JP2007267498A - Charger, charging system and electric apparatus - Google Patents

Charger, charging system and electric apparatus Download PDF

Info

Publication number
JP2007267498A
JP2007267498A JP2006088572A JP2006088572A JP2007267498A JP 2007267498 A JP2007267498 A JP 2007267498A JP 2006088572 A JP2006088572 A JP 2006088572A JP 2006088572 A JP2006088572 A JP 2006088572A JP 2007267498 A JP2007267498 A JP 2007267498A
Authority
JP
Japan
Prior art keywords
charging
voltage
current
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006088572A
Other languages
Japanese (ja)
Inventor
Tomohiro Izumi
智博 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006088572A priority Critical patent/JP2007267498A/en
Publication of JP2007267498A publication Critical patent/JP2007267498A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger for efficiently charging a lithium ion secondary battery to shorten the charging time, and also to provide a charging system and an electric apparatus. <P>SOLUTION: The charger for charging a lithium ion secondary battery 31 of charging object by a constant current constant voltage charging system comprises: a DC power supply section 13 supplying power for charging the lithium ion secondary battery 31; a section 11 for measuring the voltage of the lithium ion secondary battery 31; a section 14 for measuring the current flowing through the lithium ion secondary battery 31; and a section 12 for measuring the voltage of the lithium ion secondary battery 31 at the voltage measuring section 11 by feeding a current of smaller current value than the charging current during charging operation from the DC power supply section 13 to the lithium ion secondary battery 31 at least during constant current charging operation or constant voltage charging operation, and for controlling the DC power supply section 13 to perform charging operation, based on the measurements. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池を充電する充電装置に関する。そして、この充電装置とリチウムイオン二次電池の二次電池装置とを備える充電システム及びこの充電装置が組み込まれた電気機器に関する。   The present invention relates to a charging device for charging a lithium ion secondary battery. The present invention also relates to a charging system including the charging device and a secondary battery device of a lithium ion secondary battery, and an electric device in which the charging device is incorporated.

近年、電動工具、電気剃刀、携帯電話及びノート型パーソナルコンピュータ等の様々な電気機器における駆動電源として、リチウムイオン二次電池が利用されるようになってきている。   In recent years, lithium ion secondary batteries have come to be used as driving power sources in various electric devices such as electric tools, electric razors, mobile phones, and notebook personal computers.

図12は、リチウムイオン二次電池の充電特性を示す図である。図12の横軸は、Ah単位で示す充電容量を表し、その右縦軸は、V単位で示す電池電圧Vbを示し、その左縦軸は、A単位で示す充電電流Icを示す。また、実線は、充電電流Icであり、一点鎖線は、電池電圧Vbである。   FIG. 12 is a diagram illustrating charging characteristics of the lithium ion secondary battery. The horizontal axis in FIG. 12 represents the charge capacity in Ah units, the right vertical axis represents the battery voltage Vb in V units, and the left vertical axis represents the charge current Ic in A units. The solid line is the charging current Ic, and the alternate long and short dash line is the battery voltage Vb.

このリチウムイオン二次電池を充電する場合において、リチウムイオン二次電池へ流れる電流(充電電流)Icの電流値Ixが一定値になるように充電を行う定電流充電が行われるが、リチウムイオン二次電池は、定電流充電で充電を続けると過充電されて電池電圧Vbが異常に高くなる結果、劣化してしまう。そのため、リチウムイオン二次電池は、定電流充電だけでは満充電にすることができず、図12に示すように、リチウムイオン二次電池における電圧(電池電圧)Vbの電圧値Exが所定の設定電圧値(電圧閾値)Ethに達するまでは所定の一定電流値Iccで定電流充電(a)が行われ、電池電圧Vbの電圧値Exが所定の設定電圧値Ethに達した後は、リチウムイオン二次電池に流れる充電電流Icを漸次減少させて電池電圧Vbの電圧値Exが所定の設定電圧値Ethを越えないように充電を行う定電圧充電(b)が行われる。   When charging the lithium ion secondary battery, constant current charging is performed so that the current value Ix of the current (charging current) Ic flowing to the lithium ion secondary battery becomes a constant value. If the secondary battery continues to be charged with constant current charging, it is overcharged and the battery voltage Vb becomes abnormally high, resulting in deterioration. Therefore, the lithium ion secondary battery cannot be fully charged only by constant current charging. As shown in FIG. 12, the voltage value Ex of the voltage (battery voltage) Vb in the lithium ion secondary battery is set to a predetermined value. The constant current charging (a) is performed at a predetermined constant current value Icc until the voltage value (voltage threshold) Eth is reached, and after the voltage value Ex of the battery voltage Vb reaches the predetermined set voltage value Eth, lithium ion A constant voltage charge (b) is performed in which the charging current Ic flowing through the secondary battery is gradually decreased so that the voltage value Ex of the battery voltage Vb does not exceed a predetermined set voltage value Eth.

図13は、背景技術に係る充電システムの構成を示すブロック図である。図13(A)及び(B)は、充電システムの第1及び第2の構成をそれぞれ示す。   FIG. 13 is a block diagram illustrating a configuration of a charging system according to the background art. FIGS. 13A and 13B show the first and second configurations of the charging system, respectively.

従来、このような定電流−定電圧の充電方式でリチウムイオン二次電池を充電する充電システム1001は、例えば、図13(A)に示すように、リチウムイオン二次電池装置1011と、リチウムイオン二次電池装置1011を充電する充電装置1021とを備えて構成される。   Conventionally, a charging system 1001 for charging a lithium ion secondary battery by such a constant current-constant voltage charging method includes, for example, a lithium ion secondary battery device 1011 and a lithium ion battery as shown in FIG. And a charging device 1021 for charging the secondary battery device 1011.

リチウムイオン二次電池装置1011は、1又は複数のリチウムイオン二次電池セルを備えて構成されるリチウムイオン二次電池1012と、リチウムイオン二次電池1012の充電電流Icが流れる電線路に介挿された抵抗1013と、リチウムイオン二次電池1012から電池電圧Vb及び電池温度Tbを取得すると共に抵抗1013の端子間電圧からリチウムイオン二次電池1012の電池電流Icを取得してリチウムイオン二次電池1012に対する充放電の状態監視を行って監視結果を接続端子1015を介して充電装置1021に出力する制御部1014とを備えて構成される。   The lithium ion secondary battery device 1011 is inserted into a lithium ion secondary battery 1012 configured to include one or a plurality of lithium ion secondary battery cells, and a wire path through which a charging current Ic of the lithium ion secondary battery 1012 flows. The battery voltage Vb and the battery temperature Tb are obtained from the resistor 1013 and the lithium ion secondary battery 1012 and the battery current Ic of the lithium ion secondary battery 1012 is obtained from the voltage across the terminals of the resistor 1013 to obtain the lithium ion secondary battery. 1012 is configured to include a control unit 1014 that performs charge / discharge state monitoring for 1012 and outputs a monitoring result to the charging device 1021 via the connection terminal 1015.

充電装置1021は、接続端子1024を介してリチウムイオン二次電池装置1011の制御部1014から監視結果を受信して、監視結果の電池温度Tb、充電電流Ic及び電池電圧Vbに基づいて定電流−定電圧の充電方式でリチウムイオン二次電池1012を充電する充電制御部1022と、充電装置1021の充電以外のその他の機能を実現するための機能ブロック1023とを備えて構成される。   The charging device 1021 receives the monitoring result from the control unit 1014 of the lithium ion secondary battery device 1011 via the connection terminal 1024, and the constant current − based on the battery temperature Tb, the charging current Ic, and the battery voltage Vb of the monitoring result. The charging control unit 1022 charges the lithium ion secondary battery 1012 by a constant voltage charging method, and a functional block 1023 for realizing other functions other than charging of the charging device 1021.

このような構成の充電システム1001では、充電装置1021の充電制御部1022は、リチウムイオン二次電池装置1011の制御部1014から接続端子1015、1024を介して監視結果を受信して、監視結果の電池温度Tb、充電電流Ic及び電池電圧Vbに基づいて定電流−定電圧の充電方式でリチウムイオン二次電池1012を充電する。   In the charging system 1001 having such a configuration, the charging control unit 1022 of the charging device 1021 receives the monitoring result from the control unit 1014 of the lithium ion secondary battery device 1011 via the connection terminals 1015 and 1024, and receives the monitoring result. The lithium ion secondary battery 1012 is charged by a constant current-constant voltage charging method based on the battery temperature Tb, the charging current Ic, and the battery voltage Vb.

なお、このような充電電流Ic及び電池電圧Vbを測定してリチウムイオン二次電池1012に対する充放電の状態監視をリチウムイオン二次電池装置1011側で行うタイプの充電システム1001は、定電流−定電圧の充電制御も行っているが、例えば、特許文献1に開示されている。   Note that the charging system 1001 of the type that measures the charging current Ic and the battery voltage Vb and monitors the charging / discharging state of the lithium ion secondary battery 1012 on the lithium ion secondary battery device 1011 side is a constant current-constant voltage. Although voltage charging control is also performed, for example, it is disclosed in Patent Document 1.

また例えば、図13(B)に示すように、充電システム1002は、リチウムイオン二次電池装置1031と、リチウムイオン二次電池装置1031を充電する充電装置1041とを備えて構成される。   For example, as illustrated in FIG. 13B, the charging system 1002 includes a lithium ion secondary battery device 1031 and a charging device 1041 that charges the lithium ion secondary battery device 1031.

リチウムイオン二次電池装置1031は、1又は複数のリチウムイオン二次電池セルを備えて構成されるリチウムイオン二次電池1032と、リチウムイオン二次電池1012の温度を検出して検出結果を接続端子1034を介して充電装置1021に出力するサーミスタ1033とを備えて構成される。   The lithium ion secondary battery device 1031 detects the temperature of the lithium ion secondary battery 1032 configured to include one or a plurality of lithium ion secondary battery cells, and the lithium ion secondary battery 1012, and connects the detection result to the connection terminal. And a thermistor 1033 that outputs to the charging device 1021 via the battery 1034.

充電装置1041は、接続端子1044を介してリチウムイオン二次電池装置1031のサーミスタ1033から検出結果を電池温度Tbとして受信すると共に、リチウムイオン二次電池装置1031への充電電流Icが流れる電線路から電流I及び電圧Eを充電電流Ic及び電池電圧Vbとして測定して、これら電池温度Tb、充電電流Ic及び電池電圧Vbに基づいて定電流−定電圧の充電方式でリチウムイオン二次電池1032を充電する充電制御部1042と、充電装置1041の充電以外のその他の機能を実現するための機能ブロック1043とを備えて構成される。   The charging device 1041 receives the detection result as the battery temperature Tb from the thermistor 1033 of the lithium ion secondary battery device 1031 via the connection terminal 1044, and from the electric wire path through which the charging current Ic to the lithium ion secondary battery device 1031 flows. The current I and the voltage E are measured as the charging current Ic and the battery voltage Vb, and the lithium ion secondary battery 1032 is charged by a constant current-constant voltage charging method based on the battery temperature Tb, the charging current Ic, and the battery voltage Vb. And a functional block 1043 for realizing other functions other than charging of the charging device 1041.

このような構成の充電システム1002では、充電装置1041の充電制御部1042は、リチウムイオン二次電池装置1031のサーミスタ1033から接続端子1034、1044を介してその検出結果を電池温度Tbとして受信すると共に、リチウムイオン二次電池装置1031への充電電流Icが流れる電線路から電流I及び電圧Eを充電電流Ic及び電池電圧Vbとして測定して、これら電池温度Tb、充電電流Ic及び電池電圧Vbに基づいて定電流−定電圧の充電方式でリチウムイオン二次電池1032を充電する。
特開2000−092737号公報
In the charging system 1002 having such a configuration, the charging control unit 1042 of the charging device 1041 receives the detection result as the battery temperature Tb from the thermistor 1033 of the lithium ion secondary battery device 1031 via the connection terminals 1034 and 1044. The current I and the voltage E are measured as the charging current Ic and the battery voltage Vb from the electric line through which the charging current Ic to the lithium ion secondary battery device 1031 flows, and based on the battery temperature Tb, the charging current Ic and the battery voltage Vb. Then, the lithium ion secondary battery 1032 is charged by a constant current-constant voltage charging method.
JP 2000-092737 A

ところで、上述の充電電流Ic及び電池電圧Vbを測定してリチウムイオン二次電池1012に対する充放電の状態監視をリチウムイオン二次電池装置1011側で行うタイプの充電システム1001では、リチウムイオン二次電池1012の電池電圧Vbを直接的に測定するので、測定結果の電池電圧Vbと実際の電池電圧Vbとの差が少ない。仮に、制御部1014とリチウムイオン二次電池1012との間の回路パターンによる電圧降下やリチウムイオン二次電池1012の製造バラツキ等があったとしても制御部1014がリチウムイオン二次電池装置1011に組み込まれているので、これらの誤差要因を予め考慮して測定結果の電池電圧Vbを補正可能であるから、測定結果の電池電圧Vbと実際の電池電圧Vbとの差を少なくすることも可能である。そのため、このタイプの充電システム1001は、リチウムイオン二次電池1012に対する充放電の状態監視を比較的正確に行うことができることから、リチウムイオン二次電池1012の電池電圧Vbが略真に設定電圧値Ethに達するまで定電流充電を行うことができ、また、その後、電池電圧Vbが略真に設定電圧値Ethを越えない充電電流Icで定電圧充電を行うことができる。従って、このタイプの充電システム1001は、リチウムイオン二次電池1012を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池1012を充電することができる。   By the way, in the charging system 1001 of the type in which the charging current Ic and the battery voltage Vb are measured and the state of charging / discharging of the lithium ion secondary battery 1012 is monitored on the lithium ion secondary battery device 1011 side, the lithium ion secondary battery is used. Since the battery voltage Vb of 1012 is directly measured, the difference between the battery voltage Vb of the measurement result and the actual battery voltage Vb is small. Even if there is a voltage drop due to a circuit pattern between the control unit 1014 and the lithium ion secondary battery 1012 or manufacturing variations of the lithium ion secondary battery 1012, the control unit 1014 is incorporated in the lithium ion secondary battery device 1011. Therefore, since the battery voltage Vb of the measurement result can be corrected in consideration of these error factors in advance, the difference between the battery voltage Vb of the measurement result and the actual battery voltage Vb can be reduced. . Therefore, since this type of charging system 1001 can relatively accurately monitor the state of charging / discharging of the lithium ion secondary battery 1012, the battery voltage Vb of the lithium ion secondary battery 1012 is substantially set to the set voltage value. Constant current charging can be performed until Eth is reached, and thereafter constant voltage charging can be performed with a charging current Ic at which the battery voltage Vb does not substantially exceed the set voltage value Eth. Therefore, this type of charging system 1001 can efficiently charge the lithium ion secondary battery 1012 so as to shorten the charging time without deteriorating the lithium ion secondary battery 1012.

しかしながら、リチウムイオン二次電池装置1011内に制御部1014を設けることから、制御部1014及びその周辺回路並びに駆動電源等が必要となる。そのため、このタイプの充電システム1001は、リチウムイオン二次電池装置1011の大型化、高コスト化及び制御部1014の消費電力(即ち、リチウムイオン二次電池装置1011が供給可能な供給電力量の低下)等の問題を有している。   However, since the control unit 1014 is provided in the lithium ion secondary battery device 1011, the control unit 1014 and its peripheral circuits, a drive power source, and the like are required. For this reason, this type of charging system 1001 increases the size and cost of the lithium ion secondary battery device 1011 and reduces the power consumption of the control unit 1014 (that is, the amount of power supplied by the lithium ion secondary battery device 1011 can be reduced). ) Etc.

