JP2007322369A - Contact probe and its manufacturing method - Google Patents

Contact probe and its manufacturing method Download PDF

Info

Publication number
JP2007322369A
JP2007322369A JP2006156087A JP2006156087A JP2007322369A JP 2007322369 A JP2007322369 A JP 2007322369A JP 2006156087 A JP2006156087 A JP 2006156087A JP 2006156087 A JP2006156087 A JP 2006156087A JP 2007322369 A JP2007322369 A JP 2007322369A
Authority
JP
Japan
Prior art keywords
metal conductor
shape
probe
insulating coating
contact probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156087A
Other languages
Japanese (ja)
Inventor
Yoichi Okada
洋一 岡田
Hirokazu Ishimura
宏和 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2006156087A priority Critical patent/JP2007322369A/en
Publication of JP2007322369A publication Critical patent/JP2007322369A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a form capable of efficiently manufacturing a contact probe of a type for obtaining contact pressure to a material brought into contact for measuring electric characteristics by bending with load applied to both ends, and to provide its manufacturing method. <P>SOLUTION: On the contact probe having an insulative coat around an outer periphery of a pin-shaped metallic conductor, (1) a shape of one or both ends of the probe 1 comprises worked end surfaces 2a and 2b of the metallic conductor 2 and worked end surfaces 3a and 3b of the coat 3, and the shape of the end is one selected from a hemispherical form, a conic form, a conic form having a hemispherical form at the tip and a conic form having a flat form at the tip; and/or (2) one or both ends of the probe 1 are formed of the worked end surfaces 2a and 2b of the metallic conductor 2 with the tip exposed by grinding and the worked end surfaces 3a and 3b of the insulative coat 3 ground concurrently with the worked end surfaces 2a and 2b of the metallic conductor 2 and consisting of a form along the forms of the end surfaces 2a and 2b of the conductor 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に電子部品及び基板などの導通検査に用いる検査用のコンタクトプローブ及びその製造方法に関し、更に詳しくは、両端に加重を与えてたわませることにより被接触体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブを効率よく製造することができるコンタクトプローブの形状、及びその製造方法に関する。   The present invention relates to a contact probe for inspection mainly used for continuity inspection of electronic components and substrates, and more particularly to a manufacturing method thereof. More specifically, the present invention relates to obtaining a contact pressure with respect to a contacted object by applying a weight to both ends. The present invention relates to a shape of a contact probe that can efficiently manufacture a contact probe that measures electrical characteristics, and a manufacturing method thereof.

近年、携帯電話等に使用される高密度実装基板、又は、パソコン等に組み込まれるBGA(Ball Grid Array)やCSP(Chip Size Package)等のICパッケージ基板等、様々な回路基板が多く用いられている。このような回路基板は、実装の前後の工程において、例えば直流抵抗値の測定や導通検査等が行われ、その電気特性の良否が検査されている。電気特性の良否の検査は、電気特性を測定する検査装置に接続された検査装置用治具(以下、「プローブユニット」という。)を用いて行われ、例えば、プローブユニットに装着されたピン形状のプローブ(本願では「コンタクトプローブ」という。)の先端を、その回路基板の電極(以下「被測定体」ともいう。)に接触させることにより行われている(例えば特許文献1を参照。)。   In recent years, various circuit boards such as high-density mounting boards used for mobile phones and the like, IC package boards such as BGA (Ball Grid Array) and CSP (Chip Size Package) incorporated in personal computers, etc., are often used. Yes. Such a circuit board is subjected to, for example, a measurement of a direct current resistance value or a continuity test in the processes before and after mounting, and the electrical characteristics of the circuit board are inspected. The inspection of electrical characteristics is performed using an inspection apparatus jig (hereinafter referred to as “probe unit”) connected to an inspection apparatus for measuring electrical characteristics. For example, a pin shape mounted on the probe unit is used. The probe (referred to as “contact probe” in this application) is brought into contact with the electrode (hereinafter also referred to as “measurement object”) of the circuit board (see, for example, Patent Document 1). .

図8は、従来のコンタクトプローブの一例を示す模式断面図であり、図9は、従来のコンタクトプローブを備えるプローブユニットを用いて被測定体の電気特性を検査する方法を説明するための模式断面図である。図8に示すコンタクトプローブ101は、ばね性を有した直線状の金属導体102に絶縁被膜103が被覆され、その両端部の絶縁被膜が剥離処理されて金属導体102が露出している。コンタクトプローブ101の両端は、被測定体111の電極112に接触する先端102aと、検査装置側のリード線150に接触する後端102bとからなる両端を有している(図9を参照)。こうしたコンタクトプローブ101は、(1)所定の長さに切断された金属導体102の両端を所定の形状に研削加工した後、その両端を含む所定領域をマスキングした状態で絶縁塗料をスプレーコーティングして製造され、又は、(2)長尺の金属導体上に連続して焼付けエナメルコーティングした絶縁被膜付き金属導体を所定の長さに切断し、両端を含む所定領域の絶縁被膜をレーザー剥離又は機械剥離によって除去した後、その両端を研削加工して製造されている。   FIG. 8 is a schematic cross-sectional view showing an example of a conventional contact probe, and FIG. 9 is a schematic cross-sectional view for explaining a method for inspecting the electrical characteristics of a measurement object using a probe unit including a conventional contact probe. FIG. In the contact probe 101 shown in FIG. 8, a linear metal conductor 102 having a spring property is coated with an insulating film 103, and the insulating film at both ends is peeled off to expose the metal conductor 102. Both ends of the contact probe 101 have both ends composed of a front end 102a that contacts the electrode 112 of the measured object 111 and a rear end 102b that contacts the lead wire 150 on the inspection apparatus side (see FIG. 9). In such a contact probe 101, (1) after both ends of a metal conductor 102 cut to a predetermined length are ground into a predetermined shape, an insulating paint is spray-coated in a state where a predetermined region including both ends is masked. Manufactured or (2) A metal conductor with an insulating coating that is continuously baked and enameled on a long metal conductor is cut to a predetermined length, and an insulating coating in a predetermined region including both ends is laser-peeled or mechanically peeled off It is manufactured by grinding both ends after removing by.

図9に示すプローブユニット110は、複数本から数千本のコンタクトプローブ101と、コンタクトプローブ101のリード線側を案内する案内穴付きガイド板130と、コンタクトプローブ101の先端が被測定体111の電極112に接するようにコンタクトプローブ101の電極側を案内する案内穴付きガイド板120とを少なくとも備えている。電気特性の検査は、プローブユニット110又は被測定体111を相対的に上下させ、コンタクトプローブ101の弾性力を利用して被測定体111の電極112にコンタクトプローブ101を所定の圧力で押し当てることにより行われる。このとき、電極112に押し当てられた力によってたわんだコンタクトプローブ101の後端102bはリード線150に強く接触し、被測定体112からの電気信号がそのリード線150を通って検査装置(図示しない。)に送られる。   The probe unit 110 shown in FIG. 9 includes a plurality of to several thousand contact probes 101, a guide plate 130 with a guide hole that guides the lead wire side of the contact probes 101, and the tip of the contact probe 101 is the object 111 to be measured. At least a guide plate 120 with a guide hole for guiding the electrode side of the contact probe 101 so as to contact the electrode 112 is provided. In the inspection of the electrical characteristics, the probe unit 110 or the measured object 111 is relatively moved up and down, and the contact probe 101 is pressed against the electrode 112 of the measured object 111 with a predetermined pressure using the elastic force of the contact probe 101. Is done. At this time, the rear end 102b of the contact probe 101 bent by the force pressed against the electrode 112 strongly contacts the lead wire 150, and an electrical signal from the measured object 112 passes through the lead wire 150 and is inspected (shown). Not sent.)

なお、被測定体111の電気特性を検査する際の形態例として、図9に示す形態の上下が逆になって、下向きの電極112に対し、下方からコンタクトプローブ101の先端102aが押し当たる形態や、予めコンタクトプローブ101とリード線150とが接触した状態を保持したまま、プローブユニット110と被測定体111とを位置決めする場合もある。図9中、符号140はリード線用の保持板を示している。   Note that, as a form example when inspecting the electrical characteristics of the measurement object 111, the form shown in FIG. 9 is upside down, and the tip 102a of the contact probe 101 presses against the downward electrode 112 from below. In some cases, the probe unit 110 and the measured object 111 may be positioned while the contact probe 101 and the lead wire 150 are kept in contact with each other. In FIG. 9, reference numeral 140 denotes a lead wire holding plate.

プローブユニット110へのコンタクトプローブ101のセッティングは、通常は、ガイド板130に設けられた案内穴からコンタクトプローブ101を挿入することにより行われる。したがって、その案内穴は絶縁被膜で被覆されたコンタクトプローブ101の直径よりも大きい直径で形成されている。
特開2002−131334号公報
Setting of the contact probe 101 to the probe unit 110 is normally performed by inserting the contact probe 101 from a guide hole provided in the guide plate 130. Therefore, the guide hole is formed with a diameter larger than the diameter of the contact probe 101 covered with the insulating film.
JP 2002-131334 A

しかしながら、所定長さの金属導体上にマスキングした後に絶縁塗料をスプレーコーティングする製造方法では、少なくとも、切断、研削加工、マスキング、コーティングを経て製造され、一方、長尺の絶縁被膜付き金属導体を切断した後に両端部の絶縁被膜を剥離する方法では、少なくとも、エナメル焼き付け、切断、剥離、研削加工を経て製造され、いずれの製造方法も加工工数が多く、コストアップの原因となっていた。   However, in the manufacturing method in which insulating coating is spray-coated after masking on a metal conductor of a predetermined length, it is manufactured through at least cutting, grinding, masking, and coating, while cutting long metal conductors with insulating coatings. After that, the method of peeling off the insulating coatings at both ends is manufactured through at least enamel baking, cutting, peeling, and grinding, and each of the manufacturing methods has a large number of processing steps and causes a cost increase.

