JP2010011594A - Charging circuit - Google Patents

Charging circuit Download PDF

Info

Publication number
JP2010011594A
JP2010011594A JP2008166228A JP2008166228A JP2010011594A JP 2010011594 A JP2010011594 A JP 2010011594A JP 2008166228 A JP2008166228 A JP 2008166228A JP 2008166228 A JP2008166228 A JP 2008166228A JP 2010011594 A JP2010011594 A JP 2010011594A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
current
rated capacity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008166228A
Other languages
Japanese (ja)
Other versions
JP4725605B2 (en
Inventor
Masaaki Sakagami
正昭 阪上
Hiroshi Kawai
啓 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008166228A priority Critical patent/JP4725605B2/en
Publication of JP2010011594A publication Critical patent/JP2010011594A/en
Application granted granted Critical
Publication of JP4725605B2 publication Critical patent/JP4725605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly charge each of secondary batteries with different rated capacity. <P>SOLUTION: The charging circuit includes a power supply section 37 supplying a charging current to the secondary battery 13, a control unit 38 controlling the operation of the power supply section, a current detection section 34 detecting the charging current supplied to the secondary battery from the power supply section, and a rated capacity detection section 36 detecting the rated capacity of the secondary battery. The control unit 38 gradually increases the charging current supplied from the power supply section when starting charging the secondary battery, and adjusts an amount of increase per hour in the charging current to a value according to the rated capacity of the secondary battery detected by the rated capacity detection section. The current immediately after the start of the charging is increased by a current increase amount according to the rated capacity of the secondary battery. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は二次電池の充電のための充電回路に関するものである。   The present invention relates to a charging circuit for charging a secondary battery.

電動工具や携帯機器などの電気機器の駆動電源として、リチウムイオン二次電池やニッケル水素二次電池などの種々の二次電池が汎用されている。このような二次電池では、過充電されると、電池パックが破損したり、電池寿命を縮めてしまうことになる。リチウムイオン二次電池はこの過充電による悪影響が顕著である。   Various secondary batteries such as lithium ion secondary batteries and nickel hydride secondary batteries are widely used as drive power sources for electric devices such as electric tools and portable devices. If such a secondary battery is overcharged, the battery pack may be damaged or the battery life may be shortened. Lithium ion secondary batteries are markedly affected by this overcharge.

このような過充電を防止するとともに、充電に要する時間を短くするために、充電開始直後は定電流充電で急速充電を行い、ある程度二次電池の電圧が上昇すれば所定の定電圧を二次電池に印加する定電圧充電に切り替えることで、二次電池の充電が進めば充電電流を減少させ、充電電流が所定値を下回ったら充電を停止させるものが知られている。   In order to prevent such overcharging and shorten the time required for charging, rapid charging is performed by constant current charging immediately after the start of charging, and if the voltage of the secondary battery rises to some extent, a predetermined constant voltage is applied to the secondary voltage. It is known to switch to constant voltage charging applied to the battery to reduce the charging current as the charging of the secondary battery proceeds, and stop charging when the charging current falls below a predetermined value.

また、満充電状態及び満充電に近い状態の二次電池に対して定電流充電が開始されると、急速充電用に大きな電流値に設定された充電電流が二次電池に強制的に流されるために、過充電になってしまうおそれがあることに鑑み、特開2007−143279号公報には、充電開始直後の電流を小さくしておき、徐々に充電電流を増大させて定電流充電状態に移行するようにしたものが示されている。   In addition, when constant current charging is started for a secondary battery in a fully charged state or a state close to full charge, a charging current set to a large current value for rapid charging is forcibly supplied to the secondary battery. Therefore, in view of the possibility of overcharging, Japanese Patent Application Laid-Open No. 2007-143279 discloses that the current immediately after the start of charging is reduced and the charging current is gradually increased to enter a constant current charging state. It shows what you have migrated.

ところで定格容量の異なる複数種の二次電池が充電対象となっているものでは、定格容量の大きい二次電池に合わせて単位時間当たりの電流増大量を大きくすると、定格容量の小さい二次電池に対して与えるストレスが大きくて寿命を縮めてしまう原因となる。逆に定格容量の小さい二次電池に合わせて電流増大量を小さくすると、定格容量の大きい二次電池を充電する時には定電流充電の電流値に達するまでに時間がかかることになり、充電に長い時間がかかるものとなる。
特開2007−143279号公報
By the way, if multiple types of secondary batteries with different rated capacities are to be charged, increasing the amount of current increase per unit time in accordance with a secondary battery with a large rated capacity will result in a secondary battery with a small rated capacity. On the other hand, the stress to be applied is large, which causes a shortened life. Conversely, if the amount of increase in current is reduced in accordance with a secondary battery with a small rated capacity, it will take a long time to reach the current value of constant current charging when charging a secondary battery with a large rated capacity. It will take time.
JP 2007-143279 A

本発明は上記の点に鑑みて為されたもので、定格容量の異なる二次電池への充電を夫々適切に行うことができる充電回路を提供することを課題とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a charging circuit that can appropriately charge secondary batteries having different rated capacities.

