JP2008044607A - Refrigerant circuit system - Google Patents

Refrigerant circuit system Download PDF

Info

Publication number
JP2008044607A
JP2008044607A JP2007207442A JP2007207442A JP2008044607A JP 2008044607 A JP2008044607 A JP 2008044607A JP 2007207442 A JP2007207442 A JP 2007207442A JP 2007207442 A JP2007207442 A JP 2007207442A JP 2008044607 A JP2008044607 A JP 2008044607A
Authority
JP
Japan
Prior art keywords
refrigerant
manifold
accumulator
heat exchanger
circuit system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007207442A
Other languages
Japanese (ja)
Other versions
JP4657266B2 (en
Inventor
Klotten Thomas
クロッテン トーマス
Dominik Prinz
プリンツ ドミニク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visteon Global Technologies Inc
Original Assignee
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies Inc filed Critical Visteon Global Technologies Inc
Publication of JP2008044607A publication Critical patent/JP2008044607A/en
Application granted granted Critical
Publication of JP4657266B2 publication Critical patent/JP4657266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the mutual connection of connection lines in a double evaporator system. <P>SOLUTION: A refrigerant flows through a compressor 22 and a gas cooler 24 along a refrigerant line 23, and enters the high-pressure inlet 25 of a combined component 2. The refrigerant passing through an internal heat exchanger 26 is brought into thermal contact with the refrigerant taken out from an accumulator 28. The refrigerant line 23 is divided into two different branch parts 34, 35 switchable parallel to each other. Each branch part has swelling members 36, 37 and evaporators 38, 39 on the downstream side. The branch parts 34, 35 are extended from the evaporators 38, 39 to the accumulator 28 through the low pressure inlets 40, 41 of the combined component 27. Consequently, the refrigerant re-arrives at the compressor 22 through the low-pressure outlet 42 of the combined component 27 along the refrigerant line 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒回路システムに関し、より詳細にはCO2を冷媒として利用する車両HVAC用の冷媒回路システムに関する。 The present invention relates to a refrigerant circuit system, and more particularly to a refrigerant circuit system for a vehicle HVAC that uses CO 2 as a refrigerant.

例えば冷媒としてCO2を利用する冷媒回路システムは、特に自動車HVAC用に使用されている。冷媒回路システムは、ガスを圧縮するためのコンプレッサと、このコンプレッサから排出されたガスを冷却するガス冷却器とを備えている。ガスは、ガス冷却器内で冷却された後、内部熱交換器に流入する。内部熱交換器は、システム内で過冷却の熱を高圧側から低圧側に伝達するように機能し、これにより加熱が行われる。内部熱交換器の高圧出口は、冷媒を膨張部材に誘導し、この部材が冷媒の圧力を低下させる役割を果たす。膨張冷媒は、蒸発器を通過し、その外部に空気が配向される結果、空気が冷却されて車両空調用に使用される。蒸発器から来た冷媒はアキュムレータに供給され、ここで冷媒が中間的に蓄えられた後、運転状態に応じて必要とされる冷媒量が再度コンプレッサに達する。アキュムレータの別の機能は、メンテナンス期間で生じる漏出損失を補償する冷媒予備貯蔵分を提供することである。 For example, a refrigerant circuit system that uses CO 2 as a refrigerant is used particularly for automobile HVAC. The refrigerant circuit system includes a compressor for compressing gas and a gas cooler for cooling the gas discharged from the compressor. The gas flows into the internal heat exchanger after being cooled in the gas cooler. The internal heat exchanger functions to transfer the supercooling heat from the high pressure side to the low pressure side in the system, whereby heating is performed. The high-pressure outlet of the internal heat exchanger guides the refrigerant to the expansion member, and this member serves to reduce the pressure of the refrigerant. The expanded refrigerant passes through the evaporator, and as a result of the air being directed to the outside, the air is cooled and used for vehicle air conditioning. The refrigerant coming from the evaporator is supplied to the accumulator, where the refrigerant is stored intermediately, and then the amount of refrigerant required according to the operating state reaches the compressor again. Another function of the accumulator is to provide a refrigerant reserve that compensates for leakage losses that occur during maintenance periods.

HVACでは、並行して切り替えられる2つの蒸発器を含むシステムが使用されることが増えてきた。並行して切り替えられる2つの蒸発器に加えて、従来技術のHVACなどの冷媒回路は、2つの並行蒸発器の上流側に配置されたコンプレッサ、ガス冷却器、内部熱交換器、及び2つの膨張部材を備える。高圧の冷媒がコンプレッサからガス冷却器に達し、ここで周囲気流によって冷媒が冷却される。次いで、高圧入口を通って内部熱交換器に流入し、内部熱交換器を通過した後、高圧出口を通ってマニホルド接続部に入る。マニホルド接続部は、冷媒ライン上に位置付けられ、マニホルドは、冷媒ラインを互いに並行に延びる2つの分岐路に分割した三方ネジ留めコネクタとして設定される。分岐路の各々の下流側には最初に膨張部材が配置され、冷媒がマニホルドを通った後にここに達する。次いで、冷媒ラインの2つの分岐路の各々において膨張冷媒が蒸発器に配向され、該蒸発器の外部には空気が配向されており、これによりその空気の一部が冷却されて車両空調用に使用される。次に、両分岐路は、それぞれの蒸発器から2つの別々の入口を通ってコレクタ(アキュムレータ)に続き、ここで冷媒が中間的に蓄えられた後、低圧入口を通って内部熱交換器に流入し、更にそこから低圧出口を通って再びコンプレッサに達する。   HVAC has increasingly used systems that include two evaporators that are switched in parallel. In addition to two evaporators that are switched in parallel, a refrigerant circuit such as a prior art HVAC has a compressor, gas cooler, internal heat exchanger, and two expansions located upstream of the two parallel evaporators. A member is provided. High pressure refrigerant reaches the gas cooler from the compressor, where it is cooled by the ambient airflow. It then flows into the internal heat exchanger through the high pressure inlet, passes through the internal heat exchanger, and then enters the manifold connection through the high pressure outlet. The manifold connection is positioned on the refrigerant line, and the manifold is set as a three-way screw connector that divides the refrigerant line into two branches extending in parallel with each other. An expansion member is first arranged downstream of each branch and reaches here after the refrigerant has passed through the manifold. Then, in each of the two branches of the refrigerant line, the expanded refrigerant is oriented to the evaporator, and the air is oriented to the outside of the evaporator, whereby a part of the air is cooled and used for vehicle air conditioning. used. Both branches then continue from each evaporator through two separate inlets to the collector (accumulator) where the refrigerant is stored intermediately and then through the low pressure inlet to the internal heat exchanger. In, and from there through the low pressure outlet to the compressor again.

