JP2012204372A - 短パルス光源およびレーザ走査顕微鏡システム - Google Patents

短パルス光源およびレーザ走査顕微鏡システム Download PDF

Info

Publication number
JP2012204372A
JP2012204372A JP2011064592A JP2011064592A JP2012204372A JP 2012204372 A JP2012204372 A JP 2012204372A JP 2011064592 A JP2011064592 A JP 2011064592A JP 2011064592 A JP2011064592 A JP 2011064592A JP 2012204372 A JP2012204372 A JP 2012204372A
Authority
JP
Japan
Prior art keywords
fiber
pulse
optical
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011064592A
Other languages
English (en)
Inventor
Hiroyoshi Yajima
浩義 矢島
Kenji Taira
健二 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011064592A priority Critical patent/JP2012204372A/ja
Publication of JP2012204372A publication Critical patent/JP2012204372A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高出力であり、且つビーム重心の変動が少なく、高次モードのパルス光の混入を抑制した短パルス光源を提供する。
【解決手段】利得スイッチ駆動されたLD2からのパルス光を、コアの少なくとも一部に利得媒質を含むダブルクラッドファイバ12の、コアを伝播させる。ダブルクラッドファイバ12から出射したパルス光をシングルモードファイバ7に入力し、このパルス光に自己位相変調効果を発生させるとともに群速度分散を与える。さらに、シングルモードファイバ7から出射したパルス光の群速度分散を圧縮器9により補償して、パルス光のパルス幅を圧縮する。
【選択図】図1