上記課題を解決するために本発明に係る充電回路は、二次電池に充電用の電流を供給する電源部と、前記電源部の動作を制御する制御部と、前記電源部から前記二次電池に供給される充電電流を検知する電流検知部と、前記二次電池の定格容量を検知する定格容量検知部とを備え、前記制御部は、前記二次電池への充電を開始する際、前記電源部から供給する充電電流を徐々に増大させるものであるとともに、充電電流の時間当たりの増大量を上記定格容量検知部で検知した二次電池の定格容量に応じた値としているものであることに特徴を有している。充電開始直後の電流増大を二次電池の定格容量に応じた電流増大量で行うようにしたものである。   In order to solve the above problems, a charging circuit according to the present invention includes a power supply unit that supplies a charging current to a secondary battery, a control unit that controls the operation of the power supply unit, and the secondary battery from the power supply unit. A current detection unit that detects a charging current supplied to the battery and a rated capacity detection unit that detects a rated capacity of the secondary battery, and the control unit, when starting charging the secondary battery, The charging current supplied from the power supply unit is gradually increased, and the increase amount per hour of the charging current is a value corresponding to the rated capacity of the secondary battery detected by the rated capacity detection unit. It has the characteristics. The current increase immediately after the start of charging is performed with a current increase amount corresponding to the rated capacity of the secondary battery.

前記制御部は、充電電流の時間当たりの増加量を二次電池の定格容量に比例した値としているものが好ましく、また、前記制御部は、二次電池の定格容量に応じた増大量で段階的に増大させるものであってもよい。   The control unit preferably has an increase amount of charging current per hour in a value proportional to the rated capacity of the secondary battery, and the control unit has an increase amount corresponding to the rated capacity of the secondary battery. It may be increased.

本発明においては、充電開始直後の電流増大を、二次電池の定格容量に応じた電流増大量で行うために、二次電池にストレスを与えることがなく、しかも最適な充電時間を実現することができる。   In the present invention, since the current increase immediately after the start of charging is performed with a current increase amount corresponding to the rated capacity of the secondary battery, the secondary battery is not stressed and an optimum charging time is realized. Can do.

以下、本発明を添付図面に示す実施形態に基づいて説明すると、図6は本発明に係る充電装置を備えた充電式電動工具セットを示しており、充電式ドリルドライバーである電動工具本体2と、この電動工具本体2に装着される電池パック10と、この電池パック10を充電する充電装置3とで構成されている。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. FIG. 6 shows a rechargeable power tool set including a charging device according to the present invention, and a power tool body 2 which is a rechargeable drill driver. The battery pack 10 attached to the electric power tool body 2 and the charging device 3 for charging the battery pack 10 are configured.

電動工具本体2は、筐体18の把持部の内部に形成されて電池パック10が取外し自在に装着される装着部20と、筐体18の内部に配設されて電池パック10から電流が供給されることで駆動されるモータ22と、筐体18の把持部に設けられてモータ22への電流の供給をオンオフ制御するトリガースイッチ24と、筐体18の先端に設けられてドリル歯などが取り付けられる回転部26とを備えている。装着部20の底部には、モータ22に接続された一対の電極端子28が取り付けられている。   The electric power tool main body 2 is formed inside the gripping portion of the housing 18 so that the battery pack 10 is detachably mounted thereon, and the electric power tool body 2 is disposed inside the housing 18 to supply current from the battery pack 10. Motor 22 that is driven by this, a trigger switch 24 that is provided in the gripping portion of the casing 18 and controls on / off of current supply to the motor 22, and a drill tooth that is provided at the tip of the casing 18 And a rotating part 26 to be attached. A pair of electrode terminals 28 connected to the motor 22 are attached to the bottom of the mounting portion 20.

電池パック10は、二次電池13が収納された筐体11と、筐体11の一面側に突出して電動工具本体2の装着部20に装着されるコネクタ部9とを備え、コネクタ部9の側面には電極15,17がその表面に露出するように配設されている。そして、電極15,17は、複数の二次電池セル12が直列に接続された上記二次電池13に接続されており、電動工具本体2の装着部20に装着された時、電極15,17と一対の電極28とが接触する。図2は電動工具本体2の装着部20に電池パック10を装着した状態を示している。   The battery pack 10 includes a housing 11 in which the secondary battery 13 is stored, and a connector portion 9 that protrudes from one surface of the housing 11 and is attached to the attachment portion 20 of the electric power tool body 2. The electrodes 15 and 17 are arranged on the side surface so as to be exposed on the surface. The electrodes 15 and 17 are connected to the secondary battery 13 in which a plurality of secondary battery cells 12 are connected in series. When the electrodes 15 and 17 are attached to the attachment portion 20 of the electric power tool body 2, the electrodes 15 and 17 are connected. And the pair of electrodes 28 are in contact with each other. FIG. 2 shows a state where the battery pack 10 is mounted on the mounting portion 20 of the electric power tool main body 2.

