JP2010151988A - パルス光源装置およびそれを用いたイメージング装置 - Google Patents

パルス光源装置およびそれを用いたイメージング装置 Download PDF

Info

Publication number
JP2010151988A
JP2010151988A JP2008328415A JP2008328415A JP2010151988A JP 2010151988 A JP2010151988 A JP 2010151988A JP 2008328415 A JP2008328415 A JP 2008328415A JP 2008328415 A JP2008328415 A JP 2008328415A JP 2010151988 A JP2010151988 A JP 2010151988A
Authority
JP
Japan
Prior art keywords
pulse
optical
light source
source device
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008328415A
Other languages
English (en)
Inventor
Kenji Taira
健二 平
Hiroyoshi Yajima
浩義 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008328415A priority Critical patent/JP2010151988A/ja
Publication of JP2010151988A publication Critical patent/JP2010151988A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】比較的単純な構成により、SNRを向上できる小型で安定性が高く、経済性に優れたパルス光源装置およびこれを用いたイメージング装置を提供する。
【解決手段】半導体レーザ(10)および電気パルス発生装置装置(20)から構成される光パルス列を出射する光パルス源と、光パルス列とは異なる波長を有する励起光を出射する励起光源(30)と、光パルス列と励起光とを合波する光カプラ(40)と、光パルスの時間幅を圧縮する光ファイバ(50)と、光パルス列を増幅する光増幅手段(60)とを含んで光パルス光源装置を構成し、励起光源(30)から出射した励起光を光ファイバ(50)における誘導ラマン散乱増幅の励起光として使用するとともに、光増幅手段(60)における励起光として使用し、光パルス列を増幅するようにする。
【選択図】図1

