JP2009198238A - Probe needle and method of manufacturing the same - Google Patents

Probe needle and method of manufacturing the same Download PDF

Info

Publication number
JP2009198238A
JP2009198238A JP2008038584A JP2008038584A JP2009198238A JP 2009198238 A JP2009198238 A JP 2009198238A JP 2008038584 A JP2008038584 A JP 2008038584A JP 2008038584 A JP2008038584 A JP 2008038584A JP 2009198238 A JP2009198238 A JP 2009198238A
Authority
JP
Japan
Prior art keywords
probe needle
tip
insulating coating
electrode
metal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038584A
Other languages
Japanese (ja)
Inventor
Yoichi Okada
洋一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2008038584A priority Critical patent/JP2009198238A/en
Publication of JP2009198238A publication Critical patent/JP2009198238A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe needle that stably measures the electrical characteristics of a measuring object, without causing large damages to the measuring object and suppresses adhesion of component material of the measuring object to the tip of the probe needle. <P>SOLUTION: In this probe needle 1 for measuring the electrical characteristic of the measuring object by bringing its tip A into contact with an electrode of the measuring object, and projections 2 of a square pyramid or triangular pyramid shape are formed in a matrix form at the tip A. The probe needle 1 comprises a process of preparing a metal conductor, having an insulating coating of a predetermined length where the insulating coating 6 is formed on the outer periphery of the metallic conductor 5; a projection forming process of forming the projections 2 of the square pyramid or triangular pyramid shape, having a vertex angle range of 35 to 125° in the matrix shape at a pitch of 4 to 20 μm at least at one tip A of the metal conductor, having an insulating coating, a process of peeling the insulating coating from the tip of a pre-probe needle having the projections 2, and a process of forming a plating layer on an exposing section from which the insulating coating is peeled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、先端を被測定体の電極に所定荷重で接触させてその被測定体の電気的特性を測定するためのプローブ針及びその製造方法に関する。   The present invention relates to a probe needle for measuring the electrical characteristics of a measurement object by bringing the tip into contact with an electrode of the measurement object with a predetermined load and a method for manufacturing the probe needle.

近年、携帯電話等に使用される高密度実装基板、又は、パソコン等に組み込まれるBGA(Ball Grid Array)やCSP(Chip Size Package)等のICパッケージ基板等、様々な回路基板が多く用いられている。このような回路基板は、実装の前後の工程において、例えば直流抵抗値の測定や導通検査等が行われ、その電気特性の良否が検査されている。電気特性の良否の検査は、電気特性を測定する検査装置に接続された検査装置用治具(以下、「プローブユニット」という。)を用いて行われ、例えば、プローブユニットに装着されたピン形状のプローブ針(コンタクトプローブともいう。)の先端を、その回路基板(以下「被測定体」ともいう。)の電極に接触させることにより行われている(例えば特許文献1を参照。)。   In recent years, various circuit boards such as high-density mounting boards used for mobile phones and the like, IC package boards such as BGA (Ball Grid Array) and CSP (Chip Size Package) incorporated in personal computers, etc., are often used. Yes. Such a circuit board is subjected to, for example, a measurement of a direct current resistance value or a continuity test in the processes before and after mounting, and the electrical characteristics of the circuit board are inspected. The inspection of electrical characteristics is performed using an inspection apparatus jig (hereinafter referred to as “probe unit”) connected to an inspection apparatus for measuring electrical characteristics. For example, a pin shape mounted on the probe unit is used. The probe needle (also referred to as a contact probe) is brought into contact with the electrode of the circuit board (hereinafter also referred to as “measurement object”) (see, for example, Patent Document 1).

ところで、被測定体の電極はその表面に酸化膜等の絶縁膜が形成され易く、プローブ針を電極に単に接触させただけでは両者間の抵抗値(以下、「接触抵抗値」という。)が高過ぎて正確な検査ができないことがある。そこで、先端を針状に加工したプローブ針が提案されているが、そのプローブ針は、その先端が電極表面の絶縁膜を容易に突き破るので、プローブ針と電極とが確実に接触して接触抵抗値が低下し、その結果、検査の正確性を向上させることができる。しかしながら、こうしたプローブ針は、針状の先端が被測定体の電極に深く突き刺さることがあり、電極に大きな傷が付きやすく、電極が変形し易いという問題が発生すると同時に、その電極材料がプローブに付着し、繰り返し測定での安定性が低下するといった問題がある。   By the way, an insulating film such as an oxide film is easily formed on the surface of the electrode to be measured, and the resistance value (hereinafter referred to as “contact resistance value”) between the two is only when the probe needle is simply brought into contact with the electrode. It may be too high to be accurate. Therefore, a probe needle whose tip has been processed into a needle shape has been proposed. However, since the tip of the probe needle easily breaks through the insulating film on the electrode surface, the probe needle and the electrode are reliably in contact with each other, and the contact resistance The value decreases, and as a result, the accuracy of the inspection can be improved. However, such a probe needle has a problem that the needle-shaped tip may pierce deeply into the electrode of the object to be measured, and the electrode is easily damaged, and the electrode is easily deformed. There exists a problem that it adheres and the stability by repeated measurement falls.

こうした問題に対し、先端が平面状や曲面状のプローブ針を用いれば電極への傷等の発生を防ぐことができるが、このプローブ針は、被測定体の電極との間の接触抵抗値を十分に低下させることができない。そこで、例えば特許文献2には、先端に四角錐状突起を格子状に形成したプローブ針が提案されている。このプローブ針を用いることにより、格子状の四角錐状突起が被測定体の電極上に接触する際に荷重を分散することができるので、プローブ針の先端に設けられためっき層の摩耗を抑制して長期間使用が実現できるとされている。
特開2002−131334号公報 特開2007−218675号公報
To prevent such problems, the use of a probe needle with a flat or curved tip can prevent scratches on the electrode, but this probe needle has a contact resistance value with the electrode of the object to be measured. It cannot be lowered sufficiently. Thus, for example, Patent Document 2 proposes a probe needle in which square pyramidal protrusions are formed in a lattice shape at the tip. By using this probe needle, it is possible to disperse the load when the grid-like quadrangular pyramid projections come into contact with the electrode of the object to be measured, thus suppressing wear of the plating layer provided at the tip of the probe needle. It can be used for a long time.
JP 2002-131334 A JP 2007-218675 A

上記特許文献2に記載のプローブ針は、当該文献中にも記載のように、突起が電極上の絶縁膜を突き破って接触抵抗値を下げるものではなく、複数の突起によって接触時の荷重を分散させるものであり、具体的には突起先端の高さを変えたり突起先端に微小平坦部を形成したりしてめっき層の摩耗を防いで長期間の使用を実現している。   The probe needle described in Patent Document 2 does not lower the contact resistance value by the protrusions penetrating the insulating film on the electrode, as described in the document, and the load at the time of contact is dispersed by the plurality of protrusions. Specifically, the height of the protrusion tip is changed or a minute flat portion is formed at the protrusion tip to prevent the plating layer from being worn, thereby realizing long-term use.

しかしながら、特許文献2に記載のプローブ針は、電極に対する接触荷重を分散でき、プローブ針先端のめっき層の摩耗の進行は遅らせることができるかもしれないが、被測定体の電極表面に形成された酸化膜が比較的厚くなっていた場合にその電極との接触抵抗値を下げることができず、正確な電気的特性を測定することができないという難点がある。   However, although the probe needle described in Patent Document 2 can disperse the contact load on the electrode and the progress of wear of the plating layer at the tip of the probe needle may be delayed, it is formed on the electrode surface of the measured object. When the oxide film is relatively thick, the contact resistance value with the electrode cannot be lowered, and accurate electrical characteristics cannot be measured.

本発明は、上記問題を解決したものであって、その目的は、先端を被測定体の電極に接触させてその被測定体の電気的測定を行うためのプローブ針において、被測定体に大きな傷を付けることなく被測定体の電気的特性を安定して測定することができ、且つ被測定体の構成材料がプローブ針の先端に付着するのを抑制できるプローブ針を提供することにある。また、本発明の他の目的は、そうしたプローブ針を歩留まりよく安定して製造する方法を提供することにある。   The present invention solves the above-described problem, and the object of the present invention is to provide a probe needle for performing electrical measurement of a measured object by bringing the tip into contact with an electrode of the measured object. It is an object of the present invention to provide a probe needle that can stably measure the electrical characteristics of a measurement object without damaging it, and can prevent the constituent material of the measurement object from adhering to the tip of the probe needle. Another object of the present invention is to provide a method for stably producing such a probe needle with a high yield.

上記課題を解決するための本発明のプローブ針は、先端を被測定体の電極に接触させて該被測定体の電気的特性を測定するためのプローブ針であって、前記先端には、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起が、4μm以上20μm以下のピッチでマトリクス状に形成されていることを特徴とする。   A probe needle according to the present invention for solving the above-mentioned problems is a probe needle for measuring the electrical characteristics of a measured object by bringing the distal end into contact with an electrode of the measured object. Projections made of a quadrangular pyramid or a triangular pyramid having a vertex angle of not less than 125 degrees and not more than 125 degrees are formed in a matrix with a pitch of not less than 4 μm and not more than 20 μm.

