと、該蒸気ボイラの後流に廃棄物燃焼用空気の空気
予熱器とを備えた排熱回収システムであって、 蒸気ボイラから発生した蒸気を消費する蒸気タービンの
復水を前記ガスタービン再生器出口の排気空気で加熱す
る給水加熱器を設け、降温した排気空気によりカリーナ
サイクルのアンモニア−水混合流体を熱交換器で蒸発加
熱し、アンモニア−水混合流体蒸気タービンで発電し、
当該熱交換器の後流側排気空気の一部を前記空気予熱器
に供給することを特徴とする廃棄物を燃料とする複合発
電システム。
1. An exhaust gas source using waste as fuel, an open cycle regenerative gas turbine externally heated by an external air heater for exchanging heat between exhaust gas from the exhaust gas source and compressed air, and a waste combustion air source. Exhaust heat provided with a high-temperature air preheater, a steam boiler disposed downstream of the external air heater and the high-temperature air preheater, and an air preheater for waste combustion air downstream of the steam boiler A recovery system, comprising: a feedwater heater for heating condensate of a steam turbine that consumes steam generated from a steam boiler with exhaust air at an outlet of the gas turbine regenerator, and ammonia-water of a carina cycle is provided by the cooled exhaust air. Evaporating and heating the mixed fluid with a heat exchanger, generating electricity with an ammonia-water mixed fluid steam turbine,
A combined power generation system using waste as fuel, wherein a part of the exhaust air downstream of the heat exchanger is supplied to the air preheater.
【請求項2】 前記排ガス源の排ガスが上向き流れとな
る垂直ダクトに耐火材で被覆された金属性の輻射形伝熱
部からなるガスタービン外部空気加熱器を配置したこと
を特徴とする請求項1記載の廃棄物を燃料とする複合発
電システム。
2. A gas turbine external air heater comprising a metallic radiant heat transfer portion coated with a refractory material is disposed in a vertical duct in which exhaust gas from the exhaust gas source flows upward. A combined power generation system using the waste according to 1 as a fuel.
【請求項3】 前記高温空気予熱器は、排ガスダクト天
井部に吊り下げ状のセラミック製バヨネット形高温空気
予熱器からなることを特徴とする請求項1記載の廃棄物
を燃料とする複合発電システム。
3. A combined power generation system using waste as a fuel according to claim 1, wherein said high-temperature air preheater comprises a ceramic bayonet-type high-temperature air preheater suspended from an exhaust gas duct ceiling. .
【請求項4】 前記外部空気加熱器は、排ガス温度が低
下した下向き流れ部に炭化珪素繊維でできた保護管で被
覆された金属製管からなる対流伝熱部を有するガスター
ビン外部空気加熱器からなることを特徴とする請求項1
記載の廃棄物を燃料とする複合発電システム。
4. The gas turbine external air heater having a convection heat transfer section comprising a metal pipe covered with a protective pipe made of silicon carbide fiber in a downward flow section where the temperature of exhaust gas is lowered. 2. The method according to claim 1, wherein
A combined power generation system using the waste described in the description as a fuel.
JP3435098A 1998-01-30 1998-01-30 Combined power generation system utilizing waster as fuel Pending JPH11218005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3435098A JPH11218005A (en) 1998-01-30 1998-01-30 Combined power generation system utilizing waster as fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3435098A JPH11218005A (en) 1998-01-30 1998-01-30 Combined power generation system utilizing waster as fuel

Publications (1)

Publication Number Publication Date
JPH11218005A true JPH11218005A (en) 1999-08-10

Family

ID=12411714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3435098A Pending JPH11218005A (en) 1998-01-30 1998-01-30 Combined power generation system utilizing waster as fuel

Country Status (1)

Country Link
JP (1) JPH11218005A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144633A (en) * 2004-11-18 2006-06-08 Tokyo Metropolitan Sewerage Service Corp System and method for incinerating disposal objects
JP2007500810A (en) * 2003-07-31 2007-01-18 シーメンス アクチエンゲゼルシヤフト Method for improving efficiency of gas turbine equipment and gas turbine equipment
JP2010516941A (en) * 2007-01-25 2010-05-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ How to reduce carbon dioxide emissions at power plants
JP2011508139A (en) * 2007-12-21 2011-03-10 グリーン パートナーズ テクノロジー ホールディングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas turbine system and method employing vaporizable liquid supply apparatus
JP2013007356A (en) * 2011-06-27 2013-01-10 Kobelco Eco-Solutions Co Ltd Power generation system and power generation method
JP2015152258A (en) * 2014-02-17 2015-08-24 メタウォーター株式会社 Waste treatment plant
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
CN105972634A (en) * 2016-07-11 2016-09-28 西安交通大学 Steam power cycle thermal power generation system and steam power cycle thermal generation technology
WO2017110848A1 (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
JP2017227441A (en) * 2017-10-06 2017-12-28 メタウォーター株式会社 Waste treatment facility
CN109139133A (en) * 2018-10-18 2019-01-04 国网节能服务有限公司 A kind of electricity generation system of new type solar energy auxiliary biomass energy
CN114776393A (en) * 2022-04-15 2022-07-22 上海发电设备成套设计研究院有限责任公司 Air energy storage power generation system and method coupled with thermal power
JP2022147907A (en) * 2021-03-24 2022-10-06 株式会社プランテック Exhaust heat recovery system and exhaust heat recovery method for waste treatment facility

