JP2008258503A - Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element - Google Patents

Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element Download PDF

Info

Publication number
JP2008258503A
JP2008258503A JP2007100930A JP2007100930A JP2008258503A JP 2008258503 A JP2008258503 A JP 2008258503A JP 2007100930 A JP2007100930 A JP 2007100930A JP 2007100930 A JP2007100930 A JP 2007100930A JP 2008258503 A JP2008258503 A JP 2008258503A
Authority
JP
Japan
Prior art keywords
based semiconductor
substrate
gallium nitride
region
hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100930A
Other languages
Japanese (ja)
Inventor
Katsushi Akita
勝史 秋田
Takashi Kyono
孝史 京野
Keiji Ishibashi
恵二 石橋
Hitoshi Kasai
仁 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007100930A priority Critical patent/JP2008258503A/en
Priority to PCT/JP2008/056013 priority patent/WO2008126695A1/en
Priority to CN2008800004293A priority patent/CN101542760B/en
Priority to KR1020087029818A priority patent/KR20090124908A/en
Priority to US12/307,586 priority patent/US20100032644A1/en
Priority to EP08739137A priority patent/EP2043167A4/en
Priority to TW097112434A priority patent/TW200901517A/en
Publication of JP2008258503A publication Critical patent/JP2008258503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride-based semiconductor light emitting element having a structure in which a nonpolar nitride gallium-based semiconductor is used and which is capable of providing large luminous intensity. <P>SOLUTION: An active layer 17 is provided to generate light having a luminous wavelength of 440 nm to 550 nm. A first conductivity-type nitride gallium-based semiconductor region 13, the active layer 17, and a second conductivity-type nitride gallium-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal In<SB>X</SB>Ga<SB>1-X</SB>N (0.16≤X≤0.4, X is a deformation composition), and an indium composition X is expressed with the distortion composition. An m surface of the hexagonal In<SB>X</SB>Ga<SB>1-X</SB>N faces towards the predetermined Ax axis. The well layer has a thickness of 3 nm to 20 nm. A light emitting element having a luminous wavelength of 440 nm or higher can be fabricated by making the well layer have a thickness of 3 nm or higher. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法に関する。   The present invention relates to a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device.

非特許文献1には、発光ダイオードが記載されている。この発光ダイオードは、高比抵抗GaN基板の無転位m面上に形成されており、また5周期SiドープInGaN/GaN量子井戸構造を有する。InGaN井戸層はSiドープであり、またその厚さは3nmである。GaN障壁層は9nmである。m面への窒化ガリウム系半導体の成長は、c面GaN用に最適化された成長条件で行われた。樹脂封止後、20ミリアンペアの印加電流で、ピーク波長は435nmであり、光出力は1.79ミリワットであり、外部量子効率は3.1%であった。   Non-Patent Document 1 describes a light emitting diode. This light emitting diode is formed on a dislocation-free m-plane of a high specific resistance GaN substrate and has a 5-period Si-doped InGaN / GaN quantum well structure. The InGaN well layer is Si-doped and has a thickness of 3 nm. The GaN barrier layer is 9 nm. The growth of the gallium nitride based semiconductor on the m-plane was performed under the growth conditions optimized for c-plane GaN. After resin sealing, with an applied current of 20 milliamps, the peak wavelength was 435 nm, the light output was 1.79 milliwatts, and the external quantum efficiency was 3.1%.

非特許文献2には、発光ダイオードが記載されている。この発光ダイオードは、低転位のm面のGaN基板上に形成されており、GaN基板のキャリア密度は1×1017cm−3である。この発光ダイオードは、6周期InGaN/GaN量子井戸構造を有する。InGaN井戸層の厚さは8nmである。GaN障壁層は16nmである。m面への窒化ガリウム系半導体の成長は、c面GaN用に最適化された成長条件とほぼ同じである。樹脂封止後、20ミリアンペアの印加電流で、ピーク波長は407nmであり、出力は23.7ミリワットであり、外部量子効率は38.9%であった。 Non-Patent Document 2 describes a light emitting diode. This light emitting diode is formed on a low dislocation m-plane GaN substrate, and the carrier density of the GaN substrate is 1 × 10 17 cm −3 . This light emitting diode has a 6-cycle InGaN / GaN quantum well structure. The thickness of the InGaN well layer is 8 nm. The GaN barrier layer is 16 nm. The growth of the gallium nitride based semiconductor on the m-plane is almost the same as the growth conditions optimized for c-plane GaN. After resin sealing, with an applied current of 20 milliamps, the peak wavelength was 407 nm, the output was 23.7 milliwatts, and the external quantum efficiency was 38.9%.

特許文献1には、GaN(1−100)基板上に設けられたIn0,1Ga0.9N活性層を有する半導体レーザが記載されている。また、高比抵抗SiC(11−20)基板上に設けられたIn0.15Ga0.85N井戸層およびIn0.05Ga0.95Nバリア層を有する面発光半導体レーザが記載されている。さらに、(1−100)面または(11−20)面の高比抵抗SiC基板上に設けられた4nmのIn0.2Ga0.8N井戸層および4nmのIn0.05Ga0.95Nバリア層を有する面発光半導体レーザが記載されている。
Japanese Journal of Applied Physics Vol. 45, No.45, 2006, pp. L1197-L1199 Japanese Journal of Applied Physics Vol. 46, No.7, 2007, pp. L126-L128(UCSB) 特開平10−135576号公報
Patent Document 1 describes a semiconductor laser having an In 0,1 Ga 0.9 N active layer provided on a GaN (1-100) substrate. Also described is a surface emitting semiconductor laser having an In 0.15 Ga 0.85 N well layer and an In 0.05 Ga 0.95 N barrier layer provided on a high resistivity SiC (11-20) substrate. Yes. Furthermore, a 4 nm In 0.2 Ga 0.8 N well layer and a 4 nm In 0.05 Ga 0.95 provided on a (1-100) or (11-20) high resistivity SiC substrate. A surface emitting semiconductor laser having an N barrier layer is described.
Japanese Journal of Applied Physics Vol. 45, No. 45, 2006, pp. L1197-L1199 Japanese Journal of Applied Physics Vol. 46, No.7, 2007, pp. L126-L128 (UCSB) Japanese Patent Laid-Open No. 10-135576

窒化ガリウム系半導体からなる活性層を有する半導体発光素子では、いわゆるc面GaN基板を用いているので、ピエゾ効果に起因する影響が活性層にも現れる。一方、GaNであってもm面は非極性を示し、このため、活性層がピエゾ効果に起因する影響を受けないことが期待される。非特許文献1および2には、m面上に作製されたInGaN/GaN量子井戸構造の発光ダイオードが示されている。特許文献1では、いくつかのインジウム組成を有するInGaN活性層およびInGaN井戸層が記載されているけれども、発光波長や発光強度に関する具体的な記載はほとんどない。   Since a so-called c-plane GaN substrate is used in a semiconductor light emitting device having an active layer made of a gallium nitride based semiconductor, the influence due to the piezo effect also appears in the active layer. On the other hand, even in the case of GaN, the m-plane shows nonpolarity, and therefore, it is expected that the active layer is not affected by the piezo effect. Non-Patent Documents 1 and 2 show InGaN / GaN quantum well structure light emitting diodes fabricated on the m-plane. In Patent Document 1, although an InGaN active layer and an InGaN well layer having several indium compositions are described, there is almost no specific description regarding the emission wavelength and emission intensity.

非特許文献1および2の発光ダイオードのピーク波長よりも長い発光波長の発光ダイオードが求められている。ところが、発明者の実験によれば、c面GaN上に量子井戸構造を形成するための成膜条件を用いてm面GaN上に量子井戸構造を形成すると、所望のフォトルミネッセンス波長が得られない。また、様々な実験の結果、フォトルミネッセンス波長だけでなく発光強度の点でも、m面GaN上に形成されたInGaN系活性層の発光素子はc面GaN上に形成されたInGaN系活性層の発光素子と異なる傾向を示す。   There is a need for a light emitting diode having an emission wavelength longer than the peak wavelength of the light emitting diodes of Non-Patent Documents 1 and 2. However, according to the inventors' experiment, when the quantum well structure is formed on the m-plane GaN using the film formation conditions for forming the quantum well structure on the c-plane GaN, a desired photoluminescence wavelength cannot be obtained. . Further, as a result of various experiments, the light emitting element of the InGaN-based active layer formed on the m-plane GaN emits light from the InGaN-based active layer formed on the c-plane GaN not only in terms of the photoluminescence wavelength but also in terms of emission intensity. It shows a tendency different from the element.

本発明は、このような事情を鑑みて為されたものであり、非極性窒化ガリウム系半導体を用いると共に良好な発光強度を提供できる構造の窒化物系半導体発光素子を提供することを目的とし、また非極性窒化ガリウム系半導体を用いると共に良好な発光強度を提供できる、窒化物系半導体発光素子を作製する方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a nitride-based semiconductor light-emitting element having a structure capable of providing a favorable emission intensity while using a nonpolar gallium nitride-based semiconductor, It is another object of the present invention to provide a method for manufacturing a nitride-based semiconductor light-emitting device that uses a non-polar gallium nitride-based semiconductor and can provide good emission intensity.

本発明の一側面によれば、窒化物系半導体発光素子は、(a)第1導電型窒化ガリウム系半導体領域と、(b)第2導電型窒化ガリウム系半導体領域と、(c)前記第1導電型窒化ガリウム系半導体領域と前記第2導電型窒化ガリウム系半導体領域との間に設けられており、波長440nm以上550nm以下の範囲の波長の光を発生するような活性層とを備える。前記活性層は、六方晶系InGa1−XN(0.16≦X≦0.4、インジウム組成Xは歪み組成)からなる井戸層を含み、前記井戸層の厚さDは3nmより大きく、前記井戸層の厚さDは20nm以下であり、前記インジウム組成Xの厚さDは、X≧−0.16×D+0.88の関係にあり、前記第1導電型窒化ガリウム系半導体領域、前記活性層および前記第2導電型窒化ガリウム系半導体領域は、所定の軸の方向に配列されており、前記六方晶系InGa1−XNのm面は、前記所定の軸の方向に向いている。 According to one aspect of the present invention, a nitride semiconductor light emitting device includes (a) a first conductivity type gallium nitride semiconductor region, (b) a second conductivity type gallium nitride semiconductor region, and (c) the first conductivity type. An active layer is provided between the first-conductivity-type gallium nitride-based semiconductor region and the second-conductivity-type gallium nitride-based semiconductor region and generates light having a wavelength in the range of 440 nm to 550 nm. The active layer includes a well layer made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, indium composition X is a strained composition), and the thickness D of the well layer is 3 nm or more. The thickness D of the well layer is 20 nm or less, the thickness D of the indium composition X is in a relationship of X ≧ −0.16 × D + 0.88, and the first conductivity type gallium nitride based semiconductor region The active layer and the second conductivity type gallium nitride based semiconductor region are arranged in a predetermined axis direction, and the m-plane of the hexagonal In X Ga 1-X N is in the direction of the predetermined axis. Suitable for.

この窒化物系半導体発光素子によれば、井戸層の六方晶系InGa1−XNのm面が所定の軸の方向に向いているので、活性層は実質的な非極性を示す。また、井戸層が六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなる。この非極性InGaN井戸層のインジウム組成は、c面用成膜条件を用いて形成した窒化物系半導体発光素子の非極性InGaN井戸層のインジウム組成に比べて大きい。これ故に、このc面用成膜条件による窒化物系半導体発光素子に比べて、本件の窒化物系半導体発光素子の発光強度が良好になる。さらに、井戸層が六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなるとと共に、井戸層の厚さは3nmより大きく20nm以下であるので、波長440nm以上550nm以下の範囲の発光波長を発生するような量子井戸構造が提供される。 According to this nitride-based semiconductor light-emitting device, since the hexagonal In X Ga 1-X N m-plane of the well layer is oriented in the direction of a predetermined axis, the active layer exhibits substantial nonpolarity. Further, the well layer is made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, where X is a strain composition). The indium composition of the nonpolar InGaN well layer is larger than the indium composition of the nonpolar InGaN well layer of the nitride-based semiconductor light-emitting device formed using the c-plane deposition conditions. Therefore, the emission intensity of the nitride-based semiconductor light-emitting device of the present invention is better than that of the nitride-based semiconductor light-emitting device under the c-plane film formation conditions. Furthermore, since the well layer is made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, X is a strained composition), and the thickness of the well layer is greater than 3 nm and less than or equal to 20 nm, A quantum well structure is provided that generates an emission wavelength in the range of 440 nm to 550 nm.

本発明に係る窒化物系半導体発光素子では、前記活性層は、六方晶系InGa1−YN(0≦Y≦0.05、Yは歪み組成)からなる障壁層を含むことができる。 In the nitride semiconductor light emitting device according to the present invention, the active layer may include a barrier layer made of hexagonal In Y Ga 1-Y N (0 ≦ Y ≦ 0.05, Y is a strained composition). .