Description

本発明は、非線形パルス圧縮を用いた短パルスレーザ光源およびこれを用いたレーザ走査顕微鏡システムに関するものである。
従来の短パルスレーザ光源およびこれを用いたレーザ顕微鏡システムを、図6〜図8を用いて説明する。
図6は、短パルスレーザ光源の従来例を示す概略構成図である。図6において、電気パルサー100による電気パルスが印加され、利得スイッチ動作により半導体レーザ101よりチャープした種光パルスが生成される。種光パルスは分散補償ファイバ102でチャープが補償され、数ピコ秒の光パルスとなる。微弱な種光パルスは複数直列に配置したシングルモードファイバによる光増幅器103〜105で所望の光パルスエネルギーまで増幅される。光増幅器103と104との間にはバンドパスフィルタ106が設けられ、種光パルスの光スペクトルの一部分のみ選択的に透過させる。
光増幅器105を出た数ピコ秒の光パルスは、正常分散を持つシングルモードファイバ107に入射され自己位相変調により光スペクトルが拡大し、正常分散によりチャープが与えられる。シングルモードファイバ107を出てレンズ108でコリメートされた光パルスビームは、圧縮器109で異常分散が与えられ、数百フェムト秒に圧縮されレーザ光110として外部に出力される。
このように、正常分散を持つシングルモードファイバ107を透過することにより、非線形光学効果である自己位相変調により光パルスの光スペクトルを拡大させるとともに、シングルモードファイバ107の正常分散により適度なチャープを光パルスに与え、最後に異常分散を持つ圧縮器でパルス圧縮を行う方法を、非線形パルス圧縮と呼んでいる。また、この従来例では光ファイバ全てをシングルクラッドのシングルモードファイバ111で構成している。
図7は、短パルスレーザ光源の他の従来例を示す概略構成図である。図7では、図6の光増幅器105に代えて、シングルモードファイバでなくダブルクラッドファイバ114を最終段光増幅器112に使用する。シングルモードファイバの光増幅器では信号光と励起光は同じコア部を伝播するが、ダブルクラッドファイバでは信号光はコア部を、励起光はコア外周にあるインナークラッド部を伝播するようになっている。ダブルクラッドファイバのコア部はシングルモードファイバのコア部より大口径だが、開口数を低く抑えてほぼシングルモード動作するようになっている。
また、非線形パルス圧縮を行うため図6のシングルモードファイバ107に代えて、同じく正常分散のダブルクラッドファイバ113を使用する。ダブルクラッドファイバ113を透過する光パルスは、自己位相変調と正常分散とが与えられ、さらに、圧縮器109で異常分散が与えられパルス圧縮されたレーザ光110として外部に出力される。
図8は、レーザ走査顕微鏡システムの従来例を示す概略構成図である。図8では、チタンサファイアレーザ118から空間に光パルスが出力され、強度変調器119で光パルスのエネルギーが調整される。エネルギーが調整された光パルスは光伝送路120を伝播し、レーザ走査顕微鏡121に入力する。
レーザ走査顕微鏡121に入力した光パルスは、スキャナ122により伝播の指向が二次元で制御され、瞳投影レンズ123および結像レンズ124を順次伝播しビーム径が調整され、対物レンズ125により試料Aに集光される。試料Aには例えば蛍光材料が含まれており、この蛍光材料を光パルスで励起して蛍光を発生させる。試料Aから発生した蛍光は、対物レンズ125を通り、ダイクロイックミラー126で光パルスの伝播経路から分離され、集光レンズ127で光検出器128に集光して入力され、電気信号に変換される。
図示しない制御装置で、スキャナ122の動作および光パルスの指向(試料A上の光パルスの集光位置)に対応した光検出器128の電気信号を対応させ、その電気信号強度(=蛍光強度)に応じた二次元イメージを表示部129に表示する。これにより、使用者が試料Aの蛍光材料の分布を認識することが出来る。
図6の従来例に係る短パルスレーザ光源によれば、光増幅器にシングルクラッドのシングルモードファイバを用いているので、信号光と励起光とを同じコアを伝播させる必要がある。このため、高出力(高エネルギー)の光パルスを得るには、同時に高出力な励起光が必要となる。シングルモードファイバのコアに結合できる励起光源は、横(空間分布)モードがシングルモード(基本モード=ガウスビーム)である必要がある。しかし、出力がワット級のシングルモードの励起光源が半導体レーザでは存在していない。このため、ワット級出力を有する短パルスレーザ光源を実現することは出来ない。
一方、図7の従来例では、最終段の光増幅器にシングルクラッドのシングルモードファイバに代えて、ダブルクラッドファイバを使用している。ダブルクラッドファイバでは、信号光はコアを伝播し、励起光はコア外周のコアより大口径でマルチモードのインナークラッドを伝播する。これにより、マルチモードの励起光源が使用可能になる。大口径のマルチモード光ファイバに結合するワット級の出力を有する半導体レーザは容易に入手出来、ワット級まで短パルスレーザを増幅することが可能になっている。
しかしながら、ダブルクラッドファイバの信号光が伝播するコアはシングルクラッドのシングルモードファイバのコア径より大きく、開口数を小さくしているが完全なシングルモードファイバではない。このため、ダブルクラッドファイバのコアから出力した光パルスには、高次横(空間分布)モードが混ざる。また、ダブルクラッドファイバのコアから洩れてインナークラッドを伝播した高次モードも混ざる。更に、ダブルクラッドファイバの応力によってコアの基本モードのビーム重心が変動し、かつ高次モード成分比も変動する。
このため、ダブルクラッドファイバをレーザ走査顕微鏡システムに用いた場合、ビーム重心の変動により高い空間分解能が得られなくなる。また、高次モードが混ざることで集光径が大きくなるために高い空間分解能が得られなくなる。更に、高次モードが混ざることで短パルスレーザ光源の平均光出力に占める基本モード成分が低下し、光パルス当りの基本モード成分のエネルギーが低下することでピーク光強度が低下して明るい蛍光を得られなくなるという課題がある。
さらに、図8に係るレーザ走査顕微鏡システムでは、短パルスレーザ光源(チタンサファイアレーザ)は内部が空間光学系から構成されているので、空間ビームとしてパルス光が出力される。そして、その光出力は同じく空間光学系によってレーザ走査顕微鏡に入力する構成となっている。このため、短パルスレーザ光源とレーザ走査顕微鏡とは出来るだけ近接して配置する必要があり、レーザ走査顕微鏡システムの配置の自由度が制約される。また、空間光学系を用いるため短パルスレーザ光源とレーザ走査顕微鏡とは同一のテーブルに配置する必要があり、望ましくは除震機能を有するテーブルを用いる必要がある。更には、ワット級の光出力を出力する短パルスレーザ光源を用いるため、安全のため空間光学系は全て外部と遮光する対策が必要である。チタンサファイアレーザなど空間光学系を用いたモードロックによるレーザ発振方式の短パルスレーザ光源の場合、前記のような配置や対策を行ったとしても日々光パルスの指向の調整を行う必要がある。
したがって、これらの点に着目してなされた本発明の目的は、高出力が可能なマルチクラッドファイバを使用しながら、ビーム重心の変動が少なく、高次モードのパルス光の混入を抑制した短パルスレーザ光源を提供することにある。
上記目的を達成する第1の観点に係る短パルスレーザ光源の発明は、
パルス光を発生するパルス光源と、
該パルス光源で発生した前記パルス光をコア中に伝播させるダブルクラッドファイバと、
前記ダブルクラッドファイバから出射した前記パルス光を入力し、該パルス光に自己位相変調効果を発生させるとともに群速度分散を与えるシングルモードファイバと、
前記シングルモードファイバから出射した前記パルス光の群速度分散を補償して該パルス光のパルス幅を圧縮するパルス圧縮部と
を備えることを特徴とするものである。
このようにすることによって、ダブルクラッドファイバのコアから出射する高出力のパルス光をシングルモードファイバに入力して、このシングルモードファイバを透過する際に非線形光学効果である自己位相変調効果により光スペクトル幅を拡大し、同時にこのファイバの正常分散を付加する。シングルモードファイバの長さを最適にすることにより、異常分散を与え分散を補償するパルス圧縮手段で非線形パルス圧縮をすることができる。ダブルクラッドファイバから出力するパルス光をシングルモードファイバに入力することで、ダブルクラッドファイバのコアから出力する光の課題であった、高次モードが含まれることや、応力によるビームの重心変動が無くなる。