一方、上記電池パック10が装着された時に電池パック10内の二次電池13の充電を行う充電装置3は、上面に電池パック10におけるコネクタ部9が挿入可能な凹部をなした装着孔部35とを備えている略箱状の筐体30から例えばAC100Vの商用電源に接続される電源線7を引き出したもので、筐体30の内部には本発明に係る充電回路300が配設されている。   On the other hand, the charging device 3 that charges the secondary battery 13 in the battery pack 10 when the battery pack 10 is mounted has a mounting hole 35 in which a concave portion into which the connector 9 of the battery pack 10 can be inserted is formed on the upper surface. A power line 7 connected to a commercial power supply of, for example, AC 100V is pulled out from a substantially box-shaped housing 30 provided with a charging circuit 300 according to the present invention. Yes.

上記装着孔部35の内側面にはコネクタ部9が備える電極15,17と接触することにより電気的接続を図る電極32,31(図1参照)が配設されており、充電装置3に電池パック10が装着されれば電極15,1にと電極31,32が接触し、充電回路300と電池パック10とが接続される。図示例では電極17,32は正の充電電極、電極15,31は負の充電電極(回路グラウンド)にされている。また、この電池パック10は、図1に示すように、二次電池13の定格容量毎に決まった出力を出す定格容量識別回路14を備えている。具体的回路構成としては、定格容量識別回路14には定格容量に応じて予め抵抗値が定められた抵抗を用いることができる。図8に充電装置3の装着孔部35に電池パック10を装着した状態を示す。   Electrodes 32 and 31 (see FIG. 1) are arranged on the inner side surface of the mounting hole 35 to make electrical connection by contacting the electrodes 15 and 17 provided in the connector portion 9. When the pack 10 is mounted, the electrodes 31 and 32 come into contact with the electrodes 15 and 1, and the charging circuit 300 and the battery pack 10 are connected. In the illustrated example, the electrodes 17 and 32 are positive charging electrodes, and the electrodes 15 and 31 are negative charging electrodes (circuit ground). In addition, as shown in FIG. 1, the battery pack 10 includes a rated capacity identification circuit 14 that outputs an output determined for each rated capacity of the secondary battery 13. As a specific circuit configuration, the rated capacity identification circuit 14 may be a resistor having a resistance value determined in advance according to the rated capacity. FIG. 8 shows a state where the battery pack 10 is mounted in the mounting hole 35 of the charging device 3.

なお、電動工具本体2、充電装置3、及び電池パック10が別体になっている例を示したが、電動工具本体2に充電回路300及び二次電池13が内蔵された構成であってもよい。また、電池パック10は、電動工具本体2に用いられるものに限るものではなく、携帯型パーソナルコンピュータや携帯電話機等、種々の電気機器用の電池パックであってもよい。   In addition, although the example in which the electric power tool main body 2, the charging device 3, and the battery pack 10 are separated is shown, the electric power tool main body 2 may have a configuration in which the charging circuit 300 and the secondary battery 13 are built in. Good. Further, the battery pack 10 is not limited to the one used for the electric power tool body 2, and may be a battery pack for various electric devices such as a portable personal computer and a mobile phone.

図1に充電回路300と電池パック10とが接続された状態での電気的構成の一例を示す。複数の二次電池セル12が直列に接続された二次電池13における正極端子が電極17に接続され、二次電池13における負極端子が電極15に接続されて構成されている。なお、二次電池13は、二次電池セル12が複数直列に接続されたものに限られず、例えば一つの二次電池セル12からなるものや、複数の二次電池セル12が並列に接続されたものであってもよい。また、二次電池セル12は、リチウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池等、どのようなものであってもよい。   FIG. 1 shows an example of an electrical configuration in a state where the charging circuit 300 and the battery pack 10 are connected. A positive terminal in a secondary battery 13 in which a plurality of secondary battery cells 12 are connected in series is connected to an electrode 17, and a negative terminal in the secondary battery 13 is connected to an electrode 15. Note that the secondary battery 13 is not limited to a plurality of secondary battery cells 12 connected in series. For example, the secondary battery 13 includes a single secondary battery cell 12 or a plurality of secondary battery cells 12 connected in parallel. It may be. The secondary battery cell 12 may be any lithium ion secondary battery, nickel hydride secondary battery, nickel cadmium secondary battery, or the like.

充電回路300は、電圧検知部33、電流検知部34、電源部37、制御部38、定電流回路39、定電圧回路41、そして定格容量検知部36を備えている。上記電源部37は、例えばAC−DCコンバータとして構成されたもので、電源線7を介して接続された商用電源から供給された交流電圧を直流電圧に変換する。そして電源部37における正極側出力端子は、定電圧回路41、電流検知部34、電極32、及び電極17を介して二次電池13の正極端子に接続され、電源部37における負極側出力端子は、定電流回路39、電極31、及び電極15を介して二次電池13の負極端子に接続されている。また、電極31は、グラウンドに接続されている。   The charging circuit 300 includes a voltage detection unit 33, a current detection unit 34, a power supply unit 37, a control unit 38, a constant current circuit 39, a constant voltage circuit 41, and a rated capacity detection unit 36. The power supply unit 37 is configured as an AC-DC converter, for example, and converts an AC voltage supplied from a commercial power supply connected via the power supply line 7 into a DC voltage. The positive output terminal in the power supply unit 37 is connected to the positive terminal of the secondary battery 13 via the constant voltage circuit 41, the current detection unit 34, the electrode 32, and the electrode 17, and the negative output terminal in the power supply unit 37 is , And connected to the negative terminal of the secondary battery 13 through the constant current circuit 39, the electrode 31, and the electrode 15. The electrode 31 is connected to the ground.