Description

本発明は、パルス光源装置およびそれを用いたイメージング装置、特に、多光子励起過程を用いて対象物を観察する多光子イメージング装置に適した超短パルス光源装置、および、それを用いた多光子イメージング装置に関するものである。
超短パルス光源は、バイオ・医療・超微細加工を始め広範な分野での応用が期待されている。特にバイオ・医療応用分野では、現在超短パルス光源としてチタンサファイアレーザに代表される固体レーザを用いた光源が商用化されている。特に、チタンサファイアレーザは、生体透過性の高い波長である、700nm〜1000nmで動作するため、多光子励起蛍光顕微鏡をはじめとする多光子イメージング用光源装置として、研究用途で使用されている。
しかしながら、チタンサファイアレーザに代表される固体レーザは、装置が大型となること、レーザ出力の安定性が低いこと、光学系をその都度調整する必要があり操作性が低いこと、および、価格が高価であること等の問題点を有している。このため、この固体レーザによる光源が使用されるのは、これまで、空調設備と大型の除震台が完備され専門のレーザオペレーターが常駐するような研究室に限られ、通常の環境にある病院やバイオ実験室で実用的な使用に供される段階には至っていない。
実用的な非線形顕微イメージング装置用超短パルス光源装置として、現在までに、半導体レーザを用いた光源装置の開発も進められてきた。例えば、図3に示すように、単一縦モード面発光レーザ (vertical cavity surface emitting laser:VCSEL)101を、電気パルス発生装置102からの電気パルスにより利得スイッチ駆動して短パルスを発生させ、この短パルスを高利得の半導体光増幅器(Semiconductor optical amplifier:SOA)103により増幅するようにした光源装置が知られている。なお、図3においてSOA103は、増幅器制御装置104により直流駆動、すなわち、一定の増幅率で入力光を増幅するように制御される。
この光源装置は、従来の固体レーザ等の光源とは異なり、外部共振器を必要としない半導体レーザで構成されるため、高い安定性および優れた操作性が得られるとともに、小型にすることができる。さらに従来の固体レーザ等の光源に必要であった安定化機構などが不要となり、また、比較的低価格な部品で構成できるので、価格も安くすることができる。つまり、実用的な光源としての必要条件の多くを備えている。
しかしながら、図3に示した構成の光源装置では、VCSEL101から得られる光パルスの強度が低いために、高利得のSOA103で常時増幅すると、時間軸上において、光パルスと光パルスとの間にノイズフロアが生じて、出力光の信号対雑音比 (signal-to-noise ratio:SNR) が著しく劣化する。このノイズフロアの瞬時光強度は、光パルスのピークパワーと比較するとかなり低いため、多光子イメージング用試料の多光子励起にはほとんど寄与しない。しかし、ノイズフロアが光パルスと光パルスとの間も試料に継続的に照射されることにより、試料中に不要な熱を発生し試料に熱損傷を与える原因となり得る。従って、このノイズフロアを除去して光パルスのSNRを改善することは、多光子イメージング用光源にとって非常に重要な課題である。このSNRの改善は、パルス光源と光増幅器とを組合せた光源装置を多光子イメージング装置に利用する際に特に重要になる。
上述したノイズフロアを除去し得る超短パルス光源装置として、たとえば、非特許文献1には、図4に示すような構成の超短パルス光源装置が開示されている。この超短パルス光源装置は、電気パルス発生装置112からの電気パルスにより利得スイッチ駆動されるVCSEL111から発生した光パルスをSOA113で増幅した後、光フィルタ114で波形整形し、その波形整形された光パルスを単一モード光ファイバ(Single Mode Fiber:SMF)115を透過させることによりレッドシフトチャープを補償して、SOA116に入射させる。SOA116は、電気パルス発生装置112によるVCSEL111のパルス駆動に同期して、増幅器制御装置117によりON/OFF駆動される。これにより、SOA116を増幅機能と同時に時間ゲートとしても機能させて、光パルスと光パルスとの間のノイズフロアを除去する。SOA116で増幅された光パルスは、光カプラ120で励起光源119からの励起光と合波され、YDFA118により増幅される。
K. Taira et al., Optics Express, vol. 15, pp. 2454-2458 (2007).
図4に示した構成の超短パルス光源装置は、電気パルス発生装置112によるVCSEL111のパルス駆動に同期して、増幅器制御装置117によりSOA116をON/OFF動作させることにより、SOA116を増幅機能と同時に時間ゲートとしても機能させて、光パルスと光パルスとの間のノイズフロアを除去してSNRを向上させるようにしている。このため、VCSEL111から出力される光パルスと、SOA116の時間ゲートとを常に同期させる必要がある。
しかしながら、本発明者らによる検討によると、電気回路からの熱などの影響により、光パルスと時間ゲートとの同期には、ずれが発生しやすいことが判明した。このため、光源装置内の温度を安定化させる装置や、同期を固定するフィードバック回路が必要不可欠となり、装置の構成が複雑化し、装置全体のコストの上昇を招くことが懸念される。
したがって、これらの点に着目してなされた本発明の目的は、比較的単純な構成によりSNRを向上でき、小型で安定性が高く、コストダウンが図れるパルス光源装置およびそれを用いたイメージング装置を提供することにある。
上記の目的を達成する請求項1に係るパルス光源装置の発明は、電気パルスを出力する電気パルス発生手段と、前記電気パルスに基づいて光パルスを発生する半導体レーザと、前記半導体レーザの発振波長とは異なる波長の励起光を出射する励起光源と、前記光パルスと前記励起光とを合波する光カプラと、前記光カプラを出射した前記光パルスの時間幅を狭くする光ファイバと、前記光ファイバを出射した前記光パルスを増幅する光増幅手段とを有し、前記励起光源は、誘導ラマン散乱により前記光ファイバ内で前記光パルスを増幅する励起光を出射し、前記光増幅手段は、前記光ファイバを出射した前記励起光により、前記光パルスを増幅するように構成したことを特徴とするものである。
請求項2に係る発明は、請求項1に記載のパルス光源装置において、前記光増幅手段は、光ファイバ型増幅器を有することを特徴とするものである。
請求項3に係る発明は、請求項1または2に記載のパルス光源装置において、前記光増幅手段は、希土類添加媒質を増幅媒質とすることを特徴とするものである。
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載のパルス光源装置において、前記光ファイバは、300m以上3km以下の長さを有することを特徴とするものである。