この窒化物系半導体発光素子によれば、活性層は量子井戸構造を有することができ、六方晶系InGa1−YN(0≦Y≦0.05、Yは歪み組成)は非極性InGaN障壁層のためのインジウム組成に好適である。 According to this nitride-based semiconductor light-emitting device, the active layer can have a quantum well structure, and the hexagonal In Y Ga 1-Y N (0 ≦ Y ≦ 0.05, Y is a strain composition) is nonpolar. Suitable for indium composition for InGaN barrier layer.

本発明に係る窒化物系半導体発光素子は、六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板を更に含むことができる。前記第1導電型窒化ガリウム系半導体領域、前記活性層および前記第2導電型窒化ガリウム系半導体領域は、前記基板の主面上に搭載されている。 Nitride-based semiconductor light-emitting device according to the present invention may further comprise a substrate composed of a hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1). The first conductivity type gallium nitride based semiconductor region, the active layer, and the second conductivity type gallium nitride based semiconductor region are mounted on the main surface of the substrate.

この窒化物系半導体発光素子によれば、六方晶系AlGa1−ZN半導体上に第1導電型窒化ガリウム系半導体領域、活性層および第2導電型窒化ガリウム系半導体領域を形成できるので、これらの結晶性が良好になる。 According to this nitride semiconductor light emitting device, hexagonal Al Z Ga 1-Z N first conductivity type gallium nitride based semiconductor region on a semiconductor, it is possible to form the active layer and the second conductive type gallium nitride based semiconductor region These crystallinity is improved.

本発明に係る窒化物系半導体発光素子では、前記基板の前記主面は、m面からオフ角(−2°≦θ≦+2°)でオフしていることができる。この窒化物系半導体発光素子によれば、極性の実質的な影響を受けることなく良好な品質の半導体結晶が得られる。   In the nitride semiconductor light emitting device according to the present invention, the main surface of the substrate may be turned off from the m plane at an off angle (−2 ° ≦ θ ≦ + 2 °). According to this nitride semiconductor light emitting device, a semiconductor crystal of good quality can be obtained without being substantially affected by the polarity.

本発明に係る窒化物系半導体発光素子では、前記基板の貫通転位は、c軸方向に伸びている。この窒化物系半導体発光素子によれば、貫通転位はc軸方向に走るので、これらの貫通転位は、基板の主面と実質的に平行に伸びる。また、本発明に係る窒化物系半導体発光素子では、前記基板のc面を横切る貫通転位の平均密度は1×10cm−2以下であることが好ましい。この窒化物系半導体発光素子によれば、c面を横切る貫通転位の密度が低いので、m面主面上への成長の際に引き継がれる貫通転位の密度も小さくなる。 In the nitride-based semiconductor light-emitting device according to the present invention, threading dislocations in the substrate extend in the c-axis direction. According to this nitride-based semiconductor light-emitting device, threading dislocations run in the c-axis direction, so that these threading dislocations extend substantially parallel to the main surface of the substrate. In the nitride semiconductor light emitting device according to the present invention, the average density of threading dislocations across the c-plane of the substrate is preferably 1 × 10 7 cm −2 or less. According to this nitride semiconductor light emitting device, since the density of threading dislocations across the c-plane is low, the density of threading dislocations inherited during growth on the m-plane main surface is also reduced.

本発明に係る窒化物系半導体発光素子では、前記基板は、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より大きい第1の領域と、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より小さい第2の領域とを含み、前記基板の前記主面には前記第1および第2の領域が現れている。   In the nitride-based semiconductor light-emitting device according to the present invention, the substrate has a first region in which threading dislocation density extending in the c-axis direction is larger than the first threading dislocation density, and threading dislocation density extending in the c-axis direction. And the second region smaller than the first threading dislocation density, and the first and second regions appear on the main surface of the substrate.

この窒化物系半導体発光素子によれば、m面主面に現れる第2の領域上に成長される半導体は、低い貫通転位密度になる。   According to this nitride semiconductor light emitting device, the semiconductor grown on the second region appearing on the m-plane main surface has a low threading dislocation density.

本発明に係る窒化物系半導体発光素子では、前記第2の領域の前記貫通転位の密度は1×10cm−2未満であることが好ましい。この窒化物系半導体発光素子によれば、1×10cm−2未満である第2の領域がm面主面に現れるので、この上に成長される半導体は非常に低い貫通転位密度になる。 In the nitride-based semiconductor light-emitting device according to the present invention, the threading dislocation density in the second region is preferably less than 1 × 10 7 cm −2 . According to this nitride-based semiconductor light-emitting device, the second region of less than 1 × 10 7 cm −2 appears on the m-plane main surface, so that the semiconductor grown thereon has a very low threading dislocation density. .

本発明の別の側面は、窒化物系半導体発光素子を作製する方法である。この方法は、(a)六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板を準備する工程と、(b)第1導電型窒化ガリウム系半導体膜を前記基板の主面上に形成する工程と、(c)前記第1導電型窒化ガリウム系半導体膜上に、波長440nm以上550nm以下の範囲の波長の光を発生するような活性層を形成する工程と、(d)前記活性層上に第2導電型窒化ガリウム系半導体膜を形成する工程と備える。前記第1導電型窒化ガリウム系半導体膜、前記活性層および前記第2導電型窒化ガリウム系半導体膜は、前記基板の主面上において所定の軸の方向に配列されており、前記活性層を形成する前記工程では、六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなり第1のガリウム組成の第1の半導体層を第1の温度で成長し、前記活性層を形成する前記工程では、六方晶系InGa1−YN(0≦Y≦0.05、Y<X、Yは歪み組成)からなり第2のガリウム組成の第2の半導体層を第2の温度で成長し、前記第1のガリウム組成は前記第2のガリウム組成よりも低く、前記第1の温度は前記第2の温度よりも低く、前記第1の温度と前記第2の温度との差は95度以上であり、前記六方晶系InGa1−XNのm面は、前記所定の軸の方向に向いている。 Another aspect of the present invention is a method for fabricating a nitride-based semiconductor light-emitting device. This method, (a) preparing a substrate composed of hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1), (b) a first conductivity-type gallium nitride semiconductor film of the substrate (C) forming an active layer that generates light having a wavelength in the range of 440 nm to 550 nm on the first conductivity type gallium nitride semiconductor film; d) forming a second conductivity type gallium nitride based semiconductor film on the active layer. The first conductive type gallium nitride based semiconductor film, the active layer, and the second conductive type gallium nitride based semiconductor film are arranged in a direction of a predetermined axis on the main surface of the substrate to form the active layer In the step, the first semiconductor layer made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, X is a strained composition) and having the first gallium composition is formed at the first temperature. growing, in the step of forming the active layer, hexagonal in Y Ga 1-Y N ( 0 ≦ Y ≦ 0.05, Y <X, Y : strained composition) of the second gallium composition made from the Two semiconductor layers are grown at a second temperature, the first gallium composition is lower than the second gallium composition, the first temperature is lower than the second temperature, and the first temperature the difference between the second temperature is less than 95 degrees with the hexagonal an in X Ga 1 M surface of X N is oriented in the direction of the predetermined axis.

この方法によれば、六方晶系InGa1−XNのm面が上記所定の軸の方向に向いている活性層の作製において、第1のガリウム組成は第2のガリウム組成よりも低い2種類の窒化ガリウム系半導体の成長温度の差が95度以上であるので、第1の半導体層のインジウム組成を高めて井戸層として適用できる。 According to this method, the first gallium composition is lower than the second gallium composition in the production of an active layer in which the m-plane of hexagonal In X Ga 1-X N faces the predetermined axis. Since the difference in growth temperature between the two types of gallium nitride semiconductors is 95 degrees or more, the indium composition of the first semiconductor layer can be increased and applied as a well layer.

本発明に係る方法では、前記基板は、c軸方向に成長された六方晶系AlGa 1−ZN半導体(0≦Z≦1)の結晶からm軸に交差するように切り出されており、前記基板の前記主面は、研磨処理されていると共にm軸に交差する平面に沿って延びる。 In the method according to the present invention, the substrate is cut out so as to intersect the crystal in the c-axis direction in the grown hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1) in the m-axis The main surface of the substrate is polished and extends along a plane that intersects the m-axis.

この方法では、c軸方向に結晶成長が進行するので、貫通転位もc軸方向に伸びていく。六方晶系AlGa1−ZN半導体結晶から半導体板をm軸に交差するように切り出せば、六方晶系InGa1−XNのm面が所定の軸の方向に向いた活性層を作製するために好適な基板が提供される。 In this method, since crystal growth proceeds in the c-axis direction, threading dislocations also extend in the c-axis direction. If cut out of a hexagonal Al Z Ga 1-Z N semiconductor crystal so as to intersect the semiconductor plate in the m-axis, the active layer m-plane of the hexagonal In X Ga 1-X N is oriented in the direction of the predetermined axis A suitable substrate is provided for fabricating the substrate.

本発明に係る方法では、前記基板は、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より大きい複数の第1の領域と、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より小さい複数の第2の領域とを含み、前記第1および第2の領域は交互に配置されており、前記基板の前記主面には前記第1および第2の領域が現れていることができる。   In the method according to the present invention, the substrate has a plurality of first regions in which the density of threading dislocations extending in the c-axis direction is higher than the first threading dislocation density, and the density of threading dislocations extending in the c-axis direction is the first. A plurality of second regions smaller than the threading dislocation density, wherein the first and second regions are alternately arranged, and the first and second regions appear on the main surface of the substrate. Can be.

この方法によれば、m面主面に現れる第2の領域上に成長される半導体は、低い貫通転位密度になる。   According to this method, the semiconductor grown on the second region appearing on the m-plane main surface has a low threading dislocation density.

本発明に係る方法では、前記第2の領域の前記貫通転位の密度は1×10cm−2未満であることが好ましい。この方法によれば、転位の影響を受けることなく良好な品質の半導体結晶が得られる。 In the method according to the present invention, the threading dislocation density in the second region is preferably less than 1 × 10 7 cm −2 . According to this method, a semiconductor crystal of good quality can be obtained without being affected by dislocations.

本発明に係る方法では、前記基板の前記主面は、m面からオフ角(−2°≦θ≦+2°)でオフしていることができる。この方法によれば、極性の実質的な影響を受けることなく良好な品質の半導体結晶が得られる。   In the method according to the present invention, the main surface of the substrate may be turned off at an off angle (−2 ° ≦ θ ≦ + 2 °) from the m-plane. According to this method, a semiconductor crystal of good quality can be obtained without being substantially affected by polarity.

本発明に係る方法では、前記第1導電型窒化ガリウム系半導体膜の形成に先立って、アンモニアおよび水素を含むガスを供給しながら前記基板を熱処理する工程を更に備えることができる。   The method according to the present invention may further include a step of heat-treating the substrate while supplying a gas containing ammonia and hydrogen prior to the formation of the first conductivity type gallium nitride based semiconductor film.

この方法では、窒化ガリウム系半導体の成長前に基板をアンモニアと水素を含むガス中で熱処理するので、平坦な基板表面が得られやすく、さらに良好な発光特性を持つ半導体発光素子が得られる。   In this method, since the substrate is heat-treated in a gas containing ammonia and hydrogen before the growth of the gallium nitride-based semiconductor, a flat substrate surface can be easily obtained, and a semiconductor light-emitting element having better light emission characteristics can be obtained.

本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。   The above and other objects, features, and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments of the present invention, which proceeds with reference to the accompanying drawings.

以上説明したように、本発明によれば、非極性窒化ガリウム系半導体を用いると共に良好な発光強度を提供できる構造の窒化物系半導体発光素子が提供される。また、本発明によれば、窒化物系半導体発光素子を作製する方法が提供さえれ、この方法によれば、非極性窒化ガリウム系半導体を用いると共に良好な発光強度を提供できる。   As described above, according to the present invention, there is provided a nitride-based semiconductor light-emitting device having a structure that uses a non-polar gallium nitride-based semiconductor and can provide good light emission intensity. In addition, according to the present invention, a method for producing a nitride-based semiconductor light-emitting element can be provided, and according to this method, a non-polar gallium nitride-based semiconductor can be used and good emission intensity can be provided.

本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。   The knowledge of the present invention can be easily understood by considering the following detailed description with reference to the accompanying drawings shown as examples. Subsequently, embodiments of the nitride-based semiconductor light-emitting device and the method for manufacturing the nitride-based semiconductor light-emitting device of the present invention will be described with reference to the accompanying drawings. Where possible, the same parts are denoted by the same reference numerals.