この発明によれば、上記頂点角度の範囲で四角錐又は三角錐の突起先端が形成されているので、被測定体の電極表面に酸化膜が形成されている場合であってもその酸化膜を突き破って接触抵抗値を下げることができ、被測定体の電気的特性を測定することができる。さらに、そうした頂点角度は、被測定体の電極材料(例えば半田材料)がプローブ針先端に転写されない角度範囲であるので、プローブ針の先端が電極材料で汚染されず、長期間の使用が可能となる。さらに、そうした四角錐又は三角錐の突起が上記ピッチの範囲内でマトリクス状に形成されているので、複数の突起が被測定体の電極表面に同時に接触して電極への接触圧力を分散することができる。その結果、酸化膜を突き破ることが可能な突起が、被測定体の電極に大きな傷を付けたり変形させたりすることがない。したがって、本発明によれば、被測定体の電極に対する接触抵抗値を下げて被測定体の正確な電気的特性を測定することができるとともに、被測定体の電極を傷つけ難く、しかも、プローブ針先端に電極材料が転写して接触抵抗値が上がるのを防ぐことができるので、プローブ針を用いた繰り返し測定を安定且つ正確に行うことができる。   According to the present invention, since the tip of the quadrangular pyramid or the triangular pyramid projection is formed in the range of the vertex angle, the oxide film is formed even when the oxide film is formed on the electrode surface of the object to be measured. The contact resistance value can be lowered by breaking through, and the electrical characteristics of the measured object can be measured. Furthermore, since such an apex angle is an angle range in which the electrode material (for example, solder material) of the object to be measured is not transferred to the tip of the probe needle, the tip of the probe needle is not contaminated with the electrode material and can be used for a long time. Become. Furthermore, since the projections of such a quadrangular pyramid or a triangular pyramid are formed in a matrix within the above-mentioned pitch range, a plurality of projections simultaneously contact the electrode surface of the object to be measured to disperse the contact pressure to the electrode. Can do. As a result, the projection capable of breaking through the oxide film does not cause a large scratch or deformation on the electrode of the object to be measured. Therefore, according to the present invention, the contact resistance value of the measured object with respect to the electrode can be lowered to measure the accurate electrical characteristics of the measured object, and the electrode of the measured object is hardly damaged, and the probe needle Since it is possible to prevent the electrode material from being transferred to the tip and increase the contact resistance value, repeated measurement using a probe needle can be performed stably and accurately.

本発明のプローブ針において、少なくとも前記先端が、金めっき、パラジウムめっき、ロジウムめっき及びニッケルめっきから選ばれる少なくとも1種を有するように構成してもよい。   The probe needle of the present invention may be configured so that at least the tip has at least one selected from gold plating, palladium plating, rhodium plating, and nickel plating.

本発明のプローブ針において、前記プローブ針の先端部以外が絶縁被膜で覆われているように構成してもよい。   The probe needle of the present invention may be configured such that the portion other than the tip of the probe needle is covered with an insulating film.

上記課題を解決する本発明のプローブ針の製造方法は、先端を被測定体の電極に接触させて該被測定体の電気的特性を測定するためのプローブ針の製造方法であって、金属導体の外周に絶縁被膜が形成された所定長さの絶縁被膜付き金属導体を準備する工程と、前記絶縁被膜付き金属導体の少なくとも一方の先端に、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起を4μm以上20μm以下のピッチでマトリクス状に形成する突起形成工程と、前記突起が形成されたプレプローブ針の先端部の絶縁被膜を剥離する工程と、前記絶縁被膜が剥離された露出部にめっき層を形成する工程と、を有することを特徴とする。   A method of manufacturing a probe needle of the present invention that solves the above-described problem is a method of manufacturing a probe needle for measuring the electrical characteristics of a measured object by bringing the tip into contact with an electrode of the measured object. A step of preparing a metal conductor with an insulating coating having a predetermined length in which an insulating coating is formed on the outer periphery of the metal conductor, and a quadrangular pyramid having a vertex angle of not less than 35 degrees and not more than 125 degrees at the tip of at least one of the metal conductors with an insulating coating Alternatively, a protrusion forming step of forming protrusions made of a triangular pyramid in a matrix shape with a pitch of 4 μm or more and 20 μm or less, a step of peeling off the insulating film at the tip of the pre-probe needle on which the protrusion is formed, and the insulating film peeling off And a step of forming a plating layer on the exposed portion.

この発明によれば、突起形成工程が絶縁被膜剥離工程の前にあるので、金属導体の先端が絶縁被膜で包まれた状態下で突起が加工される。その結果、加工時に金属導体にバリが生じにくく、その後に絶縁被膜を剥離すれば、そのまま金属めっき工程に投入できる。したがって、本発明のプローブ針の製造方法によれば、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起が4μm以上20μm以下のピッチでマトリクス状に形成されている先端を有するプローブ針を、バリ取り等の余計な工程を経ることなく効率的に製造することができる。なお、「プレプローブ針」とは、完成品前のプローブ針中間品のことである。   According to this invention, since the protrusion forming step is before the insulating film peeling step, the protrusion is processed under the condition that the tip of the metal conductor is wrapped with the insulating film. As a result, burrs are unlikely to occur in the metal conductor during processing, and if the insulating coating is peeled off after that, it can be put into the metal plating process as it is. Therefore, according to the method for manufacturing a probe needle of the present invention, the tips on which projections made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less are formed in a matrix at a pitch of 4 μm or more and 20 μm or less. The probe needle can be efficiently manufactured without an extra step such as deburring. The “pre-probe needle” is a probe needle intermediate product before the finished product.

本発明のプローブ針の製造方法は、前記突起形成工程において、前記四角錐からなる突起を直交する2軸V溝加工で行い、前記三角錐からなる突起を60度で交差する3軸V溝加工で行うように構成することが好ましい。   In the probe needle manufacturing method of the present invention, in the projection forming step, the projection made of the quadrangular pyramid is performed by orthogonal biaxial V-groove machining, and the projection made of the triangular pyramid intersects by 60 degrees. It is preferable to configure so that

本発明のプローブ針の製造方法は、前記準備工程において、前記絶縁被膜付き金属導体は、長尺の金属導体の外周に絶縁被膜を連続塗布して絶縁被膜付き長尺導体を形成する工程と、該絶縁被膜付き長尺導体を所定長さに切断する工程とを経て準備されるように構成することが好ましい。   In the preparation step of the probe needle of the present invention, in the preparation step, the metal conductor with an insulating coating is formed by continuously applying an insulating coating on the outer periphery of a long metal conductor to form a long conductor with an insulating coating; It is preferable that the long conductor with an insulating coating is prepared through a step of cutting to a predetermined length.

本発明のプローブ針によれば、(1)被測定体の電極表面に酸化膜が形成されている場合であってもその酸化膜を突き破って接触抵抗値を下げることができ、被測定体の電気的特性を正確に測定することができ、(2)プローブ針の先端が電極材料で汚染されず、長期間の使用が可能となり、(3)複数の突起が被測定体の電極表面に同時に接触して電極への接触圧力を分散することができ、酸化膜を突き破ることが可能な突起が被測定体の電極に大きな傷を付けたり変形させたりすることがない。したがって、本発明によれば、プローブ針を用いた繰り返し測定を安定且つ正確に行うことができる。   According to the probe needle of the present invention, (1) even when an oxide film is formed on the electrode surface of the object to be measured, the contact resistance value can be lowered by breaking through the oxide film. Electrical characteristics can be measured accurately, (2) The tip of the probe needle is not contaminated with electrode material, and it can be used for a long period of time. (3) Multiple protrusions can be simultaneously applied to the electrode surface of the object to be measured. The contact pressure on the electrode can be dispersed by contact, and the projection capable of breaking through the oxide film does not damage or deform the electrode of the object to be measured. Therefore, according to the present invention, repeated measurement using the probe needle can be performed stably and accurately.

本発明のプローブ針の製造方法によれば、加工時に金属導体にバリが生じにくく、その後に絶縁被膜を剥離すればそのまま金属めっき工程に投入できるので、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起が4μm以上20μm以下のピッチでマトリクス状に形成されている先端を有するプローブ針を、バリ取り等の余計な工程を経ることなく効率的に製造することができる。   According to the probe needle manufacturing method of the present invention, burrs are unlikely to occur in the metal conductor during processing, and if the insulating film is subsequently peeled off, it can be put into the metal plating process as it is, so that it has a vertex angle of 35 ° to 125 °. A probe needle having a tip in which protrusions made of a quadrangular pyramid or a triangular pyramid are formed in a matrix with a pitch of 4 μm or more and 20 μm or less can be efficiently manufactured without going through an extra step such as deburring.