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500810A (en) * 2003-07-31 2007-01-18 シーメンス アクチエンゲゼルシヤフト Method for improving efficiency of gas turbine equipment and gas turbine equipment
JP4668189B2 (en) * 2003-07-31 2011-04-13 シーメンス アクチエンゲゼルシヤフト Method for improving efficiency of gas turbine equipment and gas turbine equipment
JP2006144633A (en) * 2004-11-18 2006-06-08 Tokyo Metropolitan Sewerage Service Corp System and method for incinerating disposal objects
JP4707370B2 (en) * 2004-11-18 2011-06-22 東京都下水道サービス株式会社 Processed object incineration system and processable object incineration method
JP2010516941A (en) * 2007-01-25 2010-05-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ How to reduce carbon dioxide emissions at power plants
JP2011508139A (en) * 2007-12-21 2011-03-10 グリーン パートナーズ テクノロジー ホールディングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas turbine system and method employing vaporizable liquid supply apparatus
JP2013007356A (en) * 2011-06-27 2013-01-10 Kobelco Eco-Solutions Co Ltd Power generation system and power generation method
JP2015152258A (en) * 2014-02-17 2015-08-24 メタウォーター株式会社 Waste treatment plant
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
WO2017110848A1 (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
JP2017116173A (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
CN105972634A (en) * 2016-07-11 2016-09-28 西安交通大学 Steam power cycle thermal power generation system and steam power cycle thermal generation technology
JP2017227441A (en) * 2017-10-06 2017-12-28 メタウォーター株式会社 Waste treatment facility
CN109139133A (en) * 2018-10-18 2019-01-04 国网节能服务有限公司 A kind of electricity generation system of new type solar energy auxiliary biomass energy
JP2022147907A (en) * 2021-03-24 2022-10-06 株式会社プランテック Exhaust heat recovery system and exhaust heat recovery method for waste treatment facility
CN114776393A (en) * 2022-04-15 2022-07-22 上海发电设备成套设计研究院有限责任公司 Air energy storage power generation system and method coupled with thermal power

Similar Documents

Publication Publication Date Title
CN1074084C (en) Combined combustion and steam turbine power plant
US20060236696A1 (en) Apparatus and method for producing energy at a pulp mill
US20110165526A1 (en) External preheating of fresh air in solid material furnaces
US6244033B1 (en) Process for generating electric power
JPS59229005A (en) Coal gasification composite power generating plant
WO1999019667A1 (en) Method and apparatus for generating electric power by combusting wastes
WO2002020952A1 (en) Partially-gasified air-preheated and coal-fired combined cycle power generation system and power generation method
JPH11218005A (en) Combined power generation system utilizing waster as fuel
CN109958535A (en) A kind of system for waste incineration and combustion turbine combined power generation
JP2011169186A (en) Waste power generator utilizing solar heat
KR100814940B1 (en) Thermal power plant having pure oxygen combustor
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
JP2001280863A (en) Heat exchanger and electric power generator comprising it
CN207761715U (en) A kind of waste incineration and generating electricity system
JP2003518220A (en) Operation method of steam turbine equipment and steam turbine equipment operated by this method
CN110608431A (en) Waste incineration power generation system with external independent superheater
CN201462771U (en) Boiler for recycling high-temperature flue gas and waste heat after biomass burning
JPH08501381A (en) Methods and equipment for producing high steam temperatures when burning problematic fuels
CN212457967U (en) Gas waste heat power generation system of smelting reduction furnace
CN209557055U (en) High-efficiency refuse power generation by waste combustion system
CN210134979U (en) Garbage power generation system with external independent reheater
JP2987127B2 (en) Combined power generation system using waste as fuel
JPH11173108A (en) Cogeneration plant
JP3754483B2 (en) Gasification combined power generation system for municipal waste
CN111473314B (en) Ultrahigh-pressure one-time reheating power generation system