第2の観点に係る発明は、第1の観点に係る短パルスレーザ光源において、
前記パルス光源と前記シングルモードファイバとの間に前記パルス光を増幅する光増幅手段を備えることを特徴とするものである。
第1の観点に係る発明の作用効果に加え、光増幅手段を用いることで、パルス光源から出射されるパルス光が、微弱なパルス光であっても、光増幅によって高出力化することが出来る。
第3の観点に係る発明は、第2の観点に係る短パルスレーザ光源において、
前記光増幅手段は、複数段の光増幅器を備え、該複数段の光増幅器うちの最終段の光増幅器は、前記ダブルクラッドファイバを含み、該ダブルクラッドファイバの少なくとも一部において前記コアに利得媒質が添加され、インナークラッド内に励起光を伝播可能に構成したことを特徴とするものである。
第2の観点に係る発明の作用効果に加え、最終段の光増幅器にダブルクラッドファイバを用いることで励起光を増大することができる。これにより、シングルクラッドのシングルモードファイバのみを用いて増幅を行った場合よりも大出力化を図ることが出来る。
第4の観点に係る発明は、第3の観点に係る短パルスレーザ光源において、
前記最終段の光増幅器は、前記励起光を前記インナークラッドから除去するポンプストリッパを備えることを特徴とするものである。
第3の観点に係る発明の作用効果に加え、最終段の光増幅器のダブルクラッドファイバにポンプストリッパを用いたので、インナークラッドを伝播する不要な光による、光ファイバ接続部品等の損傷を避けることができる。
第5の観点に係る発明は、第4の観点に係る短パルスレーザ光源において、
前記ダブルクラッドファイバの前記コアを伝播するパルス光を、前記シングルモードファイバのコアに結合するモードフィールドアダプタを備えることを特徴とするものである。
第4の観点に係る発明の作用効果に加え、ダブルクラッドファイバとシングルモードファイバとの結合にモードフィールドアダプタを用いることで、異なるファイバ間を結合することによる光パルスの強度損失を小さくすることができる。また、モードフィールドアダプタは、ダブルクラッドファイバのコアおよびインナークラッドを伝播する励起光やコアからインナークラッドに洩れた信号光を除去することができ、さらに、耐熱性があるのでこの中で光から熱へと変換し廃熱させることができる。
第6の観点に係る発明は、第4の観点に係る短パルスレーザ光源において、
前記ダブルクラッドファイバの前記コアから空間に出射されたパルス光を、前記シングルモードファイバのコアに結合させる空間光学系を備えたことを特徴とするものである。
第4の観点に係る発明の作用効果に加え、ダブルクラッドファイバとシングルモードファイバとの結合に空間光学系を用いたので、異なるファイバ間の結合による光パルスの強度損失を小さくすることが出来る。また、ダブルクラッドファイバのコア径やシングルモードファイバのコア径を変更する際、コリメートレンズと集光レンズの変更で容易に対応することができる。
第7の観点に係る発明は、第6の観点に係る短パルスレーザ光源において、
前記空間光学系は、前記コアから出射された前記パルス光を選択的に透過させる波長選択手段を備えることを特徴とする請求項6に記載の短パルスレーザ光源。
第6の観点に係る発明の作用効果に加え、ダブルクラッドファイバとシングルモードファイバとの結合のための空間光学系内に波長選択手段を用いることで、非線形パルス圧縮に悪影響を与える光パルスの光スペクトル成分以外の成分を、非線形光学効果を発生させるシングルモードファイバの前で除去でき、高品質なパルス圧縮が可能となる。
第8の観点に係る発明は、第1〜7の観点に係る短パルスレーザ光源において、
前記パルス光源が利得スイッチ半導体レーザであり、該パルス光源から出射される前記光パルスの群速度分散を補償する分散補償部と、前記光パルスの光スペクトルを整形するパルス整形部とを備えることを特徴とするものである。
第1〜7の観点に係る発明の作用効果に加え、利得イッチ半導体レーザと分散補償部、光スペクトル整形部を用いることにより、光パルスの繰返し周波数を容易に変更することができる。また、チタンサファイアレーザなどのように、モードロック方式でないため温度や振動に影響されず、安定した光パルスの発生が可能となる。
上記目的を達成する第9の観点に係るレーザ走査顕微鏡システムの発明は、
パルス光をコア中に伝播させるダブルクラッドファイバと、
前記ダブルクラッドファイバから出射した前記パルス光を入力し、該パルス光に自己位相変調効果を発生させるとともに群速度分散を与えるシングルモードファイバと、
前記シングルモードファイバから出射した前記パルス光の群速度分散を補償して該パルス光のパルス幅を圧縮するパルス圧縮部と、
前記パルス圧縮部から出射された前記パルス光を試料に集光させる光学系と、
前記パルス光を前記試料に対して走査させる走査部と、
前記パルス光の前記試料への照射により得られる信号光を検出する光検出部と、
前記走査部の操作と前記光検出部により検出した信号光強度に基づいて画像データを生成する制御部と、
前記パルス圧縮部、前記光学系、前記走査部および前記光検出器を内蔵する筐体と
を備え、
前記筐体は前記シングルモードファイバを着脱可能な導入ポートを備えることを特徴とするものである。
このようにすることによって、高次モードが含まれず、応力によるビームの重心変動が無い短光パルスを用いて試料の観察を行うことができる。さらに、シングルモードファイバを介して、レーザ走査顕微鏡の筐体とパルス光源とが接続されるので、パルス光源とレーザ走査顕微鏡の筐体とを近接させる必要がなくなり、レーザ走査顕微鏡システムの配置に自由度ができる。また、空間光学系を伝送路としないためパルス光源とレーザ走査顕微鏡とを同一テーブルに配置する必要が無くなる。さらには、安全のための外部との遮光が容易になる。また、空間光学系を伝送路としていないため、日々の光パルスの指向調整が不要となる。
本発明によれば、高出力が可能なマルチクラッドファイバを使用しながら、ビーム重心の変動が少なく、高次モードのパルス光の混入を抑制した短パルスレーザ光源を提供することができる。
第1実施形態に係る短パルスレーザ光源の構成を示す図である。 図1の最終段光増幅器から圧縮器までの詳細な構成を説明する図である。 第2実施形態に係る短パルスレーザ光源の最終段光増幅器から圧縮器までの詳細な構成を説明する図である。 第3実施形態に係るレーザ走査顕微鏡システムの概略構成を示す図である。 第4実施形態に係るレーザ走査顕微鏡システムの概略構成を示す図である。 従来のシングルモードファイバのみで構成された短パルスレーザ光源の構成を示す図である。 従来のダブルクラッドファイバを含む構成の短パルスレーザ光源の構成を示す図である。 従来のレーザ走査顕微鏡システムの構成を示す図である。
以下、本発明の実施形態について、図面を参照して説明する。
(第1実施形態)
図1に第1実施形態に係る短パルスレーザ光源の構成を示す。短パルスレーザ光源は、電気パルサー1、半導体レーザ(LD)2、分散補償ファイバ3、第1の光増幅器4、第2の光増幅器5、第3の光増幅器(最終段の光増幅器)6、バンドパスフィルタ(BPF)25、シングルモードファイバ7、レンズ8、およびパルス圧縮部である圧縮器9を含んで構成される。ここで、パルス光源は、電気パルサー1およびLD2を含んで構成される。また、分散補償部は分散補償ファイバ3を、パルス整形部は、BPF25を含んで構成される。さらに、増幅手段は、第1の光増幅器4、第2の光増幅器5、第3の光増幅器6を含んで構成される。
電気パルサー1は、1ナノ秒以下の電気パルスを生成し、この電気パルスをLD2に印加する。LD2は、利得スイッチ動作により短波長成分が先行するチャープした、時間幅数十ピコ秒で光スペクトル幅が0.5ナノメートルから数ナノメートルの光パルスを発振する。この光パルスは正常分散を持つ分散補償ファイバ3でチャープが補償され、フーリエ限界(Transform Limit:TL)パルスである、数ピコ秒の光パルスとなる。
LD2は、分布帰還型半導体レーザ(DFB−LD)や面発光半導体レーザ(VCSEL)、量子ドット半導体レーザ(QD−LD)が使用可能であり、望ましくはVCSELである。VCSELは、発振する光パルスの空間への発散角が水平方向と垂直方向とで同一であり、光ファイバとの結合が容易かつ高効率で可能である。分散補償ファイバ3は、LD2の発振波長に対してシングルモードのみ伝播するファイバである。分散補償ファイバとしては、シングルクラッドファイバや、フォトニック結晶ファイバ(PCF)を使用することができる。分散補償ファイバ3の長さは、LD2が発振する光パルスのチャープ量(フーリエ限界との差)を補償するように設定され、典型的には数百メートルから1キロメートルの長さとなる。