また、図9に示すように、リード線側のガイド板130が有する案内穴と、コンタクトプローブ101のリード線側の端部102bとのクリアランスが大きく、金属導体102の端部102bのセンタリングが十分に行われず、その端部102bとリード線150との接触が不安定になるという問題もあった。   Further, as shown in FIG. 9, the clearance between the guide hole of the guide plate 130 on the lead wire side and the end portion 102b on the lead wire side of the contact probe 101 is large, and the centering of the end portion 102b of the metal conductor 102 is sufficient. However, the contact between the end portion 102b and the lead wire 150 becomes unstable.

また、図9に示すプローブユニット110が上下逆向きに構成され、被測定体111の電極112がはんだバンプで形成されている場合に、プローブユニット110が上昇して電極112にコンタクトプローブ101が押し当たると、コンタクトプローブ101の先端と電極112とが貼り付くように一瞬接着た後に離れることがある。こうした現象が続くとはんだ粉が生じ、そのはんだ粉が電極側のガイド板120上に貯まって隣接するコンタクトプローブがショートするという問題を生じさせる恐れがある。   Further, when the probe unit 110 shown in FIG. 9 is configured upside down and the electrode 112 of the measured object 111 is formed of a solder bump, the probe unit 110 is raised and the contact probe 101 is pushed against the electrode 112. When the contact is made, the tip of the contact probe 101 and the electrode 112 may adhere to each other so that the electrode 112 sticks, and then the contact probe 101 may be separated. If such a phenomenon continues, solder powder is generated, which may cause a problem that the solder powder accumulates on the electrode-side guide plate 120 and an adjacent contact probe is short-circuited.

本発明は、上記課題を解決するためになされたものであって、その目的は、両端に加重を与えてたわませることにより被接触体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブを効率よく製造することができると共に、安定した接触を可能にし、ショートの問題も生じさせないコンタクトプローブの形状、及びその製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to use a contact that measures electrical characteristics by obtaining a contact pressure with respect to a contacted object by applying a weight to both ends to bend. An object of the present invention is to provide a shape of a contact probe that can efficiently manufacture a probe, enables stable contact, and does not cause a short-circuit problem, and a manufacturing method thereof.

上記課題を解決するための本発明の第1の観点に係るコンタクトプローブは、ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブにおいて、前記コンタクトプローブの片端部又は両端部が、研削加工により先端部が露出した金属導体の加工端面と、当該金属導体の加工端面と同時に研削加工され、当該金属導体の加工端面形状に沿った形状からなる絶縁被膜の加工端面とで形成されていることを特徴とする。   A contact probe according to a first aspect of the present invention for solving the above-described problems has an insulating coating on the outer periphery of a pin-shaped metal conductor, and contacts the object to be measured by applying a weight to both ends. In a contact probe of a type that obtains pressure and measures electrical characteristics, one or both ends of the contact probe are ground at the same time as the processed end surface of the metal conductor with the tip exposed by grinding and the processed end surface of the metal conductor. It is processed and formed with the process end surface of the insulating film which consists of a shape along the process end surface shape of the said metal conductor.

この発明によれば、コンタクトプローブの片端部又は両端部は金属導体の端面と絶縁被膜の端面とが同時に研削加工されたものであるので、得られたコンタクトプローブは、従来のような工程で得られたものに比べて少ない加工工数で得られ、コストダウンを実現することができる。   According to the present invention, one end or both ends of the contact probe are obtained by grinding the end face of the metal conductor and the end face of the insulating coating at the same time. Therefore, the obtained contact probe is obtained by a conventional process. It can be obtained with a smaller number of processing steps than those obtained, and cost reduction can be realized.

また、コンタクトプローブの片端部又は両端部においては、露出した金属導体の先端近傍まで絶縁被膜が覆われているので、ガイド板の案内穴とコンタクトプローブとのクリアランスが小さく、金属導体の端部を十分にセンタリングすることができ、金属導体とリード線との接触の不安定さを解消できる。同様に、露出した金属導体の先端近傍まで絶縁被膜が覆われているので、図9に示すプローブユニットが上下逆向きに構成され、被測定体の電極がはんだバンプで形成されている場合に、生じたはんだ粉が電極側のガイド板上に貯まった場合であっても、隣接するコンタクトプローブをショートさせるという問題が生じることはない。   In addition, at one or both ends of the contact probe, since the insulating coating is covered to the vicinity of the exposed metal conductor tip, the clearance between the guide hole of the guide plate and the contact probe is small, and the end of the metal conductor is Sufficient centering can be achieved, and instability of contact between the metal conductor and the lead wire can be eliminated. Similarly, since the insulating coating is covered to the vicinity of the exposed metal conductor tip, the probe unit shown in FIG. 9 is configured upside down, and when the electrode of the object to be measured is formed of solder bumps, Even when the generated solder powder accumulates on the guide plate on the electrode side, there is no problem of shorting adjacent contact probes.

上記課題を解決するための本発明の第2の観点に係るコンタクトプローブは、ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブにおいて、前記コンタクトプローブの片端部又は両端部の形状が、前記金属導体の端面形状と前記絶縁被膜の端面形状とからなるものであり、前記片端部又は両端部の形状が、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかであることを特徴とする。   A contact probe according to a second aspect of the present invention for solving the above-described problems has an insulating coating on the outer periphery of a pin-shaped metal conductor, and contacts the object to be measured by applying a weight to both ends. In the contact probe of the method for measuring the electrical characteristics by obtaining pressure, the shape of one end or both ends of the contact probe consists of the end face shape of the metal conductor and the end face shape of the insulating coating, and the one end The shape of the part or both ends is any one selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip.

この発明によれば、金属導体の端面と絶縁被膜の端面とからなる片端部又は両端部の形状が、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかであるので、加工工数の多い従来の方法で得られたものとは異なり、露出した金属導体の先端近傍まで絶縁被膜が覆われている。こうした形状からなるコンタクトプローブは、ガイド板の案内穴とコンタクトプローブとのクリアランスが小さく、金属導体の端部を十分にセンタリングすることができ、金属導体とリード線との接触の不安定さを解消できる。また、上記同様、生じたはんだ粉が電極側のガイド板上に貯まった場合であっても、隣接するコンタクトプローブをショートさせるという問題が生じることはない。   According to this invention, the shape of one end part or both end parts composed of the end face of the metal conductor and the end face of the insulating coating has a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a flat shape at the tip. Since it is any one selected from a conical shape, the insulating coating is covered to the vicinity of the exposed metal conductor tip unlike the conventional method having many processing steps. The contact probe with such a shape has a small clearance between the guide hole of the guide plate and the contact probe, can sufficiently center the end of the metal conductor, and eliminates unstable contact between the metal conductor and the lead wire. it can. Similarly to the above, even when the generated solder powder is stored on the electrode-side guide plate, there is no problem of shorting adjacent contact probes.

上記本発明の第1及び第2の観点に係るコンタクトプローブにおいて、前記絶縁被膜の材質が、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂及びポリアミドイミド樹脂から選ばれる少なくとも一種の樹脂であることが好ましい。   In the contact probe according to the first and second aspects of the present invention, the material of the insulating coating is at least selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin and polyamideimide resin. It is preferably a kind of resin.

上記課題を解決するための本発明のコンタクトプローブの製造方法は、ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブを製造する方法であって、絶縁被膜が形成された長尺の金属導体を切断する工程と、切断された絶縁被膜付き金属導体の片端部又は両端部について、前記金属導体の端面と前記絶縁被膜の端面を同時に研削加工して、当該金属導体の端面と当該絶縁被膜の端面とからなる形状を、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかの形状にする工程と、を有することを特徴とする。   In order to solve the above-mentioned problems, the contact probe manufacturing method of the present invention has an insulating coating on the outer periphery of a pin-shaped metal conductor, and obtains a contact pressure with respect to the object to be measured by applying a weight to both ends. A method of manufacturing a contact probe of a method for measuring electrical characteristics by cutting a long metal conductor on which an insulating film is formed, and one or both ends of the cut metal conductor with an insulating film The end face of the metal conductor and the end face of the insulating coating are simultaneously ground to form a shape consisting of the end face of the metal conductor and the end face of the insulating coating, a hemispherical shape, a conical shape, and a conical shape having a hemispherical shape at the tip And a step of making any shape selected from a conical shape having a flat shape at the tip.

この発明は、所定長さの金属導体上にマスキングした後に絶縁塗料をスプレーコーティングする工程や、長尺の絶縁被膜付き金属導体を切断した後に両端部の絶縁被膜をレーザー剥離や機械剥離する工程が不要であるので、加工工数が少なく、コストダウンを実現できる効率的な製造方法である。   This invention includes a step of spray-coating an insulating paint after masking on a metal conductor of a predetermined length, and a step of laser-peeling or mechanically peeling off the insulating coating at both ends after cutting a long metal conductor with an insulating coating. Since it is unnecessary, it is an efficient manufacturing method that requires less processing steps and can realize cost reduction.