図14は、リチウムイオン二次電池に対する充放電の状態監視を充電装置側で行う場合におけるリチウムイオン二次電池の充電特性を示す図である。図14(A)は、充電容量−電池電圧特性を示し、その横軸は、Ah単位で示す充電容量を表し、その縦軸は、V単位で示す電池電圧Vbを示す。図14(B)は、時間−充電電流特性を示し、その横軸は、min(分)単位で示す時間を表し、その縦軸は、A単位で示す充電電流Icを示す。また、実線は、実際のリチウムイオン二次電池の特性を示し、破線は、充電装置側で測定された電池電圧Vb及び充電電流Icを示す。   FIG. 14 is a diagram illustrating the charging characteristics of the lithium ion secondary battery when the charging / discharging state monitoring of the lithium ion secondary battery is performed on the charging device side. FIG. 14 (A) shows the charge capacity-battery voltage characteristics, the horizontal axis represents the charge capacity expressed in Ah units, and the vertical axis represents the battery voltage Vb expressed in V units. FIG. 14B shows time-charging current characteristics, the horizontal axis represents time shown in min (minutes), and the vertical axis shows charging current Ic shown in A units. The solid line indicates the characteristics of the actual lithium ion secondary battery, and the broken line indicates the battery voltage Vb and the charging current Ic measured on the charging device side.

一方、上述の充電電流Ic及び電池電圧Vbを測定してリチウムイオン二次電池1032に対する充放電の状態監視を充電装置1041側で行うタイプの充電システム1002では、これらリチウムイオン二次電池装置1031の大型化、高コスト化及び制御部の消費電力等の問題を低減することができる。   On the other hand, in the charging system 1002 of the type in which the charging current Ic and the battery voltage Vb are measured and the charging / discharging state monitoring of the lithium ion secondary battery 1032 is performed on the charging device 1041 side, these lithium ion secondary battery devices 1031 Problems such as an increase in size, cost, and power consumption of the control unit can be reduced.

しかしながら、このタイプの充電システム1002では、充電装置1041とリチウムイオン二次電池1032とを接続する接続端子1044、1034の間における接触状態の良不良に依る接触抵抗値の変動、リチウムイオン二次電池装置1031内の回路パターンによる電圧降下、及び、リチウムイオン二次電池1032の製造バラツキ等により、図14(A)に示すように、充電装置1041側で測定した電池電圧Vbと実際の電池電圧Vbとの間に比較的大きな誤差VR0が生じてしまう。そのため、このタイプの充電システム1002では、充電装置1041側で測定した電池電圧Vb及び充電電流Icに基づく充電容量−電池電圧特性及び時間−充電電流特性(図中の破線)は、実際のリチウムイオン二次電池1032の特性(図中の実線)に一致しない。その結果、このタイプの充電システム1002は、リチウムイオン二次電池1032に対する充放電の状態監視をリチウムイオン二次電池1032側で行うタイプに較べて、リチウムイオン二次電池1032を効率よく充電することができず、時間trだけ充電時間が延びてしまう。 However, in this type of charging system 1002, the contact resistance value varies depending on whether the contact state between the connection terminals 1044 and 1034 connecting the charging device 1041 and the lithium ion secondary battery 1032 is good, the lithium ion secondary battery. The battery voltage Vb measured on the charging device 1041 side and the actual battery voltage Vb as shown in FIG. 14A due to a voltage drop due to a circuit pattern in the device 1031 and manufacturing variations of the lithium ion secondary battery 1032 or the like. A relatively large error VR0 occurs between the two. Therefore, in this type of charging system 1002, the charging capacity-battery voltage characteristic and time-charging current characteristic (broken line in the figure) based on the battery voltage Vb and the charging current Ic measured on the charging device 1041 side are actual lithium ions. It does not coincide with the characteristics of the secondary battery 1032 (solid line in the figure). As a result, this type of charging system 1002 charges the lithium ion secondary battery 1032 more efficiently than the type in which the state of charge / discharge of the lithium ion secondary battery 1032 is monitored on the lithium ion secondary battery 1032 side. The charging time is extended by time tr.

本発明は、上述の事情に鑑みて為された発明であり、充電装置側で電池電圧を測定する場合でも、充電時間が短くなるように効率よくリチウムイオン二次電池を充電することができる充電装置を提供することを目的とする。そして、この充電装置とリチウムイオン二次電池とを備える充電システム及びこの充電装置が組み込まれた電気機器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can charge a lithium ion secondary battery efficiently so as to shorten the charging time even when the battery voltage is measured on the charging device side. An object is to provide an apparatus. And it aims at providing a charging system provided with this charging device and a lithium ion secondary battery, and an electric equipment incorporating this charging device.

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。即ち、本発明に係る一態様では、充電対象のリチウムイオン二次電池を、前記リチウムイオン二次電池の電池電圧が設定電圧値に達するまでは定電流充電を行って、前記リチウムイオン二次電池の電池電圧が前記設定電圧値に達した後は前記リチウムイオン二次電池の充電電流が設定電流値に達するまで前記リチウムイオン二次電池の電池電圧が前記設定電圧値を実質的に越えない充電電流で定電圧充電を行う充電装置において、前記リチウムイオン二次電池を充電する電力を供給する電源部と、前記リチウムイオン二次電池の電圧を測定する電圧測定部と、前記リチウムイオン二次電池へ流れる電流を測定する電流測定部と、前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい電流値の電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の電圧を測定し、該測定結果に基づいて前記充電を行うように前記電源部を制御する制御部とを備えることを特徴とする。   As a result of various studies, the present inventor has found that the above object is achieved by the present invention described below. That is, in one aspect according to the present invention, the lithium ion secondary battery to be charged is subjected to constant current charging until the battery voltage of the lithium ion secondary battery reaches a set voltage value. After the battery voltage reaches the set voltage value, the battery voltage of the lithium ion secondary battery does not substantially exceed the set voltage value until the charging current of the lithium ion secondary battery reaches the set current value. In a charging device that performs constant voltage charging with current, a power supply unit that supplies power for charging the lithium ion secondary battery, a voltage measurement unit that measures the voltage of the lithium ion secondary battery, and the lithium ion secondary battery A current measurement unit that measures a current flowing to the current source, and during charging of at least one of the constant current charging and the constant voltage charging, than a current value of a charging current during the charging The voltage measurement unit measures the voltage of the lithium ion secondary battery by flowing a current having a current value from the power supply unit to the lithium ion secondary battery, and the charging is performed based on the measurement result. And a control unit for controlling the power supply unit.

そして、上述の充電装置において、前記電源制御部は、前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい電流値の電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の電圧を測定し、該測定結果を前記電池電圧として前記充電を行うように前記電源部を制御することを特徴とする。   In the above-described charging device, the power supply control unit supplies a current having a current value smaller than the current value of the charging current during the charging during at least one of the constant current charging and the constant voltage charging. The voltage measurement unit measures the voltage of the lithium ion secondary battery by flowing from the power supply unit to the lithium ion secondary battery, and controls the power supply unit to perform the charging using the measurement result as the battery voltage. It is characterized by doing.

また、上述の充電装置において、前記電源制御部は、前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい互いに異なる第1及び第2電流値の第1及び第2電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の第1及び第2電圧を測定し、前記第1及び第2電流の第1及び第2電流値並びに前記測定結果の第1及び第2電圧値に基づいて前記設定電圧値を補正して前記充電を行うように前記電源部を制御することを特徴とする。   Further, in the above-described charging device, the power supply control unit may perform different first and different charging current values smaller than a current value of the charging current during the charging during at least one of the constant current charging and the constant voltage charging. The voltage measurement unit measures the first and second voltages of the lithium ion secondary battery by causing the first and second currents of the second current value to flow from the power supply unit to the lithium ion secondary battery, and the first Controlling the power supply unit to perform the charging by correcting the set voltage value based on the first and second current values of the first and second currents and the first and second voltage values of the measurement result. Features.

さらに、これら上述の充電装置において、前記リチウムイオン二次電池の電池温度に応じて前記設定電圧値を補正する設定電圧補正部をさらに備えることを特徴とする。   Furthermore, the above-described charging devices further include a set voltage correction unit that corrects the set voltage value according to a battery temperature of the lithium ion secondary battery.

そして、本発明に係る他の一態様では、リチウムイオン二次電池を備える二次電池装置と、前記リチウムイオン二次電池を充電する充電装置とを備える充電システムにおいて、前記充電装置は、これら上述のうちの何れかであることを特徴とする。   And in another one aspect | mode which concerns on this invention, in the charging system provided with a secondary battery apparatus provided with a lithium ion secondary battery, and the charging device which charges the said lithium ion secondary battery, the said charging apparatus is these above-mentioned. It is any one of these.

また、本発明に係る他の一態様では、これら上述のうちの何れかの充電装置が組み込まれた電気機器である。   In another embodiment of the present invention, an electric device in which any one of the above-described charging devices is incorporated.

このような構成の充電装置、充電システム及び電気機器は、充電時間が短くなるように効率よくリチウムイオン二次電池を充電することができる。   The charging device, the charging system, and the electric device having such a configuration can efficiently charge the lithium ion secondary battery so that the charging time is shortened.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
(第1の実施形態の構成)
図1は、実施形態における充電システムの構成を示す図である。図1において、充電システム1は、充電装置2と、二次電池装置3とを備えて構成され、充電電流Ic及び電池電圧Vbを測定して二次電池装置3のリチウムイオン二次電池31に対する充放電の状態監視を充電装置2側で行うタイプである。充電装置1は、二次電池装置3のリチウムイオン二次電池31への充電電流Icが流れる電線路から電流I及び電圧Eを充電電流Ic及び電池電圧Vbとして測定することによって、二次電池装置3のリチウムイオン二次電池31を定電流−定電圧の充電方式で充電する装置であり、充電端子Ts1、Ts2と、電圧測定部11と、電源制御部12と、直流電源部13と、電流測定部14とを備えて構成される。二次電池装置3は、充電装置2の充電端子Ts1、Ts2に接続するための電池端子Tb1、Tb2と、電池端子Tb1、Tb2間に接続され、1又は複数のリチウムイオン二次電池セル41(41−1、41−2、・・・、41−n)を備えるリチウムイオン二次電池31とを備えて構成される。複数のリチウムイオン二次電池セル41は、全てが直列に接続されてもよく、また所定の個数が直列に接続されてセルグループを構成し各セルグループが並列に接続されてもよく、二次電池装置3の定格及び1個のリチウムイオン二次電池セル41の定格等に応じて適宜に接続される。
Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
(Configuration of the first embodiment)
Drawing 1 is a figure showing the composition of the charge system in an embodiment. In FIG. 1, the charging system 1 includes a charging device 2 and a secondary battery device 3, and measures a charging current Ic and a battery voltage Vb to measure the lithium ion secondary battery 31 of the secondary battery device 3. In this type, the charging / discharging state is monitored on the charging device 2 side. The charging device 1 measures the current I and the voltage E as the charging current Ic and the battery voltage Vb from the electric line through which the charging current Ic to the lithium ion secondary battery 31 of the secondary battery device 3 flows. 3 is a device that charges the lithium ion secondary battery 31 by a constant current-constant voltage charging method, and includes charging terminals Ts1, Ts2, a voltage measuring unit 11, a power supply control unit 12, a DC power supply unit 13, and a current. And a measurement unit 14. The secondary battery device 3 is connected between the battery terminals Tb1 and Tb2 for connection to the charging terminals Ts1 and Ts2 of the charging device 2 and between the battery terminals Tb1 and Tb2, and one or a plurality of lithium ion secondary battery cells 41 ( 41-1, 41-2,..., 41-n) and a lithium ion secondary battery 31. The plurality of lithium ion secondary battery cells 41 may all be connected in series, or a predetermined number may be connected in series to form a cell group, and each cell group may be connected in parallel. The connection is appropriately made according to the rating of the battery device 3 and the rating of one lithium ion secondary battery cell 41.

充電端子Ts1、Ts2は、充電対象の二次電池装置3を充電するための電力を出力すると共に、二次電池装置3の電池端子Tb1、Tb2と接続するための電極端子である。   The charging terminals Ts1 and Ts2 are electrode terminals for outputting electric power for charging the secondary battery device 3 to be charged and for connecting to the battery terminals Tb1 and Tb2 of the secondary battery device 3.

電圧測定部11は、充電端子Ts1、Ts2に接続され、充電端子Ts1、Ts2間の電圧Eを測定し、この測定した電圧(測定電圧)Eを電源制御部12に出力する回路である。電圧測定部11は、例えば、充電端子Ts1、Ts2間に接続される、直列に接続された2個の抵抗と、これら2個の抵抗における相互接続点から出力される充電端子Ts1、Ts2間の電圧に対する分圧電圧をアナログ信号からディジタル信号に変換して測定電圧として電源制御部12に出力するアナログ/ディジタル変換部(以下、「A/D変換部」と略記する。)とを備えて構成される。   The voltage measuring unit 11 is a circuit that is connected to the charging terminals Ts1 and Ts2, measures a voltage E between the charging terminals Ts1 and Ts2, and outputs the measured voltage (measured voltage) E to the power supply control unit 12. For example, the voltage measuring unit 11 is connected between the charging terminals Ts1 and Ts2 and connected between the two resistors connected in series and the charging terminals Ts1 and Ts2 output from the interconnection point of these two resistors. An analog / digital conversion unit (hereinafter abbreviated as “A / D conversion unit”) that converts a divided voltage with respect to the voltage from an analog signal to a digital signal and outputs the converted voltage to the power supply control unit 12 as a measurement voltage. Is done.

直流電源部13は、充電端子Ts1、Ts2に接続され、二次電池装置3を充電するための電力をその電力値を調整しながら充電端子Ts1、Ts2を介して二次電池装置3に供給する直流電源回路である。直流電源部13は、例えば、本実施形態では、二次電池装置3を充電するための電力を生成する電源部26と、電源部26の出力に接続され(リチウムイオン二次電池31を充電するための電流(充電電流)Icが流れる電線路に介挿され)、電源制御部12の制御によってその出力の電流値Ixを調整する充電電流調整部27とを備えて構成される。電源部26は、例えば、商用電源を直流に整流する整流回路と、整流回路で整流された直流を平滑する平滑回路と、平滑回路の直流の電圧値を所望の電圧値に変換するDC/DCコンバータとを備えて構成される。充電電流調整部27は、例えば、電源制御部12の制御によって電流の通電時間を調整することで電源部26の出力の電流値Iを調整する回路であり、より具体的には、制御端子を備え、該制御端子に入力される制御信号により電流の通電をオンオフするスイッチング素子(例えば電界効果トランジスタ等のトランジスタ)を備えて構成される。   The DC power supply unit 13 is connected to the charging terminals Ts1 and Ts2, and supplies power for charging the secondary battery device 3 to the secondary battery device 3 through the charging terminals Ts1 and Ts2 while adjusting the power value. This is a DC power supply circuit. For example, in this embodiment, the DC power supply unit 13 is connected to the power supply unit 26 that generates power for charging the secondary battery device 3 and the output of the power supply unit 26 (charges the lithium ion secondary battery 31). And a charging current adjusting unit 27 that adjusts the output current value Ix under the control of the power supply control unit 12. The power supply unit 26 includes, for example, a rectifier circuit that rectifies a commercial power source into direct current, a smoothing circuit that smoothes the direct current rectified by the rectifier circuit, and a DC / DC that converts the direct current voltage value of the smoothing circuit into a desired voltage value. And a converter. The charging current adjustment unit 27 is a circuit that adjusts the current value I of the output of the power supply unit 26 by adjusting the current energization time under the control of the power supply control unit 12, for example. And a switching element (for example, a transistor such as a field effect transistor) that turns on and off the current flow according to a control signal input to the control terminal.