図1は、本実施の形態に係る窒化物系半導体発光素子を概略的に示す図面である。窒化物系半導体発光素子としては、例えば発光ダイオード、半導体レーザ等がある。窒化物系半導体発光素子11は、第1導電型窒化ガリウム系半導体領域13と、第2導電型窒化ガリウム系半導体領域15と、活性層17とを備える。活性層17は、第1導電型窒化ガリウム系半導体領域13と第2導電型窒化ガリウム系半導体領域15との間に設けられている。活性層17は、単一のInGaN半導体井戸層からなることができ、或いは、また量子井戸構造19を有することができる。活性層17は、波長440nm以上の波長の光を発生するように設けられている。また、活性層17は、550nm以下の範囲の波長の光を発生するように設けられている。第1導電型窒化ガリウム系半導体領域13、活性層17および第2導電型窒化ガリウム系半導体領域15は、所定の軸Axの方向に配列されている。活性層17は、六方晶系InGa1−XNからなる井戸層を含み、インジウム組成Xは歪み組成で表されている。六方晶系InGa1−XNのm面が所定の軸Axの方向に向いている。活性層17の井戸層には、第1導電型窒化ガリウム系半導体領域13および第2導電型窒化ガリウム系半導体領域15から提供されたキャリアが閉じ込めされる。この井戸層のバンドギャップに比べて、第1導電型窒化ガリウム系半導体領域13および第2導電型窒化ガリウム系半導体領域15のバンドギャップは大きい。 FIG. 1 is a drawing schematically showing a nitride-based semiconductor light-emitting device according to this embodiment. Examples of the nitride semiconductor light emitting device include a light emitting diode and a semiconductor laser. The nitride semiconductor light emitting device 11 includes a first conductivity type gallium nitride semiconductor region 13, a second conductivity type gallium nitride semiconductor region 15, and an active layer 17. The active layer 17 is provided between the first conductivity type gallium nitride semiconductor region 13 and the second conductivity type gallium nitride semiconductor region 15. The active layer 17 can consist of a single InGaN semiconductor well layer or can have a quantum well structure 19. The active layer 17 is provided so as to generate light having a wavelength of 440 nm or more. The active layer 17 is provided to generate light having a wavelength in the range of 550 nm or less. The first conductivity type gallium nitride based semiconductor region 13, the active layer 17, and the second conductivity type gallium nitride based semiconductor region 15 are arranged in the direction of a predetermined axis Ax. The active layer 17 includes a well layer made of hexagonal In X Ga 1-X N, and the indium composition X is represented by a strain composition. The m-plane of hexagonal In X Ga 1-X N faces the direction of a predetermined axis Ax. Carriers provided from the first conductivity type gallium nitride semiconductor region 13 and the second conductivity type gallium nitride semiconductor region 15 are confined in the well layer of the active layer 17. Compared to the band gap of the well layer, the band gaps of the first conductivity type gallium nitride semiconductor region 13 and the second conductivity type gallium nitride semiconductor region 15 are large.

井戸層の厚みを3nm以上にすることによって、発光波長440nm以上の発光素子を作製することができる。井戸層の厚みが20nmを超えるとInGaNの結晶品質が悪化し、発光特性が悪化する。   By setting the thickness of the well layer to 3 nm or more, a light-emitting element having an emission wavelength of 440 nm or more can be manufactured. If the thickness of the well layer exceeds 20 nm, the crystal quality of InGaN deteriorates and the light emission characteristics deteriorate.

図1に示される座標系から理解されるように、c軸とこのc軸の直交する3つの軸a1、a2、a3を用いて、六方晶系InGa1−XNが表される。3つの軸a1、a2、a3は互いに120度の角度(γ、γ、γ)を成す。六方晶系のc軸は直交座標系SのZ軸に向いており、軸a2は直交座標系SのX軸に向いている。図1には、代表的なm面が示されている。 As understood from the coordinate system shown in FIG. 1, hexagonal In X Ga 1-X N is expressed using the c axis and three axes a 1, a 2, and a 3 orthogonal to the c axis. The three axes a1, a2, and a3 form an angle of 120 degrees (γ 1 , γ 2 , γ 3 ). The hexagonal c-axis is directed to the Z-axis of the orthogonal coordinate system S, and the axis a2 is directed to the X-axis of the orthogonal coordinate system S. FIG. 1 shows a typical m-plane.

この六方晶系InGa1−XNのm面が所定の軸Axの方向に向いた窒化物系半導体発光素子11では、インジウム組成Xは0.16以上であれば、発光波長440nm以上の発光素子のための活性層として好適である。また、インジウム組成Xは0.4を越えると、InGaNの結晶品質が悪化し、発光特性が悪化する。 In the nitride-based semiconductor light-emitting element 11 in which the m-plane of this hexagonal In X Ga 1-X N faces the direction of the predetermined axis Ax, if the indium composition X is 0.16 or more, the emission wavelength is 440 nm or more. It is suitable as an active layer for a light emitting device. On the other hand, when the indium composition X exceeds 0.4, the crystal quality of InGaN deteriorates and the light emission characteristics deteriorate.

この理由は以下のようなものである。m面GaN上に形成されたInGaN系発光素子のインジウム組成がc面GaN上に形成されたInGaN系発光素子のインジウム組成と同じ場合でも、m面GaN上に形成されたInGaN系発光素子のフォトルミネッセンス波長は、c面GaN上に形成されたInGaN系発光素子のフォトルミネッセンス波長に比べて短い。このため、m面GaN上に形成されたInGaN系発光素子において、所望のフォトルミネッセンス波長を得るためには、より大きなインジウム組成のInGaNを成長しなくてはならない。また、非特許文献1および2の発光ダイオードにおける発光波長よりも長波長化のためには、インジウム組成をさらに高めることが必要である。   The reason for this is as follows. Even if the indium composition of the InGaN-based light-emitting element formed on the m-plane GaN is the same as the indium composition of the InGaN-based light-emitting element formed on the c-plane GaN, the photo of the InGaN-based light-emitting element formed on the m-plane GaN The luminescence wavelength is shorter than the photoluminescence wavelength of the InGaN-based light emitting device formed on the c-plane GaN. For this reason, in order to obtain a desired photoluminescence wavelength in an InGaN-based light emitting element formed on m-plane GaN, InGaN having a larger indium composition must be grown. Further, in order to increase the wavelength of light emitted from the light emitting diodes of Non-Patent Documents 1 and 2, it is necessary to further increase the indium composition.

以上説明したように、窒化物系半導体発光素子11によれば、井戸層の六方晶系InGa1−XNのm面が所定の軸の方向に向いているので、活性層17は非極性を示す。また、活性層17の井戸層が六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなる。この非極性InGaN井戸層のインジウム組成は、c面用成膜条件を用いて形成した窒化物系半導体発光素子の非極性InGaN井戸層のインジウム組成に比べて大きい値に設定されたので、c面用成膜条件による窒化物系半導体発光素子に比べて、本件の窒化物系半導体発光素子の発光強度が良好になる。さらに、活性層17の井戸層が六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなると共に、井戸層の厚さは3nmより大きく20nm以下であるので、活性層17は、波長440nm以上550nm以下の範囲の発光波長の光を発生するように設けられる。 As described above, according to the nitride-based semiconductor light-emitting element 11, the hexagonal In X Ga 1-X N m-plane of the well layer is oriented in the direction of the predetermined axis. Indicates polarity. The well layer of the active layer 17 is made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, where X is a strained composition). Since the indium composition of the nonpolar InGaN well layer was set to a value larger than the indium composition of the nonpolar InGaN well layer of the nitride-based semiconductor light-emitting device formed using the c-plane deposition conditions, the c-plane Compared with the nitride-based semiconductor light-emitting device according to the film forming conditions for use, the emission intensity of the nitride-based semiconductor light-emitting device of the present case is improved. Furthermore, the well layer is hexagonal In X Ga 1-X N ( 0.16 ≦ X ≦ 0.4, X : strained composition) of the active layer 17 with made of, the thickness of the well layer is greater 20nm or less than 3nm Therefore, the active layer 17 is provided so as to generate light having a light emission wavelength in the range of 440 nm to 550 nm.

第1導電型窒化ガリウム系半導体領域13は、例えば、活性層のバンドギャップより大きいバンドギャップの窒化ガリウム系半導体からなるクラッド層21を含むことができ、窒化ガリウム系半導体は例えばn型GaN等である。必要な場合には、第1導電型窒化ガリウム系半導体領域13は、n型AlGaN窒化ガリウム半導体からなる半導体層23を含むことができる。   The first conductivity type gallium nitride semiconductor region 13 can include, for example, a clad layer 21 made of a gallium nitride semiconductor having a band gap larger than that of the active layer. The gallium nitride semiconductor is, for example, n-type GaN. is there. If necessary, the first conductivity type gallium nitride based semiconductor region 13 may include a semiconductor layer 23 made of an n-type AlGaN gallium nitride semiconductor.

第2導電型窒化ガリウム系半導体領域15は、例えば、活性層のバンドギャップより大きいバンドギャップの窒化ガリウム系半導体からなる電子ブロック層25を含むことができ、窒化ガリウム系半導体は例えばp型AlGaN等である。第2導電型窒化ガリウム系半導体領域15は、例えば、p型の窒化ガリウム系半導体からなるコンタクト層27を含むことができ、窒化ガリウム系半導体は例えばp型GaN等である。   The second conductivity type gallium nitride based semiconductor region 15 can include, for example, an electron block layer 25 made of a gallium nitride based semiconductor having a band gap larger than the band gap of the active layer, and the gallium nitride based semiconductor is, for example, p-type AlGaN It is. The second conductivity type gallium nitride based semiconductor region 15 can include a contact layer 27 made of, for example, a p-type gallium nitride based semiconductor, and the gallium nitride based semiconductor is, for example, p-type GaN.

一実施例の窒化物系半導体発光素子11では、活性層17は、量子井戸構造19を含むことができる。量子井戸構造19は井戸層29aおよび障壁層29bを含むことができる。井戸層29aおよび障壁層29bは交互に配置されている。窒化物系半導体発光素子11では、井戸層29aは、六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなることができる。また、活性層17の障壁層29bは、六方晶系InGa1−YN(0≦Y≦0.05、Yは歪み組成)からなることができる。六方晶系InGa1−YNは非極性InGaN障壁層のためのインジウム組成に好適である。六方晶系InGa1−YNのインジウム組成が0以上であることができる。また、六方晶系InGa1−YNのガリウム組成が0.05以下であることができる。この理由は井戸層との間に十分なエネルギー障壁が得られるからである。このガリウム組成は歪み組成で表される。障壁層29bの膜厚は、5nm以上であることができる。この理由は井戸層に十分にキャリアを閉じ込めることができるからである。また、障壁層29bの膜厚は、20nm以下であることができる。この理由は十分に低い素子抵抗が得られるからである。障壁層29bは、例えばGaNまたはInGaNからなる。 In the nitride semiconductor light emitting device 11 of one embodiment, the active layer 17 can include a quantum well structure 19. The quantum well structure 19 can include a well layer 29a and a barrier layer 29b. The well layers 29a and the barrier layers 29b are alternately arranged. In the nitride-based semiconductor light-emitting element 11, the well layer 29 a can be made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, where X is a strain composition). Further, the barrier layer 29b of the active layer 17, the hexagonal In Y Ga 1-Y N ( 0 ≦ Y ≦ 0.05, Y : strained composition) can be made of. Hexagonal In Y Ga 1-Y N is suitable for the indium composition for the nonpolar InGaN barrier layer. The indium composition of the hexagonal In Y Ga 1 -YN may be 0 or more. Further, the gallium composition of the hexagonal In Y Ga 1-Y N may be 0.05 or less. This is because a sufficient energy barrier is obtained between the well layer. This gallium composition is represented by a strain composition. The thickness of the barrier layer 29b can be 5 nm or more. This is because carriers can be sufficiently confined in the well layer. The film thickness of the barrier layer 29b can be 20 nm or less. This is because a sufficiently low element resistance can be obtained. The barrier layer 29b is made of, for example, GaN or InGaN.

窒化物系半導体発光素子11は、六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板31を更に含むことができる。基板31は導電性を示すことが好ましい。第1導電型窒化ガリウム系半導体領域13、活性層17および第2導電型窒化ガリウム系半導体領域15は、基板31の主面31a上に搭載されている。六方晶系AlGa1−ZN半導体上に第1導電型窒化ガリウム系半導体領域13、活性層17および第2導電型窒化ガリウム系半導体領域15を形成できるので、これらの結晶性が良好になる。基板31の材料として、例えばGaN、AlGaN、AlN等を用いることができる。好ましくは、基板31の材料はn型のGaNである。基板31の裏面31b上には、電極32a(例えばカソード)が設けられており、コンタクト層27上には別の電極32b(例えばアノード)が設けられている。 Nitride semiconductor light emitting device 11 may further include a substrate 31 composed of hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1). The substrate 31 preferably exhibits conductivity. The first conductivity type gallium nitride based semiconductor region 13, the active layer 17 and the second conductivity type gallium nitride based semiconductor region 15 are mounted on the main surface 31 a of the substrate 31. Hexagonal Al Z Ga 1-Z N semiconductor first conductivity type gallium nitride based on the semiconductor region 13, it is possible to form the active layer 17 and the second conductive type gallium nitride based semiconductor region 15, these crystallinity satisfactorily Become. As the material of the substrate 31, for example, GaN, AlGaN, AlN, or the like can be used. Preferably, the material of the substrate 31 is n-type GaN. An electrode 32 a (for example, a cathode) is provided on the back surface 31 b of the substrate 31, and another electrode 32 b (for example, an anode) is provided on the contact layer 27.