LD2の利得スイッチ動作で発振する光パルスのエネルギーは、サブピコジュールから数ピコジュールであり、レーザ走査顕微鏡システムなどのアプリケーションで必要とされる数十ナノジュールと比べて3桁以上微弱である。この微弱な光パルスは直列に配置した第1から第3の光増幅器4〜6で所望の光パルスエネルギーまで3桁以上増幅される。なお、光増幅器は3段構成に限られず、任意の段数の光増幅器を設けることができる。
第1の光増幅器4は、光パルスエネルギーを1桁台(10倍以上)光増幅する。第1の光増幅器4は、増幅される微弱な光パルスが入射する側から順に、それぞれ図示しないアイソレータ、波長分割多重カプラ(以下、WDMカプラ)、利得ファイバ、およびWDMカプラから構成されており、WDMカプラには利得ファイバに利得を与える励起光源からのファイバが入力する。また、これらファイバはシングルモードの光のみ伝播するシングルモードファイバ13から構成されている。
励起光源からの励起光はWDMカプラで合波して利得ファイバに入力される。利得ファイバには利得媒質である希土類元素(例えば、Yb,Er,Pr,Hoなどの単体かこれらの混合物)が添加されており、この利得媒質が励起光を吸収することで利得が生まれる。利得ファイバ後のWDMカプラで、吸収されなかった励起光が除去される。WDMカプラはファイバデバイスであるが、これの代わりに光入出力がファイバで内部の空間光学系内に光フィルタを配したカプラも使用可能である。第1の光増幅器4に入射した微弱な光パルスは、利得を持つ利得ファイバ内で光増幅される。
第1の光増幅器4を出た光パルスは、BPF25でその光スペクトルの短波長側と長波長側の両方が除去される。これにより、LD2の利得スイッチ動作で発生した光パルスのペデスタル(時間波形上のゆっくりと光強度がゼロに落ちていく波尾成分)や、サブパルス(時間波形上に意図した光パルスとは時間間隔があり更に微弱な光パルス)を除去し、理想的な光パルスとすることが出来る。
BPF25は、光学基板上に誘電体多層膜を多数成膜して形成され、各層の屈折率に応じて厚さが設計されている。これによって、特定の波長帯で設計した帯域を透過し、その他の帯域は反射する特性を有する。透過する帯域は1ナノメール以下であり、LD2の利得スイッチ動作で発振した光パルスの光スペクトル幅が約1.5ナノメートルのとき、BPF25の透過する帯域は約0.6ナノメートル程度である。
BPF25を出た光強度が約1ミリワットの光パルスは、第2の光増幅器5に入射し光パルスエネルギーを1桁台(10倍以上)光増幅する。第2の光増幅器5は、第1の光増幅器4と同様な構成である。
第1の光増幅器4および第2の光増幅器5に用いられる励起光源は、シングルモード半導体レーザを使用する。シングルモード半導体レーザの光出力は最大でも200ミリワット程度であり、更に励起光強度を高くするために複数台のシングルモード半導体レザーザを用いる。複数のシングルモード半導体レーザの光を利得ファイバに入力するため、一つの方法としては、偏光方向が互いに90度異なるシングルモード半導体レーザの光を結合する偏波結合カプラを用いて、WDMカプラで利得ファイバに結合する。また、他の方法としては、利得ファイバに添加した希土類の光吸収波長帯内で、波長の異なるシングルモード半導体レーザの光をWDMカプラや、光フィルタを配したカプラで利得ファイバに結合する。このようにして、増幅したい光パルスの光強度に応じて励起光源のシングルモード半導体レーザの光強度を設定することができる。しかしながら、これらの方法を用いてもシングルモード半導体レーザでは、1ワット弱の励起光強度が限界である。また、前述したように多数のシングルモード半導体レーザを用いると構成が煩雑となる。
第2の光増幅器5で光増幅された光パルスは、最終段の光増幅器である第3の光増幅器6で光パルスエネルギーが数十ナノジュール台(光強度で数ワット台)に更に光増幅される。図2は、第3の光増幅器6から圧縮器9までの詳細な構成を説明する図である。
第3の光増幅器6は、増幅される光パルスの入射側から順に、アイソレータ14、波長分岐モジュール(WDM)15、ポンプコンバイナ(PC)16、励起光源17、利得ファイバ18、および、ポンプストリッパ(PS)19を含んで構成されている。また、第3の光増幅器6の後段には、モードフィールドアダプタ(MFA)24があり、シングルモードファイバ7が接続されている。なお、PC16からMFA24までの光路は、ダブルクラッドファイバ12で構成されている。
ダブルクラッドファイバ12は、中心にコアがあり、コアの外周にインナークラッドがあり、インナークラッドの外周にアウタークラッドが構成されている。このダブルクラッドファイバ12は、コアを伝播する光と、コアを含むインナークラッドを伝播する光を伝播させることが出来る。ダブルクラッドファイバのコア径はシングルモードファイバのコア径より大きいが、開口数をシングルモードファイバのコアより小さくすることでシングルモードが優先的に伝播するよう設計されている。インナークラッドを伝播する光はシングルモードではなくマルチモードである。
ダブルクラッドファイバ12の一部を利得ファイバ18とすることで、光増幅される信号光をコアに伝播させ、励起光をインナークラッドに伝播させることが出来る。インナークラッドはマルチモードの光が伝播するので、シングルモードファイバを用いた光増幅器の場合のシングルモード半導体レーザでなく、マルチモード半導体レーザを励起光源として使用することが出来る。マルチモード半導体レーザは、数十ワット以上の出力が容易に得られる。なお、ダブルクラッドファイバの利得ファイバの利得媒質である希土類の添加はコアのみに行われる。
励起光源17には、光出力が1ワット以上のマルチモード半導体レーザが1台または複数台が用いられる。励起光源17からの励起光は、PC16でダブルクラッドファイバのインナークラッドに結合する。PC16は、シングルモードファイバの入力ファイバと、マルチモードファイバの1本または複数本の入力ファイバと、ダブルクラッドファイバの出力ファイバを持つ。シングルモードファイバの入力ファイバのコアを伝播する光は、ダブルクラッドファイバの出力ファイバのコアを伝播する光となり、マルチモードファイバの入力ファイバのコアを伝播する光は、ダブルクラッドファイバのインナークラッドを伝播する光となる。
光増幅されるパルス光は、アイソレータ14、WDM15およびPC16を順次伝播し、ダブルクラッドファイバ12の利得ファイバ18のコアを伝播する。PC16でダブルクラッドファイバ12のインナークラッドを伝播する光となった励起光は、利得ファイバ18のインナークラッドを伝播しながらコアに添加された利得媒質に光吸収され、利得ファイバ18のコアに利得を発生させる。これにより、パルス光が増幅される。ダブルクラッドファイバ12のコア径はシングルモードのシングルモードファイバ13のコア径より大きく、インナークラッド径は35マイクロメートル以上である。
ダブルクラッドファイバ12の一部である利得ファイバ18を巻くことで、利得ファイバ18のコアを伝播する光の内シングルモード成分が優先的に光増幅されることが知られている。このように利得ファイバ18のコアから出力されるパルス光は、ほぼシングルモードとなっている。
利得ファイバ18内でパルス光が、非線形光学効果を発生しないようにパルス光とダブルクラッドファイバ12のコア径が選択される。具体的には、パルス光に対してはピーク光強度を非線形光学効果が最小となるように時間幅とパルスエネルギーを最適にする。ダブルクラッドファイバ12のコア径は、シングルモードファイバ13のコア径よりも大きくする。パルス光が利得ファイバ18内で非線形光学効果(具体的には自己位相変調)により光スペクトルの拡大が発生すると、利得ファイバ18で発生する自然放出光(以下、ASE光)との相互干渉によりパルス光のSN比が低下する課題が発生してしまう。更に光スペクトルの拡大により利得ファイバ18を通るパルス光のスペクトルが光増幅可能な帯域外まで拡がってしまうと、光出力の飽和や光スペクトルの非線形なチャープ(歪)により、後述する非線形パルス圧縮後の光パルスの品質(SN比,時間幅,ピーク光強度)が劣化してしまう。