電流測定部14は、リチウムイオン二次電池31を充電するための充電電流Icが流れる電線路に介挿され、直流電源部13から充電端子Ts1、Ts2を介して二次電池装置3へ流れる電流Iを測定し、この測定した電流(測定電流)Iを電源制御部12に出力する。直流電源部13は、より具体的には、本実施形態では、直流電源部13と充電端子Ts2の間に配置される。電流測定部14は、例えば、抵抗と、この抵抗に流れる電流によって生じたその端子間電圧をA/D変換して測定電流として電源制御部12に出力するA/D変換回路とを備えて構成される。   The current measuring unit 14 is inserted in a wire path through which a charging current Ic for charging the lithium ion secondary battery 31 flows, and a current that flows from the DC power supply unit 13 to the secondary battery device 3 via the charging terminals Ts1 and Ts2. I is measured, and the measured current (measured current) I is output to the power supply controller 12. More specifically, the DC power supply unit 13 is disposed between the DC power supply unit 13 and the charging terminal Ts2 in the present embodiment. The current measurement unit 14 includes, for example, a resistor and an A / D conversion circuit that A / D converts the voltage between the terminals generated by the current flowing through the resistor and outputs the voltage as a measurement current to the power supply control unit 12. Is done.

電源制御部12は、二次電池装置3における充電対象のリチウムイオン二次電池31を、リチウムイオン二次電池31の電池電圧Vbが設定電圧値Ethに達するまでは定電流充電を行って、リチウムイオン二次電池31の電池電圧Vbが設定電圧値Ethに達した後はリチウムイオン二次電池31の充電電流Icが設定電流値Ithに達するまでリチウムイオン二次電池31の電池電圧Vbが設定電圧値Ethを実質的に越えない充電電流Icで定電圧充電を行う定電流−定電圧の充電方式で充電するように、電圧測定部11で測定した測定電圧及び電流測定部14で測定した測定電流に基づいて直流電源部13の充電電流調整部27を制御する。電源制御部12は、機能的に、定電流充電中及び定電圧充電中の少なくとも一方の充電中に、当該充電中における充電電流の電流値よりも小さい電流値の電流を直流電源部13から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3のリチウムイオン二次電池31へ流すことによって電圧測定部11で充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介したリチウムイオン二次電池31の電圧を測定し、この測定結果に基づいて当該充電を行うように直流電源部13の充電電流調整部27を制御する充電制御部21と、充電制御部21によって所定時間tnが設定されると計時を開始すると共に所定時間tnが経過するとその旨を充電制御部21に通知するタイマ部22と、定電流で充電する場合における充電電流Icの電流値Icc、定電圧で充電する場合における充電電圧Ecの電圧値Eである設定電圧値Eth(過充電によりリチウムイオン二次電池31が劣化を引き起こさないリチウムイオン二次電池31に印加可能な充電電圧Ecの上限電圧値、定電流充電の終了を判断するための充電電圧Ecの電圧値)、及び、充電終了を判断するための充電電流Icの電流値Iである設定電流値Ith等を予め記憶する制御データ記憶部23とを備える。これら電流値Icc、設定電圧値Eth、設定電流値Ithは、リチウムイオン二次電池31の定格及びリチウムイオン二次電池セル41の定格等に応じて適宜に設定される。電源制御部12は、例えば、演算処理を実行する中央処理部(CPU、Central Processing Unit)、後述する定電流−定電圧の充電方式を実現するための充電プログラム等の制御プログラムやデータ等を記憶する例えばROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、データを一時的に記憶する等の所謂CPUのワークキングメモリとなる例えばRAM(Random Access Memory)等の揮発性記憶素子、及び、周辺回路等を備えて構成されるマイクロコンピュータである。   The power supply controller 12 performs constant current charging of the lithium ion secondary battery 31 to be charged in the secondary battery device 3 until the battery voltage Vb of the lithium ion secondary battery 31 reaches the set voltage value Eth, After the battery voltage Vb of the ion secondary battery 31 reaches the set voltage value Eth, the battery voltage Vb of the lithium ion secondary battery 31 is set to the set voltage until the charging current Ic of the lithium ion secondary battery 31 reaches the set current value Ith. The measured voltage measured by the voltage measuring unit 11 and the measured current measured by the current measuring unit 14 so as to be charged by a constant current-constant voltage charging method in which constant voltage charging is performed with a charging current Ic that does not substantially exceed the value Eth. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled based on the above. The power supply control unit 12 functionally charges a current having a current value smaller than the current value of the charging current during charging from the DC power supply unit 13 during charging at least one of constant current charging and constant voltage charging. Lithium ions via the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2 in the voltage measuring unit 11 by flowing to the lithium ion secondary battery 31 of the secondary battery device 3 via the terminals Ts1, Ts2 and the battery terminals Tb1, Tb2. The charging control unit 21 that measures the voltage of the secondary battery 31 and controls the charging current adjustment unit 27 of the DC power supply unit 13 so as to perform the charging based on the measurement result, and the charging control unit 21 sets the predetermined time tn. When set, the timer unit 22 that starts measuring time and notifies the charging control unit 21 when the predetermined time tn has passed, and charging in the case of charging with a constant current. Current value Icc of current Ic, set voltage value Eth which is voltage value E of charging voltage Ec when charging at a constant voltage (applied to lithium ion secondary battery 31 that does not cause deterioration of lithium ion secondary battery 31 due to overcharging) The upper limit voltage value of the possible charging voltage Ec, the voltage value of the charging voltage Ec for determining the end of constant current charging), and the set current value Ith that is the current value I of the charging current Ic for determining the end of charging. And the like, and a control data storage unit 23 for previously storing the information. These current value Icc, set voltage value Eth, and set current value Ith are appropriately set according to the rating of the lithium ion secondary battery 31 and the rating of the lithium ion secondary battery cell 41. The power supply control unit 12 stores, for example, a control program such as a central processing unit (CPU) that performs arithmetic processing, a charging program for realizing a constant current-constant voltage charging method, which will be described later, data, and the like Non-volatile memory elements such as ROM (Read Only Memory) and EEPROM (Electrically Erasable Programmable Read Only Memory), for example, RAM (Random Access Memory) serving as a so-called CPU working memory for temporarily storing data, etc. A volatile memory element and a microcomputer including a peripheral circuit.

次に、本実施形態の動作について説明する。
(第1の実施形態の動作)
図2及び図3は、第1の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャートである。図4は、定電流−定電圧充電における電流及び電圧の時間的変化を示す図である。図4(A)は、電流の時間的変化のグラフであり、その横軸はmin(分)単位で示す時間であり、その縦軸は、A単位で示す電流である。図4(B)は、電圧の時間的変化のグラフであり、その横軸は、min(分)単位で示す時間であり、その縦軸は、V単位で示す電圧である。実線は、本実施形態における電流及び電圧の時間的変化を表し、破線は、背景技術の欄で説明した上述の、リチウムイオン二次電池に対する充放電の状態監視を充電装置側で行うタイプの充電システムにおける電流及び電圧の時間的変化を表す。
Next, the operation of this embodiment will be described.
(Operation of the first embodiment)
2 and 3 are flowcharts showing the constant current-constant voltage charging operation of the charging device according to the first embodiment. FIG. 4 is a diagram illustrating temporal changes in current and voltage in constant current-constant voltage charging. FIG. 4A is a graph of the temporal change in current, the horizontal axis is the time shown in min (minutes), and the vertical axis is the current shown in A units. FIG. 4B is a graph of the temporal change in voltage, the horizontal axis is the time indicated in min (minutes), and the vertical axis is the voltage indicated in V units. A solid line represents a temporal change in current and voltage in the present embodiment, and a broken line represents a charge of the type in which the charge / discharge state monitoring for the lithium ion secondary battery described in the background art section is performed on the charging device side. It represents the time variation of current and voltage in the system.

図2乃至図4において、充電装置2に二次電池装置3がセットされ、充電が開始されると、充電装置2の電源制御部12における充電制御部21は、タイマ部22の初期化を行った後にタイマ部22に所定時間tnを設定し、タイマ部22に計時を開始させる(S11)。タイマ部22は、充電制御部21によって所定時間tnが設定されると計時を開始し、所定時間tnが経過するとその旨を充電制御部21に通知する。   2 to 4, when the secondary battery device 3 is set in the charging device 2 and charging is started, the charging control unit 21 in the power control unit 12 of the charging device 2 initializes the timer unit 22. After that, a predetermined time tn is set in the timer unit 22, and the timer unit 22 is started to measure time (S11). The timer unit 22 starts measuring time when the predetermined time tn is set by the charge control unit 21, and notifies the charge control unit 21 when the predetermined time tn has elapsed.

次に、充電制御部21は、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電流充電を行う場合に予め設定されている電流値Iccの電流Iが充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する(S12)。これによって充電装置2は、二次電池装置3のリチウムイオン二次電池31を電流値Iccの定電流で充電する。   Next, the charging control unit 21 adjusts the energizing time of the charging current adjusting unit 27 while referring to the measured current I of the current measuring unit 14 to set a current value Icc that is set in advance when performing constant current charging. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled so that the current I flows from the charging device 2 to the secondary battery device 3 through the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2 (S12). Thereby, the charging device 2 charges the lithium ion secondary battery 31 of the secondary battery device 3 with a constant current having a current value Icc.

次に、充電制御部21は、所定時間tnが経過したか否かを判断する(S13)。より具体的には、本実施形態では、充電制御部21は、タイマ部22から所定時間tnが経過した旨の通知が為されている場合には所定時間tnが経過したと判断し、一方、タイマ部22から所定時間tnが経過した旨の通知が為されていない場合には所定時間tnが経過していないと判断する。   Next, the charging control unit 21 determines whether or not the predetermined time tn has passed (S13). More specifically, in the present embodiment, the charging control unit 21 determines that the predetermined time tn has elapsed when the timer unit 22 notifies that the predetermined time tn has elapsed, If the timer unit 22 has not notified that the predetermined time tn has elapsed, it is determined that the predetermined time tn has not elapsed.

処理S13における判断の結果、所定時間tnが経過していない場合(No)には、充電制御部21は、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbとする(S14)。そして、充電制御部21は、この電池電圧Vbとした測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であるか否かを判断する(S18)。これによって定電流充電の終了が判断される。   As a result of the determination in step S13, when the predetermined time tn has not elapsed (No), the charging control unit 21 acquires the voltage value Ex of the measurement voltage E from the voltage measurement unit 11, and this is obtained as the battery voltage Vb. (S14). Then, the charge control unit 21 determines whether or not the voltage value Ex of the measurement voltage E that is the battery voltage Vb is equal to or greater than a predetermined set voltage value Eth (S18). Thus, the end of constant current charging is determined.

処理S18における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、定電流充電の終了であり、充電制御部21は、後述の処理S19を行い、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、定電流充電の続行であり、充電制御部21は、処理を処理S12に戻す。   If the result of determination in step S18 is that the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the constant current charging is terminated, and the charge control unit 21 performs processing described later. On the other hand, when the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the constant current charging is continued, and the charging control unit 21 performs the process S12. Return to.

このように動作するので、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満であって所定時間tnが経過する前までは、充電制御部21は、所定の一定の電流値Iccが充電装置2から二次電池装置3へ流れるように充電電流調整部15を制御した状態における電圧測定部11で測定した測定電圧Eを電池電圧Vbとして処理S12、処理S13、処理S14及び処理S18を繰り返し、定電流充電を行う。この結果、図4に示すように、充電電流Icが一定の電流値Iccでリチウムイオン二次電池31が充電され、電圧測定部11の測定電圧は、時間経過に従って漸次増加する。   Because of this operation, the charging control unit 21 charges the predetermined constant current value Icc until the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth and the predetermined time tn has elapsed. The process S12, the process S13, the process S14 and the process S18 are repeated with the measured voltage E measured by the voltage measuring unit 11 in a state where the charging current adjusting unit 15 is controlled so as to flow from the device 2 to the secondary battery device 3 as the battery voltage Vb. , Perform constant current charging. As a result, as shown in FIG. 4, the lithium ion secondary battery 31 is charged with the charging current Ic having a constant current value Icc, and the measured voltage of the voltage measuring unit 11 gradually increases with time.

一方、処理S13における判断の結果、所定時間tnが経過している場合(Yes)には、充電制御部21は、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電流充電中における充電電流Icの電流値Iccよりも小さい電流値Isの電流Iが充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する(S15)。   On the other hand, if the result of determination in step S13 is that the predetermined time tn has elapsed (Yes), the charging control unit 21 refers to the measured current I of the current measuring unit 14 while energizing the charging current adjusting unit 27. Is adjusted so that a current I having a current value Is smaller than the current value Icc of the charging current Ic during constant current charging is supplied from the charging device 2 via the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2. 3 is controlled so as to flow to 3 (S15).

次に、充電制御部21は、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbとする(S16)。   Next, the charge control unit 21 acquires the voltage value Ex of the measurement voltage E from the voltage measurement unit 11, and sets this as the battery voltage Vb (S16).

この測定電圧Eの電圧値Exは、定電流充電中における充電電流Icの電流値Iccよりも小さい電流値Isの電流Iを充電装置2から二次電池装置3へ流して電圧測定部11で電圧Eを測定しているので、処理S14のように定電流充電中における充電電流Icの電流値Iccの電流を充電装置2から二次電池装置3へ流している状態のままで電圧測定部11によって電圧Eを測定する場合に較べて、リチウムイオン二次電池31における実際の電池電圧Vbにより近い値となり、実際の電池電圧Vbに対する誤差VR0が小さくなる。 The voltage value Ex of the measurement voltage E is obtained by passing a current I having a current value Is smaller than the current value Icc of the charging current Ic during constant current charging from the charging device 2 to the secondary battery device 3, Since E is measured, the voltage measuring unit 11 keeps the current value Icc of the charging current Ic during constant current charging flowing from the charging device 2 to the secondary battery device 3 as in the process S14. as compared with the case of measuring the voltage E, becomes a value closer to the actual battery voltage Vb in a lithium ion secondary battery 31, the error V R0 decreases to the actual battery voltage Vb.

このため、処理S15における電流値Isが0に近い値であるほど、例えば充電端子Ts1、Ts2と電池端子Tb1、Tb2との接触抵抗や直流電源部13からリチウムイオン二次電池31までの回路パターンによる抵抗等に基づく電圧降下が小さくなるから、測定電圧Eの電圧値Exは、実際の電池電圧Vbにより近い値となり、実際の電池電圧Vbに対する誤差VR0がより小さくなるので、処理S15における電流値Isは、0により近い値であることが好ましい。 For this reason, as the current value Is in the process S15 is closer to 0, for example, the contact resistance between the charging terminals Ts1 and Ts2 and the battery terminals Tb1 and Tb2, or the circuit pattern from the DC power supply unit 13 to the lithium ion secondary battery 31. since the voltage drop is reduced based on the resistance due, the voltage value Ex measured voltage E becomes a value closer to the actual battery voltage Vb, since the error V R0 to the actual battery voltage Vb becomes smaller, the current in the processing S15 The value Is is preferably a value closer to 0.

次に、充電制御部21は、処理S11と同様に、タイマ部22の初期化を行った後にタイマ部22に所定時間tnを設定し、タイマ部22に計時を開始させる(S17)。   Next, similarly to the process S11, the charging control unit 21 initializes the timer unit 22, sets a predetermined time tn in the timer unit 22, and causes the timer unit 22 to start measuring time (S17).

そして、充電制御部21は、処理S18を実行し、処理S16で電池電圧Vbとした測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であるか否かを判断する。この判断における測定電圧Eの電圧値Exは、処理S14で取得した電圧値Exに較べて実際の電池電圧Vbにより近いので、処理S14で取得した電圧値Exを用いて定電流充電の終了を判断する場合に較べてより正確に判断することができる。   Then, the charge control unit 21 executes the process S18, and determines whether or not the voltage value Ex of the measured voltage E that is the battery voltage Vb in the process S16 is equal to or greater than a predetermined set voltage value Eth. Since the voltage value Ex of the measured voltage E in this determination is closer to the actual battery voltage Vb than the voltage value Ex acquired in the process S14, the end of the constant current charging is determined using the voltage value Ex acquired in the process S14. It is possible to judge more accurately than in the case of doing so.