以下、本発明のプローブ針及びその製造方法について、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。   Hereinafter, a probe needle and a manufacturing method thereof according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

(プローブ針)
図1は本発明のプローブ針1を示す模式的な概略図である。図2は本発明のプローブ針1の先端Aの突起2Aが四角錐である場合の一例を示す概略図であり、図3は本発明のプローブ針1の先端Aの突起2Bが三角錐である場合の一例を示す概略図である。本発明のプローブ針1は、図1に示すように、先端Aを被測定体12の電極11(図5を参照)に接触させてその被測定体12の電気的特性を測定するためのプローブ針である。そして、このプローブ針1の先端Aには、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起2が、4μm以上20μm以下のピッチPでマトリクス状に形成されている。
(Probe needle)
FIG. 1 is a schematic diagram showing a probe needle 1 of the present invention. FIG. 2 is a schematic view showing an example in which the projection 2A at the tip A of the probe needle 1 of the present invention is a quadrangular pyramid, and FIG. 3 is a diagram of the projection 2B at the tip A of the probe needle 1 of the present invention being a triangular pyramid. It is the schematic which shows an example of a case. As shown in FIG. 1, the probe needle 1 of the present invention is a probe for measuring the electrical characteristics of a measured object 12 by bringing the tip A into contact with an electrode 11 of the measured object 12 (see FIG. 5). It is a needle. Then, on the tip A of the probe needle 1, projections 2 made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less are formed in a matrix with a pitch P of 4 μm or more and 20 μm or less.

金属導体5としては、高い導電性と高いばね性を有する金属線(「金属ばね線」ともいう。)が用いられる。金属導体5に用いられる金属としては、広い弾性域を持つ金属を挙げることができ、例えばベリリウム銅、りん青銅、銅銀合金等の銅合金、タングステン、レニウムタングステン、鋼(例えば高速度鋼:SKH)等を好ましく用いることができる。こうした金属導体5は、通常、上記の金属が所定の径の線状導体となるまで冷間又は熱間伸線等の塑性加工が施される。その長さは特に限定されず、仕様に応じた長さであればよい。また、金属導体5の直径も特に限定されないが、最近の被測定体12に設けられた電極11の狭ピッチ化に対応できるように、20μm以上250μm以下の範囲内から好ましく選択される。   As the metal conductor 5, a metal wire (also referred to as “metal spring wire”) having high conductivity and high spring property is used. Examples of the metal used for the metal conductor 5 include metals having a wide elastic range, for example, copper alloys such as beryllium copper, phosphor bronze, copper silver alloy, tungsten, rhenium tungsten, steel (for example, high speed steel: SKH). Etc.) can be preferably used. Such metal conductor 5 is usually subjected to plastic working such as cold or hot wire drawing until the metal becomes a linear conductor of a predetermined diameter. The length is not particularly limited, and may be a length according to the specification. Further, the diameter of the metal conductor 5 is not particularly limited, but is preferably selected from the range of 20 μm or more and 250 μm or less so as to cope with the narrow pitch of the electrodes 11 provided on the recent measurement object 12.

金属導体5の先端Aには、所定の形状からなる突起2が所定のピッチPでマトリクス状に設けられている。図2に示す突起2Aは四角錐形状であり、図3に示す突起2Bは三角錐形状である(これらを総称するときは単に「突起2」という。)。通常は、図2及び図3に示すように、正四角錐や正三角錐であることが好ましいが、頂点3が角錐の中心からずれた形状、すなわち四角錐や三角錐が傾斜したような態様で形成されていてもよい。   Protrusions 2 having a predetermined shape are provided at a tip end A of the metal conductor 5 at a predetermined pitch P in a matrix. The protrusion 2A shown in FIG. 2 has a quadrangular pyramid shape, and the protrusion 2B shown in FIG. 3 has a triangular pyramid shape (referred to simply as “protrusion 2” when these are collectively referred to). Normally, as shown in FIG. 2 and FIG. 3, it is preferably a regular quadrangular pyramid or a regular triangular pyramid, but it is formed in such a shape that the vertex 3 is shifted from the center of the pyramid, that is, the quadrangular pyramid or the triangular pyramid is inclined. May be.

突起2の頂点角度は、35度以上125度以下の範囲内であることが望ましい。こうした範囲内の頂点角度を持つ突起2は、被測定体12の電極11表面に電気抵抗の高い酸化膜が形成されている場合に、その酸化膜を突き破って電極11自体に接触して接触抵抗を低下させるので、被測定体12の電気的特性を正確に測定することができる。さらに、上記範囲の頂点角度は、被測定体12の電極を構成する電極材料(例えば半田材料)がプローブ針1の先端Aに転写されない角度範囲であるので、プローブ針1の先端Aが電極材料で汚染されず、長期間の繰り返し測定を可能とし、安定した長期使用が可能となる。   The apex angle of the protrusion 2 is preferably in the range of 35 degrees or more and 125 degrees or less. The protrusion 2 having an apex angle within such a range, when an oxide film having a high electrical resistance is formed on the surface of the electrode 11 of the object 12 to be measured, breaks through the oxide film and contacts the electrode 11 itself. Therefore, the electrical characteristics of the measurement object 12 can be accurately measured. Further, the apex angle in the above range is an angle range in which the electrode material (for example, solder material) constituting the electrode of the measurement object 12 is not transferred to the tip A of the probe needle 1, so that the tip A of the probe needle 1 is the electrode material. It can be used repeatedly for a long period of time and can be used stably for a long time.

突起Aの頂点角度が35度未満の場合は、プローブ針1の先端Aが電極11に突き刺さり易く、その結果、突き刺さった状態から引き抜く時のせん断応力が強くなるため、電極11を構成する電極材料がプローブ針1の先端Aに転写して付着しやすいという問題がある。こうした電極材料(例えば半田等)の付着は、電極材料の微粉末がプローブ針1の先端Aを汚染することになるので、その微粉末が酸化して接触抵抗を上昇させる原因となる。一方、突起Aの頂点角度が125度を超える場合は、プローブ針1の先端Aが電極11表面の酸化膜を突き破ることが困難になり、電極11との接触抵抗値が上がって被測定体12の正確な電気的特性を評価できないことがある。   When the apex angle of the protrusion A is less than 35 degrees, the tip A of the probe needle 1 is easily pierced into the electrode 11, and as a result, the shear stress when pulled out from the pierced state becomes stronger, so the electrode material constituting the electrode 11 Has a problem in that it is easily transferred and attached to the tip A of the probe needle 1. Such adhesion of the electrode material (for example, solder) contaminates the tip A of the probe needle 1 with the fine powder of the electrode material, which causes the fine powder to oxidize and increase the contact resistance. On the other hand, when the apex angle of the protrusion A exceeds 125 degrees, it becomes difficult for the tip A of the probe needle 1 to break through the oxide film on the surface of the electrode 11, and the contact resistance value with the electrode 11 increases and the measured object 12. May not be able to evaluate the exact electrical characteristics of

突起Aの頂点角度のより好ましい範囲は、40度以上120度以下である。この範囲の頂点角度は、さらに電極材料が転写し難く、電極表面の酸化膜を容易に突き破ることができるという特徴的な効果を奏する。特に四角錐からなる突起2Aでは、40度以上110度以下が好ましく、三角錐からなる突起2Bでは、50度以上120度以下が好ましい。   A more preferable range of the vertex angle of the protrusion A is not less than 40 degrees and not more than 120 degrees. The apex angle within this range has a characteristic effect that the electrode material is more difficult to transfer and can easily break through the oxide film on the electrode surface. In particular, the protrusion 2A made of a quadrangular pyramid preferably has an angle of 40 ° to 110 °, and the protrusion 2B made of a triangular pyramid preferably has an angle of 50 ° to 120 °.

突起2の頂点3は、酸化膜を突き破ることができる程度に鋭角であることが好ましく、具体的には、その頂点3は平坦部や曲面部は有さず、尖っていることが望ましい(図6を参照)。なお、電極11としては、通常、銅パッド上に半田が載っているものを挙げられるが、これに限定されず、金パッドやアルミパッド等の電極11を挙げることができる。本発明のプローブ針1は、こうした電極11に接触させるものとして好ましく用いられる。   The apex 3 of the protrusion 2 is preferably acute enough to break through the oxide film. Specifically, the apex 3 does not have a flat part or a curved part, and is preferably sharp (see FIG. 6). In addition, as the electrode 11, although what normally has solder mounted on a copper pad is mentioned, it is not limited to this, Electrode 11, such as a gold pad and an aluminum pad, can be mentioned. The probe needle 1 of the present invention is preferably used as a contact with such an electrode 11.

突起Aの頂点角度は、四角錐においては、四角錐を構成する対抗する傾斜面間の角度として測定した値で定義される。一方、三角錐においては、三角錐を構成する1つの傾斜面と、頂点3を挟んで対抗する2つの傾斜面の稜線との角度として測定した値で定義される。なお、こうした頂点角度の代わりに、突起2が平面上に形成されているとした場合の仮想面と、四角錐を構成する傾斜面との角度として表したり、その仮想面と、三角錐を構成する傾斜面との角度として表したりすることができる。こうした角度で表せば、72.5度(頂点角度35度に対応)〜27.5度(頂点角度125度に対応)の範囲を示すことができる。   In the case of a quadrangular pyramid, the apex angle of the protrusion A is defined by a value measured as an angle between opposing inclined surfaces constituting the quadrangular pyramid. On the other hand, the triangular pyramid is defined as a value measured as an angle between one inclined surface constituting the triangular pyramid and two ridge lines of the inclined surfaces facing each other with the apex 3 interposed therebetween. It should be noted that instead of such vertex angle, it is expressed as an angle between a virtual surface when the protrusion 2 is formed on a plane and an inclined surface forming a quadrangular pyramid, or the virtual surface and a triangular pyramid are configured. It can be expressed as an angle with the inclined surface. When expressed in such an angle, a range from 72.5 degrees (corresponding to a vertex angle of 35 degrees) to 27.5 degrees (corresponding to a vertex angle of 125 degrees) can be shown.