利得ファイバ18を出射したパルス光は、断面構造がほぼ等しくコアに利得媒質となる希土類が添加されていないダブルクラッドファイバを伝播し、PS19でインナークラッドを伝播する光を除去する。これによって、インナークラッドを伝播する利得ファイバ18で吸収されなかった励起光、利得ファイバ18のコアで発生しインナークラッドに洩れたパルス光、ASE光等が除去される。利得ファイバ18で吸収されなかった励起光は、時として非常に大きい。特にパルス光を光増幅する際、低ノイズに光増幅したい場合はなるべく利得ファイバを短くし、高い励起密度を保つ必要があるためである。このため、PS19を用いないと非常に大きいままの励起光がダブルクラッドファイバのインナークラッドを伝播し続け、光ファイバ接続部品等に火災を起こす可能性がある。
一つ目のアイソレータ14は、光増幅器6が光増幅器ではなくレーザ発振器として動作しないようにするため、戻り光が発生しないようにするために用いる。また、WDM15は、利得ファイバ18で発生したパルス光の伝播方向とは逆方向に伝播するASE光を除去するために用いる。さらに、励起光源17にも同様のASE光を除去する機能(例えば、ファイバーブラッググレーティング)が設けられている。
MFA24は、ダブルクラッドファイバ12のコアを伝播するパルス光を、シングルモードファイバ7のコアに結合する。MFA24は、内部にコア径が連続的に変化するテーパファイバまたはコア径の異なる光ファイバが段階的に接続されたファイバが組込まれており、これによりコア径の大きいダブルクラッドファイバ12のコアを伝播するパルス光が、コア径の小さいシングルモードファイバ7のコアに結合することが出来る。このMFA24は、通常シングルモードファイバ7からダブルクラッドファイバ12のコアに結合するために製造、販売されている。本願発明者らは、このMFA24を通常とは逆の方向で使用したが高い結合効率(〜80%)で、ダブルクラッドファイバのコアのパルス光をシングルモードファイバに結合できることを確認した。
MFA24でシングルモードファイバ7に結合したパルス光は、非線形パルス圧縮にてピコ秒からフェムト秒にパルス圧縮する。非線形パルス圧縮は、例えば、以下の書籍にて紹介されている。
「超高速光エレクトロニクス」 培風館(1991) P.47
「Ultrashort Laser Pulse Phenomena Second Edition」 Academic Press
シングルモードファイバ7では、光増幅によって高エネルギーとなり高ピークとなったパルス光により、非線形光学効果の自己位相変調により光スペクトル幅の拡大と、シングルモードファイバ7の正常分散によりチャープが加わる。シングルモードファイバ7を出射したスペクトル幅が拡大しチャープしたパルス光は、レンズ8で空間ビームとして出力され、波長選択手段である光フィルタ21でASE光を除去し、空間アイソレータ22を透過し、圧縮器9で異常分散が与えられることによりパルス圧縮され、フェムト秒の光パルスであるレーザ光10として出力される。
光フィルタ21は、光学基板上に誘電体多層膜が多数成膜され、各層の屈折率に応じて厚さが設計されている。これによって、特定の波長帯で設計した帯域を透過し、その他の帯域は反射する特性を有する。透過する帯域は数ナノメールから数十ナノメートルである。空間アイソレータ22は、光増幅器6が外部からの戻り光でレーザ発振しないように、戻り光を遮断するために用いる。
シングルモードファイバ7は、非線形パルス圧縮で最短の時間幅と最高のピーク光強度が得られるように、パルス光のエネルギーと時間幅(光スペクトル幅)に応じて最適な光スペクトル幅とチャープが加わるよう長さを調節する。通常、シングルモードファイバ7の長さは、数十ナノジュールのパルス光の場合は数メートルから10メートル程度である。圧縮器9は、異常分散を発生する機能を有し、例えば、回折格子対を用いて構成する。このようにして、100フェムト秒から200フェムト秒のパルス幅である短パルス光を生成することが出来る。
以上のように、ダブルクラッドファイバのコアを伝播する高出力のパルス光をシングルモードファイバに結合して非線形パルス圧縮を行うことにより、ダブルクラッドファイバのコアから空間に出力されるビームで課題であった、シングルモード成分以外の高次モード成分が混ざることによる空間ビーム品質の低下と、これに付随する非線形パルス圧縮後の短パルス光のピーク光強度の低下を無くすことが出来る。また、ダブルクラッドファイバに応力を印加するとコアから空間に出力されるビームの重心位置が変動するが、シングルモードファイバに結合することで重心位置の変動を無くすことが出来る。
また、光増幅手器4〜6を用いることで、LD2から出射されるパルス光が、微弱なパルス光であっても、光増幅によって高出力化することができ、さらに、最終段の光増幅器6にダブルクラッドファイバを用いることで励起光をワット級まで増大することができる。これにより、シングルクラッドのシングルモードファイバのみを用いて増幅を行った場合よりも大出力化を図ることが出来る。
さらに、利得イッチ半導体レーザと分散補償ファイバ3、BPF25を用いることにより、光パルスの繰返し周波数を容易に変更することができる。また、チタンサファイアレーザなどのように、モードロック方式でないため温度や振動に影響されず、安定した光パルスの発生が可能となる。
また、最終段の光増幅器6のダブルクラッドファイバ12にPS19を設けたので、インナークラッドを伝播する不要な光による、光ファイバ接続部品等の損傷を避けることができる。
さらに、ダブルクラッドファイバ12とシングルモードファイバ7との結合にMFA24を用いることで、異なるファイバ間を結合することによる光パルスの強度損失を小さくすることができる。また、MFA24は、ダブルクラッドファイバ12のコアおよびインナークラッドを伝播する励起光やコアからインナークラッドに洩れた信号光を除去することができ、さらに、耐熱性があるのでこの中で光から熱へと変換し廃熱させることができる。
本実施形態では、パルス光源として、利得スイッチ半導体レーザを使用するものとしたが、受動モードロック方式や能動モードロック方式のパルス光源を使用することが可能である。また、シングルモードファイバはシングルモードのパルス光のみ伝播することが出来るファイバであれば良く、シングルクラッドファイバやフォトニック結晶ファイバを使用することができる。また、本実施形態では個々に記述をしなかったが、偏波保持機能を有するシングルモードファイバとダブルクラッドファイバを夫々用いている。異常分散を与える圧縮器として回折格子対としたが、望ましくは透過型回折格子であると良く、反射型回折格子やプリズム、グリズム、偏波保持の異常分散中空コアフォトニックバンドギャップファイバとしても良い。
短パルスレーザ光源の波長は、光増幅器の利得ファイバに添加された希土類の利得帯域であれば良く、980ナノメートル帯や1030ナノメートル帯、1064ナノメートル帯、1100ナノメートル帯、1300ナノメートル帯、1550ナノメートル帯、1600ナノメートル帯で使用可能である。望ましくは、980ナノメートル帯が有用である。
また、本実施形態では、光増幅器を3段構成としたが、これに限られず光増幅器を2段以下または4段以上使用することもできる。また、最終段の光増幅器以外の光増幅器を、ダブルクラッドファイバを用いるものにすることもできる。さらに、シングルファイバを用いた第1の光増幅器および第2の光増幅器に代えて、他の光増幅手段を設けることもできる。たとえば、シングルモードで動作する半導体光増幅器や、ファイバラマン光増幅器や、ファイバ光パラメトリック光増幅器である。
(第2実施形態)
図3は、第2実施形態に係る短パルスレーザ光源の最終段光増幅器から圧縮器までの詳細な構成を説明する図である。
本実施形態では、第1実施形態におけるMFA24に代えて、空間光学系によりダブルクラッドファイバ12のコアを伝播するパルス光を、シングルモードファイバ7に結合する。空間光学系は、レンズ20およびレンズ23を含んで構成される。また、第1実施の形態で、シングルモードファイバ7の後段に配置していた光フィルタ21と、空間アイソレータ22も、レンズ20とレンズ23との間の空間光学系内に配置される。これにより、ダブルクラッドファイバ12を透過したパルス光は、レンズ20で空間ビームとして出力する。空間ビームとなったパルス光は、光フィルタ21でASE光が除去され、空間アイソレータ22を透過して、レンズ23で集光してシングルモードファイバ7のコアに結合する。