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載のパルス光源装置において、前記半導体レーザは、700nm以上1000nm以下の発振波長の光パルスを発生することを特徴とするものである。
上記目的を達成する請求項6に係るイメージング装置の発明は、請求項1〜5のいずれか一項に記載のパルス光源装置と、前記パルス光源装置から出射された光パルスを試料に照射する照射手段と、前記光パルスの照射により前記試料から発生する信号光を検出する検出手段と、を有することを特徴とするものである。
本発明によれば、誘導ラマン散乱を生じる励起光により、光パルスの時間幅を狭くする光ファイバ内で光パルスを増幅するとともに、光ファイバを出射した励起光を使用してさらに光増幅手段による光パルスの増幅を行うようにしたので、比較的単純な構成によりSNRを向上し、小型で安定性が高く、コストダウンが図れるパルス光源装置およびそれを用いたイメージング装置を実現することができる。
以下、本発明の実施の形態について、図を参照して説明する。
図1は、本発明の実施の形態に係るパルス光源装置である多光子イメージング用超短パルス光源装置を用いた、多光子イメージングシステムの概略構成を示すブロック図である。この多光子イメージングシステムは、多光子イメージング用超短パルス光源装置1と、多光子イメージング装置であるレーザ走査型顕微鏡(laser scanning microscope:LSM)80と、多光子イメージング用超短パルス光源装置1から出射された光パルスをLSM80に伝送する光伝送手段70とを有する。多光子イメージング用超短パルス光源装置1は、半導体レーザ(Laser Diode:LD)10、電気パルス発生手段20、励起光源30、光カプラ40、光ファイバ50、および、光増幅手段60を有する。
ここで、電気パルス発生手段20は自律発振により電気パルスを発生し、LD10を利得スイッチ駆動して、光パルス列を出射させる。また、励起光源30は、LD10の発振波長とは異なる波長の励起光を発生する。さらに、光カプラ40は、LD10から出射される光パルス列と励起光源30からの励起光とを合波する。光ファイバ50は、光カプラ40の後段に設けられ、所定の長さに設定することによって、光パルスのチャープを補償して光パルスを所望の形状にする。光増幅手段60は、光ファイバ50から出射された光パルスを増幅する。この光増幅手段60からの出力は、光伝送手段70を介して、LSM80へと導かれる。
上記の構成において、LD10を利得スイッチ駆動して得られた光パルスは、大きなレッドシフトチャープを有している。光ファイバ50にこの光パルスが入射すると、光ファイバ50の群速度分散により、光パルスのレッドシフトチャープが補償され、光パルスの時間幅を圧縮して数ピコ秒の短パルスとして出射させる。この数ピコ秒の短パルスを出射させるため、光ファイバ50の長さは、300m〜3kmとする。さらに、光ファイバ50は、励起光源30からの励起光によりラマン利得を有する。このため光ファイバ50は、光パルスのチャープを補償すると同時に、誘導ラマン散乱(Stimulated Raman scattering:SRS)効果により光パルスを増幅する。
光ファイバ50の長さは3km以下であり、入射した励起光は、光ファイバ50内でほとんど吸収されることなく、十分な強度を保ったまま出射する。この出射した励起光は、後段に配置される光増幅手段60に入射し、光増幅手段60の励起光として用いられる。これによって、光増幅手段60のために、励起光源30とは別に励起光源を設けることなく、光パルスの増幅を行うことができる。
したがって、本実施の形態の多光子イメージング用超短パルス光源装置1では、チャープの補償をする光ファイバ50が、同時に光パルスの増幅を行うので、光ファイバ50と別個に増幅器を設けることなく、SNRの高い光パルス列を得ることができる。これによって、LSM80では、試料中に不要な熱が発生し、試料が熱損傷を受けることを防止することができる。
さらに、励起光源30からの励起光を、光ファイバ50と光増幅手段60との双方の増幅に使用するようにしたので、図4で示した先行技術と比較すると、SOA116および増幅器制御装置117を必要とせず、さらに、励起光源はYDFA118の前段に設けていたものを、図1では光ファイバ50の前段に位置を変更するだけで、追加の励起光源を別途設けることなく、単純な構成で実現できるため、コストを抑えることが可能である。
例えば、LD10の発振波長が980nm帯である場合、SRS用励起光の波長及び980nm用YDFAの励起光波長はいずれも940nmになるため、上記構成による光パルスの増幅は特に有効である。
図2は、図1に示した多光子イメージングシステムの具体的構成を示す図である。この多光子イメージングシステムでは、LD10として2光子過程による緑色蛍光タンパク(green fluorescent protein:GFP)及び黄色蛍光タンパク(yellow fluorescent protein: YFP)の観察に好適な波長978nmのVCSEL11を使用し、電気パルス発生手段20としては、繰返し周波数50MHz、パルス時間幅約100ps、振幅約3Vの電気パルスを発生するコムジェネレータ21を用いて、VCSEL11を駆動する。これによって、パルス時間幅約20ピコ秒の光パルス列が得られる。
VCSEL11からの光パルスは、アイソレータ51を介して、光カプラ40である波長多重カプラ(wavelength division multiplexing coupler:WDMC)41に入射する。アイソレータ51は、VCSEL11への戻り光を除去するために配置されている。連続発振する励起光源である励起LD31は、発振波長940nm、光強度400mWの単一横モードの半導体レーザを用いる。WDMC41は、波長978nmの光パルス列と波長940nmの励起光とを合波して、長さ1kmの石英系単一モード光ファイバ(single-mode fiber:SMF)52へ出射する。
SMF52中では、波長940nmの励起光により波長 978nmの近傍においてSRSが誘起され、これによりVCSEL11から出力される光パルス列は、約5dB増幅される。また、SMF52は25psの波長分散を持つため、VCSEL11 から出力された光パルスの持つレッドシフトチャープが補償され、SMF52から出力される光パルスの時間幅は約3psになる。したがって、光パルスの増幅とパルス幅の圧縮とが同時に成される。また、SMF52に入射した励起光は、長さ1kmのSMF52中ではほとんど吸収されず、光強度約350mWの励起光として出射される。
SMF52から出射した光パルス列および励起光は、光増幅手段60を構成するYb添加ファイバ型光増幅器(Yb-doped fiber amplifier:YDFA)61に入射する。YDFA61は、アイソレータ62とYb添加光ファイバ(Yb-doped fiber:YDF)63とから構成される。ここで、アイソレータ62は、SMF52への戻り光を除去するために配置されている。また、YDF63の励起光はSMF52から出射される波長940nmの励起光を用いる。以上の構成によって、YDFA61では、光パルスの平均光強度が10mWまで増幅される。