このように測定電圧Eの電圧値Exが所定の設定電圧値Eth未満であって所定時間tnが経過すると、処理S15乃至処理S18が実行され、定電流充電中における充電電流Icの電流値Iccよりも小さい電流値Isの電流Iが充電装置2から二次電池装置3へ流され、この状態で電圧測定部11によって電圧Eが測定され、定電流充電の終了が判断される。この結果、図4に示すように、所定時間tn(図4に示す例ではtn=t1)が経過した時点では、充電電流Icが電流値Iccより小さい電流値Isとなり、例えば充電端子Ts1、Ts2と電池端子Tb1、Tb2との接触抵抗や直流電源部13からリチウムイオン二次電池31までの回路パターンによる抵抗等に基づく電圧降下の影響が低減された電圧Eが電圧測定部11で測定される。   As described above, when the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth and the predetermined time tn elapses, processing S15 to processing S18 are executed, and the current value Icc of the charging current Ic during constant current charging is determined. A current I having a smaller current value Is is caused to flow from the charging device 2 to the secondary battery device 3, and in this state, the voltage E is measured by the voltage measuring unit 11 to determine the end of constant current charging. As a result, as shown in FIG. 4, when a predetermined time tn (tn = t1 in the example shown in FIG. 4) elapses, the charging current Ic becomes a current value Is smaller than the current value Icc, for example, charging terminals Ts1, Ts2 The voltage measuring unit 11 measures the voltage E with reduced influence of voltage drop based on the contact resistance between the battery terminals Tb1 and Tb2 and the resistance of the circuit pattern from the DC power supply unit 13 to the lithium ion secondary battery 31. .

そして、再び処理S12、処理S13、処理S14及び処理S18が繰り返され、また、所定時間t1が経過すると、処理S15乃至処理S18が実行される。このような処理が測定電圧Eの電圧値Exが所定の設定電圧値Eth以上となるまで、繰り返される。この結果、図4に示すように、充電電流Icが一定の電流値Iccでリチウムイオン二次電池31が充電され、電圧測定部11の測定電圧Eは、時間経過に従って漸次増加する一方で、所定時間tn(図4に示す例ではtn=t1)が経過するたびにその時点では、充電電流Icが電流値Iccより小さい電流値Isとなり、上述の電圧降下の影響が低減された電圧Eが電圧測定部11で測定される。   Then, the process S12, the process S13, the process S14, and the process S18 are repeated again, and when the predetermined time t1 has elapsed, the processes S15 to S18 are executed. Such a process is repeated until the voltage value Ex of the measurement voltage E becomes equal to or higher than a predetermined set voltage value Eth. As a result, as shown in FIG. 4, the lithium ion secondary battery 31 is charged with the charging current Ic at a constant current value Icc, and the measured voltage E of the voltage measuring unit 11 gradually increases as time elapses. Whenever the time tn (tn = t1 in the example shown in FIG. 4) elapses, the charging current Ic becomes a current value Is smaller than the current value Icc, and the voltage E in which the influence of the voltage drop is reduced is measured. Measured at section 11.

このように所定時間tnの経過ごとに、充電電流Icが電流値Iccより小さい電流値Isとされ、上述の電圧降下の影響が低減された電圧Eが電圧測定部11で測定され、定電流充電の終了が判断されるので、本発明では、定電流充電の電流値Iccは、本発明を適用しない場合に較べて大きくすることができるから、電流I及び電圧Eが図4に示す実線のように変化し、充電時間が短くなるように効率よくリチウムイオン二次電池31を定電流で充電することができる。   In this way, every time the predetermined time tn elapses, the charging current Ic is set to the current value Is smaller than the current value Icc, and the voltage E in which the influence of the voltage drop is reduced is measured by the voltage measuring unit 11, and constant current charging is performed. Therefore, in the present invention, the current value Icc of constant current charging can be increased as compared with the case where the present invention is not applied, so that the current I and the voltage E are as shown by the solid line in FIG. Thus, the lithium ion secondary battery 31 can be efficiently charged with a constant current so that the charging time is shortened.

一方、処理S19において、充電制御部21は、処理S15と同様に、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電流充電中における充電電流Icの電流値Iccよりも小さい電流値Isの電流Iが充電装置2から二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する。   On the other hand, in process S19, the charging control unit 21 adjusts the energizing time of the charging current adjusting unit 27 while referring to the measured current I of the current measuring unit 14 in the same manner as in process S15, thereby charging during constant current charging. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled so that the current I having a current value Is smaller than the current value Icc of the current Ic flows from the charging device 2 to the secondary battery device 3.

次に、充電制御部21は、処理S16と同様に、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbとする(S20)。   Next, the charge control unit 21 acquires the voltage value Ex of the measurement voltage E from the voltage measurement unit 11 as in the process S16, and sets this as the battery voltage Vb (S20).

次に、充電制御部21は、処理S18と同様に、処理S19で電池電圧Vbとした測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であるか否かを判断する(S21)。   Next, similarly to the process S18, the charge control unit 21 determines whether or not the voltage value Ex of the measured voltage E that is the battery voltage Vb in the process S19 is equal to or greater than a predetermined set voltage value Eth (S21).

処理S21における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、定電流充電の終了であり、充電制御部21は、後述の処理S22を行い、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、定電流充電の続行であり、充電制御部21は、処理を処理S12に戻す。   If the result of determination in step S21 is that the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the constant current charging is terminated, and the charge control unit 21 On the other hand, when the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the constant current charging is continued, and the charging control unit 21 performs the process S12. Return to.

このように処理S18の判断で測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であると判断された場合(Ex≧Eth)に、処理S19乃至処理S21の各処理を実行するのは、処理S14で電池電圧Vbとした測定電圧Eの電圧値Exを用いて処理S18の判断を行って測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であると判断された場合(Ex≧Eth)では、処理S14の測定電圧Eの電圧値Exが実際の電池電圧Vbに対して比較的大きな誤差VR0を含む場合があるので、より正確に定電流充電の終了を判断するためである。 As described above, when it is determined that the voltage value Ex of the measurement voltage E is equal to or higher than the predetermined set voltage value Eth (Ex ≧ Eth) in the determination of the process S18, the processes of the processes S19 to S21 are executed. When the determination in step S18 is performed using the voltage value Ex of the measured voltage E that is the battery voltage Vb in step S14, and it is determined that the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth) in, there is a case where the voltage value Ex measured voltage E of the step S14 includes a relatively large error V R0 with respect to the actual battery voltage Vb, in order to determine more accurately the end of the constant current charging is there.

処理S11乃至処理S21を実行することにより定電流充電が終了すると、処理S22において、充電制御部21は、まず、現在の充電電流Icを定電圧充電における初期の充電電流Icの電流値Icvとして電源制御部12に記憶する。そして、充電制御部21は、充電電流調整部27の通電時間を調整することによって、電源制御部12に記憶されている電流値Icvの電流が充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する(S23)。これによって充電装置2は、電流値Icvで二次電池装置3を充電する。   When the constant current charging is completed by executing the processes S11 to S21, in the process S22, the charging control unit 21 first supplies the current charging current Ic as the current value Icv of the initial charging current Ic in the constant voltage charging. Store in the control unit 12. Then, the charging control unit 21 adjusts the energization time of the charging current adjusting unit 27 so that the current of the current value Icv stored in the power supply control unit 12 is supplied from the charging device 2 to the charging terminals Ts1, Ts2, and the battery terminal Tb1. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled so as to flow to the secondary battery device 3 through Tb2 (S23). As a result, the charging device 2 charges the secondary battery device 3 with the current value Icv.

次に、充電制御部21は、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbとする(S24)。   Next, the charge control unit 21 acquires the voltage value Ex of the measurement voltage E from the voltage measurement unit 11, and sets this as the battery voltage Vb (S24).

次に、充電制御部21は、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であるか否かを判断する(S25)。   Next, the charge control unit 21 determines whether or not the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth (S25).

処理S25における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、充電制御部21は、充電電圧Ecを上昇させる余裕△E(=Eth−Ex)があるので、電源制御部12に記憶している充電電流Icの電流値Icvを所定値△Icvだけ増加させ(Icv=Icv+△Icv)、この増加させた電流値Icvを定電圧充電における充電電流Icの電流値Icvとして電源制御部12に記憶し、処理を処理S23に戻す(S26)。これによって処理S23で所定値△Icvだけ増加した電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。   When the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth as a result of the determination in the process S25 (Ex <Eth), the charge control unit 21 has a margin ΔE (= Eth-Ex), the current value Icv of the charging current Ic stored in the power supply control unit 12 is increased by a predetermined value ΔIcv (Icv = Icv + ΔIcv), and the increased current value Icv is a constant voltage. The current value Icv of the charging current Ic in charging is stored in the power supply control unit 12, and the process returns to the process S23 (S26). As a result, the charging current Ic having the current value Icv increased by the predetermined value ΔIcv in step S23 flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged.

なお、この処理S26を省略してもよい。即ち、処理S25における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)に、充電制御部21は、処理S26を実行することなく、処理を処理S23に戻す。このように構成することによって、充電制御部21は、定電圧充電の場合に充電電流Icを増加させることがないので、過充電を回避することができ、安全性や信頼性が向上する。   This process S26 may be omitted. That is, as a result of the determination in the process S25, when the voltage value Ex of the measured voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the charge control unit 21 performs the process without executing the process S26. It returns to processing S23. With this configuration, the charging control unit 21 does not increase the charging current Ic in the case of constant voltage charging, so that overcharging can be avoided, and safety and reliability are improved.

一方、処理S25における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、充電制御部21は、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電圧充電中における充電電流Icの電流値Icvよりも小さい電流値Isの電流Iが充電装置2から二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する(S27)。   On the other hand, when the voltage value Ex of the measurement voltage E is equal to or greater than the predetermined set voltage value Eth (Ex ≧ Eth) as a result of the determination in the process S25, the charge control unit 21 sets the measurement current I of the current measurement unit 14 to the measured current I. The current I having a current value Is smaller than the current value Icv of the charging current Ic during constant voltage charging flows from the charging device 2 to the secondary battery device 3 by adjusting the energization time of the charging current adjusting unit 27 while referring to it. In this manner, the charging current adjusting unit 27 of the DC power supply unit 13 is controlled (S27).

次に、充電制御部21は、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbとする(S28)。   Next, the charge control unit 21 acquires the voltage value Ex of the measurement voltage E from the voltage measurement unit 11, and sets this as the battery voltage Vb (S28).

次に、充電制御部21は、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であり、かつ、定電圧充電中における充電電流Icの電流値Icvが所定の設定電流値Ith以下であるか否かを判断する(S29)。これによって定電圧充電の終了が判断される。   Next, the charge control unit 21 determines that the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth and the current value Icv of the charge current Ic during constant voltage charging is equal to or less than the predetermined set current value Ith. It is determined whether or not there is (S29). This determines the end of constant voltage charging.

この測定電圧Eの電圧値Exは、定電圧充電中における充電電流Icの電流値Icvよりも小さい電流値Isの電流Iを充電装置2から二次電池装置3へ流して電圧測定部11で電圧を測定しているので、処理S24のように定電圧充電中における充電電流Icの電流値Icvの電流Iを充電装置2から二次電池装置3へ流している状態のままで電圧測定部11によって電圧Eを測定する場合に較べて、リチウムイオン二次電池31における実際の電池電圧Vbにより近い値となり、実際の電池電圧Vbに対する誤差VR0が小さくなる。よって、充電電流Icの電流値Icvのままで電圧測定部11によって電圧Eを測定して定電圧充電の終了を判断する場合に較べてより正確に判断することができる。従って、充電装置3は、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。 The voltage value Ex of the measured voltage E is supplied from the charging device 2 to the secondary battery device 3 by passing a current I having a current value Is smaller than the current value Icv of the charging current Ic during constant voltage charging. Is measured by the voltage measuring unit 11 while the current I having the current value Icv of the charging current Ic during constant voltage charging is flowing from the charging device 2 to the secondary battery device 3 as in step S24. as compared with the case of measuring the voltage E, becomes a value closer to the actual battery voltage Vb in a lithium ion secondary battery 31, the error V R0 decreases to the actual battery voltage Vb. Therefore, the determination can be made more accurately than when the voltage measurement unit 11 measures the voltage E with the current value Icv of the charging current Ic and determines the end of constant voltage charging. Therefore, the charging device 3 can efficiently charge the lithium ion secondary battery 31 so as to shorten the charging time without deteriorating the lithium ion secondary battery 31.

処理S29における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であって、定電圧充電中における充電電流Icの電流値Icvが所定の設定電流値Ith以下である場合(Ex≧Eth and Icv≦Ith)には、定電圧充電の終了、即ち、充電の終了であり、充電制御部21は、リチウムイオン二次電池31を充電する本処理を終了する。   As a result of the determination in step S29, when the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth and the current value Icv of the charging current Ic during constant voltage charging is equal to or smaller than the predetermined set current value Ith ( (Ex ≧ Eth and Icv ≦ Ith) is the end of constant voltage charging, that is, the end of charging, and the charging control unit 21 ends the main process of charging the lithium ion secondary battery 31.

一方、処理S29における判断の結果、定電圧充電中における充電電流Icの電流値Icvが所定の設定電流値Ithより大きい場合(Icv>Ith)には、定電圧充電の続行であり、充電制御部21は、まず、充電制御部21は、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であるか否かを判断する(S30)。   On the other hand, as a result of the determination in step S29, if the current value Icv of the charging current Ic during constant voltage charging is larger than the predetermined set current value Ith (Icv> Ith), the constant voltage charging is continued, and the charging control unit 21. First, the charging control unit 21 determines whether or not the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth (S30).

処理S30における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、充電制御部21は、充電電圧Ecの電圧値Exを下げるべく、電源制御部12に記憶している充電電流Icの電流値Icvを所定値△Icvだけ減少させ(Icv=Icv−△Icv)、この減少させた電流値Icvを定電圧充電における充電電流の電流値Icvとして電源制御部12に記憶し、処理を処理S23に戻す(S31)。これによって処理S23で所定値△Icvだけ減少した電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。なお、所定値△Icvは、充電装置2の仕様等に応じて適宜に設定され、また、処理S26で充電電流Icを増加させる場合の所定値△Icvとこの処理S31で充電電流Icを減少させる場合の所定値△Icvとは、同一でも異なってもよい。   As a result of the determination in step S30, when the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the charge control unit 21 reduces the voltage value Ex of the charge voltage Ec. The current value Icv of the charging current Ic stored in the power supply control unit 12 is decreased by a predetermined value ΔIcv (Icv = Icv−ΔIcv), and the decreased current value Icv is the current value of the charging current in constant voltage charging. Icv is stored in the power supply controller 12 and the process returns to the process S23 (S31). As a result, the charging current Ic having the current value Icv decreased by the predetermined value ΔIcv in step S23 flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged. The predetermined value ΔIcv is appropriately set according to the specifications of the charging device 2, and the predetermined value ΔIcv when the charging current Ic is increased in step S26 and the charging current Ic is decreased in step S31. The predetermined value ΔIcv in the case may be the same or different.

一方、処理S30における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、充電制御部21は、電源制御部12に記憶している充電電流Icの電流値Icvのままで定電流充電を続行するべく、現在の充電電流Icの電流値Icvを保持して、即ち、電源制御部12に記憶されている電流値Icvのままで、処理を処理S23に戻す(S32)。これによって処理S23で現在の電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。   On the other hand, when the voltage value Ex of the measured voltage E is less than the predetermined set voltage value Eth (Ex <Eth) as a result of the determination in the process S30, the charge control unit 21 stores the power control unit 12 in the power supply control unit 12. In order to continue the constant current charging with the current value Icv of the charging current Ic, the current value Icv of the current charging current Ic is held, that is, the current value Icv stored in the power supply control unit 12 is maintained. The process returns to process S23 (S32). As a result, in the process S23, the charging current Ic having the current value Icv flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged.