基板31の主面31aは、m面に平行であることができるが、m面からあるオフ角でオフしていることができる。オフ角AngleOFFは、基板31の主面31aの法線とm面の法線との成す角により規定される。オフ角AngleOFFは、例えばc軸方向に−2°≦θ≦+2°の角度範囲であることができ、またa軸方向に−2°≦θ≦+2°の角度範囲であることができる。この基板31によれば、極性の影響を受けることなく良好な品質の半導体結晶が得られる。 The main surface 31a of the substrate 31 can be parallel to the m-plane, but can be off at a certain off-angle from the m-plane. The off angle Angle OFF is defined by an angle formed by the normal line of the main surface 31a of the substrate 31 and the normal line of the m-plane. The off angle Angle OFF can be, for example, an angular range of −2 ° ≦ θ ≦ + 2 ° in the c-axis direction, and an angular range of −2 ° ≦ θ ≦ + 2 ° in the a-axis direction. According to this substrate 31, a semiconductor crystal of good quality can be obtained without being affected by polarity.

窒化物系半導体発光素子11では、基板31の貫通転位はc軸方向に伸びている。貫通転位はc軸方向に走るので、これらの貫通転位は、基板31の主面31aと実質的に平行に伸びる。また、基板31のc面を横切る貫通転位の平均密度は1×10cm−2(例えば、ランダムに分布する貫通転位の密度)以下であることが好ましい。この基板31によれば、c面を横切る貫通転位の密度が低いので、m面主面上への成長の際に引き継がれる貫通転位の密度も小さくなる。このような基板31は、c軸方向に成長された六方晶系AlGa1−ZN半導体(0≦Z≦1)の結晶からm軸に交差するように切り出されており、主面31aは、研磨処理されていると共にm軸に交差する平面に沿って延びる。基板31のための半導体結晶の成長がc軸方向に進行するので、貫通転位もc軸方向に伸びていく。六方晶系AlGa1−ZN半導体結晶から半導体板をm軸に交差するように切り出せば、この基板31は、六方晶系InGa1−XNのm面が所定の軸Axの方向に向いた活性層を作製するために好適である。 In the nitride semiconductor light emitting device 11, threading dislocations in the substrate 31 extend in the c-axis direction. Since threading dislocations run in the c-axis direction, these threading dislocations extend substantially parallel to the main surface 31a of the substrate 31. The average density of threading dislocations across the c-plane of the substrate 31 is preferably 1 × 10 7 cm −2 (for example, the density of threading dislocations randomly distributed) or less. According to this substrate 31, since the density of threading dislocations across the c-plane is low, the density of threading dislocations inherited during growth on the m-plane main surface is also reduced. Such a substrate 31 is cut out so as to intersect the crystal in the c-axis direction in the grown hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1) in the m-axis, the principal surface 31a Extends along a plane that is polished and intersects the m-axis. Since the growth of the semiconductor crystal for the substrate 31 proceeds in the c-axis direction, threading dislocations also extend in the c-axis direction. If cut out of a hexagonal Al Z Ga 1-Z N semiconductor crystal so as to intersect the semiconductor plate in the m-axis, this substrate 31 is, m-plane of the hexagonal In X Ga 1-X N is a predetermined axis Ax Suitable for producing an active layer oriented in the direction.

図2は、窒化物系半導体発光素子11のための窒化ガリウム基板の一例を示す図面である。図2にも、図1と同じく六方晶系のための座標系が示されている。図2には、参照符号「C」によりc面が示されており、参照符号「M」によってm面が示されている。一例の窒化ガリウム基板33の第1の面33aは、比較的大きい貫通転位密度を有する第1の領域(高転位領域)33cが現れた第1のエリアと、比較的小さい貫通転位密度を有する第2の領域(低転位領域)33dが現れた第2のエリアとを有する。第1の領域33cおよび第2の領域33dは交互に配列されており、第1の面33aにおいて、第1のエリアはストライプ形状を有する。貫通転位の大部分はc軸方向に走っている。m面主面に現れる第2の領域33d上に成長される半導体は、低い貫通転位密度になる。なお、既に説明したように、窒化ガリウム基板33の第1の面33aは、m面を基準にしてある角度で傾斜していることもできる。   FIG. 2 is a drawing showing an example of a gallium nitride substrate for the nitride-based semiconductor light-emitting element 11. FIG. 2 also shows a coordinate system for the hexagonal system as in FIG. In FIG. 2, the c-plane is indicated by the reference symbol “C”, and the m-plane is indicated by the reference symbol “M”. The first surface 33a of the example gallium nitride substrate 33 includes a first area where a first region (high dislocation region) 33c having a relatively high threading dislocation density appears and a first area having a relatively small threading dislocation density. 2 region (low dislocation region) 33d appears. The first regions 33c and the second regions 33d are alternately arranged, and the first area has a stripe shape on the first surface 33a. Most of threading dislocations run in the c-axis direction. A semiconductor grown on the second region 33d appearing on the m-plane main surface has a low threading dislocation density. As already described, the first surface 33a of the gallium nitride substrate 33 can be inclined at an angle with respect to the m-plane.

c面において第2の領域33dの貫通転位密度は、例えばは1×10cm−2以下であることが好ましい。1×10cm−2以下である第2の領域33dがm面主面に現れるので、第2の領域33d上に成長される半導体は非常に低い貫通転位密度になる。 The threading dislocation density of the second region 33d in the c-plane is preferably 1 × 10 7 cm −2 or less, for example. Since the second region 33d of 1 × 10 7 cm −2 or less appears on the m-plane main surface, the semiconductor grown on the second region 33d has a very low threading dislocation density.

図3は、窒化物系半導体発光素子11のための窒化ガリウム基板の別の例を示す図面である。図3にも、図1と同じく六方晶系のための座標系が示されている。図3には、参照符号「C」によりc面が示されており、参照符号「M」によってm面が示されている。一例の窒化ガリウム基板35の第1の面35aは、比較的大きい貫通転位密度を有する第1の領域(高転位領域)35cが現れた第1のエリアと、比較的小さい貫通転位密度を有する第2の領域(低転位領域)35dが現れた第2のエリアとを有する。第1の領域35cは第2の領域35d内に配置されている。このため、第1の面35aにおいて、第1のエリアは、第2のエリア内にドット状に配列されている。貫通転位の多くはc軸方向に走っている。m面主面に現れる第2の領域35d上に成長される半導体は、低い貫通転位密度になる。なお、既に説明したように、窒化ガリウム基板35の第1の面35aは、m面を基準にしてある角度で傾斜していることもできる。c面において第2の領域35dの貫通転位密度は、例えば1×10cm−2以下であることが好ましい。第1の面35aに第1の領域(高転位領域)35cが現れないように、m面を切り出すことによって、第1の面35aに第2の領域(低転位領域)35dのみが現れた基板を作製できる。1×10cm−2以下である第2の領域35dがm面主面に現れるので、第2の領域35d上に成長される半導体は非常に低い貫通転位密度になる。 FIG. 3 is a drawing showing another example of a gallium nitride substrate for the nitride-based semiconductor light-emitting element 11. FIG. 3 also shows a coordinate system for the hexagonal system as in FIG. In FIG. 3, the c-plane is indicated by the reference symbol “C”, and the m-plane is indicated by the reference symbol “M”. The first surface 35a of the example gallium nitride substrate 35 includes a first area where a first region (high dislocation region) 35c having a relatively high threading dislocation density appears and a first area having a relatively small threading dislocation density. 2 region (low dislocation region) 35d appears. The first area 35c is arranged in the second area 35d. For this reason, on the first surface 35a, the first area is arranged in a dot shape within the second area. Many threading dislocations run in the c-axis direction. A semiconductor grown on the second region 35d appearing on the m-plane principal surface has a low threading dislocation density. As already described, the first surface 35a of the gallium nitride substrate 35 can be inclined at an angle with respect to the m-plane. The threading dislocation density of the second region 35d on the c-plane is preferably 1 × 10 7 cm −2 or less, for example. A substrate in which only the second region (low dislocation region) 35d appears on the first surface 35a by cutting the m-plane so that the first region (high dislocation region) 35c does not appear on the first surface 35a. Can be produced. Since the second region 35d of 1 × 10 7 cm −2 or less appears on the m-plane main surface, the semiconductor grown on the second region 35d has a very low threading dislocation density.

(実施例)
以下の通り、波長440nm以上550nm以下の範囲の波長の光を発生するように設けられた活性層を含む発光素子を作製できる。同本実施例では、有機金属気相成長法により青色発光素子を作製した。有機金属気相成長法の原料にはトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウム、アンモニア、モノシラン、シクロペンタジエニルマグネシウムを用いた。図4は、発光素子を作製する主要な工程のフロー100を示す図面である。
(Example)
As described below, a light-emitting element including an active layer provided to generate light having a wavelength in a range of 440 nm to 550 nm can be manufactured. In this example, a blue light emitting device was fabricated by metal organic vapor phase epitaxy. Trimethylgallium, trimethylaluminum, trimethylindium, ammonia, monosilane, and cyclopentadienylmagnesium were used as raw materials for the metal organic chemical vapor deposition method. FIG. 4 is a drawing showing a flow 100 of main steps for manufacturing a light-emitting element.

図4に示されるように、工程S101において、六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板を準備する。この実施例では、c面における貫通転位密度1×10cm−2未満の低欠陥領域とストライプ状に分布する欠陥集中領域を有しており(0001)方向に成長したn型GaN結晶をスライスしてGaN自立体を形成した後に、このGaN自立体を研磨してm面GaN(10−10)基板を作製した。 As shown in FIG. 4, in step S101, preparing a substrate composed of hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1). In this example, an n-type GaN crystal having a low defect region with a threading dislocation density of less than 1 × 10 6 cm −2 on the c-plane and a defect concentration region distributed in a stripe shape is grown in the (0001) direction. Then, after forming the GaN self-solid, the GaN self-solid was polished to prepare an m-plane GaN (10-10) substrate.

工程S103において、第1導電型窒化ガリウム系半導体膜の形成に先立って、アンモニアおよび水素を含むガスを供給しながらm面GaN基板を熱処理する。このために、n型m面GaN基板をサセプタ上に配置し、炉内圧力を30kPaに制御すると共に炉内にアンモニアと水素を供給して、摂氏1050度の基板温度で10分間のクリーニングを行った。この熱処理により、平坦な基板表面が得られやすく、さらに良好な発光特性を持つ半導体発光素子が得られる。   In step S103, prior to the formation of the first conductivity type gallium nitride based semiconductor film, the m-plane GaN substrate is heat-treated while supplying a gas containing ammonia and hydrogen. For this purpose, an n-type m-plane GaN substrate is placed on the susceptor, the furnace pressure is controlled to 30 kPa, ammonia and hydrogen are supplied into the furnace, and cleaning is performed for 10 minutes at a substrate temperature of 1050 degrees Celsius. It was. By this heat treatment, a flat substrate surface can be easily obtained, and a semiconductor light emitting device having better light emission characteristics can be obtained.

工程S105において、その後、第1導電型窒化ガリウム系半導体膜を基板の主面上に形成する。本実施例では、摂氏1100度の基板温度に上昇させた後、n型Al0.12Ga0.88N層を成長した。この成長のために、キャリアガスを主に水素としてトリメチルガリウム(24μmol/分)、トリメチルアルミニウム(4.3μmol/分)、アンモニア(0.22mol/分)、モノシランを供給した。AlGaN膜厚は例えば50nmである。 In step S105, a first conductivity type gallium nitride based semiconductor film is then formed on the main surface of the substrate. In this example, after raising the substrate temperature to 1100 degrees Celsius, an n-type Al 0.12 Ga 0.88 N layer was grown. For this growth, trimethylgallium (24 μmol / min), trimethylaluminum (4.3 μmol / min), ammonia (0.22 mol / min), and monosilane were supplied mainly using hydrogen as a carrier gas. The AlGaN film thickness is 50 nm, for example.

次に、成長を一旦中断して、摂氏1150度に基板温度を上昇させた後、n型GaN層を成長した。この成長のために、キャリアガスを主に水素としてトリメチルガリウム(244μmol/分)、アンモニア(0.33mol/分)、モノシランを供給した。GaN膜の膜厚は例えば2μmである。   Next, the growth was interrupted once, the substrate temperature was raised to 1150 degrees Celsius, and then an n-type GaN layer was grown. For this growth, trimethylgallium (244 μmol / min), ammonia (0.33 mol / min), and monosilane were supplied mainly using hydrogen as a carrier gas. The film thickness of the GaN film is 2 μm, for example.