本発明の目的は、2重蒸発器システムでの接続ラインの相互接続を簡単にすることである。   The object of the present invention is to simplify the interconnection of connection lines in a double evaporator system.

この問題は、特に冷媒としてCO2を利用する自動車用HVACの冷媒回路システムによって解決され、本システムは、並行に切り替えられる2つの蒸発器と、内部熱交換器及びアキュムレータの機能が単一の構成要素内で組み合わされるように内部熱交換器及びアキュムレータを含む組み合わせ構成要素とを備える。本発明は、従来技術では冷媒ライン上に配置されていた三方ネジ留めポイントをアキュムレータ及び内部熱交換器を備えた組み合わせ構成要素に移したことによって特徴付けられる。 This problem is solved especially by an automotive HVAC refrigerant circuit system that uses CO 2 as the refrigerant, and this system has two evaporators that can be switched in parallel, and the functions of an internal heat exchanger and an accumulator. A combination component including an internal heat exchanger and an accumulator to be combined within the element. The present invention is characterized by the transfer of the three-way screw point, which was located on the refrigerant line in the prior art, to a combined component with an accumulator and an internal heat exchanger.

本発明による冷媒回路システムにおいて、冷媒は、冷媒ラインに沿ってコンプレッサ及びガス冷却器を通って流れ、内部熱交換器の高圧入口に入り、該内部熱交換器は、過冷却用の熱をシステム内で高圧側から低圧側に伝達し、これによりその一部が加熱されるようにする必要がある。内部熱交換器の高圧出口の下流側では、冷媒ラインが互いに並行に切り替えられる2つの別々の分岐部に分割され、その各々が、膨張部材と該膨張部材の下流側に蒸発器とを備えている。本発明によれば、内部熱交換器並びにアキュムレータは共に組み合わせ構成要素の形態で1つの構成要素を形成する。この組み合わせ構成要素において、高圧側の内部熱交換器を通る冷媒は、アキュムレータから取られた冷媒と熱接触し、該アキュムレータではその低圧側に中間的に冷媒が蓄えられている。本発明によれば、冷媒ラインの2つの並行切替分岐部は、その各々に膨張部材と該膨張部材の下流側に位置する蒸発器とが配置され、該分岐部は、内部熱交換器とアキュムレータとを備えた組み合わせ構成要素の高圧出口の1つから始まり、組み合わせ構成要素の低圧入口で終わる。内部熱交換器とアキュムレータとを備えた組み合わせ構成要素の低圧入口は、組み合わせ構成要素の低圧領域に続き、該領域は、低圧の冷媒を中間的に蓄えるのに利用される。中間的に蓄えられた冷媒が取られると、冷媒は、内部熱交換器とアキュムレータとを備えた組み合わせ構成要素の低圧出口を通って、冷媒ラインに沿って再度コンプレッサに流れ、冷媒回路システムが閉じられるようになる。   In the refrigerant circuit system according to the present invention, the refrigerant flows along the refrigerant line through the compressor and the gas cooler and enters the high-pressure inlet of the internal heat exchanger, the internal heat exchanger supplies the heat for supercooling to the system. It is necessary to transmit from the high-pressure side to the low-pressure side in this way so that a part thereof is heated. On the downstream side of the high pressure outlet of the internal heat exchanger, the refrigerant line is divided into two separate branches that are switched in parallel with each other, each comprising an expansion member and an evaporator downstream of the expansion member. Yes. According to the invention, the internal heat exchanger as well as the accumulator together form one component in the form of a combined component. In this combination component, the refrigerant passing through the internal heat exchanger on the high pressure side is in thermal contact with the refrigerant taken from the accumulator, and in the accumulator, the refrigerant is stored intermediately on the low pressure side. According to the present invention, each of the two parallel switching branch portions of the refrigerant line is provided with an expansion member and an evaporator located on the downstream side of the expansion member, and the branch portion includes an internal heat exchanger and an accumulator. Starting with one of the high pressure outlets of the combination component with and ending with the low pressure inlet of the combination component. The low pressure inlet of the combination component with an internal heat exchanger and an accumulator follows the low pressure region of the combination component, which region is used for intermediate storage of low pressure refrigerant. When the intermediate stored refrigerant is taken, the refrigerant flows again through the low pressure outlet of the combined component with internal heat exchanger and accumulator, along the refrigerant line to the compressor, and the refrigerant circuit system is closed. Be able to.