本発明のコンタクトプローブによれば、コンタクトプローブの片端部又は両端部は金属導体の端面と絶縁被膜の端面とが同時に研削加工されたものであるので、得られたコンタクトプローブは、従来のような工程で得られたものに比べて少ない加工工数で得られ、コストダウンを実現することができる。また、露出した金属導体の先端近傍まで絶縁被膜が覆われているので、ガイド板の案内穴とコンタクトプローブとのクリアランスが小さく、金属導体の端部を十分にセンタリングすることができ、金属導体とリード線との接触の不安定さを解消できる。同様に、露出した金属導体の近傍まで絶縁被膜が覆われているので、図9に示すプローブユニットが上下逆向きに構成され、被測定体の電極がはんだバンプで形成されている場合に、生じたはんだ粉が電極側のガイド板上に貯まった場合であっても、隣接するコンタクトプローブをショートさせるという問題が生じることはない。   According to the contact probe of the present invention, one or both ends of the contact probe are obtained by grinding the end face of the metal conductor and the end face of the insulating coating at the same time. It can be obtained with fewer processing steps than those obtained in the process, and cost reduction can be realized. In addition, since the insulating coating is covered to the vicinity of the exposed metal conductor tip, the clearance between the guide hole of the guide plate and the contact probe is small, and the end of the metal conductor can be sufficiently centered. Unstable contact with lead wires can be eliminated. Similarly, since the insulating film is covered to the vicinity of the exposed metal conductor, this occurs when the probe unit shown in FIG. 9 is configured upside down and the electrodes of the object to be measured are formed of solder bumps. Even when the solder powder accumulates on the electrode-side guide plate, there is no problem of shorting adjacent contact probes.

本発明のコンタクトプローブの製造方法によれば、加工工数が少ない効率的な方法であるので、低コストのコンタクトプローブを提供することができる。また、先端をコンタクトプローブに適した半球又は円錐等の形状に研削加工する際に、金属導体の先端から例えば0.01〜0.2mmの絶縁被膜を同時に研削除去することができるため、別工程で両端近傍の絶縁被膜を除去する従来工程を削減又は半減でき、低コストのコンタクトプローブを提供することができる。   According to the method for manufacturing a contact probe of the present invention, since it is an efficient method with a small number of processing steps, a low-cost contact probe can be provided. In addition, when the tip is ground into a shape such as a hemisphere or a cone suitable for a contact probe, an insulating coating of, for example, 0.01 to 0.2 mm can be simultaneously ground and removed from the tip of the metal conductor. Thus, it is possible to reduce or halve the conventional process for removing the insulating film near both ends, and to provide a low-cost contact probe.

以下、本発明のコンタクトプローブ及びその製造方法について、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。   Hereinafter, a contact probe and a manufacturing method thereof according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

(コンタクトプローブ)
図1は本発明のコンタクトプローブの一例を示す模式断面図であり、図2は本発明のコンタクトプローブの他の一例を示す模式断面図である。また、図3は本発明のコンタクトプローブの片端部又は両端部の特徴的な形態例を示す断面図である。
(Contact probe)
FIG. 1 is a schematic sectional view showing an example of the contact probe of the present invention, and FIG. 2 is a schematic sectional view showing another example of the contact probe of the present invention. FIG. 3 is a sectional view showing a characteristic embodiment of one or both ends of the contact probe of the present invention.

本発明のコンタクトプローブ1(以下、単に「プローブ1」ということがある。)は、図1及び図2に示すように、ピン形状の金属導体2と、その金属導体2の外周に絶縁被膜3を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のプローブである。そして、このプローブ1の特徴は、(1)プローブ1の片端部又は両端部の形状が、金属導体2の加工端面2a,2bと絶縁被膜3の加工端面3a,3bとからなるものであり、その端部の形状が、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかであること、及び/又は、(2)プローブ1の片端部又は両端部が、研削加工により先端部が露出した金属導体2の加工端面2a,2bと、その金属導体2の加工端面2a,2bと同時に研削加工され、その金属導体2の加工端面2a,2bの形状に沿った形状からなる絶縁被膜3の加工端面3a,3bとで形成されているものである。   As shown in FIGS. 1 and 2, the contact probe 1 of the present invention (hereinafter sometimes simply referred to as “probe 1”) has a pin-shaped metal conductor 2 and an insulating coating 3 on the outer periphery of the metal conductor 2. This is a probe of a type that measures the electrical characteristics by obtaining a contact pressure with respect to the object to be measured by applying a weight to both ends to bend. The features of the probe 1 are as follows: (1) The shape of one end or both ends of the probe 1 is made up of the processed end faces 2a, 2b of the metal conductor 2 and the processed end faces 3a, 3b of the insulating coating 3. The shape of the end portion is any one selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip, and / or (2) the probe 1 One end or both ends of the metal conductor 2 are ground at the same time as the processed end faces 2a and 2b of the metal conductor 2 with the tip exposed, and the processed end faces 2a and 2b of the metal conductor 2, and the processed end face of the metal conductor 2 is processed. It is formed by the processed end faces 3a and 3b of the insulating coating 3 having a shape along the shapes 2a and 2b.

なお、図1及び図2において、加工端面2aは、被測定体側に配置されて被測定体11の電極12に接触する「先端」側の金属導体2の加工端面であり、加工端面2bは、検査装置側に配置されて検査装置(図示しない)のリード線50に接触する「後端」側の金属導体2の加工端面である。また、加工端面3aは、上記先端側の絶縁被膜3の加工端面であり、加工端面3bは、上記後端側の絶縁被膜3の加工端面である。また、本願において、「片端部」とは、本願発明に係るコンタクトプローブ1の特徴的な形状を有する片端部であって、例えば図2に示す後端側の加工端面2b,3bを含む領域を指し、「両端部」とは、本願発明に係るコンタクトプローブ1の特徴的な形状を有する両端部であって、例えば図1に示す先端側の加工端面2a,3aを含む領域と後端側の加工端面2b,3bを含む領域の両方を指す。   In FIG. 1 and FIG. 2, the processed end surface 2 a is a processed end surface of the metal conductor 2 on the “tip” side that is arranged on the measured object side and contacts the electrode 12 of the measured object 11, and the processed end surface 2 b is This is a processed end face of the metal conductor 2 on the “rear end” side that is arranged on the inspection apparatus side and contacts the lead wire 50 of the inspection apparatus (not shown). The processed end face 3a is a processed end face of the insulating coating 3 on the front end side, and the processed end face 3b is a processed end face of the insulating coating 3 on the rear end side. Further, in the present application, the “one end portion” is a one end portion having a characteristic shape of the contact probe 1 according to the present invention, for example, a region including the processing end surfaces 2b and 3b on the rear end side shown in FIG. The “both end portions” are both end portions having the characteristic shape of the contact probe 1 according to the present invention. For example, the region including the processing end surfaces 2a and 3a on the front end side shown in FIG. It refers to both of the regions including the processed end faces 2b and 3b.

金属導体2としては、高い導電性と高い弾性率を有する金属線(「金属ばね線」ともいう。)が用いられる。金属導体2に用いられる金属としては、広い弾性域を持つ金属を挙げることができ、例えばベリリウム銅等の銅合金、タングステン、レニウムタングステン、鋼(例えば高速度鋼:SKH)等を好ましく用いることができる。   As the metal conductor 2, a metal wire (also referred to as “metal spring wire”) having high conductivity and high elastic modulus is used. Examples of the metal used for the metal conductor 2 include metals having a wide elastic range. For example, a copper alloy such as beryllium copper, tungsten, rhenium tungsten, steel (for example, high speed steel: SKH) or the like is preferably used. it can.

金属導体2は、通常、上記の金属が所定の径の線状導体となるまで冷間又は熱間伸線等の塑性加工が施される。金属導体2の外径は、プローブユニット10(図6,7を参照。)において隣り合う各プローブ1の間隔に応じて、20μm以上400μm以下、好ましくは25μm以上200μm以下の範囲内から任意に選択することができる。   The metal conductor 2 is usually subjected to plastic working such as cold or hot wire drawing until the metal becomes a linear conductor having a predetermined diameter. The outer diameter of the metal conductor 2 is arbitrarily selected from the range of 20 μm or more and 400 μm or less, preferably 25 μm or more and 200 μm or less, depending on the interval between adjacent probes 1 in the probe unit 10 (see FIGS. 6 and 7). can do.

また、プローブ1をプローブユニット10に装着し易くし、且つ、プローブユニット10の使用時においてプローブ1の先端がガイド板20の案内穴に引っかかることによりプローブ1の動きが妨げられるのを防止する観点からは、金属導体2の真直度が高いことが好ましく、具体的には真直度が曲率半径Rで1000mm以上であることが好ましい。真直度の高い金属導体2は、絶縁被膜3が設けられる前に予め直線矯正処理しておくか、後述のように絶縁被膜3が設けられた長尺の金属導体2を直線矯正処理することにより得ることができる。ここでの直線矯正処理は、例えば回転ダイス式直線矯正装置等によって行われる。   In addition, it is easy to attach the probe 1 to the probe unit 10 and to prevent the movement of the probe 1 from being hindered by the tip of the probe 1 being caught in the guide hole of the guide plate 20 when the probe unit 10 is used. Therefore, it is preferable that the straightness of the metal conductor 2 is high. Specifically, the straightness is preferably 1000 mm or more in terms of the radius of curvature R. The metal conductor 2 with high straightness is subjected to straightening treatment before the insulating coating 3 is provided, or by straightening the long metal conductor 2 provided with the insulating coating 3 as described later. Obtainable. The straightening process here is performed, for example, by a rotary die type straightening apparatus or the like.