上記定電流回路39は、制御部38からの制御信号に応じて電源部37から電池パック10に供給する充電電流を調整するものであり、定電圧回路41は、制御部38からの制御信号に応じて電源部37から電池パック10に供給する充電電圧を調整する。   The constant current circuit 39 adjusts the charging current supplied from the power supply unit 37 to the battery pack 10 according to the control signal from the control unit 38, and the constant voltage circuit 41 receives the control signal from the control unit 38. Accordingly, the charging voltage supplied from the power source unit 37 to the battery pack 10 is adjusted.

電圧検知部33は、電極31,32間の電圧、すなわち二次電池13における端子電圧Vbを検出する回路部で、例えば抵抗体を用いて構成されており、その抵抗体の電圧降下により生じた電圧を電圧検知信号Svとして制御部38へ出力する。なお、電圧検知部33は、例えば電池パック10が備える複数の二次電池セル12の夫々について両端の端子電圧を検出し、その端子電圧を示す電圧検知信号Svをそれぞれ制御部38へ出力するものであってもよい。   The voltage detection unit 33 is a circuit unit that detects a voltage between the electrodes 31 and 32, that is, a terminal voltage Vb in the secondary battery 13, and is configured using, for example, a resistor, and is generated by a voltage drop of the resistor. The voltage is output to the control unit 38 as a voltage detection signal Sv. The voltage detection unit 33 detects terminal voltages at both ends of each of the plurality of secondary battery cells 12 included in the battery pack 10, for example, and outputs a voltage detection signal Sv indicating the terminal voltage to the control unit 38, respectively. It may be.

電流検知部34は、定電圧回路41から電極32,17を介して二次電池13に供給する充電電流Icを検出する回路部で、例えばホール素子を用いた電流センサや抵抗体によって充電電流Icを電圧に変換することにより得られた電流検知信号Siを制御部38へ出力する。   The current detection unit 34 is a circuit unit that detects a charging current Ic supplied from the constant voltage circuit 41 to the secondary battery 13 via the electrodes 32 and 17. For example, the current detection unit 34 uses a current sensor or a resistor using a Hall element to charge the charging current Ic. A current detection signal Si obtained by converting the voltage into a voltage is output to the control unit 38.

制御部38は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記録された不揮発性の記憶素子であるROM(Read Only Memory)と、データを一時的に記録する揮発性の記憶素子であるRAM(Random Access Memory)と、電圧検知信号Sv及び電流検知信号Siをデジタル値に変換するADコンバータとを備えたものとして構成されており、上記ROMに記憶された制御プログラムを実行することにより、定電流回路39及び定電圧回路41へ制御信号を出力して二次電池13の充電動作を制御する。   The control unit 38 temporarily records data, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that is a nonvolatile storage element in which a predetermined control program is recorded, and data. RAM (Random Access Memory), which is a volatile storage element, and an AD converter that converts the voltage detection signal Sv and the current detection signal Si into digital values, and is stored in the ROM By executing the control program, a control signal is output to the constant current circuit 39 and the constant voltage circuit 41 to control the charging operation of the secondary battery 13.

また充電回路300は上記定格容量識別回路14の出力を検出して電池パック10の定格容量を検知し、充電しようとする二次電池13の定格容量がいくつであるかを制御部38に出力する定格容量検知部36を備えている。この定格容量検知部36は、定格容量識別回路14が定格容量に応じて予め抵抗値が定められた抵抗である場合、定格容量識別回路14に電流を流した際に発生する電圧を検知するものを用いることができる。なお、定格容量識別回路14と定格容量検知部36とは、夫々端子16,40が接続されており、充電装置3に電池パック10を装着した時、両端子16,40が接続されることで、定格容量の識別が可能となる。   The charging circuit 300 detects the output of the rated capacity identification circuit 14 to detect the rated capacity of the battery pack 10 and outputs to the control unit 38 what the rated capacity of the secondary battery 13 to be charged is. A rated capacity detector 36 is provided. The rated capacity detection unit 36 detects a voltage generated when a current is passed through the rated capacity identification circuit 14 when the rated capacity identification circuit 14 is a resistance whose resistance value is determined in advance according to the rated capacity. Can be used. The rated capacity identification circuit 14 and the rated capacity detector 36 are connected to terminals 16 and 40, respectively. When the battery pack 10 is attached to the charging device 3, both terminals 16 and 40 are connected. The rated capacity can be identified.