本発明の原理は、2つの蒸発器に対する接続ポイントが冷媒ライン(従来技術)から内部熱交換器とアキュムレータとを備えた組み合わせ構成要素に移されたことである。これを達成するために、マニホルドは、本発明の好ましい実施形態の内部熱交換器とアキュムレータとを備えた組み合わせ構成要素上に配置される。該マニホルドは、互いに並行に切り替えられる2つの分岐部に組み合わせ構成要素を接続するためのネジ留めポイントを含む。   The principle of the present invention is that the connection point for the two evaporators has been transferred from the refrigerant line (prior art) to a combined component comprising an internal heat exchanger and an accumulator. To accomplish this, the manifold is placed on a combination component comprising the internal heat exchanger and accumulator of the preferred embodiment of the present invention. The manifold includes a screw point for connecting the combination component to two branches that are switched in parallel with each other.

好ましくは、マニホルドは、二重接続要素を備える。これにより、ネジ留めポイントの数がかなり低減され、ラインの相互接続を簡素化することが可能となり、結果としてより明確に配置されたライン設計が得られる。   Preferably, the manifold comprises double connection elements. This significantly reduces the number of screw points and simplifies line interconnection, resulting in a more clearly arranged line design.

好ましくは、二重接続要素により、いずれの場合も高圧側と低圧側の両方に膨張部材及び蒸発器を備えた冷媒ラインの並行切替分岐部の一方に組み合わせ構成要素を接続することが確保される。   Preferably, the double connection element ensures that the combination component is connected to one of the parallel switching branches of the refrigerant line with expansion members and evaporators on both the high and low pressure sides in both cases .

従って、第1の二重接続要素は、冷媒ラインの並行切替分岐部の第1の分岐部に対して冷媒ラインに2つの接続部を提供する。1つの接続部は、組み合わせ構成要素からの第1の高圧出口に位置し、第1の高圧出口から第1の膨張部材に続く冷媒ラインの当該部分に設けられている。もう一つの接続部は、第1の低圧入口に設けられ、冷媒ラインを介して組み合わせ構成要素の第1の低圧入口に第1の蒸発器を接続することを可能にする。   Thus, the first double connection element provides two connections to the refrigerant line for the first branch of the parallel switching branch of the refrigerant line. One connection is located at the first high pressure outlet from the combination component and is provided in that portion of the refrigerant line from the first high pressure outlet to the first expansion member. Another connection is provided at the first low-pressure inlet and makes it possible to connect the first evaporator to the first low-pressure inlet of the combination component via a refrigerant line.

第2の二重接続要素は、第2の分岐部において冷媒ライン用に2つの接続部を備える。この二重接続要素は、第1の二重接続要素に対向して平行に、或いはその上又は下に平行にそれぞれ配置することができる。しかしながら、これらの二重接続要素が異なる高さで又は両側に平行に配置される構成も可能である。全ての場合において、組み合わせ構成要素の第2の高圧出口に配置された第1の接続部は、第2の高圧出口から第2の膨張部材に続く冷媒ラインの当該部分に設けられる。組み合わせ構成要素の第2の高圧入口に配置された第2の接続部は、第2の蒸発器から第2の低圧入口に続く冷媒ラインの当該部分を取り付ける役割を果たす。   The second double connection element comprises two connections for the refrigerant line at the second branch. This double connection element can be arranged in parallel opposite the first double connection element or in parallel above or below it, respectively. However, a configuration is also possible in which these double connection elements are arranged at different heights or in parallel on both sides. In all cases, the first connection located at the second high-pressure outlet of the combination component is provided in that part of the refrigerant line that continues from the second high-pressure outlet to the second expansion member. A second connection located at the second high pressure inlet of the combination component serves to attach that portion of the refrigerant line that leads from the second evaporator to the second low pressure inlet.

好ましくは、二重接続要素を締結するために、1つ又は2つのネジのみが必要とされる。従って、二重接続要素は時間を要するネジ留め作業を節約する。従来技術と比べて、有利な実施形態を含む本発明による解決策は、コスト効果のある製造プロセスの利用を可能にする。   Preferably, only one or two screws are required to fasten the double connection element. Thus, the double connection element saves time-consuming screwing operations. Compared to the prior art, the solution according to the invention, including advantageous embodiments, allows the use of a cost-effective manufacturing process.

本発明の追加の詳細、特徴、及び機能は、添付図面を参照しながら実施形態の実施例に関する以下の説明から容易に理解されるであろう。   Additional details, features, and functions of the present invention will be readily understood from the following description of example embodiments with reference to the accompanying drawings.