金属導体2の先端側の加工端面2a及び/又は後端側の加工端面2bの形状は、図3(A)に示す半球形状、図3(B)に示す円錐形状、図3(C)に示す先端に半球形状を有する円錐形状、図3(D)に示す先端に平坦形状を有する円錐形状、等から選ばれるいずれかである。ここでいう「半球形状」、「円錐形状」は、正確な半球や円錐を含むが、略円錐や略半球も含む。こうした特徴を有する端面形状において、図3に示す先端又は後端に突出する金属導体2の長さL1〜L4は、0.01mm以上、0.2mm以下好ましくは0.1mm以下の範囲内である。金属導体2の線径が小さい場合は、金属導体2の突出長さL1〜L4は上記下限値側にシフトし、金属導体2の線径が大きい場合は、金属導体2の突出長さL1〜L4は上記上限値側にシフトする。   The shape of the processing end surface 2a on the front end side and / or the processing end surface 2b on the rear end side of the metal conductor 2 is a hemispherical shape shown in FIG. 3 (A), a conical shape shown in FIG. 3 (B), and a shape shown in FIG. It is any one selected from a cone shape having a hemispherical shape at the tip shown, a cone shape having a flat shape at the tip shown in FIG. The “hemispherical shape” and “conical shape” here include an accurate hemisphere and a cone, but also include a substantially cone and a substantially hemisphere. In the end face shape having such characteristics, the lengths L1 to L4 of the metal conductor 2 protruding from the front end or the rear end shown in FIG. 3 are in the range of 0.01 mm or more, 0.2 mm or less, preferably 0.1 mm or less. . When the wire diameter of the metal conductor 2 is small, the protrusion lengths L1 to L4 of the metal conductor 2 are shifted to the lower limit side, and when the wire diameter of the metal conductor 2 is large, the protrusion lengths L1 to L1 of the metal conductor 2 are shifted. L4 shifts to the upper limit side.

加工端面2a,2bにおいては、金属導体2と、被測定体11の電極12又は検査装置のリード線50との接触抵抗値の上昇を抑制するために、めっき層が加工端面2a,2bに設けられていてもよい。めっき層を形成する金属としては、ニッケル、金、ロジウム等の金属や金合金等の合金を挙げることができる。めっき層は、単層であってもよいし複層であってもよい。複層のめっき層としては、ニッケルめっき層上に金めっき層が形成されたものを好ましく挙げることができる。   In the processed end faces 2a and 2b, a plating layer is provided on the processed end faces 2a and 2b in order to suppress an increase in the contact resistance value between the metal conductor 2 and the electrode 12 of the measured object 11 or the lead wire 50 of the inspection apparatus. It may be done. Examples of the metal forming the plating layer include metals such as nickel, gold, and rhodium, and alloys such as gold alloys. The plating layer may be a single layer or a multilayer. Preferred examples of the multi-layered plating layer include those in which a gold plating layer is formed on a nickel plating layer.

絶縁被膜3は、金属導体2上に設けられて、被測定体11の電気特性を検査する際のプローブ同士の接触を防いで短絡を防止するように作用する。なお、絶縁被膜3は、金属導体2上、すなわち金属導体2の外周上に長手方向に亘って設けられていればよく、直接設けられていてもよいし、他の層を介して設けられていてもよい。   The insulating coating 3 is provided on the metal conductor 2 and acts to prevent short circuits by preventing the probes from contacting each other when inspecting the electrical characteristics of the measurement object 11. The insulating coating 3 may be provided on the metal conductor 2, that is, on the outer periphery of the metal conductor 2 in the longitudinal direction, and may be provided directly or via another layer. May be.

絶縁被膜3は、絶縁性を有する被膜であれば特に限定されないが、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂及びポリアミドイミド樹脂から選ばれるいずれか1種であることが好ましい。なお、通常は一種類の樹脂により形成される。これらの樹脂からなる絶縁被膜は耐熱性が異なるので、検査の際に発生する熱を考慮して任意に選択することができる。例えば、より耐熱性が要求される場合には、絶縁被膜3がポリエステルイミド樹脂、ポリアミドイミド樹脂等で形成されることが好ましい。絶縁被膜3の厚さは電気絶縁性を確保できる程度の厚さであればよく、金属導体2の直径との関係を考慮して、1μm以上50μm以下の範囲内で適宜設定される。   The insulating film 3 is not particularly limited as long as it is an insulating film, but it is any one selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin and polyamideimide resin. Is preferred. Usually, it is formed of one kind of resin. Since the insulating film made of these resins has different heat resistance, it can be arbitrarily selected in consideration of the heat generated during the inspection. For example, when more heat resistance is required, the insulating coating 3 is preferably formed of a polyesterimide resin, a polyamideimide resin, or the like. The thickness of the insulating coating 3 may be a thickness that can ensure electrical insulation, and is appropriately set within a range of 1 μm to 50 μm in consideration of the relationship with the diameter of the metal conductor 2.

本発明においては、上記の絶縁被膜3が、焼付けエナメル被膜として形成されることが好ましい。焼付けエナメル被膜は、後述するように塗料の塗布と焼付けの繰り返しにより連続工程で形成されるので、生産性がよく、金属導体2との間の密着性が高く且つ被膜強度をより高いものとすることができる。   In the present invention, the insulating coating 3 is preferably formed as a baked enamel coating. As will be described later, the baking enamel coating is formed in a continuous process by repeated application of coating and baking, so that the productivity is good, the adhesion between the metal conductor 2 is high, and the coating strength is higher. be able to.

本発明のプローブ1は、その片端部又は両端部の形状が、金属導体2の端面形状と絶縁被膜3の端面形状とからなるものであり、図3に示すように、(1)その片端部又は両端部の形状が、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれか、及び/又は、(2)プローブ1の片端部又は両端部が、研削加工により先端部が露出した金属導体2の加工端面2a,2bと、その金属導体2の加工端面2a,2bと同時に研削加工され、その金属導体2の加工端面2a,2bの形状に沿った形状からなる絶縁被膜3の加工端面3a,3bとで形成されている。ここでいう「金属導体2の加工端面2a,2bの形状に沿った形状からなる絶縁被膜3の加工端面3a,3b」とは、図3に示すように、絶縁被膜3の加工端面3aが、金属導体2の加工端面2aと同時に研削加工されてなる形状のことをいう。   The probe 1 of the present invention has one end portion or both end portions composed of the end surface shape of the metal conductor 2 and the end surface shape of the insulating coating 3, and as shown in FIG. Alternatively, the shape of both ends is selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip, and / or (2) one end of the probe 1 Alternatively, both end portions are ground at the same time as the processing end surfaces 2a and 2b of the metal conductor 2 with the tip portions exposed by grinding and the processing end surfaces 2a and 2b of the metal conductor 2, and the processing end surfaces 2a and 2b of the metal conductor 2 are processed. It is formed with the process end surfaces 3a and 3b of the insulating coating 3 which has a shape along the shape of the above. As used herein, “the processed end faces 3a and 3b of the insulating coating 3 having a shape along the shape of the processed end faces 2a and 2b of the metal conductor 2” refers to the processed end faces 3a of the insulating coating 3 as shown in FIG. The shape formed by grinding simultaneously with the processing end surface 2a of the metal conductor 2.

上記(1)の形状は、例えば図1に示すように、プローブ1の片端部又は両端部を研削加工することにより金属導体2の端面2a,2bと絶縁被膜3の端面3a,3bとを同時に研削して形成されるが、同様な形状を発現させることができれば他の加工方法を採用してもよい。また、上記(2)は、研削加工によって金属導体2の端面2a,2bと絶縁被膜3の端面3a,3bとを同時に研削して形成するものである。プローブ1の片端部又は両端部の詳細な形状は特に限定されず、種々の形状要素を備えるものであってもよい。例えば、図3(A)や図3(C)の曲面の曲率や、図3(B)や図3(D)の傾斜面の角度や、図3(D)の先端の平坦面の面積等の形状要素は、種々の値を任意に設定することができる。   For example, as shown in FIG. 1, the shape of the above (1) is obtained by grinding one end or both ends of the probe 1 so that the end faces 2a, 2b of the metal conductor 2 and the end faces 3a, 3b of the insulating coating 3 are simultaneously formed. Although it is formed by grinding, other processing methods may be adopted as long as a similar shape can be expressed. The above (2) is formed by grinding the end faces 2a, 2b of the metal conductor 2 and the end faces 3a, 3b of the insulating coating 3 simultaneously by grinding. The detailed shape of one end or both ends of the probe 1 is not particularly limited, and various shape elements may be provided. For example, the curvature of the curved surface in FIGS. 3A and 3C, the angle of the inclined surface in FIGS. 3B and 3D, the area of the flat surface at the tip in FIG. 3D, etc. Various values can be arbitrarily set for the shape element.