次に、上述のように構成された電池パック10と充電装置3とが接続された場合の充電動作について説明する。図2は定格容量が大である電池パック10を充電装置3に装着した時の充電動作を示しており、例えば電源線7が商用電源ACに接続されたり、あるいは図略の操作スイッチが操作されたことが制御部38によって検出されたり、ユーザが電池パック10を充電装置3に取り付けたり等のタイミングT0において、制御部38は定格容量検知部36を通じて接続された二次電池13の定格容量の情報を取得し、次いで充電制御動作を開始する。この時、制御部38は充電電流を小さく抑えた状態で充電を開始するとともに、充電の開始(T0)後、制御部38は電源部37から二次電池13へ供給される充電電流Icを連続的に(滑らかに)、例えば1A/1秒の増加率で徐々に増大させる動作を定電流回路39に行わせる。   Next, a charging operation when the battery pack 10 configured as described above and the charging device 3 are connected will be described. FIG. 2 shows a charging operation when the battery pack 10 having a large rated capacity is attached to the charging device 3. For example, the power line 7 is connected to the commercial power source AC, or an operation switch (not shown) is operated. Is detected by the control unit 38, or at a timing T0 such as when the user attaches the battery pack 10 to the charging device 3, the control unit 38 determines the rated capacity of the secondary battery 13 connected through the rated capacity detection unit 36. The information is acquired, and then the charge control operation is started. At this time, the control unit 38 starts charging with the charging current kept low, and after the start of charging (T0), the control unit 38 continuously supplies the charging current Ic supplied from the power source unit 37 to the secondary battery 13. For example, the constant current circuit 39 is caused to perform an operation of increasing gradually (smoothly) at an increase rate of, for example, 1 A / 1 second.

徐々に増大する充電電流Icが二次電池13に供給されることで、電極31,32間の電圧、すなわち二次電池13を充電するための電圧である端子電圧Vbが、充電開始タイミングT0における二次電池13の出力電圧である初期電圧Vs1から徐々に増大する。   When the charging current Ic that gradually increases is supplied to the secondary battery 13, the voltage between the electrodes 31 and 32, that is, the terminal voltage Vb that is a voltage for charging the secondary battery 13, is changed at the charging start timing T0. The voltage gradually increases from the initial voltage Vs1, which is the output voltage of the secondary battery 13.

一方、電流検知部34によって充電電流Icが検出され、充電電流Icを示す電流検知信号Siが制御部38へ出力される。そして電流検知信号Siにより示される充電電流Icと予め設定された電流値I1(第1の閾値電流)とが制御部38において比較され、充電電流Icが電流値I1に達すれば、そのタイミングT1で制御部38からの制御信号により定電流回路回路39は充電電流Icを一定の電流値I1(定電流充電用電流)を保持する。なお、閾値電流と定電流充電用電流とがいずれも電流値I1で等しい例を示したが、閾値電流と定電流充電用電流とが異なる電流値に設定されていてもよい。   On the other hand, the charging current Ic is detected by the current detection unit 34, and a current detection signal Si indicating the charging current Ic is output to the control unit 38. Then, the control unit 38 compares the charging current Ic indicated by the current detection signal Si with a preset current value I1 (first threshold current). If the charging current Ic reaches the current value I1, the timing T1 is reached. The constant current circuit circuit 39 holds the charging current Ic at a constant current value I1 (constant current charging current) by the control signal from the control unit 38. Although the example in which the threshold current and the constant current charging current are both equal to the current value I1 is shown, the threshold current and the constant current charging current may be set to different current values.

そして定電流充電により電極31,32間の端子電圧Vbが緩やかに上昇するが、電圧検知部33によって端子電圧Vbが検出され、端子電圧Vbを示す電圧検知信号Svが制御部38へ出力される。制御部38は電圧検知信号Svにより示される端子電圧Vbと予め設定された電圧V1(閾値電圧)とを比較し、端子電圧Vbが電圧V1に達したタイミングT2で応じて定電流回路39による定電流出力制御を停止し、定電圧回路41による定電圧充電を開始する。つまり電源部37から電池パック10へ供給される二次電池13の端子電圧Vbが一定の定電圧充電用の電圧V1(定電圧充電用電圧)とする。なお、閾値電圧と定電圧充電用電圧とが共に電圧V1で等しい電圧である例を示したが、閾値電圧と定電圧充電用電圧とを異なる電圧に設定してもよい。   The terminal voltage Vb between the electrodes 31 and 32 gradually increases due to constant current charging, but the terminal voltage Vb is detected by the voltage detection unit 33 and a voltage detection signal Sv indicating the terminal voltage Vb is output to the control unit 38. . The control unit 38 compares the terminal voltage Vb indicated by the voltage detection signal Sv with a preset voltage V1 (threshold voltage), and at a timing T2 when the terminal voltage Vb reaches the voltage V1, the constant current circuit 39 determines the constant. The current output control is stopped, and constant voltage charging by the constant voltage circuit 41 is started. That is, the terminal voltage Vb of the secondary battery 13 supplied from the power supply unit 37 to the battery pack 10 is set to a constant voltage V1 for constant voltage charging (constant voltage charging voltage). Although the threshold voltage and the constant voltage charging voltage are both equal to the voltage V1, the threshold voltage and the constant voltage charging voltage may be set to different voltages.