YDFA61の後段に、自然放出光(Amplified Spontaneous Emission:ASE)、ペデスタルおよび励起光を除去する目的で、透過帯域幅約0.60nmの誘電体多層膜バンドパスフィルタ (band-pass filter:BPF)64を配置する。さらに、このBPF64から出力する光パルスは、YDFA65により平均光強度100mWまで増幅される。YDFA65から出力される光パルス列は、光伝送手段70としての長さ3mのSMF71を介して、LSM80としての多光子蛍光顕微鏡装置81へ導入される。
多光子蛍光顕微鏡装置81は、照射手段を構成するコリメートレンズ82、XYガルバノミラー (XY galvano scanner mirror:XY−GM)83、瞳投影レンズ(pupil lens:PL)84、チューブレンズ(tube lens:TL)85、ダイクロイックミラー(dichroic mirror:DM)86、および、対物レンズ87と、検出手段を構成する光電子増倍管 (photo-multiplier tube:PMT) 89とを有する。
多光子蛍光顕微鏡装置81に入射した光パルスは、コリメートレンズ82を透過し、XY−GM83で反射され、PL84、TL85、DM86、および、対物レンズ87を経由して試料88を照射する。ここで、XY−GM83により入射光を偏向させることによって、試料88上で光パルスの照射位置を走査させる。この光パルスの照射によって、多光子過程により試料88上で発生する信号光である蛍光が、対物レンズ87を透過し、DM86で入射光と分離され、PMT89において増幅され観察される。
本構成により波長978nm、ピーク強度600W、パルス幅3psの光パルスを発生する多光子イメージング用超短パルス光源装置を実現することができる。この光源装置は、励起LD31から出射される励起光により、チャープを補償するSMF52内で誘導ラマン散乱により光パルス列を増幅するとともに、同じ励起光をYDFA61における光パルス列の増幅にも使用することが重要な特徴の一つとなっている。かかる構成によって、従来、電気回路からの熱などの影響により発生し易かった光パルスと時間ゲートとのタイミングのずれが、本発明においては発生し難くなるので、熱安定化のための手段や光パルスと時間ゲートとの同期を固定するためのフィードバック回路のようなずれ防止の手段が必要では無くなる。したがって、比較的単純な構成によって増幅器の段数を増やすことなく高いSNRを得ることができる。
なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、図2において、SMF71の後段に、さらに数mの光ファイバ及び回折格子対やプリズム対を配置することにより、SNRの高い200fs〜300fsの光パルスを得ることも可能である。また、LD10としては分布帰還型半導体レーザ(Distributed feed back LD)や分布ブラッグ反射型半導体レーザ(Distributed Bragg reflector LD)を使用することができ、また、電気パルス発生手段20としては、数10ピコ秒から数100ピコ秒の電気パルスを発生させるものであれば良く、アバランシェ・トランジスタやステップ・リカバリー・ダイオード(step recovery diode:SRD)を用いたものも使用することができる。
また、上記の実施の形態では、GFPの多光子イメージングのために好適な波長の光を使用したが、蛍光物質に応じて他の種々の波長の光を使用することができる。例えば、観察対象が青色蛍光タンパク(cyan fluorescent protein: CFP)の場合は、波長850nmの光を使用することができる。波長850nmにおいても、VCSEL及びフッ化物添加ファイバ型光増幅器を用い、励起LD31から出射される励起光により、チャープを補償するSMF52内で誘導ラマン散乱により光パルス列を増幅するとともに、同じ励起光をYDFA61における光パルス列の増幅にも使用することで上述した特徴有る構成となり、本発明と同様な光源を実現できる。
なお、多光子イメージングとは、二次高調波(second harmonic generation:SGH)、三次高調波(third harmonic generation:THG) のような高次高調波発生や、多光子励起蛍光、コヒーレント反ストークスラマン散乱(coherent anti-Stokes Raman scattering :CARS) などのように、多光子過程を利用した画像化方法または装置のことを指す。本発明の多光子イメージングは上述のような多光子イメージングに利用することができる。とくに、本発明によれば、時間軸上において、光パルスと光パルスとの間のノイズフロアを容易に除去されるので、生体や各種生体由来の試料に対して継続的または長期間励起光を照射したとしても試料中に余計な熱を発生し難いため、生きた試料を扱うようなイメージング装置、例えば顕微鏡法及び内視鏡法に適用するのに適している。
図1は、本発明の実施の形態に係る多光子イメージング用パルス光源装置を含む光学システムの概略構成を示すブロック図である。 図2は、図1に示した多光子イメージングシステムの具体的構成を示す図である。 図3は、従来技術のパルス光源装置によるパルス増幅とその経路上のパルス波形を説明する図である。 図4は、非特許文献1に係るパルス光源装置の概略構成とその経路上のパルス波形を示す図である。
符号の説明
1 多光子イメージング用超短パルス光源装置
10 半導体レーザ(LD)
11 単一縦モード面発光レーザ(VCSEL)
20 電気パルス発生手段
21 コムジェネレータ
30 励起光源
31 励起LD
40 光カプラ
41 波長多重カプラ(WDMC)
50 光ファイバ
51 アイソレータ
52 単一モード光ファイバ(SMF)
60 光増幅手段
61 Yb添加ファイバ型光増幅器(YDFA)
62 アイソレータ
63 Yb添加ファイバ
64 バンドパスフィルタ(BPF)
65 Yb添加ファイバ型光増幅器(YDFA)
70 光伝送手段
71 単一モード光ファイバ(SMF)
80 レーザ操作型顕微鏡(LSM)
81 多光子蛍光顕微鏡
82 コリメートレンズ
83 XYガルバノミラー(XY−GM)
84 瞳投影レンズ(PL)
85 チューブレンズ(TL)
86 ダイクロイックミラー(DM)
87 対物レンズ
88 試料
89 光電子増倍管(PMT)
101 単一縦モード面発光レーザ(VCSEL)
102 電気パルス発生装置
103 半導体光増幅器(SOA)
104 増幅器制御装置
111 単一縦モード面発光レーザ(VCSEL)
112 電気パルス発生装置
113 半導体光増幅器(SOA)
114 光フィルタ
115 単一モード光ファイバ(SMF)
116 半導体光増幅器(SOA)
117 増幅器制御装置
118 Yb添加ファイバ型光増幅器(YDFA)
119 励起光源
120 光カプラ