シングルモードファイバ7で、非線形光学効果の自己位相変調によりパルス光の光スペクトル幅が拡大するとともに、シングルモードファイバ7の正常分散によりチャープがパルス光に付与される。シングルモードファイバ7を出射したパルス光は、レンズ8で再び空間ビームとなり、圧縮器9でパルス光に異常分散が付与され、100フェムト秒から200フェムト秒のパルス幅である短パルス光を生成することが出来る。
空間光学系を用いた場合、ダブルクラッドファイバ12のコアを伝播するパルス光の、シングルモードファイバ7との結合効率は80%以上が得られ、高い結合効率で結合することが出来る。また、シングルモードファイバ7は、非線形パルス圧縮で最短の時間幅と最高のピーク光強度が得られるように、パルス光のエネルギーと時間幅(光スペクトル幅)に応じて最適な光スペクトル幅とチャープが加わるよう長さを調節する。シングルモードファイバ7の長さは、通常、数十ナノジュールのパルス光の場合は数メートルから10メートル程度である。
その他の構成、作用は、第1実施形態と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
以上のように、ダブルクラッドファイバのコアを伝播するパルス光をシングルモードファイバに結合して非線形パルス圧縮を行うことにより、ダブルクラッドファイバのコアから空間に出力されるビームで課題であった、シングルモード成分以外の高次モード成分が混ざることによる空間ビーム品質の低下と、これに付随する非線形パルス圧縮後の短パルス光のピーク光強度の低下を無くすことが出来る。また、ダブルクラッドファイバの応力印加によるコアから空間に出力されるビームの重心位置が変動するが、シングルモードファイバを用いることでこれを無くすことが出来る。
また、ダブルクラッドファイバとシングルモードファイバとの結合に空間光学系を用いたので、異なるファイバ間の結合による光パルスの強度損失を小さくすることが出来る。さらに、ダブルクラッドファイバのコア径やシングルモードファイバのコア径を変更する際、コリメート用のレンズ20と集光用のレンズ23の変更で容易に対応することができる。
更に、シングルモードファイバにパルス光を入力する前に、光フィルタ21でASE光を除去することが出来るので、パルス光とASE光との相互干渉によるSN比の低下を低減することが可能となり、高い短パルス光の品質を得ることが出来る。このように、ダブルクラッドファイバとシングルモードファイバとの結合のための空間光学系内に波長選択手段である光フィルタ21を用いることで、非線形パルス圧縮に悪影響を与える光パルスの光スペクトル成分以外の成分を、非線形光学効果を発生させるシングルモードファイバの前で除去でき、高品質なパルス圧縮が可能となる。
(第3実施形態)
図4は、第3実施形態に係るレーザ走査顕微鏡システムの構成を示す図である。
このレーザ走査顕微鏡システムは、第1実施形態に係る短パルスレーザ光源と同様の短パルスレーザ光源26のレンズ8、光フィルタ21、空間アイソレータ22および圧縮器9をレーザ走査顕微鏡29に組込み、シングルモードファイバ7を介して、短パルスレーザ光源26の光パルス発生・増幅部38と接続したものである。光パルス発生・増幅部38は、図1に示した第1実施形態の電気パルサー1、LD2、分散補償ファイバ3、第1の光増幅器4、第2の光増幅器5、第3の光増幅器6、および、BPF25を含んで構成される。また、レーザ走査顕微鏡29は、上述の短パルスレーザ光源26と共通の構成要素の他、強度変調器27、整形光学系28、走査部であるスキャナ30、瞳投影レンズ31、結像レンズ32、ダイクロイックミラー34、対物レンズ33、集光レンズ35、光検出部である光検出器36および表示部37を含んで構成される。
シングルモードファイバ7は、先端が洗浄可能な形態となっており固定可能なコネクタ形状を有している。そして、このシングルモードファイバ7は、レーザ走査顕微鏡29とコネクタの取外しにより着脱可能となっている。シングルモードファイバ7をレーザ走査顕微鏡29に取付けた状態で、短パルスレーザ光源26は、第1実施形態の短パルスレーザ光源と同様に圧縮器9から短パルス光を出射できる。
圧縮器9から出力した短パルス光は、強度変調器27で短パルス光のエネルギーが外部信号により変調される。強度変調器27でエネルギーを変調した短パルス光は、整形光学系28で空間ビームのビーム径が調整される。そして、走査部であるスキャナ30で短パルス光の空間指向が二次元で制御され、瞳投影レンズ31と結像レンズ32を経て、対物レンズ33で試料Aの特定箇所に集光する。
試料Aには、蛍光タンパクや蛍光色素などのマーカーが配されており、対物レンズ33で集光された短パルス光によりマーカーが二光子励起され、短パルス光の波長と異なる蛍光が集光点から発する。蛍光は、再び対物レンズ33で集光され、ダイクロイックミラー34で短パルス光が伝播する光路から分離され、集光レンズ33で集光され光検出器36で光電変換される。
図示しない制御装置(制御部)で、スキャナ30の動作および光パルスの指向(試料A上の光パルスの集光位置)に対応した光検出器36の電気信号を対応させ、その電気信号強度(=蛍光強度)に応じた二次元イメージデータを生成し、表示部37に表示する。これにより、使用者が試料Aの蛍光材料の分布を認識することが出来る。
このように、シングルモードファイバ7を短パルスレーザ光源29の光パルス発生・増幅部38とレーザ走査顕微鏡29との間の光パルス伝送路とすることにより、レーザ走査顕微鏡29と光パルス発生・増幅部38とを近接させる必要がなくなりレーザ走査顕微鏡システムの配置に自由度が出る。また、空間光学系を伝送路としないため、光パルス発生・増幅部38とレーザ走査顕微鏡29とを同一テーブルに配置する必要が無くなる。さらには、安全のための外部との遮光が容易になる。また、空間光学系を伝送路としていないため、日々の光パルスの指向調整が不要となる。
以上の説明では、レーザ走査顕微鏡システムの使い方として二光子励起蛍光を用いて説明を行ったが、三光子励起蛍光やSHGなどの多光子励起での使い方でも適用可能である。また、試料としては生物試料や工業試料である無機・有機材料に適用可能である。強度変調器は、音響光学素子(音響光学可変フィルタ:AOTF)や音響光学素子(AOM、AOBS)、電気光学素子(EOM)、NDフィルタあるいはλ/2板と偏光子との組み合わせでも使用が可能である。整形光学系はケプラー型やガレリオ型が使用可能であり、スキャナ内の瞳径を満たすように倍率が調整される。
(第4実施形態)
図5は、第4実施形態に係るレーザ走査顕微鏡システムの構成を示す図である。
このレーザ走査顕微鏡システムは、第2実施形態に係る短パルスレーザ光源のレンズ8および圧縮器9をレーザ走査顕微鏡29に組込み、シングルモードファイバ7を介して、短パルスレーザ光源26の光パルス発生・増幅部38と接続したものである。光パルス発生・増幅部38は、第2実施形態の電気パルサー1、LD2、分散補償ファイバ3、第1の光増幅器4、第2の光増幅器5、第3の光増幅器6、および、BPF25を含んで構成される。本実施形態でも、第3実施形態と同様の効果が得られる。
以上、本発明の各実施形態について図面を参照して説明したが、本発明は上述した実施形態の説明に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変形または変更が可能である。
1 電気パルサー
2 半導体レーザ(LD)
3 分散補償ファイバ
4 第1の光増幅器
5 第2の光増幅器
6 第3の光増幅器(最終段の光増幅器)
7 シングルモードファイバ
8 レンズ
9 圧縮器
10 短パルスレーザ光
12 ダブルクラッドファイバ
13 シングルモードファイバ
14 アイソレータ
15 波長分岐モジュール(WDM)
16 ポンプコンバイナ(PC)
17 励起光源
18 利得ファイバ
19 ポンプストリッパ(PS)
20 レンズ
21 光フィルタ
22 空間アイソレータ
23 レンズ
24 モードフィールドアダプタ(MFA)
25 バンドパスフィルタ(BPF)
26 短パルスレーザ
27 強度変調器
28 整形光学系
29 レーザ走査顕微鏡
30 スキャナ
31 瞳投影レンズ
32 結像レンズ
33 対物レンズ
34 ダイクロイックミラー
35 集光レンズ
36 光検出器
37 表示部
38 光パルス発生・増幅部
A 試料