次に、工程S107において、第1導電型窒化ガリウム系半導体膜上に、波長440nm以上550nm以下の範囲の波長の光を発生するような活性層を形成する。このために、成長を一旦中断して、摂氏880度に基板温度を低下させた後、In0.01Ga0.99N障壁層を成長した。この障壁層の厚さは例えば15nmである。この成長のために、キャリアガスを主に窒素としてトリメチルガリウム(24μmol/分)、トリメチルインジウム(1.6μmol/分)、アンモニア(0.27mol/分)を供給した。InGaN障壁層を成長した後、摂氏780度に基板温度を低下させた後に、In0.27Ga0.73N井戸層を成長した。この井戸層の膜厚は例えば4nmである。この成長のために、キャリアガスを主に窒素としてトリメチルガリウム(24μmol/分)、トリメチルインジウム(24μmol/分)、アンモニア(0.36mol/分)を供給した。アンドープ障壁層およびアンドープ井戸層の成長を繰り返すことによって、例えば6周期の量子井戸層を形成した。 Next, in step S107, an active layer that generates light having a wavelength in the range of 440 nm to 550 nm is formed on the first conductivity type gallium nitride semiconductor film. For this purpose, the growth was temporarily interrupted, the substrate temperature was lowered to 880 degrees Celsius, and then an In 0.01 Ga 0.99 N barrier layer was grown. The thickness of this barrier layer is 15 nm, for example. For this growth, trimethylgallium (24 μmol / min), trimethylindium (1.6 μmol / min), and ammonia (0.27 mol / min) were supplied mainly using nitrogen as a carrier gas. After growing the InGaN barrier layer, the substrate temperature was lowered to 780 degrees Celsius, and then an In 0.27 Ga 0.73 N well layer was grown. The thickness of this well layer is 4 nm, for example. For this growth, trimethylgallium (24 μmol / min), trimethylindium (24 μmol / min), ammonia (0.36 mol / min) were supplied mainly using nitrogen as a carrier gas. By repeating the growth of the undoped barrier layer and the undoped well layer, for example, a six-period quantum well layer was formed.

次に、工程S109において、活性層上に第2導電型窒化ガリウム系半導体膜を形成する。このために、再度成長を中断し、基板温度を摂氏1050度に上昇させた後に、p型Al0.15Ga0.85N電子ブロック層を成長した。この成長のために、キャリアガスを主に水素としてトリメチルガリウム(24μmol/分)、トリメチルアルミニウム(2.3μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを供給した。電子ブロック層の膜厚は例えば20nmである。 Next, in step S109, a second conductivity type gallium nitride based semiconductor film is formed on the active layer. For this purpose, the growth was interrupted again, the substrate temperature was raised to 1050 degrees Celsius, and then a p-type Al 0.15 Ga 0.85 N electron blocking layer was grown. For this growth, trimethylgallium (24 μmol / min), trimethylaluminum (2.3 μmol / min), ammonia (0.22 mol / min), and cyclopentadienylmagnesium were supplied mainly using hydrogen as a carrier gas. The thickness of the electron block layer is, for example, 20 nm.

p型AlGaN電子ブロック層を成長した後に、p型GaN層を成長した。この成長のために、キャリアガスを主に水素としてトリメチルガリウム(99μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを供給した。このGaN層の厚さは、例えば25nmである。   After growing the p-type AlGaN electron block layer, a p-type GaN layer was grown. For this growth, trimethylgallium (99 μmol / min), ammonia (0.22 mol / min), and cyclopentadienylmagnesium were supplied mainly using hydrogen as a carrier gas. The thickness of this GaN layer is, for example, 25 nm.

p型GaN層を成長した後、p型GaNコンタクト層を成長した。p型GaNコンタクト層の厚さは例えば25nmである。この成長のために、キャリアガスを主に水素としてトリメチルガリウム(67μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを供給した。これらの工程によって、この発光ダイオード(LED)のためのエピタキシャル基板が作製された。エピタキシャル基板の各窒化ガリウム系半導体膜のm面は、GaN基板の主面に沿って延びる平面と実質的に平行である。   After growing the p-type GaN layer, a p-type GaN contact layer was grown. The thickness of the p-type GaN contact layer is, for example, 25 nm. For this growth, trimethylgallium (67 μmol / min), ammonia (0.22 mol / min), and cyclopentadienylmagnesium were supplied mainly using hydrogen as a carrier gas. Through these steps, an epitaxial substrate for the light emitting diode (LED) was produced. The m-plane of each gallium nitride based semiconductor film of the epitaxial substrate is substantially parallel to a plane extending along the main surface of the GaN substrate.

その後、GaN基板を炉内から取り出し、(1−100)面のX線回折測定(ω−2θ測定)を行った。図5(a)は、X線角度分布の測定結果を示す図面である。この測定によれば、InGaN井戸層のIn組成は約27%であった。このエピタキシャル基板のp型GaN層上に適切な金属材料で400μm角(電極面積として、例えば1.6×10−3cm)の半透明p電極を形成すると共に、GaN基板の裏面にn電極を形成した。これによって、LED素子が作製された。 Thereafter, the GaN substrate was taken out from the furnace, and X-ray diffraction measurement (ω-2θ measurement) of the (1-100) plane was performed. FIG. 5A is a drawing showing the measurement result of the X-ray angle distribution. According to this measurement, the In composition of the InGaN well layer was about 27%. A 400 μm square (electrode area, for example, 1.6 × 10 −3 cm 2 ) translucent p-electrode is formed on the p-type GaN layer of the epitaxial substrate with an appropriate metal material, and an n-electrode is formed on the back surface of the GaN substrate. Formed. As a result, an LED element was produced.

図6は、このベアチップのLEDに室温でパルス電流印加を行って得られた発光スペクトルを示す。図7は、電流−光出力特性および電流−外部量子効率特性を示す図面である。ピーク発光波長は462nmであり、純青色である。電流値20mA(電流密度12.5A/cm)において、光出力が1.4mWであり、外部量子効率が2.6%であった。電流値200mA(電流密度125A/cm)において、光出力が13.2mWであり、外部量子効率が2.4%であった。このチップを、エポキシ樹脂でモールドしてLEDランプを作製した。モールド封止後の測定では、電流値20mA(電流密度12.5A/cm)において、ピーク波長が462nmであり、光出力が4.2mWであり外部量子効率が7.8%であった。 FIG. 6 shows an emission spectrum obtained by applying a pulse current to the bare-chip LED at room temperature. FIG. 7 is a diagram showing current-light output characteristics and current-external quantum efficiency characteristics. The peak emission wavelength is 462 nm, which is pure blue. At a current value of 20 mA (current density: 12.5 A / cm 2 ), the light output was 1.4 mW and the external quantum efficiency was 2.6%. At a current value of 200 mA (current density 125 A / cm 2 ), the light output was 13.2 mW and the external quantum efficiency was 2.4%. This chip was molded with an epoxy resin to produce an LED lamp. In the measurement after mold sealing, at a current value of 20 mA (current density 12.5 A / cm 2 ), the peak wavelength was 462 nm, the light output was 4.2 mW, and the external quantum efficiency was 7.8%.

このLEDにおいて、第1導電型窒化ガリウム系半導体膜、活性層および第2導電型窒化ガリウム系半導体膜は、GaN基板の主面上に搭載されており、また所定の軸の方向に順に配置されている。六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなり第1のガリウム組成の井戸用の半導体層を第1の温度Tで成長すると共に、六方晶系InGa1−YN(0≦Y≦0.05、Y<X、Yは歪み組成)からなり第2のガリウム組成の障壁用の半導体層を第2の温度Tで成長した。第1のガリウム組成は第2のガリウム組成よりも低く、第1の温度Tは第2の温度Tよりも低く、第1の温度Tと第2の温度Tとの差は95度以上である。この方法によれば、六方晶系InGa1−XNのm面が上記所定の軸の方向に向いている活性層の作製において、第1のガリウム組成は第2のガリウム組成よりも低い2種類の窒化ガリウム系半導体の成長温度の差が95度以上であるので、第1の半導体層のインジウム組成を高めて井戸層として適用可能である。 In this LED, the first conductivity type gallium nitride semiconductor film, the active layer, and the second conductivity type gallium nitride semiconductor film are mounted on the main surface of the GaN substrate, and are sequentially arranged in the direction of a predetermined axis. ing. Hexagonal In X Ga 1-X N ( 0.16 ≦ X ≦ 0.4, X : strained composition) as well as growth of the semiconductor layer for the well of the first gallium fraction consists in a first temperature T W , hexagonal in Y Ga 1-Y N ( 0 ≦ Y ≦ 0.05, Y <X, Y : strained composition) a semiconductor layer for barrier second gallium composition consists at a second temperature T B grown. The first gallium composition is lower than the second gallium composition, the first temperature T W is the difference between the second lower than the temperature T B, the first temperature T W and the second temperature T B 95 More than degrees. According to this method, the first gallium composition is lower than the second gallium composition in the production of an active layer in which the m-plane of hexagonal In X Ga 1-X N faces the predetermined axis. Since the difference in growth temperature between the two types of gallium nitride based semiconductors is 95 degrees or more, the indium composition of the first semiconductor layer can be increased and applied as a well layer.

図8は、波長440nm以上550nm以下の範囲の波長の光を発生するように設けられた活性層のためのインジウム組成、井戸層の厚さの関係を示す図面である。領域「A1」内の活性層は、波長440nm以上550nm以下の範囲の波長の光を発生できる。領域「A2」では、インジウム組成が低すぎて、活性層は、440nm以上の波長の光を発生できない。領域「A3」では、井戸層が薄すぎて、活性層は、440nm以上の波長の光を発生できない。領域「A4」では、インジウム組成および井戸層厚の関係から、活性層は、440nm以上の波長の光を発生できない。領域「A5」では、インジウム組成が高すぎて、良質のInGaN結晶が得られない。図8において
ラインL1:X=0.4
ラインL2:X=0.16
ラインL3:D=3
ラインL4:X=−0.16×D+0.88
ラインL5:D=20
であり、ポイントP〜Pは、それぞれ、発光波長395nm、420nm、460nm、474nm、477nmの測定点を示す。ラインL1〜L5によって囲まれる領域(境界を含む)が、波長440nm以上550nm以下の範囲の波長の光を発生するように設けられた活性層のためのインジウム組成および井戸層の厚さの関係に関して好適である。
FIG. 8 is a drawing showing the relationship between the indium composition and the thickness of the well layer for the active layer provided to generate light having a wavelength in the range of 440 nm to 550 nm. The active layer in the region “A1” can generate light having a wavelength in the range of 440 nm to 550 nm. In the region “A2”, the indium composition is too low and the active layer cannot generate light having a wavelength of 440 nm or more. In the region “A3”, the well layer is too thin and the active layer cannot generate light having a wavelength of 440 nm or more. In the region “A4”, the active layer cannot generate light having a wavelength of 440 nm or more because of the relationship between the indium composition and the well layer thickness. In the region “A5”, the indium composition is too high to obtain a high-quality InGaN crystal. In FIG. 8, line L1: X = 0.4
Line L2: X = 0.16
Line L3: D = 3
Line L4: X = −0.16 × D + 0.88
Line L5: D = 20
And points P 1 to P 5 indicate measurement points at emission wavelengths of 395 nm, 420 nm, 460 nm, 474 nm, and 477 nm, respectively. Regarding the relationship between the indium composition and the thickness of the well layer for the active layer provided so that the region (including the boundary) surrounded by the lines L1 to L5 generates light having a wavelength in the range of 440 nm to 550 nm. Is preferred.

図8から理解されるように、インジウム増加は容易なことではない。InGaN井戸層の成長を摂氏750度の基板温度で行って、他の条件は先の実施例1と同様にして、LED用のエピタキシャル基板を作製した。このエピタキシャル基板の外観は、黒色化しており、量子井戸発光層からのフォトルミネッセンススペクトルは観測されなかった。図5(b)は、このエピタキシャル基板の(10−10)面のX線回折測定(ω−2θ測定)の結果を示す図面である。量子井戸発光層のサテライトピークが全く観測されていない。故に、量子井戸構造が形成されていない。インジウム組成は40%を越えていると推測される。このように、InGaNの成長においてインジウム組成を増加させると、結晶品質は極端に悪くなる。   As can be seen from FIG. 8, increasing indium is not easy. An InGaN well layer was grown at a substrate temperature of 750 degrees Celsius, and the other conditions were the same as in Example 1 to produce an LED epitaxial substrate. The appearance of this epitaxial substrate was blackened, and no photoluminescence spectrum from the quantum well light emitting layer was observed. FIG. 5B is a drawing showing the results of X-ray diffraction measurement (ω-2θ measurement) of the (10-10) plane of this epitaxial substrate. No satellite peak is observed in the quantum well light emitting layer. Therefore, the quantum well structure is not formed. The indium composition is estimated to exceed 40%. Thus, when the indium composition is increased in the growth of InGaN, the crystal quality is extremely deteriorated.