図1のブロック図は、車両用空調に利用可能な従来技術のHVACを示している。このようなHVACは、好適な冷媒を備えた冷媒回路システム1を有する。冷媒は、コンプレッサ2から高圧側の冷媒ライン3を通ってガス冷却器4に流れ、ここで周囲気流によって冷媒が冷却される。次いで、冷媒は、高圧入口5を通って内部熱交換器6に入り、内部熱交換器6を通過した後、高圧出口7を通ってマニホルド接続部8に流れる。マニホルド接続部8は、冷媒ライン3上に配置されているので、三方ネジ留めコネクタとして設定されたマニホルド9は、冷媒ライン3を互いに並行に延びる2つの分岐部10、11に分割する。分岐部10、11の各々において、最初に膨張部材12、13が下流側に配置されており、冷媒はマニホルド9を通過した後に流入する。冷媒ライン3の両分岐路10、11において、膨張冷媒は蒸発器14、15に配向される。次いで、冷媒ライン3の両分岐路10,11は、蒸発器14、15の各々から2つの別々の入口16、17を通ってコレクタ18(アキュムレータ)に続き、ここで冷媒が中間的に蓄えられた後、低圧入口19を通って内部熱交換器6に流入し、更にそこから低圧出口20を通って再びコンプレッサ2に流入する。   The block diagram of FIG. 1 shows a prior art HVAC that can be used for vehicle air conditioning. Such an HVAC has a refrigerant circuit system 1 with a suitable refrigerant. The refrigerant flows from the compressor 2 through the high-pressure side refrigerant line 3 to the gas cooler 4 where the refrigerant is cooled by the ambient airflow. Next, the refrigerant enters the internal heat exchanger 6 through the high-pressure inlet 5, passes through the internal heat exchanger 6, and then flows through the high-pressure outlet 7 to the manifold connection 8. Since the manifold connecting portion 8 is disposed on the refrigerant line 3, the manifold 9 set as a three-way screw connector divides the refrigerant line 3 into two branch portions 10 and 11 extending in parallel with each other. In each of the branch portions 10 and 11, the expansion members 12 and 13 are first disposed on the downstream side, and the refrigerant flows after passing through the manifold 9. In both branches 10 and 11 of the refrigerant line 3, the expanded refrigerant is directed to the evaporators 14 and 15. Both branches 10, 11 of the refrigerant line 3 then continue from each of the evaporators 14, 15 through two separate inlets 16, 17 to the collector 18 (accumulator), where the refrigerant is stored intermediately. After that, it flows into the internal heat exchanger 6 through the low pressure inlet 19, and further flows into the compressor 2 again through the low pressure outlet 20.

他方、図2は、本発明による車両用空調に利用可能なHVACのブロック図を示している。このようなHVACは、好適な冷媒を有する冷媒回路システム21を備える。冷媒は、コンプレッサ22から高圧側の冷媒ライン23を通ってガス冷却器24に流れ、ここで周囲気流によって冷却される。次いで、冷媒は高圧入口25を通って内部熱交換器26に入り、該内部熱交換器26は、アキュムレータ28と内部熱交換器26とを備える組み合わせ構成要素27の一部である。2つの二重接続要素30、31を備えたマニホルド29では、内部熱交換器26の高圧出口が2つの単一の高圧出口32、33に分割されており、これらは、冷媒ライン23の2つの並行分岐部34、35に続く。内部熱交換器26から外部に続く第1の高圧出口32は、二重接続要素30を通って冷媒ライン23の第1の分岐部34に続く。内部熱交換器26から外部に続く第2の高圧出口33は、二重接続要素31を通って冷媒ライン23の第2の分岐部35に続く。冷媒ライン23の分岐部34、35の各々において、冷媒は、膨張部材36、37、すなわち第1の分岐部34では第1の膨張部材36に、第2の分岐部35では第2の膨張部材37に至る。最終的には膨張した冷媒は、膨張部材36、37から蒸発器、すなわち第1の分岐部34では第1の蒸発器38に、第2の分岐部35では第2の蒸発器39に達する。冷媒ライン23は同様に、並行切替蒸発器38、39からマニホルド29の二重接続要素30、31に、すなわち、第1の蒸発器38から第1の二重接続要素30に、第2の蒸発器39から第2の二重接続要素31に続く。冷媒ライン23は、第1の二重接続要素30では第1の低圧入口40を通り、第2の二重接続要素31では第2の低圧入口41を通って冷媒を、組み合わせ構成要素27のアキュムレータ28に導いて、該冷媒は、低圧出口42を通ってコンプレッサ22に再度達することができ、この結果、冷媒回路システム1が閉じることになる。   On the other hand, FIG. 2 shows a block diagram of an HVAC usable for vehicle air conditioning according to the present invention. Such an HVAC includes a refrigerant circuit system 21 having a suitable refrigerant. The refrigerant flows from the compressor 22 through the high-pressure side refrigerant line 23 to the gas cooler 24 where it is cooled by the ambient airflow. The refrigerant then enters the internal heat exchanger 26 through the high pressure inlet 25, which is part of a combination component 27 comprising an accumulator 28 and an internal heat exchanger 26. In a manifold 29 with two double connection elements 30, 31, the high pressure outlet of the internal heat exchanger 26 is divided into two single high pressure outlets 32, 33, which are two of the refrigerant line 23. Continue to the parallel branch sections 34, 35. A first high-pressure outlet 32 that continues from the internal heat exchanger 26 to the outside passes through the double connection element 30 to the first branch 34 of the refrigerant line 23. A second high-pressure outlet 33 that continues from the internal heat exchanger 26 to the outside passes through the double connection element 31 to the second branch 35 of the refrigerant line 23. In each of the branch portions 34 and 35 of the refrigerant line 23, the refrigerant is expanded into the expansion members 36 and 37, that is, the first expansion member 36 in the first branch portion 34 and the second expansion member in the second branch portion 35. To 37. Finally, the expanded refrigerant reaches the evaporator from the expansion members 36 and 37, that is, the first evaporator 38 in the first branch portion 34, and the second evaporator 39 in the second branch portion 35. Similarly, the refrigerant line 23 has a second evaporation from the parallel switching evaporators 38, 39 to the double connection elements 30, 31 of the manifold 29, ie from the first evaporator 38 to the first double connection element 30. The device 39 continues to the second double connection element 31. The refrigerant line 23 passes through the first low-pressure inlet 40 in the first double connection element 30 and passes through the second low-pressure inlet 41 in the second double connection element 31, and the accumulator of the combined component 27. At 28, the refrigerant can reach the compressor 22 again through the low pressure outlet 42, resulting in the refrigerant circuit system 1 being closed.