研削加工としては、例えばエメリー紙を用いた研削加工や、ダイヤモンドホイールを用いた研削加工等を挙げることができる。先端形状は、回転するエメリー紙やダイヤモンドホイール等に所定の角度で接触させたプローブ1を軸回転させて得ることができ(図3(B)(D)の形状)、さらに、エメリー紙やダイヤモンドホイール等に対する角度を変化させて得ることができる(図3(A)(C)の形状)。また、研削装置としては、ピン形状の金属材料を研削可能な市販の研削加工機を用いてもよいし、例えば特開2005−3516号公報に記載の研削装置を用いてもよい。   Examples of the grinding process include a grinding process using emery paper and a grinding process using a diamond wheel. The tip shape can be obtained by rotating the probe 1 brought into contact with a rotating emery paper or a diamond wheel at a predetermined angle (the shapes shown in FIGS. 3B and 3D), and further, emery paper or diamond. It can be obtained by changing the angle with respect to the wheel or the like (the shapes of FIGS. 3A and 3C). Moreover, as a grinding apparatus, the commercially available grinding machine which can grind a pin-shaped metal material may be used, for example, you may use the grinding apparatus of Unexamined-Japanese-Patent No. 2005-3516.

なお、図2に示すプローブ1において、符号3cは、金属導体2の両端(2a,2b)以外の領域に位置する絶縁被膜3の端面を示している。この端面3cは、電気特性の測定時に用いられるガイド板20の案内穴に当接する位置に形成され、プローブユニットを用いた電気特性の検査が繰り返し行われる際に、その端部3cが繰り返し案内穴に当たる。この端部3cは、プローブユニット10が備えるガイド板20からのプローブ1の抜け落ちをなくすように作用する。   In addition, in the probe 1 shown in FIG. 2, the code | symbol 3c has shown the end surface of the insulating film 3 located in area | regions other than the both ends (2a, 2b) of the metal conductor 2. FIG. The end face 3c is formed at a position where it abuts on the guide hole of the guide plate 20 used when measuring the electrical characteristics. When the electrical characteristics inspection using the probe unit is repeatedly performed, the end 3c is repeatedly provided in the guide hole. It hits. The end 3c acts so as to prevent the probe 1 from falling off from the guide plate 20 provided in the probe unit 10.

(コンタクトプローブの製造方法)
次に、本発明のプローブの製造方法について説明する。図4は本発明のプローブの製造方法の一例を示す工程フロー図であり、図5は本発明のプローブの製造方法の他の一例を示す工程フロー図である。本発明のプローブの製造方法は、上述した本発明のプローブ1を製造する方法であって、絶縁被膜3が形成された長尺の金属導体2を切断する工程と、切断された絶縁被膜付き金属導体2の片端部又は両端部について、金属導体2の端面(2a,2b)と絶縁被膜3の端面(3a,3b)を同時に研削加工して、当該金属導体2の端面(2a,2b)と当該絶縁被膜3の端面(3a,3b)とからなる形状を、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかの形状にする工程とを有する方法である。
(Contact probe manufacturing method)
Next, a method for manufacturing the probe of the present invention will be described. FIG. 4 is a process flow chart showing an example of the probe manufacturing method of the present invention, and FIG. 5 is a process flow chart showing another example of the probe manufacturing method of the present invention. The probe manufacturing method of the present invention is a method for manufacturing the above-described probe 1 of the present invention, in which the step of cutting the long metal conductor 2 on which the insulating coating 3 is formed, and the cut metal with the insulating coating. For one end or both ends of the conductor 2, the end faces (2 a, 2 b) of the metal conductor 2 and the end faces (3 a, 3 b) of the insulating coating 3 are ground simultaneously, and the end faces (2 a, 2 b) of the metal conductor 2 The shape formed by the end faces (3a, 3b) of the insulating coating 3 is any one selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip. The method which has a process to do.

切断工程は、絶縁被膜3が形成された長尺の金属導体2を所定の長さに定尺切断する工程である。この切断工程においては、例えば定尺切断装置等を用い、絶縁被膜3として焼付けエナメル被膜が形成された長尺の金属導体を、その端部が加工されることを考慮して所定の長さに切断する。   The cutting step is a step of cutting the long metal conductor 2 on which the insulating coating 3 is formed to a predetermined length. In this cutting step, for example, a long-sized metal conductor having a baking enamel film formed as the insulating film 3 is formed into a predetermined length by taking into account that the end is processed using a standard cutting device or the like. Disconnect.

切断工程に供される焼付けエナメル被膜が形成された長尺の金属導体は、プローブ1の説明箇所で既に説明したように、ばね性を有する長尺の金属導体にエナメル塗料の塗布と焼付けを繰り返し行う絶縁被膜形成工程(焼付けエナメル絶縁被覆工程)により形成される。   The long metal conductor on which the baking enamel film provided for the cutting process is formed is repeatedly applied with an enamel paint and baking on the long metal conductor having spring properties, as already described in the description of the probe 1. It is formed by an insulating film forming process (baking enamel insulating coating process) to be performed.

絶縁被膜形成工程は、通常のエナメル線の製造装置(製造ライン)を用いることができる。すなわち、ボビン等の線材供線装置から繰出された線状の金属導体(以下、線材ともいう。)に、塗料槽にてエナメル塗料を塗布した後、その直後に設けたダイスやフェルト等の塗料絞り具で線材表面の塗布塗料を略均一厚さに扱き、その後その線材を電熱炉や熱風循環炉等の高温の焼付炉に導入し、炉内で線材上に塗布された塗料中の溶剤を揮発除去して塗料を反応硬化させ、硬化塗膜層を線材表面に形成して焼付炉から導出し、導出された線材を再び塗料槽、塗料絞り具及び焼付炉を通過させる工程を複数回繰り返し、線材表面に所望の厚さの硬化塗膜層を形成した後、キャプスタン等の引取装置により引取りボビン等の巻取装置に巻き取ることによって、連続して焼付けエナメル被膜を形成する。   A normal enameled wire manufacturing apparatus (manufacturing line) can be used in the insulating film forming step. That is, enamel paint is applied to a linear metal conductor (hereinafter also referred to as a wire) fed from a wire feeder such as a bobbin in a paint tank, and then a paint such as a die or felt provided immediately after that. Handle the paint on the surface of the wire to a substantially uniform thickness with a drawing tool, then introduce the wire into a high-temperature baking furnace such as an electric heating furnace or hot air circulating furnace, and remove the solvent in the paint applied on the wire in the furnace. The process of volatilizing and removing the paint is reactively cured, and a cured coating layer is formed on the surface of the wire, and is derived from the baking furnace. The process of passing the derived wire through the paint tank, paint squeezing tool and baking furnace is repeated several times. After a cured coating film layer having a desired thickness is formed on the surface of the wire, the enamel coating film is continuously formed by winding it on a winding device such as a take-up bobbin by a pulling device such as a capstan.

こうしたエナメル線の製造装置を用いることにより、均一な膜厚を有する絶縁被膜を簡便に形成することができる。絶縁被膜形成工程においては、通常、絶縁被膜が所望の平均膜厚になるまで、エナメル塗料の塗布と焼付けが繰り返し行われる。エナメル塗料は、プローブの説明箇所で既に説明した樹脂と有機溶媒とを混合して調製される。   By using such an enameled wire manufacturing apparatus, an insulating film having a uniform film thickness can be easily formed. In the insulating coating forming process, the enamel coating and baking are usually repeated until the insulating coating has a desired average film thickness. The enamel paint is prepared by mixing the resin already described in the description of the probe and an organic solvent.

切断工程の前には、金属導体の真直度を高めておくことが望ましい。そのための手段としては、(1)真直度の高い金属導体を入手し、その金属導体を用いて焼付けエナメル被覆したり、(2)金属導体を真直矯正し、その金属導体を用いて焼付けエナメル被膜したり、(3)金属導体に焼付けエナメル被覆した後に直線矯正したりする個著が好ましい。直線矯正は、長尺の金属導体に軸方向の張力を加えながら電流焼鈍することにより行うことができる。なお、真直度の高い絶縁被膜付き金属導体としては、例えば、本件特許出願人である東京特殊電線株式会社の有する特許(特許第3415442号)に係る材料が好ましく用いられる。   It is desirable to increase the straightness of the metal conductor before the cutting step. As a means for that, (1) Obtain a metal conductor with high straightness and coat the enamel with the metal conductor, or (2) Straighten the metal conductor and use the metal conductor with the enamel coating. Or (3) a straight work in which straightening is performed after the enamel coating is applied to the metal conductor. Straightening can be performed by current annealing while applying axial tension to a long metal conductor. In addition, as a metal conductor with an insulation film with high straightness, the material which concerns on the patent (patent 3415442) which Tokyo Special Electric Cable Co., Ltd. which is this patent applicant has, for example is used preferably.

研削加工工程は、切断された絶縁被膜付き金属導体2の片端部又は両端部について、金属導体2の端面(2a,2b)と絶縁被膜3の端面(3a,3b)を同時に研削加工する工程である。この加工工程により、金属導体2の端面(2a,2b)と絶縁被膜3の端面(3a,3b)とからなる形状を、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかの形状にする。   The grinding process is a process in which the end face (2a, 2b) of the metal conductor 2 and the end face (3a, 3b) of the insulating coating 3 are simultaneously ground for one or both ends of the cut metal conductor 2 with the insulating coating. is there. By this processing step, the shape composed of the end faces (2a, 2b) of the metal conductor 2 and the end faces (3a, 3b) of the insulating coating 3 has a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, Any shape selected from conical shapes having a flat shape is used.

この研削加工工程後には、研削加工等した後の端部(すなわち金属導体が露出した端部)をめっき処理するめっき工程を設けてもよい。このめっき工程により、接触抵抗を低下させるためのめっき層を端部に形成することができる。   After this grinding process, a plating process may be provided for plating the end portion after grinding (that is, the end portion where the metal conductor is exposed). By this plating step, a plating layer for reducing contact resistance can be formed at the end.