また、InGaN井戸層の成長をトリメチルインジウムの供給量を58μmol/分に設定して、他の条件は先の実施例1と同様にして、LED用のエピタキシャル基板を作製した。このエピタキシャル基板の外観は、黒色化しており、量子井戸発光層からのフォトルミネッセンススペクトルは観測されなかった。(10−10)面のX線回折測定(ω−2θ測定)の結果において、量子井戸発光層のサテライトピークが全く観測されなかった。故に、量子井戸構造が形成されていない。インジウム組成は40%を越えていると推測される。これらのことからも、InGaN組成を増加させると、結晶品質は極端に悪くなることが理解される。   Further, the growth of the InGaN well layer was set to 58 μmol / min for the supply amount of trimethylindium, and the other conditions were the same as in Example 1 to produce an LED epitaxial substrate. The appearance of this epitaxial substrate was blackened, and no photoluminescence spectrum from the quantum well light emitting layer was observed. In the result of X-ray diffraction measurement (ω-2θ measurement) on the (10-10) plane, no satellite peak of the quantum well light emitting layer was observed. Therefore, the quantum well structure is not formed. The indium composition is estimated to exceed 40%. From these facts, it is understood that the crystal quality becomes extremely worse when the InGaN composition is increased.

したがって、m面を用いた発光素子を作製するためには、井戸層の厚さ、井戸層のインジウム組成を制御すると共に、井戸層と障壁層との成長温度差を大きくすることが重要である。   Therefore, in order to fabricate a light emitting device using the m-plane, it is important to control the thickness of the well layer and the indium composition of the well layer, and to increase the growth temperature difference between the well layer and the barrier layer. .

更なる別の実施例を説明する。実施例1と同様の成長条件を用いて、InGaN井戸層の厚みを3nm、4nm、5nmと変えて、LED構造のエピタキシャル基板を作製した。図9は、井戸層の厚みとPLスペクトルW、W、Wとの関係を示している。井戸層が厚くなるにつれて、PL波長は長くなる。図9を参照すると、井戸幅4nmで460nmのPL波長であり、井戸幅5nmで475nmのPL波長である。 Yet another embodiment will be described. Using the same growth conditions as in Example 1, the thickness of the InGaN well layer was changed to 3 nm, 4 nm, and 5 nm to produce an epitaxial substrate with an LED structure. FIG. 9 shows the relationship between the thickness of the well layer and the PL spectra W 3 , W 4 , and W 5 . As the well layer becomes thicker, the PL wavelength becomes longer. Referring to FIG. 9, the PL wavelength is 460 nm when the well width is 4 nm, and the PL wavelength is 475 nm when the well width is 5 nm.

エピタキシャル基板を用いて実施例1と同様にLEDを作製すると、実施例1同様に高い発光出力と外部量子効率が得られた。例えば、ピーク発光波長は470nmであり、純青色である。電流値20mA(電流密度12.5A/cm2)において、光出力が1.6mWであり、外部量子効率が3.0%であった。電流値200mA(電流密度125A/cm)において、光出力が13.7mWであり、外部量子効率が2.6%であった。このチップを、エポキシ樹脂でモールドしてLEDランプを作製した。モールド封止後の測定では、電流値20mA(電流密度12.5A/cm2)において、ピーク波長470nmがであり、光出力が4.8mWであり外部量子効率が9.0%であった。 When an LED was fabricated using an epitaxial substrate in the same manner as in Example 1, high light output and external quantum efficiency were obtained as in Example 1. For example, the peak emission wavelength is 470 nm, which is pure blue. At a current value of 20 mA (current density: 12.5 A / cm 2), the light output was 1.6 mW and the external quantum efficiency was 3.0%. At a current value of 200 mA (current density 125 A / cm 2 ), the light output was 13.7 mW and the external quantum efficiency was 2.6%. This chip was molded with an epoxy resin to produce an LED lamp. In the measurement after mold sealing, at a current value of 20 mA (current density 12.5 A / cm 2), the peak wavelength was 470 nm, the light output was 4.8 mW, and the external quantum efficiency was 9.0%.

GaN基板と異なる基板を用いてLEDを作製した。
実施例1と同様な条件を用いて、n型m面GaN(10−10)基板に代わりに4H−SiC(10−10)基板やLiAlO(100)基板上にLED用エピタキシャル構造を成長してLEDを作製した。積層欠陥が多く発生し、非常に弱い出力しか得られなかった。
An LED was fabricated using a substrate different from the GaN substrate.
Using the same conditions as in Example 1, an epitaxial structure for LED was grown on a 4H—SiC (10-10) substrate or a LiAlO 2 (100) substrate instead of an n-type m-plane GaN (10-10) substrate. LED was produced. Many stacking faults occurred, and only a very weak output was obtained.

また、c面GaN基板を用いてLEDを作製した。以下の通り有機金属気相成長法により青色発光素子を作製した。原料にはトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウム、アンモニア、モノシラン、シクロペンタジエニルマグネシウムを用いた。c面GaN基板は貫通転位密度1×10cm−2未満の低欠陥領域と線状に分布する欠陥集中領域を有する(0001)方向に成長したn型GaNをスライス、研磨することによって作製した。 Moreover, LED was produced using the c-plane GaN substrate. A blue light emitting device was fabricated by metal organic vapor phase epitaxy as follows. Trimethylgallium, trimethylaluminum, trimethylindium, ammonia, monosilane, and cyclopentadienylmagnesium were used as raw materials. The c-plane GaN substrate was fabricated by slicing and polishing n-type GaN grown in the (0001) direction having a low defect region with a threading dislocation density of less than 1 × 10 6 cm −2 and a defect concentration region distributed linearly. .

n型c面GaN(0001)基板をサセプタ上に配置し、炉内圧力を30kPaにコントロールしながら炉内にアンモニアと水素を導入し、摂氏1050度の基板温度で10分間クリーニングを行った。その後、基板温度を1100℃に上昇させた後、キャリアガスを主に水素としてトリメチルガリウム(24μmol/分)、トリメチルアルミニウム(4.3μmol/分)、アンモニア(0.22mol/分)、モノシランを導入し、膜厚50nmのn型AlGaN層(Al組成12%)を成長した。次に、成長を一旦中断し、基板温度を摂氏1150度に上昇させた後、キャリアガスを主に水素としてトリメチルガリウム(244μmol/分)、アンモニア(0.33mol/分)、モノシランを導入し、膜厚2μmのn型GaN層を成長した。   An n-type c-plane GaN (0001) substrate was placed on the susceptor, ammonia and hydrogen were introduced into the furnace while controlling the furnace pressure to 30 kPa, and cleaning was performed at a substrate temperature of 1050 degrees Celsius for 10 minutes. After raising the substrate temperature to 1100 ° C., trimethylgallium (24 μmol / min), trimethylaluminum (4.3 μmol / min), ammonia (0.22 mol / min), and monosilane were introduced mainly using hydrogen as a carrier gas. Then, an n-type AlGaN layer (Al composition 12%) having a thickness of 50 nm was grown. Next, after the growth is temporarily interrupted and the substrate temperature is raised to 1150 degrees Celsius, trimethylgallium (244 μmol / min), ammonia (0.33 mol / min), monosilane are introduced mainly using hydrogen as a carrier gas, An n-type GaN layer having a thickness of 2 μm was grown.

次に、成長を一旦中断し、摂氏880度に基板温度を低下させた後、キャリアガスを主に窒素としてトリメチルガリウム(24μmol/分)、トリメチルインジウム(1.6μmol/分)、アンモニア(0.27mol/分)を導入し、厚さ15nmのInGaN障壁層(In組成1%)を成長した後、基板温度を摂氏800度に低下させ、キャリアガスを主に窒素としてトリメチルガリウム(16μmol/分)、トリメチルインジウム(13μmol/分)、アンモニア(0.36mol/分)を導入し膜厚3nmのInGaN井戸層を成長した。この工程を繰り返すことによって6周期の量子井戸発光層を形成した。   Next, the growth was temporarily interrupted, and the substrate temperature was lowered to 880 degrees Celsius. Then, trimethylgallium (24 μmol / min), trimethylindium (1.6 μmol / min), ammonia (0. 27 mol / min) and an InGaN barrier layer (In composition 1%) having a thickness of 15 nm is grown, the substrate temperature is lowered to 800 degrees Celsius, and the carrier gas is mainly nitrogen and trimethylgallium (16 μmol / min) Then, trimethylindium (13 μmol / min) and ammonia (0.36 mol / min) were introduced to grow an InGaN well layer having a thickness of 3 nm. By repeating this process, a 6-cycle quantum well light-emitting layer was formed.

次に、再度成長を中断し、基板温度を摂氏1050度に上昇させた後、キャリアガスを主に水素としてトリメチルガリウム(17μmol/分)、トリメチルアルミニウム(2.8μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを導入し、膜厚20nmのp型AlGaN電子ブロック層(Al組成18%)を成長した。この後、キャリアガスを主に水素としてトリメチルガリウム(99μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを導入し、厚さ25nmのp型GaN層を成長した。次に、キャリアガスを主に水素としてトリメチルガリウム(67μmol/分)、アンモニア(0.22mol/分)、シクロペンタジエニルマグネシウムを導入し、厚さ25nmのp型GaNコンタクト層を成長した。   Next, after the growth was interrupted again and the substrate temperature was raised to 1050 degrees Celsius, trimethylgallium (17 μmol / min), trimethylaluminum (2.8 μmol / min), ammonia (0. 22 mol / min), cyclopentadienyl magnesium was introduced, and a 20 nm-thick p-type AlGaN electron blocking layer (Al composition 18%) was grown. Thereafter, trimethylgallium (99 μmol / min), ammonia (0.22 mol / min), and cyclopentadienylmagnesium were introduced mainly using hydrogen as a carrier gas, and a p-type GaN layer having a thickness of 25 nm was grown. Next, trimethylgallium (67 μmol / min), ammonia (0.22 mol / min), and cyclopentadienylmagnesium were introduced mainly using hydrogen as a carrier gas, and a p-type GaN contact layer having a thickness of 25 nm was grown.

その後、GaN基板を炉内から取り出し、X線回折測定(ω−2θ測定)を行ったところ、InGaN井戸層のIn組成は約10%であった。このLEDエピ構造に、適当な金属材料でp型GaN層上に400μm角(電極面積1.6×10−3cm)の半透明p電極、GaN基板の裏面にn電極を形成し、LED素子を作製した。このベアチップのLEDに室温でパルス電流印加を行ったところ、波長460nmの純青色で、高い発光効率が得られたが、図10に示す通り、電流増加に伴う発光波長のブルーシフトが観察された。一方、実施例1のLEDでは電流増加に伴う発光波長のブルーシフトが観察されなかった。 Thereafter, when the GaN substrate was taken out of the furnace and subjected to X-ray diffraction measurement (ω-2θ measurement), the In composition of the InGaN well layer was about 10%. In this LED epi structure, a 400 μm square (electrode area 1.6 × 10 −3 cm 2 ) translucent p electrode is formed on a p-type GaN layer with an appropriate metal material, and an n electrode is formed on the back surface of the GaN substrate. An element was produced. When a pulse current was applied to the bare chip LED at room temperature, a high emission efficiency was obtained with pure blue having a wavelength of 460 nm, but as shown in FIG. 10, a blue shift of the emission wavelength accompanying an increase in current was observed. . On the other hand, in the LED of Example 1, the blue shift of the emission wavelength accompanying the increase in current was not observed.

好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。   While the principles of the invention have been illustrated and described in the preferred embodiments, it will be appreciated by those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. The present invention is not limited to the specific configuration disclosed in the present embodiment. We therefore claim all modifications and changes that come within the scope and spirit of the following claims.

図1は、本実施の形態に係る窒化物系半導体発光素子を概略的に示す図面である。FIG. 1 is a drawing schematically showing a nitride-based semiconductor light-emitting device according to this embodiment. 図2は、窒化物系半導体発光素子のための窒化ガリウム基板の一例を示す図面である。FIG. 2 is a drawing showing an example of a gallium nitride substrate for a nitride-based semiconductor light emitting device. 図3は、窒化物系半導体発光素子のための窒化ガリウム基板の別の例を示す図面である。FIG. 3 is a drawing showing another example of a gallium nitride substrate for a nitride semiconductor light emitting device. 図4は、発光素子を作製する主要な工程を示す図面である。FIG. 4 is a drawing showing main steps for manufacturing a light-emitting element. 図5は(10−10)面のX線回折測定(ω−2θ測定)の結果を示す図面である。FIG. 5 is a drawing showing the results of X-ray diffraction measurement (ω-2θ measurement) on the (10-10) plane. 図6は、ベアチップのLEDに室温でパルス電流印加を行って得られた発光スペクトルを示すグラフである。FIG. 6 is a graph showing an emission spectrum obtained by applying a pulse current to a bare-chip LED at room temperature. 図7は、電流−光出力特性および電流−外部量子効率特性を示す図面である。FIG. 7 is a diagram showing current-light output characteristics and current-external quantum efficiency characteristics. 図8は、波長440nm以上550nm以下の範囲の波長の光を発生するように設けられた活性層のためのインジウム組成、井戸層の厚さの関係を示す図面である。FIG. 8 is a drawing showing the relationship between the indium composition and the thickness of the well layer for the active layer provided to generate light having a wavelength in the range of 440 nm to 550 nm. 図9は、井戸層の厚みとPL波長との関係を示す図面である。FIG. 9 is a drawing showing the relationship between the thickness of the well layer and the PL wavelength. 図10は、c面基板上に作製されたLEDにおける電流増加に伴う発光波長のブルーシフトを示す図面である。FIG. 10 is a drawing showing a blue shift of the emission wavelength accompanying an increase in current in an LED fabricated on a c-plane substrate.