図3aには、従来技術による冷媒ライン3の分岐部分が示されており、該分岐部分は、コレクタ18及び内部熱交換器6を互いに接続し、更に冷媒ライン3の両分岐部10、11において並行切替蒸発器14、15及び膨張部材12、13に接続することを可能にする。内部熱交換器6の高圧出口7の下流側では、三方ネジ留めポイントとして設定されたマニホルド9が配置されている。マニホルド接続部8を通ると、マニホルド9は冷媒ライン3を介して内部熱交換器6の高圧出口7へ接続される。マニホルド9には、ネジ留めポイント44がある。図3aで分かるように、マニホルド9は、冷媒ライン3を該冷媒ライン3の第1の分岐部10と第2の分岐部11とに分割している。冷媒ライン3の両分岐部10、11は、第2の三方ネジ留めポイントすなわちマニホルド43で終端する。再結合された冷媒ライン3は、マニホルド43からコレクタ18(アキュムレータ)の入口に続く。冷媒ライン3の別の部分がコレクタ18から低圧入口19を通って内部熱交換器6内に続く。図3aに示すように、この分岐部分では全体で6つのネジ留めポイントが必要とされ、冷媒ライン3上のマニホルド9、43では全部で2つのネジ留めポイントがある。これにより、高圧側と低圧側各々で1つのネジ留めプロセスを付加することが必要となる。   FIG. 3 a shows a branch portion of the refrigerant line 3 according to the prior art, which connects the collector 18 and the internal heat exchanger 6 to each other, and further at both branches 10, 11 of the refrigerant line 3. Allows connection to parallel switching evaporators 14 and 15 and expansion members 12 and 13. On the downstream side of the high-pressure outlet 7 of the internal heat exchanger 6, a manifold 9 set as a three-way screwing point is arranged. When passing through the manifold connection 8, the manifold 9 is connected to the high-pressure outlet 7 of the internal heat exchanger 6 through the refrigerant line 3. The manifold 9 has a screw point 44. As can be seen in FIG. 3 a, the manifold 9 divides the refrigerant line 3 into a first branch part 10 and a second branch part 11 of the refrigerant line 3. Both branches 10, 11 of the refrigerant line 3 terminate at a second three-way screw point or manifold 43. The recombined refrigerant line 3 continues from the manifold 43 to the inlet of the collector 18 (accumulator). Another part of the refrigerant line 3 continues from the collector 18 through the low pressure inlet 19 into the internal heat exchanger 6. As shown in FIG. 3a, a total of six screw points are required at this branch, and there are a total of two screw points in the manifolds 9, 43 on the refrigerant line 3. This requires the addition of one screwing process on each of the high pressure side and the low pressure side.

図3bには、従来技術による冷媒ライン3の分岐部分の別の実施形態が示されており、該分岐部分は、コレクタ18(アキュムレータ)と内部熱交換器6とをそれぞれ互いに接続し、更に両分岐部10、11において並行切替蒸発器及び膨張部材に接続することを可能にする。   FIG. 3b shows another embodiment of a branching part of the refrigerant line 3 according to the prior art, which connects the collector 18 (accumulator) and the internal heat exchanger 6 to each other, It is possible to connect to the parallel switching evaporator and the expansion member at the branch portions 10 and 11.

ここで図3bを参照すると、図3aの実施形態とは対照的に、2つではなく3つのネジ留めポイントがコレクタ18(アキュムレータ)に直接設定されている。冷媒ライン3の両分岐部10、11は、図3bで分かるように、コレクタ18(アキュムレータ)の2つの別々の入口16、17に続く。図3bによる冷媒ライン3を入口16、17に締結するために、コレクタ18(アキュムレータ)にある3つのネジ留めポイント44のうちの2つが提供される。ここでもまた、コレクタ18(アキュムレータ)から内部熱交換器6の低圧入口19までの接続ラインが設けられる。また、図1によるブロック図の構成にも相当する分岐部分のこの実施形態において、全体で6つのネジ留めポイントが必要とされ、冷媒ライン3上のマニホルド9には1つのネジ留めポイント44が配置される。   Referring now to FIG. 3b, in contrast to the embodiment of FIG. 3a, three screw points instead of two are set directly on the collector 18 (accumulator). Both branches 10, 11 of the refrigerant line 3 lead to two separate inlets 16, 17 of the collector 18 (accumulator), as can be seen in FIG. 3b. In order to fasten the refrigerant line 3 according to FIG. 3b to the inlets 16, 17, two of the three screw points 44 at the collector 18 (accumulator) are provided. Here too, a connection line is provided from the collector 18 (accumulator) to the low pressure inlet 19 of the internal heat exchanger 6. Also, in this embodiment of the bifurcation corresponding to the configuration of the block diagram according to FIG. 1, a total of six screw points are required, and one screw point 44 is arranged in the manifold 9 on the refrigerant line 3. Is done.

図4aは、互いに並行に反対向きに配置された二重接続要素30、31とネジ留めポイント44とを備えたマニホルド29を含め、アキュムレータ28及び内部熱交換器26を備える組み合わせ構成要素27の外観図である。マニホルド29は、互いに並行に切り替えられる冷媒ライン23の2つの分岐部34、35に組み合わせ構成要素27を接続するよう機能する。冷媒ライン23の第2の分岐部34は、第1の高圧出口32から始まり第1の低圧入口40で終わる。第1の高圧出口32及び第1の低圧入口40への冷媒ライン23の第1の分岐部34の締結は、第1の二重接続要素30を介して確保される。第2の高圧出口33及び第2の低圧入口41への冷媒ライン23の第2の分岐部35の締結は、第2の二重接続要素31を介して行われる。図4aによる二重接続要素30、31は、ネジ留めポイント44に対し1つのネジを必要とする。二重接続要素30、31を使用することに起因して、ネジ留めポイント44の数は6つ(図3a及び図3bによる従来技術)から2つに低減することができる。   FIG. 4 a shows the appearance of a combination component 27 comprising an accumulator 28 and an internal heat exchanger 26, including a manifold 29 with double connection elements 30, 31 and screwing points 44 arranged parallel and opposite to each other. FIG. The manifold 29 functions to connect the combination component 27 to the two branches 34, 35 of the refrigerant line 23 that are switched in parallel with each other. The second branch 34 of the refrigerant line 23 starts at the first high pressure outlet 32 and ends at the first low pressure inlet 40. Fastening of the first branch 34 of the refrigerant line 23 to the first high-pressure outlet 32 and the first low-pressure inlet 40 is ensured via the first double connection element 30. Fastening of the second branch portion 35 of the refrigerant line 23 to the second high-pressure outlet 33 and the second low-pressure inlet 41 is performed via the second double connection element 31. The double connection elements 30, 31 according to FIG. 4 a require one screw for the screwing point 44. Due to the use of the double connection elements 30, 31, the number of screwing points 44 can be reduced from six (prior art according to FIGS. 3a and 3b) to two.