Claims (9)

  1. パルス光を発生するパルス光源と、
    該パルス光源で発生した前記パルス光をコア中に伝播させるダブルクラッドファイバと、
    前記ダブルクラッドファイバから出射した前記パルス光を入力し、該パルス光に自己位相変調効果を発生させるとともに群速度分散を与えるシングルモードファイバと、
    前記シングルモードファイバから出射した前記パルス光の群速度分散を補償して該パルス光のパルス幅を圧縮するパルス圧縮部と
    を備える短パルスレーザ光源。
  2. 前記パルス光源と前記シングルモードファイバとの間に前記パルス光を増幅する光増幅手段を備える請求項1に記載の短パルスレーザ光源。
  3. 前記光増幅手段は、複数段の光増幅器を備え、該複数段の光増幅器うちの最終段の光増幅器は、前記ダブルクラッドファイバを含み、該ダブルクラッドファイバの少なくとも一部において前記コアに利得媒質が添加され、インナークラッド内に励起光を伝播可能に構成したことを特徴とする請求項2に記載の短パルスレーザ光源。
  4. 前記最終段の光増幅器は、前記励起光を前記インナークラッドから除去するポンプストリッパを備えることを特徴とする請求項3に記載の短パルスレーザ光源。
  5. 前記ダブルクラッドファイバの前記コアを伝播するパルス光を、前記シングルモードファイバのコアに結合するモードフィールドアダプタを備えることを特徴とする請求項1〜4に記載の短パルスレーザ光源。
  6. 前記ダブルクラッドファイバの前記コアから空間に出射されたパルス光を、前記シングルモードファイバのコアに結合させる空間光学系を備えたことを特徴とする請求項1〜4に記載の短パルスレーザ光源。
  7. 前記空間光学系は、前記コアから出射された前記パルス光を選択的に透過させる波長選択手段を備えることを特徴とする請求項6に記載の短パルスレーザ光源。
  8. 前記パルス光源が利得スイッチ半導体レーザであり、該パルス光源から出射される前記光パルスの群速度分散を補償する分散補償部と、前記光パルスの光スペクトルを整形するパルス整形部とを備えることを特徴とする請求項1〜7のいずれか一項に記載の短パルスレーザ光源。
  9. パルス光をコア中に伝播させるダブルクラッドファイバと、
    前記ダブルクラッドファイバから出射した前記パルス光を入力し、該パルス光に自己位相変調効果を発生させるとともに群速度分散を与えるシングルモードファイバと、
    前記シングルモードファイバから出射した前記パルス光の群速度分散を補償して該パルス光のパルス幅を圧縮するパルス圧縮部と、
    前記パルス圧縮部から出射された前記パルス光を試料に集光させる光学系と、
    前記パルス光を前記試料に対して走査させる走査部と、
    前記パルス光の前記試料への照射により得られる信号光を検出する光検出部と、
    前記走査部の操作と前記光検出部により検出した信号光強度に基づいて画像データを生成する制御部と、
    前記パルス圧縮部、前記光学系、前記走査部および前記光検出器を内蔵する筐体と
    を備え、
    前記筐体は前記シングルモードファイバを着脱可能な導入ポートを備えることを特徴とするレーザ走査顕微鏡システム。
JP2011064592A 2011-03-23 2011-03-23 短パルス光源およびレーザ走査顕微鏡システム Pending JP2012204372A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064592A JP2012204372A (ja) 2011-03-23 2011-03-23 短パルス光源およびレーザ走査顕微鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064592A JP2012204372A (ja) 2011-03-23 2011-03-23 短パルス光源およびレーザ走査顕微鏡システム