符号の説明Explanation of symbols

Ax…所定の軸、11…窒化物系半導体発光素子、13…第1導電型窒化ガリウム系半導体領域、15…第2導電型窒化ガリウム系半導体領域、17…活性層、19…量子井戸構造、21…クラッド層、23…半導体層、25…電子ブロック層、27…コンタクト層、29a…井戸層、29b…障壁層、31…基板、32a、32b…電極、33、35…基板、33c、35c…第1の領域(高転位領域)、33d、35d… 第2の領域(低転位領域) Ax ... predetermined axis, 11 ... nitride semiconductor light emitting device, 13 ... first conductivity type gallium nitride semiconductor region, 15 ... second conductivity type gallium nitride semiconductor region, 17 ... active layer, 19 ... quantum well structure, DESCRIPTION OF SYMBOLS 21 ... Cladding layer, 23 ... Semiconductor layer, 25 ... Electron block layer, 27 ... Contact layer, 29a ... Well layer, 29b ... Barrier layer, 31 ... Substrate, 32a, 32b ... Electrode, 33, 35 ... Substrate, 33c, 35c ... First region (high dislocation region), 33d, 35d ... Second region (low dislocation region)

Claims (13)

第1導電型窒化ガリウム系半導体領域と、
第2導電型窒化ガリウム系半導体領域と、
前記第1導電型窒化ガリウム系半導体領域と前記第2導電型窒化ガリウム系半導体領域との間に設けられており、波長440nm以上550nm以下の範囲の波長の光を発生するように設けられた活性層と
を備え、
前記活性層は、六方晶系InGa1−XN(0.16≦X≦0.4、インジウム組成Xは歪み組成)からなる井戸層を含み、
前記井戸層の厚さDは3nmより大きく、
前記井戸層の厚さDは20nm以下であり、
前記インジウム組成Xの厚さDは、X≧−0.16×D+0.88の関係にあり、
前記第1導電型窒化ガリウム系半導体領域、前記活性層および前記第2導電型窒化ガリウム系半導体領域は、所定の軸の方向に配列されており、
前記六方晶系InGa1−XNのm面は、前記所定の軸の方向に向いている、ことを特徴とする窒化物系半導体発光素子。
A first conductivity type gallium nitride based semiconductor region;
A second conductivity type gallium nitride based semiconductor region;
An activity provided between the first conductive type gallium nitride based semiconductor region and the second conductive type gallium nitride based semiconductor region and configured to generate light having a wavelength in the range of 440 nm to 550 nm. With layers,
The active layer includes a well layer made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, indium composition X is a strained composition),
The thickness D of the well layer is greater than 3 nm;
The well layer has a thickness D of 20 nm or less,
The thickness D of the indium composition X has a relationship of X ≧ −0.16 × D + 0.88,
The first conductivity type gallium nitride based semiconductor region, the active layer and the second conductivity type gallium nitride based semiconductor region are arranged in a predetermined axis direction,
A nitride-based semiconductor light-emitting element, wherein an m-plane of the hexagonal In X Ga 1-X N faces the direction of the predetermined axis.
前記活性層は、六方晶系InGa1−YN(0≦Y≦0.05、Yは歪み組成)からなる障壁層を含む、ことを特徴とする請求項1に記載された窒化物系半導体発光素子。 The active layer, hexagonal In Y Ga 1-Y N ( 0 ≦ Y ≦ 0.05, Y : strained composition) nitride according to claim 1 including a barrier layer made of, it is characterized by -Based semiconductor light emitting device. 六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板を更に含み、
前記第1導電型窒化ガリウム系半導体領域、前記活性層および前記第2導電型窒化ガリウム系半導体領域は、前記基板の主面上に搭載されている、ことを特徴とする請求項1または請求項2に記載された窒化物系半導体発光素子。
Further comprising a substrate made of a hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1),
The first conductivity type gallium nitride based semiconductor region, the active layer, and the second conductivity type gallium nitride based semiconductor region are mounted on a main surface of the substrate. 2. The nitride-based semiconductor light-emitting device described in 2.
前記基板の前記主面は、m面からあるオフ角(−2°≦θ≦+2°)でオフしている、ことを特徴とする請求項3に記載された窒化物系半導体発光素子。   4. The nitride-based semiconductor light-emitting element according to claim 3, wherein the main surface of the substrate is turned off at an off angle (−2 ° ≦ θ ≦ + 2 °) from the m-plane. 前記基板の貫通転位は、c軸方向に伸びており、
前記基板のc面を横切る貫通転位の密度は1×10cm−2以下である、ことを特徴とする請求項3または請求項4に記載された窒化物系半導体発光素子。
The threading dislocation of the substrate extends in the c-axis direction,
5. The nitride-based semiconductor light-emitting element according to claim 3, wherein the density of threading dislocations across the c-plane of the substrate is 1 × 10 7 cm −2 or less.
前記基板は、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より大きい第1の領域と、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より小さい第2の領域とを含み、
前記基板の前記主面には前記第1および第2の領域が現れている、ことを特徴とする請求項3または請求項4に記載された窒化物系半導体発光素子。
The substrate includes a first region in which threading dislocation density extending in the c-axis direction is higher than the first threading dislocation density, and a second region in which threading dislocation density extending in the c-axis direction is smaller than the first threading dislocation density. Including
The nitride-based semiconductor light-emitting element according to claim 3 or 4, wherein the first and second regions appear on the main surface of the substrate.
前記第2の領域の前記貫通転位の密度は1×10cm−2未満である、ことを特徴とする請求項6に記載された窒化物系半導体発光素子。 The nitride-based semiconductor light-emitting element according to claim 6, wherein a density of the threading dislocations in the second region is less than 1 × 10 7 cm −2 . 窒化物系半導体発光素子を作製する方法であって、
六方晶系AlGa1−ZN半導体(0≦Z≦1)からなる基板を準備する工程と、
第1導電型窒化ガリウム系半導体膜を前記基板の主面上に形成する工程と、
前記第1導電型窒化ガリウム系半導体膜上に、波長440nm以上550nm以下の範囲の波長の光を発生するような活性層を形成する工程と、
前記活性層上に第2導電型窒化ガリウム系半導体膜を形成する工程と
を備え、
前記第1導電型窒化ガリウム系半導体膜、前記活性層および前記第2導電型窒化ガリウム系半導体膜は、前記基板の主面上において所定の軸の方向に配列されており、
前記活性層を形成する前記工程では、六方晶系InGa1−XN(0.16≦X≦0.4、Xは歪み組成)からなり第1のガリウム組成の第1の半導体層を第1の温度で成長し、
前記活性層を形成する前記工程では、六方晶系InGa1−YN(0≦Y≦0.05、Y<X、Yは歪み組成)からなり第2のガリウム組成の第2の半導体層を第2の温度で成長し、
前記第1のガリウム組成は前記第2のガリウム組成よりも低く、
前記第1の温度は前記第2の温度よりも低く、
前記第1の温度と前記第2の温度との差は95度以上であり、
前記六方晶系InGa1−XNのm面は、前記所定の軸の方向に向いている、ことを特徴とする方法。
A method for producing a nitride-based semiconductor light-emitting device, comprising:
Preparing a substrate made of a hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1);
Forming a first conductivity type gallium nitride based semiconductor film on the main surface of the substrate;
Forming an active layer on the first conductivity type gallium nitride based semiconductor film to generate light having a wavelength in the range of 440 nm to 550 nm;
Forming a second conductivity type gallium nitride based semiconductor film on the active layer,
The first conductive type gallium nitride based semiconductor film, the active layer, and the second conductive type gallium nitride based semiconductor film are arranged in a predetermined axis direction on the main surface of the substrate,
In the step of forming the active layer, a first semiconductor layer made of hexagonal In X Ga 1-X N (0.16 ≦ X ≦ 0.4, X is a strain composition) and having a first gallium composition is formed. Grow at a first temperature,
In the step of forming the active layer, hexagonal In Y Ga 1-Y N ( 0 ≦ Y ≦ 0.05, Y <X, Y : strained composition) a second semiconductor of the second gallium fraction consists Growing the layer at a second temperature;
The first gallium composition is lower than the second gallium composition;
The first temperature is lower than the second temperature;
The difference between the first temperature and the second temperature is 95 degrees or more,
The m-plane of the hexagonal In X Ga 1-X N faces the direction of the predetermined axis.
前記基板は、c軸方向に成長された六方晶系AlGa1−ZN半導体(0≦Z≦1)の結晶からm軸に交差するように切り出されており、前記基板の前記主面は、研磨処理されていると共にm軸に交差する平面に沿って延びる、ことを特徴とする請求項8に記載された方法。 The substrate is cut out so as to intersect the crystal in the c-axis direction in the grown hexagonal Al Z Ga 1-Z N semiconductor (0 ≦ Z ≦ 1) in the m-axis, the main surface of the substrate 9. The method of claim 8, wherein the method is polished and extends along a plane that intersects the m-axis. 前記基板は、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より大きい複数の第1の領域と、c軸方向に伸びる貫通転位の密度が第1の貫通転位密度より小さい複数の第2の領域とを含み、
前記第1および第2の領域は交互に配置されており、
前記基板の前記主面には前記第1および第2の領域が現れている、ことを特徴とする請求項8または請求項9に記載された方法。
The substrate includes a plurality of first regions in which threading dislocation density extending in the c-axis direction is larger than the first threading dislocation density, and a plurality of threading dislocation densities extending in the c-axis direction are smaller than the first threading dislocation density. A second region,
The first and second regions are arranged alternately,
10. The method according to claim 8, wherein the first and second regions appear on the main surface of the substrate.
前記第2の領域の前記貫通転位の密度は1×10cm−2未満である、ことを特徴とする請求項10に記載された方法。 The method of claim 10, wherein the threading dislocation density in the second region is less than 1 × 10 7 cm −2 . 前記基板の前記主面は、m面からオフ角(−2°≦θ≦+2°)でオフしている、ことを特徴とする請求項8〜請求項11のいずれか一項に記載された方法。   The main surface of the substrate is off from the m-plane at an off angle (-2 ° ≦ θ ≦ + 2 °). Method. 前記第1導電型窒化ガリウム系半導体膜の形成に先立って、アンモニアおよび水素を含むガスを供給しながら前記基板を熱処理する工程を更に備える、ことを特徴とする請求項8〜請求項12のいずれか一項に記載された方法。 13. The method according to claim 8, further comprising a step of heat-treating the substrate while supplying a gas containing ammonia and hydrogen prior to the formation of the first conductivity type gallium nitride based semiconductor film. The method described in any one of the paragraphs.
JP2007100930A 2007-04-06 2007-04-06 Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element Pending JP2008258503A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007100930A JP2008258503A (en) 2007-04-06 2007-04-06 Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element
PCT/JP2008/056013 WO2008126695A1 (en) 2007-04-06 2008-03-28 Nitride semiconductor light emitting device and process for producing the same
CN2008800004293A CN101542760B (en) 2007-04-06 2008-03-28 Nitride semiconductor light emitting device and process for producing the same
KR1020087029818A KR20090124908A (en) 2007-04-06 2008-03-28 Nitride semiconductor light emitting device and process for producing the same
US12/307,586 US20100032644A1 (en) 2007-04-06 2008-03-28 Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method
EP08739137A EP2043167A4 (en) 2007-04-06 2008-03-28 Nitride semiconductor light emitting device and process for producing the same
TW097112434A TW200901517A (en) 2007-04-06 2008-04-03 Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100930A JP2008258503A (en) 2007-04-06 2007-04-06 Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2008258503A true JP2008258503A (en) 2008-10-23

Family

ID=39863802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100930A Pending JP2008258503A (en) 2007-04-06 2007-04-06 Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element

Country Status (7)