突起2はプローブ針1の先端Aにマトリクス状に形成されている。具体的には、図2に示すように所定のピッチPで、90度で交差する方向に配列されている。また、図3に示すように所定のピッチPで、60度の角度で交差するそれぞれの方向に配列されている。突起2のピッチPは、4μm以上20μm以下であることが好ましい。このとき、ピッチPは、図2に示す四角錐がマトリクス状に形成されている場合には、隣り合う四角錐の頂点間の距離で表すことができ、図3に示す三角錐がマトリクス状に形成されている場合には、最も近い三角錐間の頂点3を、一辺が平行となる方向の直交方向で測定した値で表すことができる。なお、ここでは、頂点3,3間の距離で表しているが、谷部間の距離で表してもよい。特に好ましいピッチPは、接触抵抗低減と被測定体電極へのキズを目立たなくさせるという観点から、7μm以上15μm以下である。   The protrusions 2 are formed in a matrix at the tip A of the probe needle 1. Specifically, as shown in FIG. 2, they are arranged in a direction intersecting at a predetermined pitch P of 90 degrees. Further, as shown in FIG. 3, they are arranged in respective directions intersecting at an angle of 60 degrees with a predetermined pitch P. The pitch P of the protrusions 2 is preferably 4 μm or more and 20 μm or less. At this time, when the quadrangular pyramids shown in FIG. 2 are formed in a matrix, the pitch P can be expressed by the distance between vertices of adjacent quadrangular pyramids, and the triangular pyramids shown in FIG. 3 are arranged in a matrix. If formed, the apex 3 between the nearest triangular pyramids can be represented by a value measured in a direction orthogonal to the direction in which one side is parallel. In addition, although it represents with the distance between the vertexes 3 and 3 here, you may represent with the distance between trough parts. A particularly preferable pitch P is 7 μm or more and 15 μm or less from the viewpoint of reducing contact resistance and making a scratch on the electrode to be measured inconspicuous.

突起2のピッチPが上記範囲で二次元平面状に形成されることにより、プローブ針先端Aの複数の突起2が電極11の表面に同時に接触する。その結果、プローブ針先端Aが電極11に接触する際の接触圧力を複数の突起2に分散することができる。そのため、酸化膜を突き破ることが可能な突起2が、被測定体12の電極11に大きな傷を付けたり変形させたりすることがない。しかも、圧力分散した状態でも、プローブ針先端Aの複数の突起2が酸化膜の多数箇所を突き破ることができるので、プローブ針1と電極11間の接触抵抗値を低下させることができ、その結果、長期間安定した電気的特性の測定を行うことができる。   When the pitch P of the protrusions 2 is formed in a two-dimensional plane within the above range, the plurality of protrusions 2 at the probe needle tip A simultaneously contact the surface of the electrode 11. As a result, the contact pressure when the probe needle tip A contacts the electrode 11 can be distributed to the plurality of protrusions 2. Therefore, the protrusion 2 that can break through the oxide film does not damage or deform the electrode 11 of the measurement object 12. Moreover, since the plurality of protrusions 2 at the probe needle tip A can break through many places in the oxide film even in a pressure-distributed state, the contact resistance value between the probe needle 1 and the electrode 11 can be reduced, and as a result. Therefore, it is possible to perform stable measurement of electrical characteristics for a long time.

突起2のピッチPが4μm未満の場合は、突起2の間隔が細かすぎて接触圧力が多くの突起2に分散し過ぎるため、一つの頂点3に対する接触圧力が低下してしまい、前記した酸化膜を突き破ることが困難になる。一方、突起2のピッチPが20μmを超える場合は、突起2の間隔が粗すぎて接触圧力が複数の突起2に集中し過ぎるため、一つの頂点3に対する接触圧力が増してしまい、電極11に大きな傷を付けたり変形させたりすることがある。こうした接触圧力の過度の上昇は、突起2の頂点3が電極へ深く突き刺さり易くなるため、電極材料がプローブ針1に付着し易くなり、接触抵抗値が上昇する要因の一つとなる。   When the pitch P of the protrusions 2 is less than 4 μm, the distance between the protrusions 2 is too small and the contact pressure is excessively dispersed in the many protrusions 2, so that the contact pressure with respect to one vertex 3 decreases, and the oxide film described above It becomes difficult to break through. On the other hand, when the pitch P of the protrusions 2 exceeds 20 μm, the distance between the protrusions 2 is too coarse, and the contact pressure is excessively concentrated on the plurality of protrusions 2. May cause large scratches or deformation. Such an excessive increase in contact pressure makes it easy for the apex 3 of the protrusion 2 to pierce deeply into the electrode, so that the electrode material easily adheres to the probe needle 1 and becomes one of the factors that increase the contact resistance value.

上記ピッチPは突起2の頂点間の距離であるが、突起2の形成態様として突起密度で表してもよい。例えば頂点ピッチが10μmの四角錐の場合はおよそ10000個/mmであるので、上記4μm以上20μmのピッチPで形成された突起2の密度は、62500個/mm以上2500個/mm以下と表すことができる。 The pitch P is a distance between the apexes of the protrusions 2, but may be expressed as a protrusion density as a form of the protrusion 2. For example, in the case of a quadrangular pyramid having a vertex pitch of 10 μm, the density is approximately 10,000 / mm 2 , and the density of the protrusions 2 formed with the pitch P of 4 μm to 20 μm is 62500 / mm 2 to 2500 / mm 2. It can be expressed as.

こうした特徴的な先端形状を備えた本発明のプローブ針1は、被測定体12の電極11に対する接触抵抗値を下げて被測定体12の正確な電気的特性を測定することができるとともに、その電極11を傷つけ難く、しかも、プローブ針先端Aに電極材料が転写して接触抵抗値が上がるのを防ぐことができるので、プローブ針1を用いた繰り返し測定を安定且つ正確に行うことができるという格別の効果を奏する。さらに、被測定体12の電極11が半田バンプの場合、コンタクト位置がバンプ中心から若干外れた場合であっても、プローブ針先端Aの突起2が半田バンプ上でグリップし、半田バンプからプローブ針1がずり落ちる(外れる)ことがない。   The probe needle 1 of the present invention having such a characteristic tip shape can measure the accurate electrical characteristics of the measurement object 12 by reducing the contact resistance value of the measurement object 12 with respect to the electrode 11. It is difficult to damage the electrode 11, and it is possible to prevent the electrode material from being transferred to the probe needle tip A to prevent the contact resistance value from increasing, so that repeated measurement using the probe needle 1 can be performed stably and accurately. There is a special effect. Further, when the electrode 11 of the measurement object 12 is a solder bump, even if the contact position is slightly off the bump center, the protrusion 2 at the probe needle tip A grips on the solder bump, and the probe needle from the solder bump. 1 will not slide down.

上記先端Aの反対側の端部である後端Bの形状は特に限定されず、上記のような突起2と同じ形状であってもよいし、一般的な円錐形状、頂点に半球形状を有する円錐形状、頂点に平坦形状を有する円錐形状、等から選ばれるいずれかであってもよい。ここでいう「半球形状」、「円錐形状」は、正確な半球や円錐を含むが、略円錐や略半球も含む。なお、電解研磨や湿式エッチング処理で端部Bを処理してもよく、その場合は、その後端Bの形状はやや丸みを帯びた形状となるが、こうした形状に必ずしも限定されない。   The shape of the rear end B, which is the end opposite to the tip A, is not particularly limited, and may be the same shape as the projection 2 as described above, and has a general conical shape and a hemispherical shape at the apex. Any one selected from a conical shape, a conical shape having a flat shape at the apex, and the like may be used. The “hemispherical shape” and “conical shape” here include an accurate hemisphere and a cone, but also include a substantially cone and a substantially hemisphere. Note that the end B may be processed by electrolytic polishing or wet etching, and in that case, the shape of the rear end B is slightly rounded, but is not necessarily limited to such a shape.

絶縁被膜6は、金属導体5の外周に設けられており、プローブ針1が後述するプローブユニット10に装着された場合に、隣接するプローブ針1との電気的な接触を防いで短絡を防止するように作用する。なお、絶縁被膜6は、金属導体5の外周上に長手方向に亘って設けられていればよく、直接設けられていてもよいし、他の層を介して設けられていてもよい。なお、先端Aと後端Bは、それぞれ電極11とリード線50に接触するので、絶縁被膜6は端部から所定の長さだけ剥離されている。   The insulating coating 6 is provided on the outer periphery of the metal conductor 5 and prevents a short circuit by preventing electrical contact with the adjacent probe needle 1 when the probe needle 1 is attached to a probe unit 10 described later. Acts as follows. The insulating coating 6 may be provided on the outer periphery of the metal conductor 5 over the longitudinal direction, may be provided directly, or may be provided via another layer. In addition, since the front end A and the rear end B are in contact with the electrode 11 and the lead wire 50, respectively, the insulating coating 6 is peeled from the end by a predetermined length.