更に、切削加工工程後には、図2に示すように、プローブの被測定体側の先端側の端部2aから一定の長さ分だけ絶縁被膜3を除去した領域を形成する絶縁被膜除去工程を有していてもよい。絶縁被膜3を除去した側の絶縁被膜3の端面3cは、電気特性の測定時に用いられるガイド板20の案内穴に当接し、プローブユニット10が備えるガイド板20からのプローブ1の抜け落ちをなくすストッパーとして機能する。このときの絶縁被膜の除去は、剥離しようとする領域にレーザー光を照射したり、ストリッパー等の機械的な剥離手段を用いて行うことができる。このときの絶縁被膜の除去は、端部を研削加工する前に行ってもよいし後に行ってもよい。また、絶縁被膜の除去が端部を研削加工した後に行う場合には、その絶縁被膜の除去は上記めっき工程の前に行ってもよいし後に行ってもよいが、めっき工程後に行われることが好ましい。   Further, after the cutting process, as shown in FIG. 2, there is an insulating film removing step for forming a region where the insulating film 3 is removed by a certain length from the end portion 2a on the tip side of the probe to be measured. You may do it. The end face 3c of the insulating coating 3 on the side from which the insulating coating 3 has been removed is in contact with the guide hole of the guide plate 20 used when measuring the electrical characteristics, and is a stopper that prevents the probe 1 from falling off the guide plate 20 provided in the probe unit 10. Function as. At this time, the insulating film can be removed by irradiating a region to be peeled with a laser beam or using a mechanical peeling means such as a stripper. The removal of the insulating film at this time may be performed before or after the end portion is ground. Further, when the insulating coating is removed after the end portion is ground, the insulating coating may be removed before or after the plating step, but may be performed after the plating step. preferable.

本発明のコンタクトプローブの製造方法においては、図1に示すプローブにおいては上記の絶縁被膜除去工程を有さない図4に示す製造方法の例を適用でき、また、図2に示すプローブにおいては上記の絶縁被膜除去工程を片端部のみ行う図5に示す製造方法の例を適用できる。なお、図5において、片端被膜剥離加工工程と先端部研削加工工程は逆にしてもよい(後述の実施例2を参照)。   In the contact probe manufacturing method of the present invention, the example of the manufacturing method shown in FIG. 4 that does not have the above-described insulating film removing step can be applied to the probe shown in FIG. 1, and the probe shown in FIG. The example of the manufacturing method shown in FIG. 5 in which the insulating film removing step is performed only at one end can be applied. In FIG. 5, the one-end film peeling process and the tip part grinding process may be reversed (see Example 2 described later).

本発明においては、長尺の絶縁被膜付き金属導体を切断した後に両端部の絶縁被膜をレーザー剥離や機械剥離する工程や、所定長さの金属導体上にマスキングした後に絶縁塗料をスプレーコーティングする工程が不要であるので、加工工数が少なく、コストダウンを実現できる効率的な製造方法である。また、先端をコンタクトプローブに適した半球又は円錐等の形状に研削加工する際に、金属導体の先端から例えば0.01〜0.2mmの絶縁被膜を同時に研削除去することができるため、別工程で両端近傍の絶縁被膜を除去する従来工程を削減又は半減でき、低コストのコンタクトプローブを提供することができる。   In the present invention, the step of laser-peeling or mechanically peeling the insulating coating at both ends after cutting the long metal conductor with an insulating coating, or the step of spray-coating the insulating coating after masking on the metal conductor of a predetermined length Is an efficient manufacturing method that requires less processing steps and can reduce costs. In addition, when the tip is ground into a shape such as a hemisphere or a cone suitable for a contact probe, an insulating coating of, for example, 0.01 to 0.2 mm can be simultaneously ground and removed from the tip of the metal conductor. Thus, it is possible to reduce or halve the conventional process for removing the insulating film near both ends, and to provide a low-cost contact probe.

(プローブを用いた電気特性の検査方法)
次に、上述した本発明のプローブを用いた電気特性の検査方法について説明する。図6は本発明のコンタクトプローブを備えたプローブユニットを用いて被測定体の電気特性を検査する方法を説明するための模式断面図であり、図7は図6に示すプローブユニットが上下逆向きに構成された例を示す模式断面図である。
(Inspection method of electrical characteristics using probe)
Next, a method for inspecting electrical characteristics using the above-described probe of the present invention will be described. FIG. 6 is a schematic cross-sectional view for explaining a method for inspecting the electrical characteristics of the object to be measured using the probe unit having the contact probe of the present invention. FIG. 7 is a diagram illustrating the probe unit shown in FIG. It is a schematic cross section which shows the example comprised by.

本発明のプローブ1は、プローブユニットに装着されて回路基板等の被測定体の電気特性の良否の検査に利用される。プローブユニット10は、図6及び図7に示すように、複数本から数千本のプローブ1と、プローブ1を被測定体11の電極12にガイドするガイド板20と、プローブ1を検査装置のリード線50にガイドするガイド板30とを備えている。検査装置側のガイド板30は、プローブ1の外径よりも若干大きい案内穴を有し、その案内穴は一本一本のプローブ1の金属導体2をリード線50にガイドする。被測定体側のガイド板20は、図6に示す形態のプローブユニット10においては、金属導体2の直径よりも若干大きい案内穴を有し、その案内穴は一本一本のプローブ1の金属導体2を電極21にガイドする。一方、図6に示す形態のプローブユニット10においては、被測定体側のガイド板20は、プローブ1の外径よりも若干大きい案内穴を有し、その案内穴は一本一本のプローブ1の金属導体2を電極2にガイドする。   The probe 1 of the present invention is attached to a probe unit and used for checking the quality of electrical characteristics of a measured object such as a circuit board. As shown in FIGS. 6 and 7, the probe unit 10 includes a plurality of thousands of probes 1, a guide plate 20 that guides the probes 1 to the electrodes 12 of the measured object 11, and the probes 1 of the inspection apparatus. A guide plate 30 for guiding the lead wire 50 is provided. The guide plate 30 on the inspection apparatus side has a guide hole slightly larger than the outer diameter of the probe 1, and the guide hole guides the metal conductor 2 of each probe 1 to the lead wire 50. In the probe unit 10 of the form shown in FIG. 6, the guide plate 20 on the measured object side has a guide hole slightly larger than the diameter of the metal conductor 2, and the guide hole is a metal conductor of each probe 1. 2 is guided to the electrode 21. On the other hand, in the probe unit 10 of the form shown in FIG. 6, the guide plate 20 on the measured object side has a guide hole that is slightly larger than the outer diameter of the probe 1, and the guide hole is one for each probe 1. The metal conductor 2 is guided to the electrode 2.

プローブユニット10と被測定体11は、被測定体11の電気特性を検査する際、プローブ1と電極12とが対応するように位置制御される。電気特性の検査は、プローブユニット10を上下させ、プローブ1の弾性力を利用して被測定体11の電極12にプローブ1の先端2aを所定の圧力で押し当てることにより行われる。このとき、プローブ1の後端2bはリード線50に接触し、被測定体11からの電気信号がそのリード線50を通って検査装置(図示しない。)に送られる。なお、図6及び図7中、符号40はリード線用の保持板を示している。   The position of the probe unit 10 and the measured object 11 are controlled so that the probe 1 and the electrode 12 correspond to each other when the electrical characteristics of the measured object 11 are inspected. The inspection of the electrical characteristics is performed by moving the probe unit 10 up and down and pressing the tip 2a of the probe 1 against the electrode 12 of the measurement object 11 with a predetermined pressure using the elastic force of the probe 1. At this time, the rear end 2b of the probe 1 comes into contact with the lead wire 50, and an electrical signal from the measured object 11 is sent to the inspection device (not shown) through the lead wire 50. 6 and 7, reference numeral 40 denotes a lead wire holding plate.

本発明のコンタクトプローブにおいて、図6に示すリード線側の片端部、及び図7に示す両端部は、露出した金属導体2の先端近傍まで絶縁被膜3で覆われているので、ガイド板の案内穴とコンタクトプローブとのクリアランスが小さく、金属導体2の端部を十分にセンタリングすることができ、金属導体2とリード線50との接触の不安定さを解消できる。同様に、露出した金属導体2の先端近傍まで絶縁被膜3で覆われているので、図7に示すプローブユニットを用いた場合で被測定体の電極12がはんだバンプで形成されている場合に、生じたはんだ粉が電極側のガイド板上に貯まった場合であっても、隣接するコンタクトプローブをショートさせるという問題が生じることはない。   In the contact probe of the present invention, one end portion on the lead wire side shown in FIG. 6 and both end portions shown in FIG. 7 are covered with the insulating coating 3 to the vicinity of the exposed tip of the metal conductor 2. The clearance between the hole and the contact probe is small, the end of the metal conductor 2 can be sufficiently centered, and instability of contact between the metal conductor 2 and the lead wire 50 can be eliminated. Similarly, since the insulating coating 3 is covered up to the vicinity of the tip of the exposed metal conductor 2, when the probe 12 shown in FIG. 7 is used and the electrode 12 of the measured object is formed of a solder bump, Even when the generated solder powder accumulates on the guide plate on the electrode side, there is no problem of shorting adjacent contact probes.

以下、本発明を実施例に基づいて説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described based on examples. Note that the present invention is not limited thereby.