このような処理S22乃至処理S32の各処理を実行することによって充電装置2は、リチウムイオン二次電池31の充電電流Icが設定電流値Ithに達するまでリチウムイオン二次電池31の電池電圧Vbが設定電圧値Ethを実質的に越えない充電電流Icの電流値Icvで定電圧充電を行う。この結果、図4に示すように、充電電流Icが電流値Icvでリチウムイオン二次電池31が充電され、電圧測定部11の測定電圧Eは、時間経過に従って漸次減少する。その一方で、処理S25で測定電圧Eの電圧値Exが所定の設定電圧値Eth以上となった時点では、図4に示すように、充電電流Icが電流値Iccより小さい電流値Isとなり、例えば充電端子Ts1、Ts2と電池端子Tb1、Tb2との接触抵抗や直流電源部13からリチウムイオン二次電池31までの回路パターンによる抵抗等に基づく電圧降下の影響が低減された電圧Eが電圧測定部11で測定される。そして、処理S29で定電圧充電の終了を判断する場合では、定電圧充電中における充電電流Icの電流値Icvよりも小さい電流値Isの電流Iを充電装置2から二次電池装置3へ流して電圧測定部11で測定した測定電圧Eを用いているので、リチウムイオン二次電池31における実際の電池電圧Vbにより近い値でこの判断を行うこととなり、より正確に判断することができ、本発明を適用しない場合に較べて定電圧充電の電流値Icvを大きくすることができるから、電流I及び電圧Eが図4に示す実線のように変化する。このため、充電装置3は、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   By performing each of the processes S22 to S32, the charging device 2 allows the battery voltage Vb of the lithium ion secondary battery 31 until the charging current Ic of the lithium ion secondary battery 31 reaches the set current value Ith. The constant voltage charging is performed at the current value Icv of the charging current Ic that does not substantially exceed the set voltage value Eth. As a result, as shown in FIG. 4, the lithium ion secondary battery 31 is charged with the charging current Ic being the current value Icv, and the measured voltage E of the voltage measuring unit 11 gradually decreases with time. On the other hand, when the voltage value Ex of the measurement voltage E becomes equal to or higher than the predetermined set voltage value Eth in the process S25, as shown in FIG. 4, the charging current Ic becomes a current value Is smaller than the current value Icc. The voltage measuring unit is a voltage E in which the influence of a voltage drop based on the contact resistance between the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2, the resistance due to the circuit pattern from the DC power supply unit 13 to the lithium ion secondary battery 31, and the like is reduced. 11 is measured. In the case where it is determined in step S29 that the constant voltage charging is finished, a current I having a current value Is smaller than the current value Icv of the charging current Ic during constant voltage charging is passed from the charging device 2 to the secondary battery device 3. Since the measurement voltage E measured by the voltage measurement unit 11 is used, this determination is made with a value closer to the actual battery voltage Vb in the lithium ion secondary battery 31, and the determination can be made more accurately. Since the current value Icv for constant voltage charging can be increased as compared with the case where no is applied, the current I and the voltage E change as shown by the solid lines in FIG. For this reason, the charging device 3 can efficiently charge the lithium ion secondary battery 31 so as to shorten the charging time without deteriorating the lithium ion secondary battery 31.

なお、上述の第1の実施形態において、電源制御部12の情報処理負荷の軽減や充電時間の短縮を図るために、図2の処理S19乃至処理S21を省略してもよい。即ち、処理S18における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には処理S22が実行され、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(E<Eth)には処理が処理S12に戻るように充電装置2が構成されてもよい。このように構成することによって上述の図2に示す動作を行う場合に較べて、図2の処理S19乃至処理S21を省略した分に相当する電源制御部12の情報処理負荷が軽減され、そして、その分の充電時間が短縮される。   In the first embodiment described above, the processes S19 to S21 in FIG. 2 may be omitted in order to reduce the information processing load of the power supply control unit 12 and the charging time. That is, as a result of the determination in the process S18, when the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the process S22 is executed, while the voltage value Ex of the measurement voltage E is When the voltage is less than the predetermined set voltage value Eth (E <Eth), the charging device 2 may be configured so that the process returns to the process S12. Compared with the case where the operation shown in FIG. 2 described above is performed by such a configuration, the information processing load of the power supply control unit 12 corresponding to the portion in which the processes S19 to S21 in FIG. 2 are omitted is reduced, and The charge time is reduced accordingly.

また、上述の第1の実施形態において、所定時間tnは、一定ではなく変化させてもよく、また、各所定時間tnにおける電流値Isの値は、一定ではなく変化させてもよい。   In the first embodiment described above, the predetermined time tn may be changed instead of being constant, and the current value Is at each predetermined time tn may be changed not constant.

次に、別の実施形態について説明する。
(第2の実施形態の構成)
第1の実施形態では、所定時間tnごとに当該充電中における充電電流Icの電流値Ixよりも小さい電流値Isの電流Iを充電装置2から二次電池装置3へ流して電圧測定部11で電圧Eを測定することによって、実際のリチウムイオン二次電池31の実際の電池電圧Vbにより近い測定電圧Eの電圧値Exを取得して当該充電を行うように構成したが、例えば充電端子Ts1、Ts2と電池端子Tb1、Tb2との接触抵抗や直流電源部13からリチウムイオン二次電池31までの回路パターンによる抵抗等に起因する、直流電源部13からリチウムイオン二次電池31までの抵抗値を見積もり、これによって設定電圧値Ethを補正するように構成してもよい。このように構成することによってもリチウムイオン二次電池31を劣化させることなく、リチウムイオン二次電池31を効率よく充電することができる。
Next, another embodiment will be described.
(Configuration of Second Embodiment)
In the first embodiment, a current I having a current value Is smaller than the current value Ix of the charging current Ic during charging is supplied from the charging device 2 to the secondary battery device 3 at a predetermined time tn. By measuring the voltage E, the voltage value Ex of the measurement voltage E that is closer to the actual battery voltage Vb of the actual lithium ion secondary battery 31 is obtained and the charging is performed. For example, the charging terminal Ts1, The resistance value from the DC power supply unit 13 to the lithium ion secondary battery 31 due to the contact resistance between Ts2 and the battery terminals Tb1 and Tb2, the resistance due to the circuit pattern from the DC power supply unit 13 to the lithium ion secondary battery 31, etc. It may be configured to correct the set voltage value Eth based on the estimation. Even if comprised in this way, the lithium ion secondary battery 31 can be charged efficiently, without deteriorating the lithium ion secondary battery 31.

図5は、充電システムの回路等価モデルを示す図である。図5において、図1に示す充電システム1の回路等価モデルは、充電装置2の直流電源部13に対応する定電流定電圧源Sに、抵抗R及び二次電池装置3のリチウムイオン二次電池31が直列に接続されている。抵抗Rは、例えば充電端子Ts1、Ts2と電池端子Tb1、Tb2との接触抵抗や直流電源部13からリチウムイオン二次電池31までの回路パターンによる抵抗等に起因する、直流電源部13からリチウムイオン二次電池31までの抵抗である。   FIG. 5 is a diagram illustrating a circuit equivalent model of the charging system. In FIG. 5, the circuit equivalent model of the charging system 1 shown in FIG. 1 includes a constant current and constant voltage source S corresponding to the DC power supply unit 13 of the charging device 2, a resistor R and a lithium ion secondary battery of the secondary battery device 3. 31 are connected in series. The resistance R is, for example, from the DC power supply unit 13 to the lithium ion caused by contact resistance between the charging terminals Ts1 and Ts2 and the battery terminals Tb1 and Tb2 or resistance due to a circuit pattern from the DC power supply unit 13 to the lithium ion secondary battery 31. It is a resistance to the secondary battery 31.

このような回路等価モデルでは、定電圧定電流源Sの電圧値をE、抵抗Rの抵抗値をR、リチウムイオン二次電池31の電池電圧の電圧値をVb1、Vb2とし、定電流定電圧源Sから抵抗Rを介してリチウムイオン二次電池31へ流れる充電電流Icの電流値をIs1、Is2とすると、式1−1、式1−2が成り立つ。なお、式中の“・”は、乗算の演算子である。
Vb1=E−R・Is1 ・・・ (式1−1)
Vb2=E−R・Is2 ・・・ (式1−2)
よって、式1−1及び式1−2から式2が成り立つ。
=(Vb2−Vb1)/(Is1−Is2) ・・・ (式2)
In such a circuit equivalent model, the voltage value of the constant voltage constant current source S is E 0 , the resistance value of the resistor R is R 0 , and the voltage values of the battery voltages of the lithium ion secondary battery 31 are Vb 1 and Vb 2. When the current value of the charging current Ic flowing from the constant voltage source S to the lithium ion secondary battery 31 through the resistor R is Is1 and Is2, Expression 1-1 and Expression 1-2 are established. In the expression, “·” is a multiplication operator.
Vb1 = E 0 −R 0 · Is1 (Formula 1-1)
Vb2 = E 0 −R 0 · Is2 (Formula 1-2)
Therefore, Expression 2 is established from Expression 1-1 and Expression 1-2.
R 0 = (Vb 2 −Vb 1) / (Is 1 −Is 2) (Formula 2)

従って、2個の充電電流の電流値Is1、Is2を直流電源部13からリチウムイオン二次電池31に流して電圧測定部11で電圧Eをそれぞれ測定することによって抵抗Rの抵抗値Rを見積もることができ、この抵抗値Rに当該充電方式における充電電流Icの電流値を乗じることでこの抵抗Rによる電圧降下R・Ixを求めることができる。この電圧降下R・Ixで設定電圧値Ethを補正することによって抵抗Rによる電圧降下R・Ixの影響を除去した設定電圧値Ethを求めることができるから、リチウムイオン二次電池31を効率よく充電することができる。 Therefore, the resistance value R 0 of the resistor R is estimated by flowing the current values Is 1 and Is 2 of the two charging currents from the DC power supply unit 13 to the lithium ion secondary battery 31 and measuring the voltage E by the voltage measuring unit 11. The voltage drop R 0 · Ix due to the resistance R can be obtained by multiplying the resistance value R 0 by the current value of the charging current Ic in the charging method. By correcting the set voltage value Eth with the voltage drop R 0 · Ix, the set voltage value Eth that eliminates the influence of the voltage drop R 0 · Ix due to the resistor R can be obtained, so that the lithium ion secondary battery 31 can be efficiently used. Can be charged well.

このため、第2の実施形態に係る充電システム1の充電装置2及び二次電池装置3は、充電制御部21が後述のように動作する点を除き、第1の実施形態に係る充電システム1の充電装置2及び二次電池装置3の構成と同様であるので、その説明を省略する。   Therefore, the charging device 2 and the secondary battery device 3 of the charging system 1 according to the second embodiment are the charging system 1 according to the first embodiment, except that the charging control unit 21 operates as described later. Since the configuration is the same as that of the charging device 2 and the secondary battery device 3, description thereof is omitted.

第2の実施形態に係る電源制御部21は、定電流充電中及び定電圧充電中の少なくとも一方の充電中に、当該充電中における充電電流Icの電流値よりも小さい互いに異なる第1及び第2電流値Is1、Is2の第1及び第2電流を直流電源部13から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3のリチウムイオン二次電池31へ流すことによって電圧測定部11で充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介したリチウムイオン二次電池31の第1及び第2電圧を測定し、前記第1及び第2電流の第1及び第2電流値Is1、Is2並びに前記測定結果の第1及び第2電圧値Vb1、Vb2に基づいて設定電圧値Ethを補正して当該充電を行うように直流電源部13の充電電流調整部27を制御する。   The power supply control unit 21 according to the second embodiment includes different first and second powers that are smaller than the current value of the charging current Ic during charging during at least one of constant current charging and constant voltage charging. Voltage measurement is performed by flowing first and second currents of current values Is1 and Is2 from the DC power supply unit 13 to the lithium ion secondary battery 31 of the secondary battery device 3 via the charging terminals Ts1 and Ts2 and the battery terminals Tb1 and Tb2. The unit 11 measures the first and second voltages of the lithium ion secondary battery 31 via the charging terminals Ts1 and Ts2 and the battery terminals Tb1 and Tb2, and the first and second current values Is1 of the first and second currents. , Is2, and the charging current adjusting unit 27 of the DC power supply unit 13 so as to perform the charging by correcting the set voltage value Eth based on the first and second voltage values Vb1 and Vb2 of the measurement result. To your.

次に、本実施形態の動作について説明する。
(第2の実施形態の動作)
図6及び図7は、第2の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャートである。図6及び図7において、充電装置2に二次電池装置3がセットされ、充電が開始されると、充電装置2の電源制御部12における充電制御部21は、図2に示す処理S11、処理S12及び処理S13と同様に、タイマ部22の設定及び計時開始処理(S41)、定電流充電処理(S42)及び所定時間tn経過の判断処理(S43)を順次にそれぞれ実行する。
Next, the operation of this embodiment will be described.
(Operation of Second Embodiment)
6 and 7 are flowcharts showing the constant current-constant voltage charging operation of the charging device according to the second embodiment. 6 and 7, when the secondary battery device 3 is set in the charging device 2 and charging is started, the charging control unit 21 in the power source control unit 12 of the charging device 2 performs processing S11 and processing shown in FIG. Similarly to S12 and S13, the setting of the timer unit 22 and the timing start process (S41), the constant current charging process (S42), and the determination process (S43) after the predetermined time tn are sequentially executed.

処理S43における判断の結果、所定時間tnが経過していない場合(No)には、充電制御部21は、処理S14と同様に、電圧値Exの取得処理(S44)を実行し、処理S18と同様に、電圧値Ex≧設定電圧値Etの判断処理(S49)を順次に実行する。この処理S69における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、定電流充電の終了であり、充電制御部21は、後述の処理S50を行い、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、定電流充電の続行であり、充電制御部21は、処理を処理S42に戻す。   As a result of the determination in the process S43, when the predetermined time tn has not elapsed (No), the charge control unit 21 executes the acquisition process (S44) of the voltage value Ex as in the process S14, and the process S18. Similarly, the determination process (S49) of voltage value Ex ≧ set voltage value Et is sequentially executed. As a result of the determination in this process S69, when the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the constant current charging is completed, and the charging control unit 21 is described later. On the other hand, when the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the constant current charging is continued, and the charging control unit 21 processes the process. Return to S42.

一方、処理S43における判断の結果、所定時間tnが経過している場合(Yes)には、充電制御部21は、まず、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電流充電中における充電電流Icの電流値Iccよりも小さい第1電流値Is1の第1電流が充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御し、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbの第1電圧値Vb1とする。そして、充電制御部21は、電流測定部14の測定電流Iを参照しながら充電電流調整部27の通電時間を調整することによって、定電流充電中における充電電流Icの電流値Iccよりも小さい第2電流値Is2の第2電流Iが充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御し、電圧測定部11から測定電圧Eの電圧値Exを取得し、これを電池電圧Vbの第2電圧値Vb2とする。第1電流値Is1と第2電流値Is2とは、互いに異なる値である。   On the other hand, if the result of determination in step S43 is that the predetermined time tn has elapsed (Yes), the charge control unit 21 first refers to the measurement current I of the current measurement unit 14 while the charge current adjustment unit 27 By adjusting the energization time, the first current having the first current value Is1 smaller than the current value Icc of the charging current Ic during constant current charging is supplied from the charging device 2 via the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2. Then, the charging current adjusting unit 27 of the DC power supply unit 13 is controlled so as to flow to the secondary battery device 3, and the voltage value Ex of the measured voltage E is obtained from the voltage measuring unit 11, and this is used as the first voltage value of the battery voltage Vb. Vb1. Then, the charging control unit 21 adjusts the energizing time of the charging current adjusting unit 27 while referring to the measured current I of the current measuring unit 14, thereby reducing the current value Icc of the charging current Ic during constant current charging. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled such that the second current I having the two current values Is2 flows from the charging device 2 to the secondary battery device 3 via the charging terminals Ts1 and Ts2 and the battery terminals Tb1 and Tb2. The voltage value Ex of the measurement voltage E is obtained from the voltage measurement unit 11, and this is set as the second voltage value Vb2 of the battery voltage Vb. The first current value Is1 and the second current value Is2 are different from each other.