絶縁被膜6は、絶縁性を有する被膜であれば特に限定されないが、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂及びポリアミドイミド樹脂から選ばれるいずれか1種であることが好ましい。なお、通常は一種類の樹脂により形成される。これらの樹脂からなる絶縁被膜は耐熱性が異なるので、検査の際に発生する熱を考慮して任意に選択することができる。例えば、より耐熱性が要求される場合には、絶縁被膜6がポリエステルイミド樹脂、ポリアミドイミド樹脂等で形成されることが好ましい。なかでも、絶縁被膜6が焼付けエナメル被膜として形成されることが好ましい。焼付けエナメル被膜は、後述するように塗料の塗布と焼付けの繰り返しにより連続工程で形成されるので、生産性がよく、金属導体5との間の密着性が高く且つ被膜強度をより高いものとすることができる。   The insulating coating 6 is not particularly limited as long as it is an insulating coating, but it is any one selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin and polyamideimide resin. Is preferred. Usually, it is formed of one kind of resin. Since the insulating film made of these resins has different heat resistance, it can be arbitrarily selected in consideration of the heat generated during the inspection. For example, when more heat resistance is required, the insulating coating 6 is preferably formed of a polyesterimide resin, a polyamideimide resin, or the like. Especially, it is preferable that the insulating film 6 is formed as a baking enamel film. As will be described later, the baking enamel coating is formed in a continuous process by repeated application of coating and baking, so that the productivity is good, the adhesiveness with the metal conductor 5 is high, and the coating strength is higher. be able to.

絶縁被膜6は、隣接するプローブ針1同士の短絡を防ぐために設けられるが、本発明においては、図5に示すように、その絶縁被膜6の先端A側の端面である段差部7が、プローブユニット10のガイドプレート20に引っ掛かってプローブ針1の落下を防止する作用又はプローブ針1を係止する作用を有することが好ましい。そうした作用を奏する段差部7を形成するための絶縁被膜6の厚さは金属導体5の直径によっても異なるが、例えば5μm以上20μm以下であることが好ましい。   The insulating coating 6 is provided to prevent a short circuit between adjacent probe needles 1. In the present invention, as shown in FIG. 5, the stepped portion 7, which is the end surface on the tip A side of the insulating coating 6, is a probe. It is preferable to have the action of preventing the probe needle 1 from falling by being caught on the guide plate 20 of the unit 10 or the action of locking the probe needle 1. The thickness of the insulating coating 6 for forming the stepped portion 7 having such an effect varies depending on the diameter of the metal conductor 5, but is preferably 5 μm or more and 20 μm or less, for example.

プローブ針の先端A又は後端Bには、金属導体5と、被測定体12又は検査装置のリード線50との接触抵抗値の上昇を抑制するために、めっき層が設けられていてもよい。めっき層を構成する金属としては、金、パラジウム、ロジウム、ニッケル等の金属や金合金等の合金を挙げることができる。めっき層は、単層であってもよいし複層であってもよい。複層のめっき層としては、ニッケルめっき層上に金めっき層が形成されたものを好ましく挙げることができる。こうしためっき層は、プローブ針の先端が酸化するのを防ぐので、更に安定した接触抵抗を得ることができ、より長期間の安定測定が可能になる。   A plating layer may be provided at the tip A or the rear end B of the probe needle in order to suppress an increase in the contact resistance value between the metal conductor 5 and the measured object 12 or the lead wire 50 of the inspection apparatus. . Examples of the metal constituting the plating layer include metals such as gold, palladium, rhodium, and nickel, and alloys such as gold alloys. The plating layer may be a single layer or a multilayer. Preferred examples of the multi-layered plating layer include those in which a gold plating layer is formed on a nickel plating layer. Since such a plating layer prevents the tip of the probe needle from being oxidized, a more stable contact resistance can be obtained, and a stable measurement over a longer period of time can be achieved.

また、プローブ針1をプローブユニット10に装着し易くするという観点からは、金属導体5の真直度が高いことが好ましく、具体的には真直度が曲率半径Rで1000mm以上であることが好ましい。真直度の高い金属導体5は、通常、絶縁被膜6が設けられる前に予め直線矯正処理をすることにより得ることができる。ここでの直線矯正処理は、例えば回転ダイス式直線矯正装置等によって行われる。また、プローブ針1の長さも特に限定されないが、通常、10mm以上40mm以下程度である。   Further, from the viewpoint of facilitating the mounting of the probe needle 1 to the probe unit 10, the straightness of the metal conductor 5 is preferably high, and specifically, the straightness is preferably 1000 mm or more in terms of the radius of curvature R. The metal conductor 5 having high straightness can be usually obtained by performing straightening treatment in advance before the insulating coating 6 is provided. The straightening process here is performed, for example, by a rotary die type straightening apparatus or the like. The length of the probe needle 1 is not particularly limited, but is usually about 10 mm or more and 40 mm or less.

(プローブ針の製造方法)
次に、本発明のプローブ針の製造方法について説明する。本発明のプローブ針1の製造方法は、上記本発明のプローブ針1の製造方法であって、金属導体5の外周に絶縁被膜6が形成された所定長さの絶縁被膜付き金属導体を準備する工程と、その絶縁被膜付き金属導体の少なくとも電極側の先端Aに、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起2を4μm以上20μm以下のピッチでマトリクス状に形成する突起形成工程と、突起2が形成されたプレプローブ針の先端部の絶縁被膜6を剥離する工程と、絶縁被膜6が剥離された露出部にめっき層を形成する工程とを少なくとも有する。なお、「プレプローブ針」とは、完成品前のプローブ針中間品のことである。以下、順に説明する。
(Probe needle manufacturing method)
Next, a method for manufacturing the probe needle of the present invention will be described. The method for manufacturing the probe needle 1 according to the present invention is a method for manufacturing the probe needle 1 according to the present invention, wherein a metal conductor with an insulating coating having a predetermined length in which an insulating coating 6 is formed on the outer periphery of the metal conductor 5 is prepared. Forming a projection 2 made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less at a pitch of 4 μm or more and 20 μm or less at the tip A on the electrode side of at least the electrode side of the metal conductor with an insulating coating; A protrusion forming step, a step of peeling the insulating coating 6 at the tip of the pre-probe needle on which the protrusion 2 is formed, and a step of forming a plating layer on the exposed portion where the insulating coating 6 is peeled off. The “pre-probe needle” is a probe needle intermediate product before the finished product. Hereinafter, it demonstrates in order.

絶縁被膜付き金属導体の準備工程は、金属導体5の外周に絶縁被膜6が形成された所定長さの絶縁被膜付き金属導体を準備する工程である。この絶縁被膜付き金属導体は、購入品で準備してもよいし、長尺の金属導体5の外周に絶縁被膜6を連続塗布して絶縁被膜付き長尺導体を形成する工程と、その絶縁被膜付き長尺導体を所定長さに切断する工程とを経て準備してもよい。また、金属導体5を所定の直径に加工する塑性加工工程が含まれていてもよい。絶縁被膜6の連続塗布は、金属導体5の外周に絶縁被膜6をエナメル線製造装置を用いて焼付けエナメルを形成する工程で行ってもよい。また、所定の長さに切断した後においては、プローブ針1の後端Bを研削加工したりレーザ照射したりしてリード線50に接触する部分の絶縁被膜6を除去し、金属導体5を露出させるようにしてもよい。   The step of preparing a metal conductor with an insulating coating is a step of preparing a metal conductor with an insulating coating having a predetermined length in which an insulating coating 6 is formed on the outer periphery of the metal conductor 5. The metal conductor with an insulating coating may be prepared as a purchased product, or a step of continuously applying the insulating coating 6 on the outer periphery of the long metal conductor 5 to form a long conductor with an insulating coating, and the insulating coating You may prepare through the process of cut | disconnecting an attached long conductor to predetermined length. Moreover, the plastic processing process which processes the metal conductor 5 to a predetermined diameter may be included. The continuous coating of the insulating coating 6 may be performed in a process of baking the insulating coating 6 on the outer periphery of the metal conductor 5 using an enameled wire manufacturing apparatus. In addition, after cutting to a predetermined length, the rear end B of the probe needle 1 is ground or irradiated with a laser to remove the portion of the insulating film 6 that contacts the lead wire 50, and the metal conductor 5 is removed. You may make it expose.

突起形成工程は、その絶縁被膜付き金属導体の少なくとも電極側の先端Aに、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起2を4μm以上20μm以下のピッチでマトリクス状に形成する工程である。この突起形成工程では、四角錐からなる突起2Aは直交する2軸V溝加工で行い、三角錐からなる突起2Bは60度で交差する3軸V溝加工で行うことが好ましい。こうした溝加工は、加工する金属導体5の材質によって適当な手段を用い、例えば超音波切削加工や、回転砥石加工等の精密機械加工手段を採用して行うことができる。こうして、図2及び図3に示すマトリクス状の突起2A,2Bを加工することができる。   The projection forming step is a matrix-like projection 2 made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less at least at the tip A on the electrode side of the metal conductor with an insulating coating. It is the process of forming. In this projection forming step, it is preferable that the projection 2A made of a quadrangular pyramid is formed by orthogonal biaxial V-groove machining, and the projection 2B made of a triangular pyramid is made by triaxial V-groove machining intersecting at 60 degrees. Such grooving can be performed by using an appropriate means depending on the material of the metal conductor 5 to be processed, for example, by adopting precision machining means such as ultrasonic cutting or rotary grindstone processing. In this way, the matrix-shaped protrusions 2A and 2B shown in FIGS. 2 and 3 can be processed.