(実施例1)
金属導体として、予め真直度が曲率半径Rで1500mmに直線矯正された長尺の真直ベリリウム銅線(外径0.10mm)を用いた。また、絶縁被膜用の塗料として、ポリウレタン樹脂系のエナメル塗料(東特塗料株式会社製、商品名;TPU5100)を用いた。
Example 1
As the metal conductor, a long straight beryllium copper wire (outer diameter 0.10 mm) having straightness straightened to 1500 mm with a radius of curvature R in advance was used. In addition, a polyurethane resin-based enamel paint (manufactured by Tohoku Paint Co., Ltd., trade name: TPU5100) was used as the paint for the insulating coating.

まず、ボビン等の線材供線装置から繰出された上記ベリリウム銅線からなる線材に、塗料槽にて上記ポリウレタン系のエナメル塗料を塗布した。その後、直後に設けたフェルト(塗料絞り具)で線材表面の塗布塗料を略均一厚さに扱き、その後その線材を焼付炉に導入し、炉内で線材上に塗布された塗料中の溶剤を揮発除去して塗料を反応硬化させ、硬化塗膜層を線材表面に形成して焼付炉から導出し、導出された線材を再び塗料槽、塗料絞り具及び焼付炉を順次通過させる工程を10回繰り返し、線材表面に平均膜厚15μmの硬化塗膜層を形成した後、キャプスタン等の引取装置により引取りボビン等の巻取装置に巻き取って、エナメル線を製造した。なお、本実施例においては、炉長3m、炉温450℃、供線速度100m/分で行った。   First, the polyurethane-based enamel paint was applied to a wire made of the beryllium copper wire fed from a wire feeder such as a bobbin in a paint tank. After that, the coated paint on the surface of the wire is handled with a felt (paint squeezing tool) just after that to a substantially uniform thickness, and then the wire is introduced into the baking furnace, and the solvent in the paint applied on the wire in the furnace is removed. The process of volatilizing and removing the paint, curing the coating, forming a cured coating layer on the surface of the wire, and drawing it out from the baking furnace, passing the drawn wire again through the paint tank, paint squeezing tool and baking furnace in turn 10 times After repeatedly forming a cured coating layer having an average film thickness of 15 μm on the surface of the wire, it was wound around a winding device such as a take-up bobbin by a pulling device such as a capstan to produce an enameled wire. In this example, the furnace length was 3 m, the furnace temperature was 450 ° C., and the line speed was 100 m / min.

次に、絶縁被膜が形成された長尺の金属導体を定尺切断機で切断して長さ25mmの絶縁被膜付き金属導体を切り出し、その絶縁被膜付き金属導体の両端部を研削加工装置によりベリリウム銅線と絶縁被膜とを同時に半球形状に加工した。研削加工は、エメリー紙を貼った回転円盤上に定尺切断した絶縁被膜付き金属導体の端面を押し当てて研削した。   Next, the long metal conductor on which the insulating coating is formed is cut with a regular cutting machine to cut out a metal conductor with an insulating coating having a length of 25 mm, and both ends of the metal conductor with the insulating coating are beryllium by a grinding apparatus. The copper wire and the insulating coating were simultaneously processed into a hemispherical shape. Grinding was performed by pressing an end face of a metal conductor with an insulating film cut into a fixed length on a rotating disk with emery paper.

次に、加工により露出した金属導体2にめっき処理を施してニッケルめっき層(膜厚1.7μm)及び金めっき層(膜厚0.3μm)からなる2層のめっき層(総膜厚2μm)を形成した。この2層のめっき層は、金属導体が露出した端面部分を脱脂処理及び酸洗い処理等の前処理を行った後、ニッケルめっき液(上村工業株式会社製、商品名;BEL−801)で無電解めっき処理を施し、次いで金めっき液(メルテックス株式会社製、商品名;Au−601)で無電解めっき処理を施して形成した。こうして、図4の工程順に基づいて製造したコンタクトプローブを得た。   Next, the metal conductor 2 exposed by processing is plated to form two plating layers (total film thickness 2 μm) consisting of a nickel plating layer (film thickness 1.7 μm) and a gold plating layer (film thickness 0.3 μm). Formed. This two-layered plating layer is free of nickel plating solution (trade name; BEL-801, manufactured by Uemura Kogyo Co., Ltd.) after pretreatment such as degreasing and pickling treatment on the end face portion where the metal conductor is exposed. An electrolytic plating treatment was performed, and then an electroless plating treatment was performed with a gold plating solution (trade name; Au-601, manufactured by Meltex Co., Ltd.). Thus, the contact probe manufactured based on the process order of FIG. 4 was obtained.

(実施例2)
金属導体として、予め真直度が曲率半径Rで1500mmに直線矯正された長尺の真直ベリリウム銅線(外径0.10mm)を用いた。また、絶縁被膜用の塗料として、ポリウレタン樹脂系のエナメル塗料(東特塗料株式会社製、商品名;TPU5100)を用いた。次に、上記の実施例1と同様の方法でエナメル線を製造した。
(Example 2)
As the metal conductor, a long straight beryllium copper wire (outer diameter 0.10 mm) having straightness straightened to 1500 mm with a radius of curvature R in advance was used. In addition, a polyurethane resin-based enamel paint (manufactured by Tohoku Paint Co., Ltd., trade name: TPU5100) was used as the paint for the insulating coating. Next, an enameled wire was produced in the same manner as in Example 1 above.

次に、絶縁被膜が形成された長尺の金属導体を定尺切断機で切断して長さ25mmの絶縁被膜付き金属導体を切り出し、その絶縁被膜付き金属導体の両端部を研削加工装置によりベリリウム銅線と絶縁被膜とを同時に半球形状に加工した。研削加工は、エメリー紙を貼った回転円盤上に定尺切断した絶縁被膜付き金属導体の端面を押し当てて研削した。   Next, the long metal conductor on which the insulating coating is formed is cut with a regular cutting machine to cut out a metal conductor with an insulating coating having a length of 25 mm, and both ends of the metal conductor with the insulating coating are beryllium by a grinding apparatus. The copper wire and the insulating coating were simultaneously processed into a hemispherical shape. Grinding was performed by pressing an end face of a metal conductor with an insulating film cut into a fixed length on a rotating disk with emery paper.

次に、ガイド板20の案内穴に当接する位置に絶縁被膜3の端面3cを形成するために、レーザー光照射装置(キーエンス社製、型番;ML−9110)を用いてレーザーを照射し、プローブの先端部から2mmまでの絶縁被膜を剥離した。次いで、実施例1と同様にして、加工により露出した金属導体2にめっき処理を施してニッケルめっき層(膜厚1.7μm)及び金めっき層(膜厚0.3μm)からなる2層のめっき層(総膜厚2μm)を形成した。こうして、図5の工程順(No.4とNo.5は変更。)に基づいて製造したコンタクトプローブを得た。   Next, in order to form the end surface 3c of the insulating coating 3 at a position where it abuts the guide hole of the guide plate 20, a laser beam is irradiated using a laser beam irradiation device (manufactured by Keyence Corporation, model number: ML-9110), and the probe The insulating coating from 2 mm to 2 mm was peeled off. Next, in the same manner as in Example 1, the metal conductor 2 exposed by processing is subjected to a plating treatment to form a two-layer plating comprising a nickel plating layer (film thickness 1.7 μm) and a gold plating layer (film thickness 0.3 μm). A layer (total film thickness 2 μm) was formed. In this way, the contact probe manufactured based on the process order of FIG. 5 (No. 4 and No. 5 were changed) was obtained.

本発明のコンタクトプローブの一例を示す模式断面図である。It is a schematic cross section which shows an example of the contact probe of this invention. 本発明のコンタクトプローブの他の一例を示す模式断面図である。It is a schematic cross section which shows another example of the contact probe of this invention. 本発明のコンタクトプローブの片端部又は両端部の特徴的な形態例を示す断面図である。It is sectional drawing which shows the example of a characteristic form of the one end part or both ends of the contact probe of this invention. 本発明のプローブの製造方法の一例を示す工程フロー図である。It is a process flow figure showing an example of the manufacturing method of the probe of the present invention. 本発明のプローブの製造方法の他の一例を示す工程フロー図である。It is a process flow figure showing other examples of the manufacturing method of the probe of the present invention. 本発明のコンタクトプローブを備えたプローブユニットを用いて被測定体の電気特性を検査する方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the method to test | inspect the electrical property of a to-be-measured object using the probe unit provided with the contact probe of this invention. 図6に示すプローブユニットが上下逆向きに構成された例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing an example in which the probe unit shown in FIG. 6 is configured upside down. 従来のコンタクトプローブの一例を示す模式断面図である。It is a schematic cross section which shows an example of the conventional contact probe. 従来のコンタクトプローブを備えるプローブユニットを用いて被測定体の電気特性を検査する方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the method to test | inspect the electrical property of a to-be-measured object using the probe unit provided with the conventional contact probe.