この測定電圧Eの電圧値Exは、定電流充電中における充電電流Icの電流値Iccよりも小さい電流値Is1、Is2の電流Iを充電装置2から二次電池装置3へ流して電圧測定部11で電圧Eを測定しているので、定電流充電中における充電電流Icの電流値Iccの電流Iを充電装置2から二次電池装置3へ流している状態のままで電圧測定部11によって電圧Eを測定する場合に較べて、リチウムイオン二次電池31における実際の電池電圧Vbにより近い値となる。   The voltage value Ex of the measurement voltage E is obtained by causing the current I of Is1 and Is2 smaller than the current value Icc of the charging current Ic during constant current charging to flow from the charging device 2 to the secondary battery device 3 to be the voltage measuring unit 11. The voltage E is measured by the voltage measuring unit 11 while the current I having the current value Icc of the charging current Ic during constant current charging is flowing from the charging device 2 to the secondary battery device 3. As compared with the case of measuring, the value is closer to the actual battery voltage Vb in the lithium ion secondary battery 31.

次に、充電制御部21は、設定電圧値Ethを補正するための電圧補正値△Vを演算する(S46)。より具体的には、充電制御部21は、第1及び第2電流値Is1、Is2並びに測定結果の第1及び第2電圧値Vb1、Vb2を式2に用いて抵抗Rの抵抗値Rを演算し、定電流充電の電流値Iccを用いて電圧補正値△V=R・Iccを演算することによって電圧補正値△Vを演算する。 Next, the charge control unit 21 calculates a voltage correction value ΔV for correcting the set voltage value Eth (S46). More specifically, the charging control unit 21 uses the first and second current values Is1 and Is2 and the first and second voltage values Vb1 and Vb2 of the measurement result in Equation 2 to calculate the resistance value R0 of the resistor R. The voltage correction value ΔV is calculated by calculating the voltage correction value ΔV = R 0 · Icc using the constant current charging current value Icc.

次に、充電制御部21は、電圧補正値△Vを用いて設定電圧値Ethを補正する(S47)。より具体的には、充電制御部21は、現在の設定電圧値Ethに電圧補正値△Vを加算して新たな設定電圧値Eth(=Eth+△V)を求めることによって設定電圧値Ethを補正する。   Next, the charging control unit 21 corrects the set voltage value Eth using the voltage correction value ΔV (S47). More specifically, the charging control unit 21 corrects the set voltage value Eth by adding the voltage correction value ΔV to the current set voltage value Eth to obtain a new set voltage value Eth (= Eth + ΔV). To do.

次に、充電制御部21は、処理S11と同様に、タイマ部22の初期化を行った後にタイマ部22に所定時間tnを設定し、タイマ部22に計時を開始させ(S48)、処理を処理S42に戻す。   Next, similarly to the process S11, the charge control unit 21 initializes the timer unit 22, sets a predetermined time tn in the timer unit 22, causes the timer unit 22 to start measuring time (S48), and performs the process. It returns to processing S42.

このように所定時間tnの経過ごとに設定電圧値Ethが補正されるので、処理S49における定電流充電の終了をより正確に判断することができる。従って、充電装置3は、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   As described above, the set voltage value Eth is corrected at every elapse of the predetermined time tn, so that the end of the constant current charging in the process S49 can be determined more accurately. Therefore, the charging device 3 can efficiently charge the lithium ion secondary battery 31 so as to shorten the charging time without deteriorating the lithium ion secondary battery 31.

そして、処理S49における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、充電制御部21は、図2に示す処理S19、処理S20及び処理S21と同様に、充電電流Icを電流値Isまで小さくする処理(S50)、電圧値Exの取得処理(S51)、及び、電圧値Ex≧設定電圧値Etの判断処理(S52)を順次にそれぞれ実行する。この処理S52における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、定電流充電の終了であり、充電制御部21は、後述の処理S53を行い、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、定電流充電の続行であり、充電制御部21は、処理を処理S42に戻す。   When the voltage value Ex of the measured voltage E is equal to or greater than the predetermined set voltage value Eth (Ex ≧ Eth) as a result of the determination in the process S49, the charge control unit 21 performs the processes S19 and S20 shown in FIG. Similarly to the process S21, the process of reducing the charging current Ic to the current value Is (S50), the acquisition process of the voltage value Ex (S51), and the determination process of the voltage value Ex ≧ the set voltage value Et (S52) are sequentially performed. Run each. As a result of the determination in this process S52, when the voltage value Ex of the measured voltage E is equal to or greater than a predetermined set voltage value Eth (Ex ≧ Eth), the constant current charging is finished, and the charging control unit 21 is described later. On the other hand, when the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the constant current charging is continued, and the charging control unit 21 processes the process. Return to S42.

このように処理S49の判断で測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であると判断された場合(Ex≧Eth)に、処理S50乃至処理S51の各処理を実行するのは、第1の実施形態と同様に、処理S44で電池電圧Vbとした測定電圧Eの電圧値Exを用いて処理S49の判断を行って測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であると判断された場合(Ex≧Eth)では、処理S44の測定電圧Eの電圧値Exが実際の電池電圧Vbに対して比較的大きな誤差VR0を含む場合があるので、より正確に定電流充電の終了を判断するためである。 As described above, when it is determined in step S49 that the voltage value Ex of the measured voltage E is equal to or higher than the predetermined set voltage value Eth (Ex ≧ Eth), the processes S50 to S51 are executed. As in the first embodiment, the determination in step S49 is performed using the voltage value Ex of the measurement voltage E that is the battery voltage Vb in step S44, and the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth. in case where it is determined that (Ex ≧ Eth), there is a case where the voltage value Ex measured voltage E of the process S44 includes a relatively large error V R0 with respect to the actual battery voltage Vb, more precisely constant This is to determine the end of current charging.

処理S41乃至処理S52を実行することにより定電流充電が終了すると、処理S53において、充電制御部21は、まず、処理S11と同様に、タイマ部22の初期化を行った後にタイマ部22に所定時間tnを設定し、タイマ部22に計時を開始させる。   When the constant current charging is completed by executing the processing S41 to S52, in the processing S53, the charging control unit 21 first initializes the timer unit 22 and then sets the predetermined time to the timer unit 22 as in the processing S11. The time tn is set and the timer unit 22 is started to measure time.

次に、充電制御部21は、図3に示す処理S22と同様に、現在の充電電流Icを定電圧充電における初期の充電電流Icの電流値Icvとして電源制御部12に記憶する(S54)。そして、充電制御部21は、図3に示す処理S23と同様に、充電電流調整部27の通電時間を調整することによって、電源制御部12に記憶されている電流値Icvの電流Iが充電装置2から充電端子Ts1、Ts2及び電池端子Tb1、Tb2を介して二次電池装置3へ流れるように直流電源部13の充電電流調整部27を制御する(S55)。これによって充電装置2は、電流値Icvで二次電池装置3を充電する。   Next, the charging control unit 21 stores the current charging current Ic in the power supply control unit 12 as the current value Icv of the initial charging current Ic in the constant voltage charging, similarly to the process S22 shown in FIG. 3 (S54). Then, the charging control unit 21 adjusts the energizing time of the charging current adjusting unit 27 in the same manner as the process S23 shown in FIG. 3, so that the current I of the current value Icv stored in the power control unit 12 is changed to the charging device. The charging current adjusting unit 27 of the DC power supply unit 13 is controlled so as to flow from 2 to the secondary battery device 3 via the charging terminals Ts1, Ts2 and the battery terminals Tb1, Tb2 (S55). As a result, the charging device 2 charges the secondary battery device 3 with the current value Icv.

次に、充電制御部21は、所定時間tnが経過したか否かを判断する(S56)。   Next, the charging control unit 21 determines whether or not the predetermined time tn has elapsed (S56).

処理S56における判断の結果、所定時間tnが経過している場合(Yes)には、充電制御部21は、図6に示す処理S45乃至処理S48と同様に、充電電流Icを第1及び第2電流値Is1、Is2まで小さくして第1及び第2電圧値Vb1、Vb2を測定する測定処理(S57)、電圧補正値△Vを求める演算処理(S58)、設定電圧値Ethを電圧補正値△Vで補正する補正処理(S59)及びタイマ部22の設定及び計時開始処理(S60)を順次にそれぞれ実行し、処理を処理S55に戻す。   If the predetermined time tn has passed as a result of the determination in step S56 (Yes), the charging control unit 21 sets the charging current Ic to the first and second values in the same manner as in steps S45 to S48 shown in FIG. Measurement processing (S57) for measuring the first and second voltage values Vb1, Vb2 by reducing the current values Is1, Is2, calculation processing (S58) for obtaining the voltage correction value ΔV, and the set voltage value Eth as the voltage correction value Δ The correction process (S59) for correcting with V and the setting of the timer unit 22 and the timing start process (S60) are sequentially executed, and the process returns to the process S55.

一方、処理S56における判断の結果、所定時間tnが経過していない場合(No)には、充電制御部21は、図3に示す処理S24及び処理S25と同様に、電圧値Exの取得処理(S61)を実行し、電圧値Ex≧設定電圧値Etの判断処理(S62)を順次にそれぞれ実行する。   On the other hand, as a result of the determination in step S56, when the predetermined time tn has not elapsed (No), the charging control unit 21 acquires the voltage value Ex (step S24 and step S25 shown in FIG. 3). S61) is executed, and determination processing (S62) of voltage value Ex ≧ set voltage value Et is sequentially executed.

処理S62における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、充電制御部21は、図3の処理S26と同様に、充電電流Icの電流値Icvを所定値△Icvだけ増加させる増加処理(S63)を実行し、処理を処理S55に戻す。これによって処理S55で所定値△Icvだけ増加した電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。   When the voltage value Ex of the measurement voltage E is less than the predetermined set voltage value Eth as a result of the determination in the process S62 (Ex <Eth), the charge control unit 21 determines the charge current as in the process S26 of FIG. An increase process (S63) for increasing the current value Icv of Ic by a predetermined value ΔIcv is executed, and the process returns to process S55. As a result, the charging current Ic having the current value Icv increased by the predetermined value ΔIcv in step S55 flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged.

なお、この処理S63を省略してもよい。即ち、処理S62における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)に、充電制御部21は、処理S63を実行することなく、処理を処理S55に戻す。このように構成することによって、充電制御部21は、定電圧充電の場合に充電電流Icを増加させることがないので、過充電を回避することができ、安全性や信頼性が向上する。   This process S63 may be omitted. That is, as a result of the determination in the process S62, when the voltage value Ex of the measured voltage E is less than the predetermined set voltage value Eth (Ex <Eth), the charge control unit 21 performs the process without executing the process S63. It returns to processing S55. With this configuration, the charging control unit 21 does not increase the charging current Ic in the case of constant voltage charging, so that overcharging can be avoided, and safety and reliability are improved.

一方、処理S62における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、充電制御部21は、図3の処理S27乃至処理S29と同様に、充電電流Icを電流値Isに小さくする処理(S64)、電圧値Exの取得処理(S65)を実行し、電圧値Ex≧設定電圧値Ethかつ電流値Icv≦設定電流値Ithの判断処理(S65)を順次にそれぞれ実行する。   On the other hand, as a result of the determination in step S62, when the voltage value Ex of the measured voltage E is equal to or greater than the predetermined set voltage value Eth (Ex ≧ Eth), the charge control unit 21 performs steps S27 to S29 in FIG. Similarly, the process of reducing the charging current Ic to the current value Is (S64) and the acquisition process of the voltage value Ex (S65) are executed, and the determination of the voltage value Ex ≧ the set voltage value Eth and the current value Icv ≦ the set current value Ith is performed. The processing (S65) is sequentially executed.

処理S65における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上であって、定電圧充電中における充電電流Icの電流値Icvが所定の設定電流値Ith以下である場合(Ex≧Eth and Icv≦Ith)には、定電圧充電の終了、即ち、充電の終了であり、充電制御部21は、リチウムイオン二次電池31を充電する本処理を終了する。   As a result of the determination in step S65, when the voltage value Ex of the measurement voltage E is equal to or greater than a predetermined set voltage value Eth and the current value Icv of the charging current Ic during constant voltage charging is equal to or less than the predetermined set current value Ith ( (Ex ≧ Eth and Icv ≦ Ith) is the end of constant voltage charging, that is, the end of charging, and the charging control unit 21 ends the main process of charging the lithium ion secondary battery 31.

一方、処理S65における判断の結果、定電圧充電中における充電電流Icの電流値Icvが所定の設定電流値Ithより大きい場合(Icv>Ith)には、定電圧充電の続行であり、充電制御部21は、まず、充電制御部21は、図3に示す処理S30と同様に、電圧値Ex≧設定電圧値Ethの判断処理(S67)を実行する。   On the other hand, as a result of the determination in step S65, if the current value Icv of the charging current Ic during constant voltage charging is larger than the predetermined set current value Ith (Icv> Ith), the constant voltage charging is continued, and the charging control unit 21. First, the charging control unit 21 executes a determination process (S67) of the voltage value Ex ≧ the set voltage value Eth, similarly to the process S30 illustrated in FIG.

処理S67における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には、充電制御部21は、図3の処理S31と同様に、充電電流Icの電流値Icvを所定値△Icvだけ減少させる減少処理(S68)を実行し、処理を処理S55に戻す。これによって処理S55で所定値△Icvだけ減少した電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。   When the voltage value Ex of the measured voltage E is equal to or greater than the predetermined set voltage value Eth (Ex ≧ Eth) as a result of the determination in the process S67, the charging control unit 21 determines the charging current as in the process S31 of FIG. A decrease process (S68) for decreasing the current value Icv of Ic by a predetermined value ΔIcv is executed, and the process returns to process S55. As a result, the charging current Ic having the current value Icv decreased by the predetermined value ΔIcv in the process S55 flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged.

一方、処理S67における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には、充電制御部21は、図3に示す処理S32と同様に、現在の充電電流Icの電流値Icvを保持する保持処理を実行し(S69)、処理を処理S23に戻す。これによって処理S55で現在の電流値Icvの充電電流Icが充電装置2から二次電池装置3へ流れ、二次電池装置3が充電される。   On the other hand, when the voltage value Ex of the measured voltage E is less than the predetermined set voltage value Eth as a result of the determination in the process S67 (Ex <Eth), the charge control unit 21 performs the same process as the process S32 shown in FIG. Then, a holding process for holding the current value Icv of the current charging current Ic is executed (S69), and the process returns to the process S23. Thereby, in process S55, the charging current Ic of the current value Icv flows from the charging device 2 to the secondary battery device 3, and the secondary battery device 3 is charged.