二次電池13が満充電に近くなって定電圧充電に移行したことで、充電電流Icは緩やかに減少する。そして、電圧検知部33により検知される端子電圧Vbが電圧V1以上である時に電流検知部34により検出された充電電流Icが、予め設定された充電完了電流I2(第2の閾値電流)まで下がれば(あるいは充電完了電流I2より低くなれば)、制御部38はそのタイミングT3で二次電池13が満充電になったと判断し、電源部37の出力電圧及び充電電流Icを略ゼロとし、二次電池13の充電を終了する。   Since the secondary battery 13 is nearly fully charged and shifted to constant voltage charging, the charging current Ic gradually decreases. Then, when the terminal voltage Vb detected by the voltage detector 33 is equal to or higher than the voltage V1, the charging current Ic detected by the current detector 34 is lowered to a preset charging completion current I2 (second threshold current). If it is lower (or lower than the charging completion current I2), the control unit 38 determines that the secondary battery 13 is fully charged at the timing T3, sets the output voltage and the charging current Ic of the power supply unit 37 to substantially zero, The charging of the next battery 13 is terminated.

なお、電流検知部34による充電電流Icの検出、電圧検知部33による端子電圧Vbの検出、及び制御部38による充電電流Ic、端子電圧Vbと電流値I1、電圧V1との比較動作は、充電開始後、定電流回路39及び定電圧回路41の制御と並行して実行されている。   The detection operation of the charging current Ic by the current detection unit 34, the detection of the terminal voltage Vb by the voltage detection unit 33, and the comparison operation of the charging current Ic, the terminal voltage Vb with the current value I1, and the voltage V1 by the control unit 38 After the start, it is executed in parallel with the control of the constant current circuit 39 and the constant voltage circuit 41.

そして、充電対象の二次電池13の定格容量が小さい場合、全体としての充電制御は上記の定格容量が大きい場合と同じであるが、制御部38は定格容量検知部36から得た定格容量の情報に基づき、図3に示すように、定電流充電の際の電流I3を上記の定格容量の大きい二次電池13に対する定電流充電の際の電流I1より低くするとともに、充電開始から定電流充電に移行するまでの充電電流の増大量を小さく抑える。定格容量が大(例えば3Ah)の二次電池13に対する電流増大量が1A/secである時、定格容量が半分(たとえば1.5Ah)の二次電池13に対する電流増大量は0.5A/secとするのである。   When the rated capacity of the secondary battery 13 to be charged is small, the overall charging control is the same as when the above-mentioned rated capacity is large, but the control unit 38 has the rated capacity obtained from the rated capacity detection unit 36. Based on the information, as shown in FIG. 3, the current I3 at the time of constant current charging is made lower than the current I1 at the time of constant current charging for the secondary battery 13 having a large rated capacity, and the constant current charging is started from the start of charging. The amount of increase in charging current until shifting to is kept small. When the current increase amount for the secondary battery 13 having a large rated capacity (for example, 3 Ah) is 1 A / sec, the current increase amount for the secondary battery 13 having a half rated capacity (for example, 1.5 Ah) is 0.5 A / sec. It is.

なお、ここでは単位時間当たりの電流増大量を二次電池13の定格容量の値に比例させたものとしているが、比例していないものであってもよい。ただし、定格容量が大きい時は電流増大量も大きくし、定格容量が小さい時は電流増大量を小さくする。   Here, the amount of increase in current per unit time is proportional to the value of the rated capacity of the secondary battery 13, but it may be not proportional. However, when the rated capacity is large, the current increase amount is also increased, and when the rated capacity is small, the current increase amount is decreased.

図4及び図5に他例を示す。   4 and 5 show other examples.

なお、充電の開始(T0)後、例えば図6に示すように、制御部38からの制御信号に応じて定電流回路39によって、電源部37から二次電池13へ供給される充電電流Icが段階的に(階段状に)、例えば1秒経過する都度1Aづつ徐々に増大されるようにしてもよい。ただし、段階的に充電電流Icを増大させた場合には、充電電流Icを増大させたタイミングと、充電電流Icが電流値I1に達するタイミングとが必ずしも一致しないため、充電電流Icが電流値I1を超えてしまう場合がある。一方、連続的に充電電流Icを増大させた場合には、電流検知部34及び制御部38の動作応答時間による制御遅れにより多少の誤差は生じうるものの、充電電流Icが電流値I1にほぼ一致するタイミングを検出して充電電流Icを電流値I1で一定にすることができるので、段階的に充電電流Icを増大させる場合に比して充電電流Icが電流値I1に達したことを精度よく検出することができる。   After the start of charging (T0), for example, as shown in FIG. 6, the charging current Ic supplied from the power supply unit 37 to the secondary battery 13 by the constant current circuit 39 in accordance with a control signal from the control unit 38 is It may be gradually increased stepwise (in a stepped manner), for example, by 1A every time 1 second elapses. However, when the charging current Ic is increased step by step, the timing at which the charging current Ic is increased does not necessarily coincide with the timing at which the charging current Ic reaches the current value I1, and therefore the charging current Ic becomes the current value I1. May be exceeded. On the other hand, when the charging current Ic is continuously increased, the charging current Ic substantially coincides with the current value I1, although some errors may occur due to the control delay due to the operation response time of the current detection unit 34 and the control unit 38. The charging current Ic can be made constant at the current value I1 by detecting the timing of the charging, so that it is more accurate that the charging current Ic has reached the current value I1 than when the charging current Ic is increased stepwise. Can be detected.