なお、本発明では、そうした突起2A,2Bの形成工程を、絶縁被膜6が金属導体5の外周端まで覆った状態(切断端面である先端には絶縁被膜6はない。)でV溝加工することにも特徴がある。図4は、絶縁被膜付き金属導体の先端にV溝加工するときの形態図である。V溝加工するにあたっては、図4に示すように、絶縁被膜付き金属導体を俵積みし、少なくとも一方又は二方の側から圧力Fを加えて絶縁被膜付き金属導体がV溝加工中にずれないように固定する。本発明では、金属導体5の先端側の外周端まで絶縁被膜6が覆われているので、圧力Fを加えたとき、金属導体5に比べて弾性のある絶縁被膜6が隣接する絶縁被膜付き金属導体が有する絶縁被膜6に押し当たることによりその接点8が弾性変形し、相互にグリップする。その結果、絶縁被膜付き金属導体の先端はV溝加工時にずれが生じないので正確なV溝加工を行うことができる。また、絶縁被膜6が金属導体5に密着した状態で外周を覆っているので、V溝加工時に金属導体のダレが発生するのを防ぐことができ、さらに、金属導体の周縁にバリが生じるのを防ぐことができるという従来技術には見られない効果がある。   In the present invention, such a process of forming the protrusions 2A and 2B is performed with V-groove processing in a state where the insulating coating 6 covers the outer peripheral end of the metal conductor 5 (the insulating coating 6 is not provided at the tip which is a cut end surface). There is also a feature. FIG. 4 is a configuration diagram when a V-groove is processed at the tip of a metal conductor with an insulating coating. In processing the V-groove, as shown in FIG. 4, the metal conductors with insulating coating are stacked, and the metal conductor with insulating coating does not shift during the V-groove processing by applying pressure F from at least one or two sides. To fix. In the present invention, since the insulating coating 6 is covered up to the outer peripheral end on the front end side of the metal conductor 5, when the pressure F is applied, the insulating coating 6 that is more elastic than the metal conductor 5 is adjacent to the metal with the insulating coating. The contact 8 is elastically deformed by pressing against the insulating coating 6 of the conductor, and grips each other. As a result, the tip of the metal conductor with an insulating coating is not displaced during the V-groove processing, so that accurate V-groove processing can be performed. Moreover, since the outer periphery is covered with the insulating coating 6 in close contact with the metal conductor 5, it is possible to prevent the metal conductor from sagging during the V-groove processing, and further, burrs are generated at the periphery of the metal conductor. There is an effect not seen in the prior art that can be prevented.

絶縁被膜剥離工程は、突起2が形成されたプレプローブ針の先端部の絶縁被膜6を剥離する工程である。このときの剥離は、所定の長さを正確に剥離することができればその手段は特に限定されないが、例えばレーザによる剥離であっても、機械的な剥離であってもよい。この剥離工程によって、図1に示す段差部7を形成することができる。その段差部7はプローブユニット10のガイドプレート20に当たってプローブ針1の落下を防ぐように作用する。   The insulating coating peeling process is a process of peeling the insulating coating 6 at the tip of the pre-probe needle on which the protrusions 2 are formed. The means for the peeling at this time is not particularly limited as long as a predetermined length can be accurately peeled, but may be peeling by laser or mechanical peeling, for example. By this peeling step, the stepped portion 7 shown in FIG. 1 can be formed. The stepped portion 7 contacts the guide plate 20 of the probe unit 10 and acts to prevent the probe needle 1 from falling.

めっき層形成工程は、絶縁被膜6が剥離された露出部にめっき層を形成する工程である。めっき層は、上記種類の中から選択されためっき液を用い、電気めっき法又は無電解めっき法等の湿式めっきで形成することができる。また、蒸着やスパッタリング等のいわゆるPVD法(乾式めっき)で成膜してもよい。   The plating layer forming step is a step of forming a plating layer on the exposed portion from which the insulating coating 6 has been peeled off. The plating layer can be formed by wet plating such as electroplating or electroless plating using a plating solution selected from the above types. Moreover, you may form into a film by what is called PVD methods (dry plating), such as vapor deposition and sputtering.

以上説明しように、本発明のプローブ針1の製造方法によれば、突起形成工程が絶縁被膜剥離工程の前にあるので、金属導体5の先端Aが絶縁被膜6で包まれた状態下で突起2が加工される。その結果、加工時に金属導体5の周縁にバリが生じにくく、その後に絶縁被膜6を剥離すれば、バリ取り処理等を行わずにそのまま金属めっき工程に投入できる。したがって、本発明のプローブ針1の製造方法によれば、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起2が4μm以上20μm以下のピッチPでマトリクス状に形成されている先端Aを有するプローブ針1を、バリ取り等の余計な工程を経ることなく効率的に製造することができる。   As described above, according to the method for manufacturing the probe needle 1 of the present invention, since the protrusion forming step is before the insulating film peeling step, the protrusion A is formed in a state where the tip A of the metal conductor 5 is wrapped with the insulating film 6. 2 is processed. As a result, burrs are unlikely to occur at the periphery of the metal conductor 5 during processing, and if the insulating coating 6 is subsequently peeled off, it can be directly put into the metal plating step without performing a deburring process or the like. Therefore, according to the method for manufacturing the probe needle 1 of the present invention, the projections 2 made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less are formed in a matrix with a pitch P of 4 μm or more and 20 μm or less. The probe needle 1 having the tip A can be efficiently manufactured without an extra step such as deburring.

(プローブ針の使用方法)
次に、上述した本発明のプローブ針1を用いた電気特性の検査方法について、図5を参照して説明する。本発明のプローブ針1は、プローブユニット10に装着されて回路基板等の被測定体12の電気特性の良否の検査に利用される。プローブユニット10は、図5に示すように、複数本から数千本のプローブ針1と、プローブ針1を被測定体12の電極11にガイドするプレート20と、プローブ針1を検査装置のリード線50にガイドするプレート30とを備えている。検査装置側のプレート30は、プローブ針1の直径よりも若干大きい案内穴31を有し、その案内穴31は一本一本のプローブ針1をリード線50にガイドする。被測定体側のプレート20は、金属導体5の直径よりも若干大きい案内穴21を有し、その案内穴21は一本一本のプローブ針1の金属導体5の先端Aを電極11にガイドする。
(How to use the probe needle)
Next, an electrical property inspection method using the above-described probe needle 1 of the present invention will be described with reference to FIG. The probe needle 1 of the present invention is mounted on a probe unit 10 and used for checking the quality of electrical characteristics of a measured object 12 such as a circuit board. As shown in FIG. 5, the probe unit 10 includes a plurality of thousands of probe needles 1, a plate 20 that guides the probe needles 1 to the electrodes 11 of the object to be measured 12, and the probe needles 1 that lead the inspection apparatus. And a plate 30 that guides the wire 50. The plate 30 on the inspection apparatus side has a guide hole 31 that is slightly larger than the diameter of the probe needle 1, and the guide hole 31 guides each probe needle 1 to the lead wire 50. The plate 20 on the measured object side has a guide hole 21 slightly larger than the diameter of the metal conductor 5, and the guide hole 21 guides the tip A of the metal conductor 5 of each probe needle 1 to the electrode 11. .

プローブ針1が備える段差部7は、電極11側のガイドプレート20に当たってプローブ針1が落下したりしないように保持するように作用する。   The step portion 7 provided in the probe needle 1 acts so as to hold the probe needle 1 so that it does not fall by hitting the guide plate 20 on the electrode 11 side.

プローブユニット10と被測定体12は、被測定体12の電気特性を検査する際、プローブ針1と被測定体12の電極11とが対応するように位置制御される。電気特性の検査は、プローブユニット10又は被測定体12のいずれかを上下させ、プローブ針1の弾性力を利用して電極11にプローブ針1の先端Aを所定の圧力で押し当てることにより行われる。このとき、プローブ針1の後端Bはリード線50に常時又は随時接触し、被測定体12からの電気信号がそのリード線50を通って検査装置(図示しない。)に送られる。なお、図5中の符号40はリード線用の保持板を示す。   The position of the probe unit 10 and the measured object 12 are controlled so that the probe needle 1 and the electrode 11 of the measured object 12 correspond to each other when the electrical characteristics of the measured object 12 are inspected. The electrical property inspection is performed by moving either the probe unit 10 or the measured object 12 up and down and pressing the tip A of the probe needle 1 against the electrode 11 with a predetermined pressure using the elastic force of the probe needle 1. Is called. At this time, the rear end B of the probe needle 1 is in contact with the lead wire 50 at all times or at any time, and an electric signal from the measured object 12 is sent to the inspection device (not shown) through the lead wire 50. In addition, the code | symbol 40 in FIG. 5 shows the holding plate for lead wires.