このように所定時間tnの経過ごとに設定電圧値Ethが補正されるので、処理S62及び処理S66におけるリチウムイオン二次電池31の充電電流Icが設定電流値Ithに達するまでリチウムイオン二次電池31の電池電圧Vbが設定電圧値Ethを実質的に越えない充電電流Icvで定電圧充電を行う判断をより正確に行うことができる。このため、本発明を適用しない場合に較べて定電圧充電の電流値Icvを大きくすることができるから、充電装置3は、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。また、このように所定時間tnの経過ごとに設定電圧値Ethが補正されるので、処理S66における定電圧充電の終了をより正確に判断することができる。従って、充電装置3は、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   Since the set voltage value Eth is corrected every time the predetermined time tn elapses in this way, the lithium ion secondary battery 31 is charged until the charging current Ic of the lithium ion secondary battery 31 in the processes S62 and S66 reaches the set current value Ith. The battery voltage Vb can be determined more accurately with the charging current Icv that does not substantially exceed the set voltage value Eth. For this reason, since the current value Icv of constant voltage charging can be increased as compared with the case where the present invention is not applied, the charging device 3 can shorten the charging time without deteriorating the lithium ion secondary battery 31. The lithium ion secondary battery 31 can be charged efficiently. Further, since the set voltage value Eth is corrected every time the predetermined time tn elapses in this way, it is possible to more accurately determine the end of the constant voltage charging in the process S66. Therefore, the charging device 3 can efficiently charge the lithium ion secondary battery 31 so as to shorten the charging time without deteriorating the lithium ion secondary battery 31.

このように第2の実施形態に係る充電システム1では、充電装置2が所定時間tnの経過ごとに設定電圧値Ethを補正するので、リチウムイオン二次電池31を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   As described above, in the charging system 1 according to the second embodiment, the charging device 2 corrects the set voltage value Eth every elapse of the predetermined time tn, so that the charging time can be reduced without deteriorating the lithium ion secondary battery 31. The lithium ion secondary battery 31 can be charged efficiently so as to be shorter.

なお、上述の第2の実施形態において、電源制御部12の情報処理負荷の軽減や充電時間の短縮を図るために、図6の処理S50乃至処理S52を省略してもよい。即ち、処理S49における判断の結果、測定電圧Eの電圧値Exが所定の設定電圧値Eth以上である場合(Ex≧Eth)には処理S53が実行され、一方、測定電圧Eの電圧値Exが所定の設定電圧値Eth未満である場合(Ex<Eth)には処理が処理S42に戻るように充電装置2が構成されてもよい。このように構成することによって上述の図6に示す動作を行う場合に較べて、図6の処理S50乃至処理S52を省略した分に相当する電源制御部12の情報処理負荷が軽減され、そして、その分の充電時間が短縮される。   In the second embodiment described above, the processing S50 to S52 in FIG. 6 may be omitted in order to reduce the information processing load of the power supply control unit 12 and shorten the charging time. That is, as a result of the determination in the process S49, when the voltage value Ex of the measurement voltage E is equal to or greater than the predetermined set voltage value Eth (Ex ≧ Eth), the process S53 is executed, while the voltage value Ex of the measurement voltage E is When the voltage is less than the predetermined set voltage value Eth (Ex <Eth), the charging device 2 may be configured such that the process returns to the process S42. By configuring in this way, the information processing load of the power supply control unit 12 corresponding to the amount of omitting the processes S50 to S52 of FIG. 6 is reduced as compared with the case where the operation shown in FIG. 6 is performed, and The charge time is reduced accordingly.

また、上述の実施形態において、所定時間tnは、一定ではなく変化させてもよく、また、各所定時間tnにおける電流値Isの値は、一定ではなく変化させてもよい。   In the above-described embodiment, the predetermined time tn may be changed without being constant, and the current value Is at each predetermined time tn may be changed without being constant.

図8は、設定電圧値の温度特性を示す図である。図8の横軸は、温度Tempであり、その縦軸は、設定電圧値Eth(Temp)である。リチウムイオン二次電池31(リチウムイオン二次電池セル41)の設定電圧値Ethは、図8に示すように温度Tempに依存する。設定電圧値Ethは、温度Tempの上昇に伴って緩やかに大きくなる。   FIG. 8 is a diagram illustrating temperature characteristics of the set voltage value. The horizontal axis in FIG. 8 is the temperature Temp, and the vertical axis is the set voltage value Eth (Temp). The set voltage value Eth of the lithium ion secondary battery 31 (lithium ion secondary battery cell 41) depends on the temperature Temp as shown in FIG. The set voltage value Eth gradually increases as the temperature Temp increases.

このため、上述の第1及び第2の実施形態において、充電装置2は、設定電圧値Ethを温度に応じて補正するように構成されてもよい。このように構成することによって温度変化に伴う設定電圧値Ethの変化を考慮した設計マージンを少なくすることができる。   For this reason, in the above-described first and second embodiments, the charging device 2 may be configured to correct the set voltage value Eth according to the temperature. With this configuration, it is possible to reduce a design margin in consideration of a change in the set voltage value Eth accompanying a temperature change.

このような設定電圧値Ethを温度に応じて補正する充電システム1の構成は、第1及び第2の実施形態に係る二次電池装置3に図1に破線で示すように、リチウムイオン二次電池31の温度を電池温度Tbとして検出する温度検出部32と、温度検出部32で検出した検出結果を出力する共に充電側通信端子Tc2に接続するための電池側通信端子Tc1をさらに備え、第1及び第2の実施形態に係る充電装置2に図1に破線で示すように、二次電池装置3の温度検出部32で検出した検出結果を出力する電池側通信端子Tc1と接続するための充電側通信端子Tc2と、充電側温度端子Tc2から入力された検出結果をA/D変換して電池温度Tbとして電源制御部12に出力するA/D変換部16とをさらに備える。温度検出部32は、例えば、サーミスタ等の温度によってその抵抗値が変化する温度検出素子であり、リチウムイオン二次電池31に対して温度検出素子が1個設けられてもよく、また複数のリチウムイオン二次電池セル41に対して温度検出素子が1個設けられてもよく、また個々のリチウムイオン二次電池セル41に対して温度検出素子が1個設けられてもよい。複数の温度検出素子が設けられている場合には、設定電圧値Ethの温度特性が図9に示すように温度の上昇に応じて大きくなるので、各検出温度のうち最低温度が温度検出部32の出力とされる。   The configuration of the charging system 1 that corrects the set voltage value Eth according to temperature is such that the secondary battery device 3 according to the first and second embodiments has a lithium ion secondary as shown by a broken line in FIG. A temperature detection unit 32 for detecting the temperature of the battery 31 as the battery temperature Tb; and a battery side communication terminal Tc1 for outputting a detection result detected by the temperature detection unit 32 and connecting to the charging side communication terminal Tc2. As shown by a broken line in FIG. 1, the charging device 2 according to the first and second embodiments is connected to the battery side communication terminal Tc1 that outputs the detection result detected by the temperature detection unit 32 of the secondary battery device 3. A charging side communication terminal Tc2 and an A / D conversion unit 16 that A / D converts the detection result input from the charging side temperature terminal Tc2 and outputs the result to the power supply control unit 12 as the battery temperature Tb are further provided. The temperature detection unit 32 is a temperature detection element whose resistance value changes depending on the temperature of a thermistor, for example. One temperature detection element may be provided for the lithium ion secondary battery 31, and a plurality of lithium detection elements may be provided. One temperature detection element may be provided for the ion secondary battery cell 41, and one temperature detection element may be provided for each lithium ion secondary battery cell 41. In the case where a plurality of temperature detection elements are provided, the temperature characteristic of the set voltage value Eth increases as the temperature rises as shown in FIG. Output.

そして、充電制御部21は、図2及び図3では処理S18、処理S21、処理S25、処理S29及び処理S30のように、また、図6及び図7では処理S49、処理S52、処理S54、処理S60及び処理S61のように、電圧測定部11で測定した測定電圧Eの電圧値Exと設定電圧値Ethとを比較する処理を行う前に、二次電池装置3の温度検出部32から電池側通信端子Tc1、充電側通信端子Tc2及びA/D変換部16を介して電池温度Tbを取得し、この取得した電池温度Tbに基づいて設定電圧値Ethを補正する。   2 and 3, the charging control unit 21 performs processing S18, processing S21, processing S25, processing S29 and processing S30, and in FIGS. 6 and 7, processing S49, processing S52, processing S54 and processing. Before performing the process of comparing the voltage value Ex of the measured voltage E measured by the voltage measuring unit 11 and the set voltage value Eth as in S60 and S61, the temperature detection unit 32 of the secondary battery device 3 is connected to the battery side. The battery temperature Tb is acquired through the communication terminal Tc1, the charging-side communication terminal Tc2, and the A / D conversion unit 16, and the set voltage value Eth is corrected based on the acquired battery temperature Tb.

この補正は、例えば、複数の温度範囲ごとに設定電圧値Ethを対応させたルックアップテーブルを電源制御部12に予め記憶させておき、温度検出部32から取得した電池温度Tbに対応する設定電圧値Ethをこのルックアップテーブルから取得することによって行う。このルックアップテーブルは、例えば図8に示す設定電圧値Ethの温度特性を複数の温度範囲に区切って、各温度範囲における設定電圧値Ethを設定することによって作成される。   For this correction, for example, a lookup table in which the set voltage value Eth is associated with each of a plurality of temperature ranges is stored in the power supply control unit 12 in advance, and the set voltage corresponding to the battery temperature Tb acquired from the temperature detection unit 32 is stored. This is done by obtaining the value Eth from this lookup table. This lookup table is created, for example, by dividing the temperature characteristic of the set voltage value Eth shown in FIG. 8 into a plurality of temperature ranges and setting the set voltage value Eth in each temperature range.

また例えば、この補正は、設定電圧値Ethの温度特性を示す関数式を電源制御部12に予め記憶させておき、温度検出部32から取得した電池温度Tbに対応する設定電圧値Ethをこの関数式を用いて演算することによって行う。この関数式は、例えば、設定電圧値Ethの温度特性を多項式近似することによって作成される。   Further, for example, in this correction, a function expression indicating the temperature characteristic of the set voltage value Eth is stored in the power supply control unit 12 in advance, and the set voltage value Eth corresponding to the battery temperature Tb obtained from the temperature detection unit 32 is stored in this function. This is done by calculating using an expression. This function formula is created, for example, by approximating the temperature characteristic of the set voltage value Eth by a polynomial.

このように構成することによって温度変化に伴う設定電圧値Ethの変化を考慮した設計マージンを少なくすることができる。そして、温度変化に応じて設定電圧値Ethを変更するので、過充電を回避することができ、安全性や信頼性が向上する。   With this configuration, it is possible to reduce a design margin in consideration of a change in the set voltage value Eth accompanying a temperature change. And since the setting voltage value Eth is changed according to a temperature change, overcharge can be avoided and safety | security and reliability improve.

このような充電装置2は、電池式装置における駆動電源として汎用される種々の二次電池に対して適用可能であるが、一例として、電動工具の駆動電源として用いられるリチウムイオン二次電池の場合について以下に説明する。   Such a charging device 2 can be applied to various secondary batteries widely used as a driving power source in a battery-powered device. As an example, in the case of a lithium ion secondary battery used as a driving power source for an electric tool. Is described below.

図9は、実施形態に係る充電装置が適用される充電式電動工具セットの要部を示す外観構成図である。図10は、電動工具本体の装着部に電池パックが装着された状態を示す図である。図11は、充電装置の装着孔部に電池パックが装着された状態を示す図である。   FIG. 9 is an external configuration diagram illustrating a main part of a rechargeable power tool set to which the charging device according to the embodiment is applied. FIG. 10 is a diagram illustrating a state in which the battery pack is mounted on the mounting portion of the electric tool main body. FIG. 11 is a diagram illustrating a state where the battery pack is mounted in the mounting hole of the charging device.

図9において、充電式電動工具セット100は、充電式ドリルドライバーを構成する電動工具本体110と、この電動工具本体110に装着される電池パック(二次電池装置)120と、この電池パック120を充電する充電装置130とを備えている。   In FIG. 9, the rechargeable power tool set 100 includes a power tool main body 110 constituting a rechargeable drill driver, a battery pack (secondary battery device) 120 attached to the power tool main body 110, and the battery pack 120. And a charging device 130 for charging.

電動工具本体110は、筐体111の把持部の内部に形成され、電池パック120が取外し自在に装着される装着部112と、筐体111の内部に配設され、電池パック120から電流が供給されることで駆動されるモータ113と、筐体111の把持部に設けられ、モータ113への電流の供給をオンオフ制御するトリガースイッチ114と、筐体111の先端に設けられ、ドリル歯などが取り付けられる回転部115とを備えている。装着部112の底部には、モータ113に接続された一対の電極端子116が取り付けられている。   The power tool main body 110 is formed inside the gripping portion of the casing 111 and is provided inside the casing 111 with a mounting portion 112 to which the battery pack 120 is detachably mounted, and current is supplied from the battery pack 120. Motor 113 that is driven by this, and a trigger switch 114 that is provided on the gripping portion of the casing 111 and that controls on / off of the supply of current to the motor 113, and provided at the tip of the casing 111, with drill teeth, etc. And a rotating part 115 to be attached. A pair of electrode terminals 116 connected to the motor 113 are attached to the bottom of the mounting portion 112.

電池パック(二次電池装置)120は、1又は複数のリチウムイオン二次電池セルを備えて構成されるリチウムイオン二次電池122等が筐体121内に収納された本体部123と、本体部123の一面側に突出し、電動工具本体110の装着部112に装着される電極部124とを備えている。電極部124は、先端部の対向面にリチウムイオン二次電池122の電極に接続された一対の電池端子125が設けられている。この一対の電池端子125は、電動工具本体110の装着部112に装着された場合に装着部112の一対の電極端子116が圧接されるようになっている。また、図10に、電動工具本体110の装着部112に電池パック120が装着された状態を示している。   A battery pack (secondary battery device) 120 includes a main body 123 in which a lithium ion secondary battery 122 and the like configured by including one or a plurality of lithium ion secondary battery cells are housed in a housing 121, and a main body 123, and an electrode portion 124 that is attached to the attachment portion 112 of the electric power tool main body 110. The electrode part 124 is provided with a pair of battery terminals 125 connected to the electrode of the lithium ion secondary battery 122 on the opposite surface of the tip part. When the pair of battery terminals 125 are mounted on the mounting portion 112 of the electric power tool main body 110, the pair of electrode terminals 116 of the mounting portion 112 are pressed against each other. FIG. 10 shows a state in which the battery pack 120 is mounted on the mounting portion 112 of the electric power tool main body 110.

充電装置130は、内部に直流電源部や電源制御部等を構成する回路ブロック131が設けられ、上面側に電池パック120の電極部124が取外し自在に装着される装着孔部132が設けられている。この装着孔部132内部の対向位置に一対の充電端子133(一方のみ図示)が設けられており、電池パック120の電極部124が装着された場合にその一対の電池端子125に装着孔部132の一対の充電端子133が圧接されるようになっている。また、図11に、充電装置130の装着孔部132に電池パック120が装着された状態を示している。   The charging device 130 includes a circuit block 131 that constitutes a DC power supply unit, a power supply control unit, and the like inside, and a mounting hole portion 132 in which the electrode unit 124 of the battery pack 120 is detachably mounted on the upper surface side. Yes. A pair of charging terminals 133 (only one of them is shown) is provided at an opposing position inside the mounting hole 132, and when the electrode part 124 of the battery pack 120 is mounted, the mounting hole 132 is connected to the pair of battery terminals 125. A pair of charging terminals 133 are pressed against each other. FIG. 11 shows a state in which the battery pack 120 is mounted in the mounting hole 132 of the charging device 130.

なお、電池温度Tbを検出する場合には、破線で示すように、リチウムイオン二次電池122の温度を電池温度Tbとして検出する温度検出部127(不図示)で検出した検出結果を出力する電池側通信端子126が電極部124の先端部に設けられてもよく、これに応じて、装着孔部132内部に充電側通信端子134(不図示)が設けられてもよく、電池パック120の電極部124が装着された場合にその電池側通信端子126に装着孔部132の充電側通信端子134が圧接されるように構成されてもよい。   When the battery temperature Tb is detected, as shown by a broken line, a battery that outputs a detection result detected by a temperature detection unit 127 (not shown) that detects the temperature of the lithium ion secondary battery 122 as the battery temperature Tb. The side communication terminal 126 may be provided at the distal end portion of the electrode portion 124, and accordingly, the charging side communication terminal 134 (not shown) may be provided inside the mounting hole portion 132, and the electrode of the battery pack 120 may be provided. When the portion 124 is mounted, the battery-side communication terminal 126 may be configured to be in pressure contact with the charging-side communication terminal 134 of the mounting hole 132.