Publications (1)

Publication Number Publication Date
JP2012204372A true JP2012204372A (ja) 2012-10-22

Family

ID=47185101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064592A Pending JP2012204372A (ja) 2011-03-23 2011-03-23 短パルス光源およびレーザ走査顕微鏡システム

Country Status (1)

Country Link
JP (1) JP2012204372A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143762A (zh) * 2013-05-09 2014-11-12 索尼公司 半导体激光设备组件
JP2015152698A (ja) * 2014-02-13 2015-08-24 スペクトロニクス株式会社 レーザ光源装置
JP2017118153A (ja) * 2017-03-31 2017-06-29 ソニー株式会社 半導体レーザ装置組立体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661568A (ja) * 1992-08-06 1994-03-04 Showa Electric Wire & Cable Co Ltd ファイバ光増幅器
JPH1174593A (ja) * 1997-06-25 1999-03-16 Imra America Inc 光学増幅装置
WO2002095885A1 (fr) * 2001-05-22 2002-11-28 Mitsubishi Denki Kabushiki Kaisha Laser a fibre optique
JP2005251992A (ja) * 2004-03-04 2005-09-15 Fujikura Ltd 光ファイバレーザ
WO2009155707A1 (en) * 2008-06-25 2009-12-30 Coractive High-Tech Inc. Energy dissipating packages for high power operation of optical fiber components
JP2010008054A (ja) * 2008-06-24 2010-01-14 Olympus Corp 多光子励起測定装置
JP2010272636A (ja) * 2009-05-20 2010-12-02 Sumitomo Electric Ind Ltd 光ファイバ増幅モジュールおよび光源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661568A (ja) * 1992-08-06 1994-03-04 Showa Electric Wire & Cable Co Ltd ファイバ光増幅器
JPH1174593A (ja) * 1997-06-25 1999-03-16 Imra America Inc 光学増幅装置
WO2002095885A1 (fr) * 2001-05-22 2002-11-28 Mitsubishi Denki Kabushiki Kaisha Laser a fibre optique
JP2005251992A (ja) * 2004-03-04 2005-09-15 Fujikura Ltd 光ファイバレーザ
JP2010008054A (ja) * 2008-06-24 2010-01-14 Olympus Corp 多光子励起測定装置
WO2009155707A1 (en) * 2008-06-25 2009-12-30 Coractive High-Tech Inc. Energy dissipating packages for high power operation of optical fiber components
JP2010272636A (ja) * 2009-05-20 2010-12-02 Sumitomo Electric Ind Ltd 光ファイバ増幅モジュールおよび光源装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143762A (zh) * 2013-05-09 2014-11-12 索尼公司 半导体激光设备组件
JP2014220404A (ja) * 2013-05-09 2014-11-20 ソニー株式会社 半導体レーザ装置組立体
US9780526B2 (en) 2013-05-09 2017-10-03 Sony Corporation Semiconductor-laser-device assembly
CN104143762B (zh) * 2013-05-09 2019-01-18 索尼公司 半导体激光设备组件
JP2015152698A (ja) * 2014-02-13 2015-08-24 スペクトロニクス株式会社 レーザ光源装置
JP2017118153A (ja) * 2017-03-31 2017-06-29 ソニー株式会社 半導体レーザ装置組立体

Similar Documents

Publication Publication Date Title
US9825419B2 (en) Multi-wavelength, ultrashort pulse generation and delivery, with applications in microscopy
US8787410B2 (en) Compact, coherent, high brightness light sources for the mid and far IR
US7414780B2 (en) All-fiber chirped pulse amplification systems
US9246296B2 (en) Laser or amplifier optical device seeded with nonlinearly generated light
US8508843B2 (en) Laser systems with doped fiber components
US8830567B2 (en) Fiber lasers for producing amplified laser pulses with reduced non-linearity
JP2004227011A (ja) 高出力光パルスの発生装置および発生方法
CN102801095A (zh) 基于激光脉冲的啁啾和展宽以及随后的功率放大生成具有窄光谱线宽的激光脉冲
Holmen et al. Holmium-doped fiber amplifier for pumping a ZnGeP 2 optical parametric oscillator
US9472919B2 (en) Generation of narrow line width high power optical pulses
JP2011023532A (ja) 光増幅器、レーザ装置及び光源装置
JP2012002965A (ja) パルス光の伝送方法及びこの伝送方法を用いたレーザ装置
US20160231640A1 (en) High efficiency fiber optical parametric oscillator
JP2013072962A (ja) 広帯域光源
JP2012204372A (ja) 短パルス光源およびレーザ走査顕微鏡システム
JP5384978B2 (ja) 光パルス発生装置を含む光学システム
Mueller et al. 3.5 kW coherently combined ultrafast fiber laser
US20230094403A1 (en) A method and system for generation of optical pulses of light
Gleyze et al. Industrial mJ-class all-fiber front end with spatially coherent top-hat beam output used as seeder for high power laser
Teh et al. Compact, all fiber picosecond MOPA for supercontinuum generation
JP2021132070A (ja) パルスレーザ光生成伝送装置およびレーザ加工装置
JP2018004722A (ja) 広帯域レーザー出力装置
Fang et al. Wavelength switchable multiwavelength actively mode-locked fiber-ring laser based on highly nonlinear photonic crystal fiber and multimode fiber Bragg grating
JP2012141381A (ja) 光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630