図4bは、図4aと同様の配置のマニホルド29を含め、アキュムレータ28と内部熱交換器26を備える組み合わせ構成要素27の外観図であり、図4bの二重接続要素30、31は対向して配置されず、互いに一方の側部上に並行に配置されている点で相違する。   FIG. 4b is an external view of a combination component 27 comprising an accumulator 28 and an internal heat exchanger 26, including a manifold 29 arranged similar to FIG. 4a, with the double connection elements 30, 31 of FIG. They are not arranged and are different in that they are arranged in parallel on one side.

図4a及び図4bによる本発明の構成に起因して、ネジ留めポイント44の数は2つに低減されるが、図3a及び図3bに示される従来技術と比べて冷媒ライン3の相互接続が実質的に簡素化される。   Due to the configuration of the present invention according to FIGS. 4a and 4b, the number of screwing points 44 is reduced to two, but the refrigerant line 3 is interconnected compared to the prior art shown in FIGS. 3a and 3b. It is substantially simplified.

図5は、互いに対向して並行な接続部を有するマニホルド29の詳細図を示し、二重接続要素30、31は図示されていない。マニホルド29は、内部熱交換器26及びアキュムレータ28を備える組み合わせ構成要素27のカバー45上に配置された、基本的に矩形載置本体として存在する。図5aは、マニホルド29の側面図を示し、この透視法ではカバー上に載置され中央に位置付けられた矩形本体のように見える。円筒組み合わせ構成要素27の中心円筒軸46、すなわちカバー46の円形カバー平面47に垂直に延びる軸46に沿って、図5aによる右側側面図は鏡面対称である。   FIG. 5 shows a detailed view of the manifold 29 with parallel connections facing each other, the double connection elements 30, 31 are not shown. The manifold 29 exists as a basically rectangular mounting body disposed on the cover 45 of the combination component 27 comprising the internal heat exchanger 26 and the accumulator 28. FIG. 5a shows a side view of the manifold 29, which looks like a rectangular body placed on the cover and centered in this perspective. Along the central cylindrical axis 46 of the cylindrical combination component 27, i.e. the axis 46 extending perpendicular to the circular cover plane 47 of the cover 46, the right side view according to Fig. 5a is mirror-symmetric.

図5bは、カバー面47の平面図である。マニホルド29の長手方向縁部48は、カバー面47の鏡面対称軸49に対し等間隔に置かれた両側に平行に延びる。マニホルド29の内側縁部50は、マニホルド29の長手方向縁部48及びカバー面47の鏡面対称軸49に垂直に延び、該鏡面対称軸49は、中心でマニホルド29の内側縁部50と交差する。マニホルド29の外側縁部51は、図5bの平面図においてカバー縁部52と適合するような形態で丸みが付けられて設定される。図5bによれば、マニホルド29の長手方向縁部48の長さは、カバー45の半径よりも長く、カバーの直径よりも短い。マニホルド29は、カバー面47の軸53に対して非対称で配置されており、軸53は鏡面対称軸49に垂直である。   FIG. 5 b is a plan view of the cover surface 47. The longitudinal edge 48 of the manifold 29 extends parallel to both sides of the cover surface 47 that are equidistant from the mirror symmetry axis 49. The inner edge 50 of the manifold 29 extends perpendicular to the longitudinal edge 48 of the manifold 29 and the mirror symmetry axis 49 of the cover surface 47, which intersects the inner edge 50 of the manifold 29 at the center. . The outer edge 51 of the manifold 29 is set to be rounded in a form that fits the cover edge 52 in the plan view of FIG. 5b. According to FIG. 5b, the length of the longitudinal edge 48 of the manifold 29 is longer than the radius of the cover 45 and shorter than the diameter of the cover. The manifold 29 is disposed asymmetrically with respect to the axis 53 of the cover surface 47, and the axis 53 is perpendicular to the mirror symmetry axis 49.

図5cは、マニホルド29の正面図である。この正面図が示すように、マニホルド29は長手方向側表面54に、小さな中央ネジ孔55と、その両側に位置し、中心が共通の水平軸58上にある2つの大きな円形孔56、57とを備えている。小さな中央ネジ孔5は、二重接続要素30、31のネジ留めポイント44を設定するように形成されている。カバー45の中心領域にほぼ位置付けられている広い低圧入口孔56は、低圧の冷媒用の入口孔として機能する。カバー45の縁部領域に配置された高圧出口孔57は、内部熱交換器26からの高圧の冷媒用の出口孔として機能する。   FIG. 5 c is a front view of the manifold 29. As this front view shows, the manifold 29 has a longitudinal center surface 54 with a small central screw hole 55 and two large circular holes 56, 57 located on opposite sides and centered on a common horizontal axis 58. It has. A small central screw hole 5 is formed so as to set the screwing point 44 of the double connection elements 30, 31. A wide low-pressure inlet hole 56 positioned substantially in the central region of the cover 45 functions as an inlet hole for low-pressure refrigerant. The high-pressure outlet hole 57 arranged in the edge region of the cover 45 functions as an outlet hole for the high-pressure refrigerant from the internal heat exchanger 26.