定電流充電のための電流I1(I3)に達するまでの充電電流の増大は、図4及び図5に示すように段階的に(ステップ状に)行ってもよい。もちろん、この場合においても、定格容量が大きい二次電池13に対しては、電流増大量ΔI1をたとえば1Aとし、定格容量が小さい二次電池13に対しては電流増大量ΔI3をたとえば0.5Aとして、定格容量に応じた電流増大量で充電開始初期の充電電流増大を行う。   The increase of the charging current until reaching the current I1 (I3) for constant current charging may be performed step by step (stepwise) as shown in FIGS. Of course, even in this case, for the secondary battery 13 having a large rated capacity, the current increase amount ΔI1 is set to 1A, for example, and for the secondary battery 13 having a small rated capacity, the current increase amount ΔI3 is set to 0.5A, for example. Then, the charging current is increased at the initial stage of charging with the amount of current increase corresponding to the rated capacity.

本発明の実施の形態の一例におけるブロック回路図である。It is a block circuit diagram in an example of an embodiment of the invention. 同上の定格容量が大である二次電池に対する充電動作のタイムチャートである。It is a time chart of the charge operation | movement with respect to a secondary battery with a large rated capacity same as the above. 同上の定格容量が小である二次電池に対する充電動作のタイムチャートである。It is a time chart of the charge operation | movement with respect to a secondary battery with the small rated capacity same as the above. 同上の他例における定格容量が大である二次電池に対する充電動作のタイムチャートである。It is a time chart of charge operation with respect to the secondary battery in which the rated capacity in other examples same as the above is large. 同上の定格容量が小である二次電池に対する充電動作のタイムチャートである。It is a time chart of the charge operation | movement with respect to a secondary battery with the small rated capacity same as the above. 本発明に充電回路を備えた充電装置を含む充電式電動工具セットの外観図である。1 is an external view of a rechargeable electric tool set including a charging device including a charging circuit according to the present invention. 同上の電動工具本体に電池パックを装着した状態の側面図である。It is a side view of the state which attached the battery pack to the electric tool main body same as the above. 図1に示す充電装置に電池パックが装着された状態を示す側面図である。It is a side view which shows the state with which the battery pack was mounted | worn with the charging device shown in FIG.

符号の説明Explanation of symbols

13 二次電池
14 定格容量識別回路
34 電流検知部
36 定格容量検知部
37 電源部
38 制御部
300 充電回路
13 Secondary Battery 14 Rated Capacity Identification Circuit 34 Current Detection Unit 36 Rated Capacity Detection Unit 37 Power Supply Unit 38 Control Unit 300 Charging Circuit

Claims (3)

二次電池に充電用の電流を供給する電源部と、前記電源部の動作を制御する制御部と、前記電源部から前記二次電池に供給される充電電流を検知する電流検知部と、前記二次電池の定格容量を検知する定格容量検知部とを備え、前記制御部は、前記二次電池への充電を開始する際、前記電源部から供給する充電電流を徐々に増大させるものであるとともに、充電電流の時間当たりの増大量を上記定格容量検知部で検知した二次電池の定格容量に応じた値としているものであることを特徴とする充電回路。   A power supply unit that supplies a charging current to the secondary battery, a control unit that controls the operation of the power supply unit, a current detection unit that detects a charging current supplied from the power supply unit to the secondary battery, and A rated capacity detection unit that detects a rated capacity of the secondary battery, and the control unit gradually increases a charging current supplied from the power supply unit when starting charging the secondary battery. In addition, the charging circuit is characterized in that the amount of increase in charging current per hour is set to a value corresponding to the rated capacity of the secondary battery detected by the rated capacity detection unit. 前記制御部は、充電電流の時間当たりの増加量を二次電池の定格容量に比例した値としているものであることを特徴とする請求項1記載の充電回路。   2. The charging circuit according to claim 1, wherein the control unit sets an increase amount of charging current per hour to a value proportional to a rated capacity of the secondary battery. 3. 前記制御部は、二次電池の定格容量に応じた増大量で段階的に増大させるものであることを特徴とする請求項1又は2記載の充電回路。   3. The charging circuit according to claim 1, wherein the control unit is configured to increase stepwise by an increase amount corresponding to a rated capacity of the secondary battery.
JP2008166228A 2008-06-25 2008-06-25 Charging circuit Active JP4725605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166228A JP4725605B2 (en) 2008-06-25 2008-06-25 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166228A JP4725605B2 (en) 2008-06-25 2008-06-25 Charging circuit

Publications (2)

Publication Number Publication Date
JP2010011594A true JP2010011594A (en) 2010-01-14
JP4725605B2 JP4725605B2 (en) 2011-07-13

Family

ID=41591399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166228A Active JP4725605B2 (en) 2008-06-25 2008-06-25 Charging circuit

Country Status (1)