ここで、充電装置130が図1に示す充電装置2に対応し、回路ブロック131が図1に示す電圧測定部11、電源制御部12、直流電源部13及び電流測定部14に対応し、充電端子133が図1に示す充電端子Ts1、Ts2に対応する。また、電池パック120が図1に示す二次電池装置3に対応し、リチウムイオン二次電池122が図1に示すリチウムイオン二次電池31に対応し、電池端子125が図1に示す電池端子Tb1、Tb2に対応する。なお、電池温度Tbを検出する場合であって電池側通信端子126及び充電側通信端子134を備える場合では、充電側通信端子134が図1に示す充電側通信端子Tc2に対応し、電池側通信端子126が図1に示す電池側通信端子Tc1に対応する。   Here, the charging device 130 corresponds to the charging device 2 shown in FIG. 1, and the circuit block 131 corresponds to the voltage measurement unit 11, the power supply control unit 12, the DC power supply unit 13, and the current measurement unit 14 shown in FIG. The terminal 133 corresponds to the charging terminals Ts1 and Ts2 shown in FIG. The battery pack 120 corresponds to the secondary battery device 3 shown in FIG. 1, the lithium ion secondary battery 122 corresponds to the lithium ion secondary battery 31 shown in FIG. 1, and the battery terminal 125 corresponds to the battery terminal shown in FIG. This corresponds to Tb1 and Tb2. When the battery temperature Tb is detected and the battery side communication terminal 126 and the charge side communication terminal 134 are provided, the charge side communication terminal 134 corresponds to the charge side communication terminal Tc2 shown in FIG. The terminal 126 corresponds to the battery side communication terminal Tc1 shown in FIG.

このように、充電装置130に電池パック120が装着されて両者が回路接続されることで、充電装置130は、上述のように電池パック120を定電流−定電圧で充電する。このため、電池パック120のリチウムイオン二次電池122を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   As described above, when the battery pack 120 is mounted on the charging device 130 and the both are connected in a circuit, the charging device 130 charges the battery pack 120 with constant current-constant voltage as described above. For this reason, the lithium ion secondary battery 31 can be efficiently charged so as to shorten the charging time without deteriorating the lithium ion secondary battery 122 of the battery pack 120.

また、実施形態に係る充電装置2が電動工具、電気剃刀、携帯電話及びノート型パーソナルコンピュータ等の様々な電気機器に組み込まれて構成されてもよい。このように構成された場合でも、充電装置2が上述のように電池パック120を定電流−定電圧で充電することによって、電池パック120のリチウムイオン二次電池122を劣化させることなく、充電時間が短くなるように効率よくリチウムイオン二次電池31を充電することができる。   In addition, the charging device 2 according to the embodiment may be configured to be incorporated in various electric devices such as an electric tool, an electric razor, a mobile phone, and a notebook personal computer. Even in such a configuration, the charging device 2 charges the battery pack 120 at a constant current-constant voltage as described above, so that the charging time can be reduced without deteriorating the lithium ion secondary battery 122 of the battery pack 120. Thus, the lithium ion secondary battery 31 can be charged efficiently so as to shorten the time.

実施形態における充電装置の構成を示す図である。It is a figure which shows the structure of the charging device in embodiment. 第1の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the operation | movement of the constant current-constant voltage charge of the charging device in 1st Embodiment. 第1の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the operation | movement of the constant current-constant voltage charge of the charging device in 1st Embodiment. 定電流−定電圧充電における電流及び電圧の時間的変化を示す図である。It is a figure which shows the time change of the electric current and voltage in constant current-constant voltage charge. 充電システムの回路等価モデルを示す図である。It is a figure which shows the circuit equivalent model of a charging system. 第2の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the operation | movement of the constant current-constant voltage charge of the charging device in 2nd Embodiment. 第2の実施形態における充電装置の定電流−定電圧充電の動作を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the operation | movement of the constant current-constant voltage charge of the charging device in 2nd Embodiment. 設定電圧値の温度特性を示す図である。It is a figure which shows the temperature characteristic of a setting voltage value. 実施形態に係る充電装置が適用される充電式電動工具セットの要部を示す外観構成図である。It is an external appearance block diagram which shows the principal part of the rechargeable electric tool set to which the charging device which concerns on embodiment is applied. 電動工具本体の装着部に電池パックが装着された状態を示す図である。It is a figure which shows the state by which the battery pack was mounted | worn with the mounting part of the electric tool main body. 充電装置の装着孔部に電池パックが装着された状態を示す図である。It is a figure which shows the state by which the battery pack was mounted | worn in the mounting hole part of the charging device. リチウムイオン二次電池の充電特性を示す図である。It is a figure which shows the charge characteristic of a lithium ion secondary battery. 背景技術に係る充電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the charging system which concerns on background art. リチウムイオン二次電池に対する充放電の状態監視を充電装置側で行う場合におけるリチウムイオン二次電池の充電特性を示す図である。It is a figure which shows the charge characteristic of a lithium ion secondary battery in the case of performing the charge / discharge state monitoring with respect to a lithium ion secondary battery on the charging device side.

符号の説明Explanation of symbols

1 充電システム
2 充電装置
3 二次電池装置
11 電圧測定部
12 電源制御部
13 直流電源部
14 電流測定部
16 アナログ/ディジタル変換部
21 充電制御部
22 タイマ部
23 制御データ記憶部
31 リチウムイオン二次電池
32 温度検出部
41 リチウムイオン二次電池セル
DESCRIPTION OF SYMBOLS 1 Charging system 2 Charging apparatus 3 Secondary battery apparatus 11 Voltage measurement part 12 Power supply control part 13 DC power supply part 14 Current measurement part 16 Analog / digital conversion part 21 Charge control part 22 Timer part 23 Control data storage part 31 Lithium ion secondary Battery 32 Temperature detector 41 Lithium ion secondary battery cell

Claims (6)

充電対象のリチウムイオン二次電池を、前記リチウムイオン二次電池の電池電圧が設定電圧値に達するまでは定電流充電を行って、前記リチウムイオン二次電池の電池電圧が前記設定電圧値に達した後は前記リチウムイオン二次電池の充電電流が設定電流値に達するまで前記リチウムイオン二次電池の電池電圧が前記設定電圧値を実質的に越えない充電電流で定電圧充電を行う充電装置において、
前記リチウムイオン二次電池を充電する電力を供給する電源部と、
前記リチウムイオン二次電池の電圧を測定する電圧測定部と、
前記リチウムイオン二次電池へ流れる電流を測定する電流測定部と、
前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい電流値の電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の電圧を測定し、該測定結果に基づいて前記充電を行うように前記電源部を制御する制御部とを備えること
を特徴とする充電装置。
The lithium ion secondary battery to be charged is charged at a constant current until the battery voltage of the lithium ion secondary battery reaches a set voltage value, and the battery voltage of the lithium ion secondary battery reaches the set voltage value. In a charging device that performs constant voltage charging with a charging current that does not substantially exceed the set voltage value until the charging current of the lithium ion secondary battery reaches a set current value ,
A power supply for supplying power for charging the lithium ion secondary battery;
A voltage measuring unit for measuring a voltage of the lithium ion secondary battery;
A current measuring unit for measuring a current flowing to the lithium ion secondary battery;
By flowing a current having a current value smaller than the current value of the charging current during the charging from the power supply unit to the lithium ion secondary battery during at least one of the constant current charging and the constant voltage charging. A charging device comprising: a control unit that measures the voltage of the lithium ion secondary battery by the voltage measurement unit and controls the power supply unit to perform the charging based on the measurement result.
前記電源制御部は、前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい電流値の電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の電圧を測定し、該測定結果を前記電池電圧として前記充電を行うように前記電源部を制御すること
を特徴とする請求項1に記載の充電装置。
The power supply control unit supplies a current having a current value smaller than a current value of a charging current during the charging from the power supply unit to the lithium ion secondary battery during at least one of the constant current charging and the constant voltage charging. The voltage measurement unit measures the voltage of the lithium ion secondary battery by flowing the secondary battery, and the power source unit is controlled to perform the charging using the measurement result as the battery voltage. The charging device according to 1.
前記電源制御部は、前記定電流充電中及び前記定電圧充電中の少なくとも一方の充電中に、該充電中における充電電流の電流値よりも小さい互いに異なる第1及び第2電流値の第1及び第2電流を前記電源部から前記リチウムイオン二次電池へ流すことによって前記電圧測定部で前記リチウムイオン二次電池の第1及び第2電圧を測定し、前記第1及び第2電流の第1及び第2電流値並びに前記測定結果の第1及び第2電圧値に基づいて前記設定電圧値を補正して前記充電を行うように前記電源部を制御すること
を特徴とする請求項1に記載の充電装置。
The power supply control unit includes first and second current values that are different from each other during charging and are different from each other during charging at least one of the constant current charging and the constant voltage charging. A first current and a second voltage of the lithium ion secondary battery are measured by the voltage measuring unit by flowing a second current from the power source to the lithium ion secondary battery, and the first of the first and second currents is measured. The power supply unit is controlled to perform the charging by correcting the set voltage value based on the first current value and the second voltage value of the measurement result and the first and second voltage values of the measurement result. Charging device.
前記リチウムイオン二次電池の電池温度に応じて前記設定電圧値を補正する設定電圧補正部をさらに備えること
を特徴とする請求項1乃至請求項3の何れか1項に記載の充電装置。
The charging device according to any one of claims 1 to 3, further comprising a set voltage correction unit that corrects the set voltage value according to a battery temperature of the lithium ion secondary battery.
リチウムイオン二次電池を備える二次電池装置と、前記リチウムイオン二次電池を充電する充電装置とを備える充電システムにおいて、
前記充電装置は、請求項1乃至請求項4の何れか1項に記載の充電装置であること
を特徴とする充電システム。
In a charging system comprising a secondary battery device comprising a lithium ion secondary battery and a charging device for charging the lithium ion secondary battery,
The charging system according to claim 1, wherein the charging apparatus is the charging apparatus according to claim 1.
請求項1乃至請求項4の何れか1項に記載の充電装置が組み込まれた電気機器。   An electric device in which the charging device according to any one of claims 1 to 4 is incorporated.
JP2006088572A 2006-03-28 2006-03-28 Charger, charging system and electric apparatus Withdrawn JP2007267498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088572A JP2007267498A (en) 2006-03-28 2006-03-28 Charger, charging system and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088572A JP2007267498A (en) 2006-03-28 2006-03-28 Charger, charging system and electric apparatus

Publications (1)

Publication Number Publication Date
JP2007267498A true JP2007267498A (en) 2007-10-11

Family

ID=38639944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088572A Withdrawn JP2007267498A (en) 2006-03-28 2006-03-28 Charger, charging system and electric apparatus

Country Status (1)

Country Link
JP (1) JP2007267498A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570566A (en) * 2012-02-23 2012-07-11 华中科技大学 Charger system
JP2013088951A (en) * 2011-10-14 2013-05-13 Keyence Corp Optical information reading apparatus
CN104037821A (en) * 2013-08-26 2014-09-10 上海明华电力技术工程有限公司 Online real-time voltage balance management system and method of storage battery pack
CN104967201A (en) * 2015-08-05 2015-10-07 青岛海信移动通信技术股份有限公司 Fast-charging method, mobile terminal and power adapter capable of being charged directly
CN104993565A (en) * 2015-08-05 2015-10-21 青岛海信移动通信技术股份有限公司 Power supply adapter capable of charging directly
US10050460B2 (en) 2015-08-05 2018-08-14 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal, DC-charging power source adaptor, and charging method
US10050466B2 (en) 2015-08-05 2018-08-14 Hisense Mobile Communications Technology Co., Ltd. DC-charging power source adaptor and mobile terminal
US10097032B2 (en) 2015-08-05 2018-10-09 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and charging method
US10097022B2 (en) 2015-08-05 2018-10-09 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and rapid charging method
US10110038B2 (en) 2015-08-05 2018-10-23 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and rapid charging method
US10461549B2 (en) 2015-08-05 2019-10-29 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal, DC-charging power source adaptor, and charging method
JP2019216602A (en) * 2016-07-26 2019-12-19 オッポ広東移動通信有限公司 Adapter and charging control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088951A (en) * 2011-10-14 2013-05-13 Keyence Corp Optical information reading apparatus
CN102570566A (en) * 2012-02-23 2012-07-11 华中科技大学 Charger system
CN104037821A (en) * 2013-08-26 2014-09-10 上海明华电力技术工程有限公司 Online real-time voltage balance management system and method of storage battery pack
US10044217B2 (en) 2015-08-05 2018-08-07 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal, DC-charging power source adaptor, and rapid charging method
CN104993565A (en) * 2015-08-05 2015-10-21 青岛海信移动通信技术股份有限公司 Power supply adapter capable of charging directly
US10044204B2 (en) 2015-08-05 2018-08-07 Hisense Mobhe Communications Technology Co., Ltd. Power source adaptor for charging directly
CN104967201A (en) * 2015-08-05 2015-10-07 青岛海信移动通信技术股份有限公司 Fast-charging method, mobile terminal and power adapter capable of being charged directly
US10050460B2 (en) 2015-08-05 2018-08-14 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal, DC-charging power source adaptor, and charging method
US10050466B2 (en) 2015-08-05 2018-08-14 Hisense Mobile Communications Technology Co., Ltd. DC-charging power source adaptor and mobile terminal
CN104967201B (en) * 2015-08-05 2018-10-02 青岛海信移动通信技术股份有限公司 Fast charge method, mobile terminal and the source adapter that can directly charge
US10097032B2 (en) 2015-08-05 2018-10-09 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and charging method
US10097022B2 (en) 2015-08-05 2018-10-09 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and rapid charging method
US10110038B2 (en) 2015-08-05 2018-10-23 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal and rapid charging method
US10461549B2 (en) 2015-08-05 2019-10-29 Hisense Mobile Communications Technology Co., Ltd. Mobile terminal, DC-charging power source adaptor, and charging method
JP2019216602A (en) * 2016-07-26 2019-12-19 オッポ広東移動通信有限公司 Adapter and charging control method

Similar Documents

Publication Publication Date Title
JP2007267498A (en) Charger, charging system and electric apparatus
EP2568569B1 (en) Charger
JP4660523B2 (en) Charging system that controls charging at the surface temperature of the battery cell
JP4088414B2 (en) Rechargeable battery charging method and apparatus
US6683439B2 (en) DC power source unit with battery charging function
US8264198B2 (en) Battery pack, battery charger and charging method having multiple charging modes
US20070103113A1 (en) Methods of charging battery packs for cordless power tool systems
KR20060042025A (en) Rechargeable battery charging method and apparatus
KR102160272B1 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
JP3897027B2 (en) Battery device and discharge control method for battery device
JP5498149B2 (en) Secondary battery device and vehicle
CN110515002B (en) Battery capacity monitor
JP6520124B2 (en) Deterioration state estimation device for secondary battery
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
JP2014523731A (en) Li-ion battery charging
JP4248854B2 (en) Battery management system and battery pack
JP7114514B2 (en) Semiconductor device and battery pack
JP5887531B2 (en) Charger
JP2010011594A (en) Charging circuit
JP4179204B2 (en) Charging apparatus and charging method
JP4123219B2 (en) Charger
JP2007267499A (en) Charger, charging system and electric apparatus
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
KR20160095438A (en) Battery charging method and battery pack using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080828