図5cの切断面A−A及びB−Bの表示を参照すると、図5dには、切断面A−Aに沿った断面が、組み合わせ構成要素27の円筒軸46に平行な方向で見た状態で示されている。図5では、長手方向側表面の各々に、低圧入口孔56.1、56.2及び高圧出口孔57.1、57.2が示されている。断面図である図5dには、内側低圧入口マニホルド59と内側高圧出口マニホルド60が示されている。内側低圧マニホルド59は、中空チャネル61.1の中央で、組み合わせ構成要素27のアキュムレータ28に2つの低圧入口孔56.1、56.2を接続し、この中空チャネル61.1は、第1の低圧入口孔56.1から第2の低圧入口孔56.2まで延び、統合チャネル62が、低圧入口孔から流入する冷媒が一緒に統合チャネル62に入るように、中空チャネル61.6に直交して配置されている。   Referring to the representation of cut planes AA and BB in FIG. 5 c, FIG. 5 d shows a cross-section along the cut plane AA as viewed in a direction parallel to the cylindrical axis 46 of the combination component 27. It is shown in In FIG. 5, low pressure inlet holes 56.1, 56.2 and high pressure outlet holes 57.1, 57.2 are shown on each longitudinal side surface. In cross section, FIG. 5d, an inner low pressure inlet manifold 59 and an inner high pressure outlet manifold 60 are shown. The inner low-pressure manifold 59 connects two low-pressure inlet holes 56.1, 56.2 to the accumulator 28 of the combination component 27 in the middle of the hollow channel 61.1. Extending from the low pressure inlet hole 56.1 to the second low pressure inlet hole 56.2, the integrated channel 62 is orthogonal to the hollow channel 61.6 such that refrigerant entering from the low pressure inlet hole enters the integrated channel 62 together. Are arranged.

内側高圧出口マニホルド60は、中空チャネル61.2内で、2つの高圧出口孔57.1、57.2を組み合わせ構成要素27の内部熱交換器26に接続し、この中空チャネル61.2は、第1の高圧出口孔57.1から第2の高圧出口孔57.2まで延び、中空チャネル61.2に直交して延びる接続チャネル63の円形孔があり、この円形孔は内部熱交換器26のパイプに通じている。   The inner high pressure outlet manifold 60 connects the two high pressure outlet holes 57.1, 57.2 in the hollow channel 61.2 to the internal heat exchanger 26 of the combined component 27, which hollow channel 61.2 There is a circular hole in the connecting channel 63 extending from the first high-pressure outlet hole 57.1 to the second high-pressure outlet hole 57.2 and extending perpendicular to the hollow channel 61.2. Leads to the pipe.

内部低圧入口マニホルド59のT字型構成が、図5cによる切断面B−Bに沿った断面図で図5eに示されている。第1の低圧入口孔56.1から第2の低圧入口孔56.2まで延びる中空チャネル61.1は、中心において、中空チャネル61.1に垂直に位置付けられた統合チャネル62により分割される。統合チャネルは、中空チャネル61.1からカバー45内部を通ってカバー内表面まで延びている。   A T-shaped configuration of the internal low pressure inlet manifold 59 is shown in FIG. 5e in a cross-sectional view along section BB according to FIG. 5c. The hollow channel 61.1 extending from the first low-pressure inlet hole 56.1 to the second low-pressure inlet hole 56.2 is divided in the center by an integrated channel 62 positioned perpendicular to the hollow channel 61.1. The integrated channel extends from the hollow channel 61.1 through the inside of the cover 45 to the inner surface of the cover.

図5fは、マニホルド29とのカバー45の等角図を示しており、該マニホルドは、両長手方向側表面54の各々に3つの異なる孔55、56、57を備えている。マニホルド29は、カバー縁部52と同様に湾曲しているマニホルド29の外側縁部51の縁部側表面を除いては、略矩形である。   FIG. 5 f shows an isometric view of the cover 45 with the manifold 29, which includes three different holes 55, 56, 57 on each of the longitudinal surfaces 54. The manifold 29 is substantially rectangular except for the edge side surface of the outer edge 51 of the manifold 29 that is curved in the same manner as the cover edge 52.

上下に平行に配置された接続部を備えたマニホルド29の詳細図が図6で示されている。マニホルド29は、内部熱交換器26及びアキュムレータ28を備える組み合わせ構成要素27のカバー上に配置された略矩形の本体として存在する。図6aは、マニホルド29の側面図を示し、この透視法では、矩形であるがカバー45上の中心に正確ではなく近似的に位置付けられた本体のように見える。   A detailed view of the manifold 29 with connecting parts arranged in parallel vertically is shown in FIG. Manifold 29 exists as a generally rectangular body disposed on the cover of combination component 27 that includes internal heat exchanger 26 and accumulator 28. FIG. 6a shows a side view of the manifold 29, which in this perspective looks like a body that is rectangular but approximated rather than accurately centered on the cover 45. FIG.