Claims (6)

  1. 電気パルスを出力する電気パルス発生手段と、
    前記電気パルスに基づいて光パルスを発生する半導体レーザと、
    前記半導体レーザの発振波長とは異なる波長の励起光を出射する励起光源と、
    前記光パルスと前記励起光とを合波する光カプラと、
    前記光カプラを出射した前記光パルスの時間幅を狭くする光ファイバと、
    前記光ファイバを出射した前記光パルスを増幅する光増幅手段とを有し、
    前記励起光源は、誘導ラマン散乱により前記光ファイバ内で前記光パルスを増幅する励起光を出射し、
    前記光増幅手段は、前記光ファイバを出射した前記励起光により、前記光パルスを増幅するように構成したことを特徴とするパルス光源装置。
  2. 前記光増幅手段は、光ファイバ型増幅器を有することを特徴とする請求項1に記載のパルス光源装置。
  3. 前記光増幅手段は、希土類添加媒質を増幅媒質とすることを特徴とする請求項1または2に記載のパルス光源装置。
  4. 前記光ファイバは、300m以上3km以下の長さを有することを特徴とする請求項1〜3のいずれか一項に記載のパルス光源装置。
  5. 前記半導体レーザは、700nm以上1000nm以下の発振波長の光パルスを発生することを特徴とする請求項1〜4のいずれか一項に記載のパルス光源装置。
  6. 請求項1〜5のいずれか一項に記載のパルス光源装置と、
    前記パルス光源装置から出射された光パルスを試料に照射する照射手段と、
    前記光パルスの照射により前記試料から発生する信号光を検出する検出手段と、
    を有することを特徴とするイメージング装置。
JP2008328415A 2008-12-24 2008-12-24 パルス光源装置およびそれを用いたイメージング装置 Withdrawn JP2010151988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328415A JP2010151988A (ja) 2008-12-24 2008-12-24 パルス光源装置およびそれを用いたイメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328415A JP2010151988A (ja) 2008-12-24 2008-12-24 パルス光源装置およびそれを用いたイメージング装置