本発明のプローブ針1は、従来型プローブ針とは異なり、突起2の形状とピッチPが特定されることにより従来にない優れて効果を奏するものであるので、プローブユニット10を動作させてプローブ針1を電極11に押し当てれば、長期間の安定測定を正確に行うことができる。   Unlike the conventional probe needle, the probe needle 1 of the present invention has an effect which is superior to that of the prior art by specifying the shape of the protrusion 2 and the pitch P. Therefore, the probe needle 10 is operated to operate the probe. If the needle 1 is pressed against the electrode 11, long-term stable measurement can be accurately performed.

本発明について、以下のような実験を行って本発明を更に具体的に説明する。なお、以下の実験結果は一例であって、本発明は以下の実験結果に限定されるものではない。   The present invention will be described more specifically by conducting the following experiments. Note that the following experimental results are merely examples, and the present invention is not limited to the following experimental results.

(実験例)
頂点角度と頂点ピッチPを種々変化させた試料を多数作製し、実験を行った。先ず、金属導体5として長尺のタングステン線(直径:90μm)を用いた。絶縁被膜用の塗料として、ポリウレタン樹脂系のエナメル塗料を用い、図示しない絶縁被膜焼付装置により厚さ15μmのポリウレタン被膜6を連続的に焼付け、絶縁被膜付きタングステン線を作製した。次に、定尺切断装置で30mm長さに切断した。次に、絶縁被膜付きタングステン線を図4に示す態様で所定の治具に俵積みして固定し、その先端AをV溝加工した。V溝加工は超音波切削加工により行い、四角錐は直交する2軸V溝加工で行い、三角錐は60度で交差する3軸V溝加工で行った。V溝加工では、頂点角度と頂点ピッチPを種々変化させ、表1に示す形態となるように作製した。なお、得られた四角錐の形態例を図6に示した。図6の中央はタングステン線であり、外周部はポリウレタン樹脂層である。
(Experimental example)
A number of samples with various apex angles and apex pitches P were produced and tested. First, a long tungsten wire (diameter: 90 μm) was used as the metal conductor 5. A polyurethane resin-based enamel paint was used as a coating for the insulating coating, and a polyurethane coating 6 having a thickness of 15 μm was continuously baked by an insulating coating baking apparatus (not shown) to produce a tungsten wire with an insulating coating. Next, it cut | disconnected to 30 mm length with the fixed length cutting device. Next, the tungsten wire with an insulating coating was stacked and fixed on a predetermined jig in the manner shown in FIG. 4, and the tip A was V-grooved. The V-groove processing was performed by ultrasonic cutting, the quadrangular pyramid was performed by orthogonal biaxial V-groove processing, and the triangular pyramid was performed by triaxial V-groove processing intersecting at 60 degrees. In the V-groove processing, the vertex angle and the vertex pitch P were variously changed to produce the forms shown in Table 1. In addition, the example of the form of the obtained quadrangular pyramid was shown in FIG. The center of FIG. 6 is a tungsten wire, and the outer peripheral part is a polyurethane resin layer.

その後、先端Aにエキシマレーザを照射し、先端から2.5mm程度の絶縁被膜6を剥離し、図1に示す態様のプローブ針1を作製した。プローブ針1の後端Bは研削加工装置により半球形状に研削加工した。また、絶縁被膜6を剥離した後の先端Aには、プローブ針先端Aの酸化を防止し且つ電極11との接触抵抗値を低減するために、厚さ0.5μmのパラジウムめっきを電気めっきにより形成した。こうしてNo.1〜20の試料を作製した。   Thereafter, the excimer laser was irradiated to the tip A, and the insulating coating 6 having a thickness of about 2.5 mm was peeled off from the tip to produce the probe needle 1 having the mode shown in FIG. The rear end B of the probe needle 1 was ground into a hemispherical shape by a grinding machine. Further, on the tip A after peeling off the insulating coating 6, in order to prevent oxidation of the probe needle tip A and reduce the contact resistance value with the electrode 11, a 0.5 μm thick palladium plating is applied by electroplating. Formed. Thus, no. Samples 1 to 20 were prepared.

(測定及び結果)
上記のようにして得た各試料を図5に示すプローブユニット10に装着し、電極材料が半田(スズ63%、鉛37%)からなるでバンプ(直径80μm)の電極11に対し、コンタクト荷重を10gとして繰り返し接触させ、そのときの接触抵抗値、電極外観傷、電極材料付着を評価した。また、その結果を基にして総合評価を行った。接触抵抗値はマルチメーターで測定し、プローブ針1と電極11とを前記荷重で1000回接触させた後の接触抵抗値が1.5Ω以上のときを「×」とし、1.5Ω未満のときを「○」とした。また、電極外観傷は、上記同様、1000回接触させた後の電極11を300倍に拡大した顕微鏡で観察し、許容できる傷(傷の最大幅が10μm未満)である場合は「○」とし、許容できない傷(傷の最大幅が10μm以上)である場合は「×」とした。また、電極材料付着も、上記同様、1000回接触させた後のプローブ針先端Aを顕微鏡で観察し、全く付着していないか電極材料色が付く程度に僅か付着していた場合を「○」とし、角錐の輪郭が変わる程度に付着していた場合を「×」とした。結果を表1にまとめた。
(Measurement and results)
Each sample obtained as described above is mounted on the probe unit 10 shown in FIG. 5, and the contact load is applied to the electrode 11 of bump (diameter 80 μm) made of solder (63% tin, 37% lead). Was repeatedly contacted as 10 g, and the contact resistance value, electrode appearance scratches, and electrode material adhesion at that time were evaluated. Moreover, comprehensive evaluation was performed based on the result. The contact resistance value is measured with a multimeter. When the contact resistance value after contacting the probe needle 1 and the electrode 11 1000 times with the load is 1.5Ω or more, “x” is indicated, and when the contact resistance value is less than 1.5Ω. Was marked as “◯”. Similarly to the above, the electrode appearance scratch was observed with a microscope magnified 300 times after the electrode 11 was contacted 1000 times, and “○” was indicated when it was an acceptable scratch (maximum scratch width was less than 10 μm). In the case of an unacceptable scratch (the maximum width of the scratch is 10 μm or more), “x” was given. In addition, as in the case of the electrode material adhesion, “◯” indicates that the probe needle tip A after 1000 times contact was observed with a microscope and was not adhered at all or was slightly adhered to the extent that the electrode material color was attached. The case where the pyramid was attached to such an extent that the outline of the pyramid was changed was defined as “x”. The results are summarized in Table 1.

Figure 2009198238
Figure 2009198238

本発明のプローブ針1を示す模式的な概略図である。It is a typical schematic diagram showing probe needle 1 of the present invention. 本発明のプローブ針1の先端Aの突起2Aが四角錐である場合の一例を示す概略図である。It is the schematic which shows an example in case the processus | protrusion 2A of the front-end | tip A of the probe needle 1 of this invention is a quadrangular pyramid. 本発明のプローブ針1の先端Aの突起2Bが三角錐である場合の一例を示す概略図である。It is the schematic which shows an example in case the processus | protrusion 2B of the front-end | tip A of the probe needle 1 of this invention is a triangular pyramid. 本発明のプローブ針1の先端Aの突起2を形成する工程の説明図である。It is explanatory drawing of the process of forming the processus | protrusion 2 of the front-end | tip A of the probe needle 1 of this invention. 本発明のプローブ針1を装着したプローブユニット10の構成例を示す模式的な構成図である。It is a typical block diagram which shows the structural example of the probe unit 10 equipped with the probe needle 1 of this invention. 本発明のプローブ針1の先端形状を示す電子顕微鏡写真である。It is an electron micrograph which shows the front-end | tip shape of the probe needle 1 of this invention.