Country Link
US (1) US20100032644A1 (en)
EP (1) EP2043167A4 (en)
JP (1) JP2008258503A (en)
KR (1) KR20090124908A (en)
CN (1) CN101542760B (en)
TW (1) TW200901517A (en)
WO (1) WO2008126695A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205835A (en) * 2009-03-02 2010-09-16 Sumitomo Electric Ind Ltd Gallium nitride-based semiconductor optical device, method of fabricating gallium nitride-based semiconductor optical device, and epitaxial wafer
WO2011007777A1 (en) * 2009-07-15 2011-01-20 住友電気工業株式会社 Group iii nitride semiconductor optical element and epitaxial substrate
WO2011125301A1 (en) * 2010-04-02 2011-10-13 パナソニック株式会社 Nitride semiconductor element and manufacturing method therefor
JP2012070016A (en) * 2010-04-01 2012-04-05 Panasonic Corp Nitride-based semiconductor element and manufacturing method thereof
US8304802B2 (en) 2009-04-03 2012-11-06 Panasonic Corporation Nitride-based semiconductor device having electrode on m-plane
JP2013505588A (en) * 2009-09-18 2013-02-14 ソラア インコーポレーテッド Power light emitting diode and method using current density manipulation
WO2013039003A1 (en) * 2011-09-12 2013-03-21 三菱化学株式会社 Light-emitting diode element
JP2013062284A (en) * 2011-09-12 2013-04-04 Mitsubishi Chemicals Corp Light-emitting diode element
JP5234218B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element
JP5234220B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element
JP5234219B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element and light emitting device
JP2014078756A (en) * 2014-01-09 2014-05-01 Mitsubishi Chemicals Corp Nitride semiconductor
JP2014167948A (en) * 2013-01-30 2014-09-11 Mitsubishi Chemicals Corp Light-emitting diode element, process of manufacturing the same, and light-emitting apparatus
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158647A (en) * 2007-12-26 2009-07-16 Sharp Corp Nitride semiconductor laser element and method of fabricating the same
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US8847249B2 (en) * 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
JP4510931B2 (en) * 2008-09-09 2010-07-28 パナソニック株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
CN101971364B (en) 2008-11-06 2013-05-15 松下电器产业株式会社 Nitride semiconductor element and method for manufacturing the same
JP5453780B2 (en) * 2008-11-20 2014-03-26 三菱化学株式会社 Nitride semiconductor
WO2010103804A1 (en) * 2009-03-11 2010-09-16 パナソニック株式会社 Nitride semiconductor element and method for manufacturing same
JP5090396B2 (en) * 2009-03-27 2012-12-05 シャープ株式会社 Nitride semiconductor light emitting device, method for manufacturing the same, and semiconductor optical device
JP5004989B2 (en) * 2009-03-27 2012-08-22 シャープ株式会社 Nitride semiconductor light emitting device, method for manufacturing the same, and semiconductor optical device
EP2418696A4 (en) 2009-04-09 2014-02-19 Panasonic Corp Nitride semiconductor light-emitting element, illuminating device, liquid crystal display device, method for producing nitride semiconductor light-emitting element and method for manufacturing illuminating device
JP4927121B2 (en) * 2009-05-29 2012-05-09 シャープ株式会社 Nitride semiconductor wafer, nitride semiconductor device, and method of manufacturing nitride semiconductor device
JP5193966B2 (en) * 2009-07-21 2013-05-08 シャープ株式会社 Nitride semiconductor element, manufacturing method thereof, and semiconductor device
JP5319431B2 (en) * 2009-07-02 2013-10-16 シャープ株式会社 Nitride semiconductor element, manufacturing method thereof, and semiconductor device
US20110001126A1 (en) * 2009-07-02 2011-01-06 Sharp Kabushiki Kaisha Nitride semiconductor chip, method of fabrication thereof, and semiconductor device
JP4905514B2 (en) 2009-07-15 2012-03-28 住友電気工業株式会社 Nitride semiconductor light emitting device
US20110042646A1 (en) * 2009-08-21 2011-02-24 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
JP4891462B2 (en) * 2009-11-12 2012-03-07 パナソニック株式会社 Gallium nitride compound semiconductor light emitting device
US8525221B2 (en) * 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
EP2472608B1 (en) 2009-12-09 2013-09-18 Panasonic Corporation Lighting device with nitride-based semiconductor light-emitting elements, liquid crystal display device
KR101171722B1 (en) * 2009-12-25 2012-08-06 파나소닉 주식회사 Nitride semiconductor element and method for manufacturing same
EP2369645A4 (en) * 2010-01-18 2012-11-14 Panasonic Corp Nitride semiconductor element and method for manufacturing same
EP2541624A4 (en) 2010-04-01 2013-05-15 Panasonic Corp Nitride semiconductor element and manufacturing method therefor
JP5361925B2 (en) * 2011-03-08 2013-12-04 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9312436B2 (en) * 2011-05-16 2016-04-12 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
KR20130011374A (en) * 2011-07-21 2013-01-30 주식회사 칩테크놀러지 Multiple quantum well for ultraviolet light emitting diode and method for manufacturing thereof
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9646827B1 (en) * 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
TWI535055B (en) 2012-11-19 2016-05-21 新世紀光電股份有限公司 Nitride semiconductor structure and semiconductor light-emitting element
TWI524551B (en) 2012-11-19 2016-03-01 新世紀光電股份有限公司 Nitride semiconductor structure and semiconductor light-emitting element
TWI499080B (en) 2012-11-19 2015-09-01 Genesis Photonics Inc Nitride semiconductor structure and semiconductor light-emitting element
CN108321268A (en) * 2013-01-25 2018-07-24 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light-emitting elements
WO2015015973A1 (en) * 2013-07-31 2015-02-05 富士電機株式会社 Method for manufacturing semiconductor device, and semiconductor device
US10199532B1 (en) * 2017-09-08 2019-02-05 Mikro Mesa Technology Co., Ltd. Light-emitting diode and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347585A (en) * 2002-03-19 2003-12-05 Nobuhiko Sawaki Semiconductor light emitting element and method of manufacturing the same
JP2007103774A (en) * 2005-10-06 2007-04-19 Showa Denko Kk Group iii nitride semiconductor stacked structure and its manufacturing method
JP2008108973A (en) * 2006-10-26 2008-05-08 Rohm Co Ltd Semiconductor light emitting element
JP2008543089A (en) * 2005-06-01 2008-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for growth and fabrication of semipolar (Ga, Al, In, B) N thin films, heterostructures and devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816176B2 (en) 1996-02-23 2006-08-30 富士通株式会社 Semiconductor light emitting device and optical semiconductor device
US6542526B1 (en) * 1996-10-30 2003-04-01 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
JP3252779B2 (en) * 1998-01-16 2002-02-04 松下電器産業株式会社 Semiconductor light emitting element and semiconductor light emitting device
JP3719047B2 (en) * 1999-06-07 2005-11-24 日亜化学工業株式会社 Nitride semiconductor device
JP2001160656A (en) * 1999-12-01 2001-06-12 Sharp Corp Nitride compound semiconductor device
JP3929008B2 (en) * 2000-01-14 2007-06-13 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP3968968B2 (en) * 2000-07-10 2007-08-29 住友電気工業株式会社 Manufacturing method of single crystal GaN substrate
JP2004104089A (en) * 2002-05-30 2004-04-02 Sharp Corp Method for manufacturing nitride semiconductor using hyperpure ammonia
JP2005251922A (en) * 2004-03-03 2005-09-15 Nagoya Kogyo Univ Semiconductor light emitting device
US6989555B2 (en) * 2004-04-21 2006-01-24 Lumileds Lighting U.S., Llc Strain-controlled III-nitride light emitting device
JP4206086B2 (en) * 2004-08-03 2009-01-07 住友電気工業株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
US7751455B2 (en) * 2004-12-14 2010-07-06 Palo Alto Research Center Incorporated Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347585A (en) * 2002-03-19 2003-12-05 Nobuhiko Sawaki Semiconductor light emitting element and method of manufacturing the same
JP2008543089A (en) * 2005-06-01 2008-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for growth and fabrication of semipolar (Ga, Al, In, B) N thin films, heterostructures and devices
JP2007103774A (en) * 2005-10-06 2007-04-19 Showa Denko Kk Group iii nitride semiconductor stacked structure and its manufacturing method
JP2008108973A (en) * 2006-10-26 2008-05-08 Rohm Co Ltd Semiconductor light emitting element

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205835A (en) * 2009-03-02 2010-09-16 Sumitomo Electric Ind Ltd Gallium nitride-based semiconductor optical device, method of fabricating gallium nitride-based semiconductor optical device, and epitaxial wafer
US8304802B2 (en) 2009-04-03 2012-11-06 Panasonic Corporation Nitride-based semiconductor device having electrode on m-plane
US8334199B2 (en) 2009-04-03 2012-12-18 Panasonic Corporation Method for fabricating nitride-based semiconductor device having electrode on m-plane
WO2011007777A1 (en) * 2009-07-15 2011-01-20 住友電気工業株式会社 Group iii nitride semiconductor optical element and epitaxial substrate
JP2011023541A (en) * 2009-07-15 2011-02-03 Sumitomo Electric Ind Ltd Group iii nitride semiconductor optical element and epitaxial substrate
US8304793B2 (en) 2009-07-15 2012-11-06 Sumitomo Electric Industries, Ltd. III-nitride semiconductor optical device and epitaxial substrate
CN102474076A (en) * 2009-07-15 2012-05-23 住友电气工业株式会社 Group III nitride semiconductor optical element and epitaxial substrate
US10693041B2 (en) 2009-09-18 2020-06-23 Soraa, Inc. High-performance LED fabrication
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
JP2013505588A (en) * 2009-09-18 2013-02-14 ソラア インコーポレーテッド Power light emitting diode and method using current density manipulation
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US10553754B2 (en) 2009-09-18 2020-02-04 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
JP2012070016A (en) * 2010-04-01 2012-04-05 Panasonic Corp Nitride-based semiconductor element and manufacturing method thereof
WO2011125301A1 (en) * 2010-04-02 2011-10-13 パナソニック株式会社 Nitride semiconductor element and manufacturing method therefor
JP4820465B1 (en) * 2010-04-02 2011-11-24 パナソニック株式会社 Nitride-based semiconductor device and manufacturing method thereof
US9006792B2 (en) 2011-09-12 2015-04-14 Mitsubishi Chemical Corporation Light emitting diode element
JP2013062284A (en) * 2011-09-12 2013-04-04 Mitsubishi Chemicals Corp Light-emitting diode element
WO2013039003A1 (en) * 2011-09-12 2013-03-21 三菱化学株式会社 Light-emitting diode element
KR101433548B1 (en) * 2011-09-12 2014-08-22 미쓰비시 가가꾸 가부시키가이샤 Light-emitting diode element
JP2014053578A (en) * 2012-09-07 2014-03-20 Mitsubishi Chemicals Corp Light emitting diode element
JP2014053580A (en) * 2012-09-07 2014-03-20 Mitsubishi Chemicals Corp Light emitting diode element
JP2014053579A (en) * 2012-09-07 2014-03-20 Mitsubishi Chemicals Corp Light emitting diode element and light emitting device
JP5234219B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element and light emitting device
JP5234220B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element
JP5234218B1 (en) * 2012-09-07 2013-07-10 三菱化学株式会社 Light emitting diode element
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2014167948A (en) * 2013-01-30 2014-09-11 Mitsubishi Chemicals Corp Light-emitting diode element, process of manufacturing the same, and light-emitting apparatus
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
JP2014078756A (en) * 2014-01-09 2014-05-01 Mitsubishi Chemicals Corp Nitride semiconductor

Also Published As

Publication number Publication date
EP2043167A4 (en) 2011-01-05
CN101542760A (en) 2009-09-23
KR20090124908A (en) 2009-12-03
US20100032644A1 (en) 2010-02-11
WO2008126695A1 (en) 2008-10-23
EP2043167A1 (en) 2009-04-01
CN101542760B (en) 2012-03-21
TW200901517A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP2008258503A (en) Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element
US7973322B2 (en) Nitride semiconductor light emitting device and method for forming the same
JP5003527B2 (en) Group III nitride light emitting device and method for fabricating group III nitride semiconductor light emitting device
JP5048236B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
WO2010029775A1 (en) Nitride semiconductor optical device, epitaxial wafer for nitride semiconductor optical device, and method for manufacturing semiconductor light-emitting device
KR20100006548A (en) Group iii nitride based semiconductor light emitting element and epitaxial wafer
JP2001160627A5 (en)
JP4450112B2 (en) Nitride-based semiconductor optical device
Mukai et al. Nitride light-emitting diodes
JP2008118049A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP4940670B2 (en) Method for fabricating nitride semiconductor light emitting device
JP5143076B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP5332959B2 (en) Nitride-based semiconductor optical device
JP4900336B2 (en) Method for manufacturing group III nitride light emitting device, and group III nitride light emitting device
JP2009231609A (en) Production method of semiconductor light-emitting element
JP2005235960A (en) Method for manufacturing gallium nitride series semiconductor element
TW200832758A (en) GaN semiconductor light emitting element
JP4924498B2 (en) Nitride-based semiconductor light-emitting device, epitaxial wafer, and method for manufacturing nitride-based semiconductor light-emitting device
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2009266963A (en) Nitride-based light emitting device, and method of manufacturing semiconductor light emitting device
JP5375392B2 (en) Gallium nitride based semiconductor optical device and method for fabricating gallium nitride based semiconductor optical device
JP2008227103A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP3965203B2 (en) Nitride compound semiconductor light emitting device
JP4844596B2 (en) Method for fabricating group III nitride light emitting device and method for fabricating epitaxial wafer
JP2011223043A (en) Semiconductor light-emitting device and method of manufacturing the semiconductor light-emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508