Publications (1)

Publication Number Publication Date
JP2010151988A true JP2010151988A (ja) 2010-07-08

Family

ID=42571173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328415A Withdrawn JP2010151988A (ja) 2008-12-24 2008-12-24 パルス光源装置およびそれを用いたイメージング装置

Country Status (1)

Country Link
JP (1) JP2010151988A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085268A (zh) * 2017-06-13 2017-08-22 苏州艾力光电科技有限公司 一种光耦合装置
JP2018032824A (ja) * 2016-08-26 2018-03-01 国立大学法人東北大学 光パルス信号生成装置、レーザ加工装置及びバイオイメージング装置
WO2022171815A1 (fr) * 2021-02-12 2022-08-18 Irisiome Système et procédé de génération d'impulsion lumineuse de durée sub-picoseconde, ajustable en durée et/ou en fréquence de répétition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032824A (ja) * 2016-08-26 2018-03-01 国立大学法人東北大学 光パルス信号生成装置、レーザ加工装置及びバイオイメージング装置
CN107085268A (zh) * 2017-06-13 2017-08-22 苏州艾力光电科技有限公司 一种光耦合装置
WO2022171815A1 (fr) * 2021-02-12 2022-08-18 Irisiome Système et procédé de génération d'impulsion lumineuse de durée sub-picoseconde, ajustable en durée et/ou en fréquence de répétition
FR3119901A1 (fr) * 2021-02-12 2022-08-19 Irisiome Système et procédé de génération d’impulsion lumineuse de durée sub-picoseconde, ajustable en durée et/ou en fréquence de répétition

Similar Documents

Publication Publication Date Title
US9825419B2 (en) Multi-wavelength, ultrashort pulse generation and delivery, with applications in microscopy
JP5203063B2 (ja) 多光子励起測定装置
EP2953215A1 (en) A system and method for inducing and detecting multi-photon processes in a sample
US20150192768A1 (en) Tunable mid-ir fiber laser for non-linear imaging applications
JP6431901B2 (ja) 広帯域スーパーコンティニューム光放出デバイス及びその使用
KR101575729B1 (ko) 광섬유 레이저 장치 및 광섬유 레이저 제공방법
JP2009152560A (ja) パルス光源およびパルス圧縮方法
EP4162569B1 (en) Femtosecond laser source and multiphoton microscope
JP2007193230A (ja) 光源装置
WO2009119585A1 (ja) パルス光源装置
US11171467B2 (en) Compact diode laser source
JP5646095B1 (ja) 計測装置
JP5110622B2 (ja) 半導体超短パルス光源
JP5139170B2 (ja) 多光子励起測定装置
Niederriter et al. Compact diode laser source for multiphoton biological imaging
JP2010151988A (ja) パルス光源装置およびそれを用いたイメージング装置
Groß et al. Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber
CN108565670B (zh) 频谱高分辨相干反斯托克斯拉曼散射光源实现方法
JP2017108017A (ja) レーザ装置、及びこれを用いた計測装置
JP2015175846A (ja) ラマン散乱計測装置
JP2009231598A (ja) パルス光源装置
US20160118765A1 (en) A Coherent Dynamically Controllable Narrow Band Light Source
JP2013195522A (ja) 多光子励起観察装置
JP2012204372A (ja) 短パルス光源およびレーザ走査顕微鏡システム
CN112805885A (zh) 利用现有飞秒激光器的用于三光子显微镜的微焦耳放大器系统

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306