符号の説明Explanation of symbols

1 コンタクトプローブ
2 金属導体
2a,2b 加工端面(端面)
3 絶縁被膜
3a,3b,3c 加工端面(端面)
10 プローブユニット
11 被測定体
12 電極
20 被測定体側のガイド板
30 検査装置側のガイド板
40 リード線用の保持板
50 リード線
L1〜L4 金属導体の長さ
1 Contact probe 2 Metal conductor 2a, 2b End face (end face)
3 Insulating coating 3a, 3b, 3c End face (end face)
DESCRIPTION OF SYMBOLS 10 Probe unit 11 Measured object 12 Electrode 20 Measured object side guide plate 30 Inspection device side guide plate 40 Lead wire holding plate 50 Lead wire L1-L4 Length of metal conductor

Claims (4)

ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブにおいて、
前記コンタクトプローブの片端部又は両端部が、研削加工により先端部が露出した金属導体の加工端面と、当該金属導体の加工端面と同時に研削加工され、当該金属導体の加工端面形状に沿った形状からなる絶縁被膜の加工端面とで形成されていることを特徴とするコンタクトプローブ。
In the contact probe of the system that has an insulating film on the outer periphery of the pin-shaped metal conductor and obtains a contact pressure against the object to be measured by applying a load to both ends and measuring the electrical characteristics,
One end or both ends of the contact probe are ground at the same time as the processed end surface of the metal conductor exposed at the tip by grinding and the processed end surface of the metal conductor, and the shape along the processed end surface shape of the metal conductor A contact probe comprising: a processed end face of an insulating coating.
ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブにおいて、
前記コンタクトプローブの片端部又は両端部の形状が、前記金属導体の端面形状と前記絶縁被膜の端面形状とからなるものであり、前記片端部又は両端部の形状が、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかであることを特徴とするコンタクトプローブ。
In the contact probe of the system that has an insulating film on the outer periphery of the pin-shaped metal conductor and obtains a contact pressure against the object to be measured by applying a load to both ends and measuring the electrical characteristics,
The shape of one end portion or both end portions of the contact probe consists of the end face shape of the metal conductor and the end face shape of the insulating coating, and the shape of the one end portion or both end portions is a hemispherical shape, a conical shape, a tip end A contact probe selected from a conical shape having a hemispherical shape and a conical shape having a flat shape at the tip.
前記絶縁被膜の材質が、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂及びポリアミドイミド樹脂から選ばれる少なくとも一種の樹脂であることを特徴とする請求項1又は2に記載のコンタクトプローブ。   The material of the insulating coating is at least one resin selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin, and polyamideimide resin. Contact probe. ピン形状の金属導体の外周に絶縁被膜を有し、両端に加重を与えてたわませることにより被測定体に対する接触圧力を得て電気特性を測定する方式のコンタクトプローブを製造する方法であって、
絶縁被膜が形成された長尺の金属導体を切断する工程と、切断された絶縁被膜付き金属導体の片端部又は両端部について、前記金属導体の端面と前記絶縁被膜の端面を同時に研削加工して、当該金属導体の端面と当該絶縁被膜の端面とからなる形状を、半球形状、円錐形状、先端に半球形状を有する円錐形状、及び、先端に平坦形状を有する円錐形状から選ばれるいずれかの形状にする工程と、を有することを特徴とするコンタクトプローブの製造方法。
A method of manufacturing a contact probe that has an insulating coating on the outer periphery of a pin-shaped metal conductor, and obtains a contact pressure against the object to be measured by applying weight to both ends to measure the electrical characteristics. ,
The step of cutting the long metal conductor on which the insulating coating is formed, and the end face of the metal conductor and the end face of the insulating coating are simultaneously ground for one or both ends of the cut metal conductor with the insulating coating. The shape composed of the end face of the metal conductor and the end face of the insulating coating is any one selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip. And a step of manufacturing the contact probe.
JP2006156087A 2006-06-05 2006-06-05 Contact probe and its manufacturing method Pending JP2007322369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156087A JP2007322369A (en) 2006-06-05 2006-06-05 Contact probe and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156087A JP2007322369A (en) 2006-06-05 2006-06-05 Contact probe and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007322369A true JP2007322369A (en) 2007-12-13

Family

ID=38855316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156087A Pending JP2007322369A (en) 2006-06-05 2006-06-05 Contact probe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007322369A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162634A (en) * 2008-01-08 2009-07-23 Kanai Hiroaki Insulation coated probe pin
JP2009198238A (en) * 2008-02-20 2009-09-03 Totoku Electric Co Ltd Probe needle and method of manufacturing the same
JP2009210443A (en) * 2008-03-05 2009-09-17 Totoku Electric Co Ltd Contact probe and method for manufacturing the same
JP2009270836A (en) * 2008-04-30 2009-11-19 Totoku Electric Co Ltd Probe needle and manufacturing method thereof
JP2013003002A (en) * 2011-06-17 2013-01-07 Hioki Ee Corp Probe unit and circuit board inspection device
CN102998493A (en) * 2011-06-03 2013-03-27 日置电机株式会社 Probe unit, circuit board inspection apparatus and method for manufacturing probe unit
JP2015025697A (en) * 2013-07-25 2015-02-05 東京特殊電線株式会社 Probe unit
JP2018054427A (en) * 2016-09-28 2018-04-05 株式会社日本マイクロニクス Probe, probe card, and contact inspection device
JP2018159718A (en) * 2018-07-12 2018-10-11 東京特殊電線株式会社 Probe and probe contact method
KR102072634B1 (en) * 2018-10-17 2020-02-03 한국생산기술연구원 Probe card needle with improved corrosion and electrical properties
WO2022074888A1 (en) * 2020-10-05 2022-04-14 東京特殊電線株式会社 Contact probe
CN116374944A (en) * 2023-03-23 2023-07-04 清华大学 Microelectrode preparation method and microelectrode
KR20230151879A (en) 2022-04-26 2023-11-02 가부시키가이샤 토토쿠 Contact probe
JP7471148B2 (en) 2020-06-01 2024-04-19 株式会社Totoku Probe needle and probe unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344509A (en) * 1998-05-29 1999-12-14 Hiroshi Katagawa Probe card and probe pin
JP2004093355A (en) * 2002-08-30 2004-03-25 Toshiba Corp Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT
JP2006017455A (en) * 2004-05-31 2006-01-19 Totoku Electric Co Ltd Probe needle and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344509A (en) * 1998-05-29 1999-12-14 Hiroshi Katagawa Probe card and probe pin
JP2004093355A (en) * 2002-08-30 2004-03-25 Toshiba Corp Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT
JP2006017455A (en) * 2004-05-31 2006-01-19 Totoku Electric Co Ltd Probe needle and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162634A (en) * 2008-01-08 2009-07-23 Kanai Hiroaki Insulation coated probe pin
JP2009198238A (en) * 2008-02-20 2009-09-03 Totoku Electric Co Ltd Probe needle and method of manufacturing the same
JP2009210443A (en) * 2008-03-05 2009-09-17 Totoku Electric Co Ltd Contact probe and method for manufacturing the same
JP2009270836A (en) * 2008-04-30 2009-11-19 Totoku Electric Co Ltd Probe needle and manufacturing method thereof
CN102998493A (en) * 2011-06-03 2013-03-27 日置电机株式会社 Probe unit, circuit board inspection apparatus and method for manufacturing probe unit
JP2013003002A (en) * 2011-06-17 2013-01-07 Hioki Ee Corp Probe unit and circuit board inspection device
JP2015025697A (en) * 2013-07-25 2015-02-05 東京特殊電線株式会社 Probe unit
JP2018054427A (en) * 2016-09-28 2018-04-05 株式会社日本マイクロニクス Probe, probe card, and contact inspection device
JP2018159718A (en) * 2018-07-12 2018-10-11 東京特殊電線株式会社 Probe and probe contact method
KR102072634B1 (en) * 2018-10-17 2020-02-03 한국생산기술연구원 Probe card needle with improved corrosion and electrical properties
JP7471148B2 (en) 2020-06-01 2024-04-19 株式会社Totoku Probe needle and probe unit
WO2022074888A1 (en) * 2020-10-05 2022-04-14 東京特殊電線株式会社 Contact probe
KR20230082598A (en) 2020-10-05 2023-06-08 도쿄토쿠슈덴센 가부시키가이샤 contact probe
KR20230151879A (en) 2022-04-26 2023-11-02 가부시키가이샤 토토쿠 Contact probe
CN116374944A (en) * 2023-03-23 2023-07-04 清华大学 Microelectrode preparation method and microelectrode

Similar Documents

Publication Publication Date Title
JP2007322369A (en) Contact probe and its manufacturing method
JP5027522B2 (en) Probe unit and method of using a contact probe using the probe unit
JP2009198238A (en) Probe needle and method of manufacturing the same
JP6305754B2 (en) Contact probe unit
JP5144997B2 (en) Contact probe unit and manufacturing method thereof
JP2007017219A (en) Probe needle with insulating coating, and its manufacturing method
JP2014025737A (en) Inspecting tool and contact
JP5192899B2 (en) Probe needle and manufacturing method thereof
JP6371501B2 (en) Probe unit
JP2006317412A (en) Probing stylus having insulating film, and manufacturing method thereof
JP2006017455A (en) Probe needle and its manufacturing method
JP2009210443A (en) Contact probe and method for manufacturing the same
JP2010091494A (en) Probe needle
JP6600387B2 (en) Probe and probe contact method
WO2022074888A1 (en) Contact probe
JP2006098066A (en) Probe needle, using method therefor, and manufacturing method for probe needle
JP7008541B2 (en) Probe needle
JP7390115B2 (en) probe unit
JP2016011925A (en) Contact probe and contact probe unit
JP2005114393A (en) Contact probe with lead wire, and manufacturing method therefor
WO2007097356A1 (en) Ultrafine coaxial line and ultrafine coaxial barrel and production method for them
JP7471148B2 (en) Probe needle and probe unit
JP2019152541A (en) Probe needle
EP2725364A1 (en) Spiral probe and manufacturing method for same
JP2021189063A (en) Probe needle and probe unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403