Country Link
JP (1) JP4725605B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060757A (en) * 2010-09-08 2012-03-22 Nichicon Corp Charging control method and charging controller
JP2012151994A (en) * 2011-01-19 2012-08-09 Konica Minolta Medical & Graphic Inc Charger and radiation image detection system
CN103427124A (en) * 2012-05-14 2013-12-04 微宏动力系统(湖州)有限公司 Method for charging battery pack
US10097021B2 (en) 2015-08-27 2018-10-09 Kabushiki Kaisha Toshiba Charging device and charging method
CN111114386A (en) * 2019-09-29 2020-05-08 北京嘀嘀无限科技发展有限公司 Safe charging method for electric automobile, electronic equipment and storage medium
JP2020089150A (en) * 2018-11-29 2020-06-04 株式会社リコー Charge control device, image formation apparatus and charge control method
CN111817387A (en) * 2020-07-14 2020-10-23 Oppo广东移动通信有限公司 Charging circuit, control method thereof and electronic equipment
JP2021044869A (en) * 2019-09-06 2021-03-18 株式会社マキタ Battery pack and charging system
CN116667472A (en) * 2022-12-06 2023-08-29 荣耀终端有限公司 Charging method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254932A (en) * 1989-03-27 1990-10-15 Shinko Electric Co Ltd Battery charger
JPH04145841A (en) * 1990-10-01 1992-05-19 Sanyo Electric Co Ltd Rapid charging system
JPH0638391A (en) * 1992-07-15 1994-02-10 Toshiba Corp Battery charger
JPH1051970A (en) * 1996-08-01 1998-02-20 Toyota Motor Corp Charging controller
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254932A (en) * 1989-03-27 1990-10-15 Shinko Electric Co Ltd Battery charger
JPH04145841A (en) * 1990-10-01 1992-05-19 Sanyo Electric Co Ltd Rapid charging system
JPH0638391A (en) * 1992-07-15 1994-02-10 Toshiba Corp Battery charger
JPH1051970A (en) * 1996-08-01 1998-02-20 Toyota Motor Corp Charging controller
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060757A (en) * 2010-09-08 2012-03-22 Nichicon Corp Charging control method and charging controller
JP2012151994A (en) * 2011-01-19 2012-08-09 Konica Minolta Medical & Graphic Inc Charger and radiation image detection system
CN103427124A (en) * 2012-05-14 2013-12-04 微宏动力系统(湖州)有限公司 Method for charging battery pack
US10910870B2 (en) 2015-08-27 2021-02-02 Toshiba Client Solutions CO., LTD. Charging device and charging method
US10097021B2 (en) 2015-08-27 2018-10-09 Kabushiki Kaisha Toshiba Charging device and charging method
JP7155951B2 (en) 2018-11-29 2022-10-19 株式会社リコー Charge control device, image forming apparatus and charge control method
JP2020089150A (en) * 2018-11-29 2020-06-04 株式会社リコー Charge control device, image formation apparatus and charge control method
JP2021044869A (en) * 2019-09-06 2021-03-18 株式会社マキタ Battery pack and charging system
JP7240994B2 (en) 2019-09-06 2023-03-16 株式会社マキタ Battery pack and charging system
CN111114386A (en) * 2019-09-29 2020-05-08 北京嘀嘀无限科技发展有限公司 Safe charging method for electric automobile, electronic equipment and storage medium
CN111817387A (en) * 2020-07-14 2020-10-23 Oppo广东移动通信有限公司 Charging circuit, control method thereof and electronic equipment
CN116667472A (en) * 2022-12-06 2023-08-29 荣耀终端有限公司 Charging method and device
CN116667472B (en) * 2022-12-06 2023-11-24 荣耀终端有限公司 Charging method and device

Also Published As

Publication number Publication date
JP4725605B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4222362B2 (en) Charging method, charging circuit, and charging device
JP4725605B2 (en) Charging circuit
KR0173961B1 (en) Mode conversion type battery charging apparatus
KR102331070B1 (en) battery pack and charging control method for battery pack
US8450975B2 (en) Battery pack with a shipping mode
EP2472666B1 (en) Batteries for electric tools
JP5488877B2 (en) Electric tool
US20150280476A1 (en) Method for monitoring a charge state or a charge or discharge current of a rechargeable battery
JP2009033843A (en) Apparatus and method for charging
JP2010259234A (en) Battery pack
US20110227536A1 (en) Battery with universal charging input
JP2007267498A (en) Charger, charging system and electric apparatus
JP2007082304A (en) Charger
JP2011109840A (en) Charging system which guarantees lifespan of secondary battery
JP2005160233A (en) Battery pack and cell battery pack
JP5887531B2 (en) Charger
US20080174263A1 (en) Battery charger for different capacity cells
JP2007068264A (en) Charger
US20080166624A1 (en) Li-ion battery pack and method of outputting DC power supply from the Li-ion battery pack to a power hand tool
JP4479910B2 (en) Charger
JP3104747U (en) Solar battery charger
TWI515942B (en) System for extending useful life of batteries and battery-powered devices
JP3774995B2 (en) Lithium ion secondary battery charging method and charging device therefor
JP2009033795A (en) Charging equipment, and charge type electric instrument equipped with the charging equipment
JP2007267499A (en) Charger, charging system and electric apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R151 Written notification of patent or utility model registration

Ref document number: 4725605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3