符号の説明Explanation of symbols

1 プローブ針
2,2A,2B 突起
3 頂点
4 谷部
5 金属導体
6 絶縁被膜
7 段差部(当接部)
A 先端
B 後端
P ピッチ
F 加重
11 電極
12 被測定体
DESCRIPTION OF SYMBOLS 1 Probe needle 2, 2A, 2B Protrusion 3 Vertex 4 Valley part 5 Metal conductor 6 Insulation film 7 Step part (contact part)
A front end B rear end P pitch F weight 11 electrode 12 object to be measured

Claims (6)

先端を被測定体の電極に接触させて該被測定体の電気的特性を測定するためのプローブ針であって、
前記先端には、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起が、4μm以上20μm以下のピッチでマトリクス状に形成されていることを特徴とするプローブ針。
A probe needle for measuring the electrical characteristics of the measurement object by bringing the tip into contact with the electrode of the measurement object,
A probe needle characterized in that protrusions made of a quadrangular pyramid or a triangular pyramid having a vertex angle of 35 degrees or more and 125 degrees or less are formed in a matrix at a pitch of 4 μm or more and 20 μm or less on the tip.
少なくとも前記先端が、金めっき、パラジウムめっき、ロジウムめっき及びニッケルめっきから選ばれる少なくとも1種を有する、請求項1に記載のプローブ針。   The probe needle according to claim 1, wherein at least the tip has at least one selected from gold plating, palladium plating, rhodium plating, and nickel plating. 前記プローブ針の先端部以外が絶縁被膜で覆われている、請求項1又は2に記載のプローブ針。   The probe needle according to claim 1 or 2, wherein a portion other than the tip of the probe needle is covered with an insulating film. 先端を被測定体の電極に接触させて該被測定体の電気的特性を測定するためのプローブ針の製造方法であって、
金属導体の外周に絶縁被膜が形成された所定長さの絶縁被膜付き金属導体を準備する工程と、
前記絶縁被膜付き金属導体の少なくとも一方の先端に、35度以上125度以下の頂点角度を持つ四角錐又は三角錐からなる突起を4μm以上20μm以下のピッチでマトリクス状に形成する突起形成工程と、
前記突起が形成されたプレプローブ針の先端部の絶縁被膜を剥離する工程と、
前記絶縁被膜が剥離された露出部にめっき層を形成する工程と、
を有することを特徴とするプローブ針の製造方法。
A probe needle manufacturing method for measuring the electrical characteristics of a measured object by bringing the tip into contact with an electrode of the measured object,
Preparing a metal conductor with an insulating coating having a predetermined length in which an insulating coating is formed on the outer periphery of the metal conductor;
A protrusion forming step of forming a protrusion made of a quadrangular pyramid or a triangular pyramid having a vertex angle of not less than 35 degrees and not more than 125 degrees in a matrix form at a pitch of not less than 4 μm and not more than 20 μm on at least one end of the metal conductor with an insulating coating;
Peeling the insulating coating at the tip of the pre-probe needle on which the protrusion is formed;
Forming a plating layer on the exposed portion from which the insulating coating has been peeled;
A method of manufacturing a probe needle, comprising:
前記突起形成工程において、前記四角錐からなる突起を直交する2軸V溝加工で行い、前記三角錐からなる突起を60度で交差する3軸V溝加工で行う、請求項4に記載のプローブ針の製造方法。   5. The probe according to claim 4, wherein, in the protrusion forming step, the protrusion made of the quadrangular pyramid is performed by orthogonal biaxial V-groove processing, and the protrusion made of the triangular pyramid is performed by triaxial V-groove processing intersecting at 60 degrees. Needle manufacturing method. 前記準備工程において、前記絶縁被膜付き金属導体は、長尺の金属導体の外周に絶縁被膜を連続塗布して絶縁被膜付き長尺導体を形成する工程と、該絶縁被膜付き長尺導体を所定長さに切断する工程とを経て準備される、請求項4又は5に記載のプローブ針の製造方法。   In the preparation step, the metal conductor with an insulating coating is formed by continuously applying an insulating coating on the outer periphery of a long metal conductor to form a long conductor with an insulating coating; The method for manufacturing a probe needle according to claim 4, wherein the probe needle is prepared through a step of cutting.
JP2008038584A 2008-02-20 2008-02-20 Probe needle and method of manufacturing the same Pending JP2009198238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038584A JP2009198238A (en) 2008-02-20 2008-02-20 Probe needle and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038584A JP2009198238A (en) 2008-02-20 2008-02-20 Probe needle and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009198238A true JP2009198238A (en) 2009-09-03

Family

ID=41141900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038584A Pending JP2009198238A (en) 2008-02-20 2008-02-20 Probe needle and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009198238A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132717A (en) * 2010-12-20 2012-07-12 Unitechno Inc Inspection contact probe
KR20150036878A (en) * 2013-09-30 2015-04-08 한국전력공사 Critical current measuring devices of superconductor wire
US9627791B2 (en) 2015-03-31 2017-04-18 Nitta Corporation Connector apparatus
JP2018041954A (en) * 2016-09-05 2018-03-15 株式会社ニューフレアテクノロジー Conductive contact needle
TWI629484B (en) * 2016-02-15 2018-07-11 日本發條股份有限公司 Conductive contact for inspection and semiconductor inspection device
WO2018131321A1 (en) * 2017-01-13 2018-07-19 アルプス電気株式会社 Press-fit connector
CN111063632A (en) * 2019-10-15 2020-04-24 北京烁科中科信电子装备有限公司 High-density array type Faraday cylinder measuring probe
CN114305486A (en) * 2020-09-30 2022-04-12 通用电气精准医疗有限责任公司 Scanning assembly for ultrasonic imaging device and ultrasonic imaging device
US11385259B2 (en) * 2017-06-28 2022-07-12 Isc Co., Ltd. Probe member for pogo pin, method of manufacturing the probe member, pogo pin comprising the probe member
US11555829B2 (en) * 2017-06-28 2023-01-17 Isc Co., Ltd. Probe member for pogo pin, manufacturing method therefor and pogo pin comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968546A (en) * 1995-08-31 1997-03-11 Nitto Denko Corp Test head structure and manufacture thereof
JPH10134873A (en) * 1996-10-28 1998-05-22 Fujitsu Ltd Contact terminal and its manufacture
JP2006017455A (en) * 2004-05-31 2006-01-19 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2007322369A (en) * 2006-06-05 2007-12-13 Totoku Electric Co Ltd Contact probe and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968546A (en) * 1995-08-31 1997-03-11 Nitto Denko Corp Test head structure and manufacture thereof
JPH10134873A (en) * 1996-10-28 1998-05-22 Fujitsu Ltd Contact terminal and its manufacture
JP2006017455A (en) * 2004-05-31 2006-01-19 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2007322369A (en) * 2006-06-05 2007-12-13 Totoku Electric Co Ltd Contact probe and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132717A (en) * 2010-12-20 2012-07-12 Unitechno Inc Inspection contact probe
KR20150036878A (en) * 2013-09-30 2015-04-08 한국전력공사 Critical current measuring devices of superconductor wire
KR102014411B1 (en) 2013-09-30 2019-08-26 한국전력공사 Critical current measuring devices of superconductor wire
US9627791B2 (en) 2015-03-31 2017-04-18 Nitta Corporation Connector apparatus
US10274517B2 (en) 2016-02-15 2019-04-30 Nhk Spring Co., Ltd. Conductive probe for inspection and semiconductor inspection device
TWI629484B (en) * 2016-02-15 2018-07-11 日本發條股份有限公司 Conductive contact for inspection and semiconductor inspection device
JP2018041954A (en) * 2016-09-05 2018-03-15 株式会社ニューフレアテクノロジー Conductive contact needle
WO2018131321A1 (en) * 2017-01-13 2018-07-19 アルプス電気株式会社 Press-fit connector
JPWO2018131321A1 (en) * 2017-01-13 2019-07-04 アルプスアルパイン株式会社 Press-fit connector
CN110168814A (en) * 2017-01-13 2019-08-23 阿尔卑斯阿尔派株式会社 Crimp connector
US11385259B2 (en) * 2017-06-28 2022-07-12 Isc Co., Ltd. Probe member for pogo pin, method of manufacturing the probe member, pogo pin comprising the probe member
US11555829B2 (en) * 2017-06-28 2023-01-17 Isc Co., Ltd. Probe member for pogo pin, manufacturing method therefor and pogo pin comprising same
CN111063632A (en) * 2019-10-15 2020-04-24 北京烁科中科信电子装备有限公司 High-density array type Faraday cylinder measuring probe
CN111063632B (en) * 2019-10-15 2024-02-06 北京烁科中科信电子装备有限公司 High-density array Faraday cage measuring probe
CN114305486A (en) * 2020-09-30 2022-04-12 通用电气精准医疗有限责任公司 Scanning assembly for ultrasonic imaging device and ultrasonic imaging device

Similar Documents

Publication Publication Date Title
JP2009198238A (en) Probe needle and method of manufacturing the same
JP2007322369A (en) Contact probe and its manufacturing method
JP5027522B2 (en) Probe unit and method of using a contact probe using the probe unit
JP6305754B2 (en) Contact probe unit
JP5144997B2 (en) Contact probe unit and manufacturing method thereof
JP4611822B2 (en) Probe needle with insulating coating and method for manufacturing the same
JP2007218675A (en) Probe, and manufacturing method of probe
JP2004093355A (en) Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT
JP5192899B2 (en) Probe needle and manufacturing method thereof
JP5260620B2 (en) PCB terminal and manufacturing method thereof
JP6371501B2 (en) Probe unit
JP2009210443A (en) Contact probe and method for manufacturing the same
JP6600387B2 (en) Probe and probe contact method
JP2006317412A (en) Probing stylus having insulating film, and manufacturing method thereof
JP2008026336A (en) Contactor
JP2006017455A (en) Probe needle and its manufacturing method
JP2015212622A (en) Probe card pin and manufacturing method of the same
JP3641609B2 (en) Method for manufacturing a pencil type probe for a probe card
JP7008541B2 (en) Probe needle
JP7471148B2 (en) Probe needle and probe unit
WO2022074888A1 (en) Contact probe
JP2016011925A (en) Contact probe and contact probe unit
JP2006098066A (en) Probe needle, using method therefor, and manufacturing method for probe needle
JP7390115B2 (en) probe unit
JP2019152541A (en) Probe needle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402