図6bは、カバー面47の平面図である。マニホルド29の両長手方向縁部65、66は、カバー45の軸68に平行に延びる。マニホルド29の内側縁部67は、両長手方向縁部65、66及びカバー45の軸68に直交して延び、カバー45の軸68は、内側縁部67の中心から外部で内側縁部67と交差する。しかしながら、マニホルド29の外側縁部69は、図6bの平面図で外側縁部69がカバー縁部52と適合するような形態で湾曲して設定されている。図6bによれば、長手方向縁部65、66の長さは、カバー45の半径よりも長いがカバー直径よりも短い。マニホルド29は、カバー45の軸68に垂直な軸に対して非対称に配置されている。   FIG. 6 b is a plan view of the cover surface 47. Both longitudinal edges 65, 66 of the manifold 29 extend parallel to the axis 68 of the cover 45. The inner edge 67 of the manifold 29 extends perpendicular to both longitudinal edges 65, 66 and the axis 68 of the cover 45, and the axis 68 of the cover 45 extends from the center of the inner edge 67 to the inner edge 67 on the outside. Intersect. However, the outer edge 69 of the manifold 29 is curved and set so that the outer edge 69 fits the cover edge 52 in the plan view of FIG. According to FIG. 6b, the length of the longitudinal edges 65, 66 is longer than the radius of the cover 45 but shorter than the cover diameter. The manifold 29 is disposed asymmetrically with respect to an axis perpendicular to the axis 68 of the cover 45.

図6cは、この代替の実施形態のマニホルド29の正面図を示している。この正面図が示すように、マニホルド29は、両長手方向側表面に、上下に配置された2つの小さな中央円形ネジ孔71と、上下に配置された2つの広い円形孔72、73とを備え、これらの広い孔は、一方が低圧入口孔72であり、他方が高圧出口孔73である。3つの上側円形孔71,72、73の中心は、共通の上側水平軸74上に配置され、3つの下側円形孔71、72、73の中心は、上側水平軸74に平行に延びる下側水平軸75上に配置されている。小さな中央ネジ孔71は、二重接続要素30、31のネジ留めポイント44を設定するように形成される。カバー45の中心領域にほぼ位置付けられている、互いに上に載置される大きな低圧入口孔72は、低圧の冷媒用の入口孔として機能する。カバー45の縁部領域に配置された、互いに上に載置される両方の高圧出口孔73は、内部熱交換器26からの高圧の冷媒用の出口孔として機能する。   FIG. 6c shows a front view of the manifold 29 of this alternative embodiment. As shown in the front view, the manifold 29 has two small central circular screw holes 71 arranged vertically and two wide circular holes 72, 73 arranged vertically on both longitudinal surfaces. One of these wide holes is a low-pressure inlet hole 72, and the other is a high-pressure outlet hole 73. The centers of the three upper circular holes 71, 72, 73 are arranged on a common upper horizontal axis 74, and the centers of the three lower circular holes 71, 72, 73 are lower sides extending in parallel to the upper horizontal axis 74. It is arranged on the horizontal axis 75. A small central screw hole 71 is formed to set the screwing point 44 of the double connection elements 30, 31. The large low-pressure inlet holes 72 placed on top of each other and positioned substantially in the central region of the cover 45 function as inlet holes for the low-pressure refrigerant. Both high-pressure outlet holes 73 placed on top of each other arranged in the edge region of the cover 45 function as outlet holes for the high-pressure refrigerant from the internal heat exchanger 26.

図6cの切断面A−A及びB−Bのそれぞれの表示を参照すると、図6dでは、接続ブロック29の切断面A−Aに沿った断面は、組み合わせ構成要素27の円筒軸46に平行な方向で見た状態で示されている。図6dから、長手方向縁部65の下の長手方向側表面70上だけに孔71、72、73があることが分かる。図6dの断面図は、内部低圧入口マニホルド76と内部高圧出口マニホルド77とを示している。両方の低圧入口孔78から流入する冷媒が統合チャネル79で集められるようにして、短い入口チャネル78が入口チャネル78に垂直に位置付けられた統合チャネル79に続くことから、内部低圧入口マニホルド76は、組み合わせ構成要素27のアキュムレータ28への2つの低圧入口チャネル72の接続を形成する。   Referring to the respective representations of cut planes AA and BB in FIG. 6 c, in FIG. 6 d the cross section along the cut plane AA of the connection block 29 is parallel to the cylindrical axis 46 of the combination component 27. It is shown as seen in the direction. From FIG. 6 d it can be seen that there are holes 71, 72, 73 only on the longitudinal side surface 70 below the longitudinal edge 65. The cross-sectional view of FIG. 6 d shows the internal low pressure inlet manifold 76 and the internal high pressure outlet manifold 77. Since the short inlet channel 78 follows the integrated channel 79 positioned perpendicular to the inlet channel 78 so that the refrigerant flowing in from both low pressure inlet holes 78 is collected in the integrated channel 79, the internal low pressure inlet manifold 76 is Forms a connection of two low pressure inlet channels 72 to the accumulator 28 of the combination component 27.

短い入口チャネル78は、入口チャネル78に垂直に位置付けられた接続チャネル80に続くので、内部高圧出口マニホルド77は、組み合わせ構成要素27の内部熱交換器26への2つの高圧出口孔73の接続を形成する。   The short inlet channel 78 leads to a connecting channel 80 positioned perpendicular to the inlet channel 78 so that the internal high pressure outlet manifold 77 connects the two high pressure outlet holes 73 to the internal heat exchanger 26 of the combination component 27. Form.

内部低圧入口マニホルド76のF字型構成が、図6cによる切断面B−Bに沿った断面図を用いて図6eに示されている。入口チャネル78は、入口チャネル78に垂直に並んだ接続チャネル80に続き、該接続チャネル80は、カバー45内部を通ってカバー内表面まで延びている。   The F-shaped configuration of the internal low pressure inlet manifold 76 is shown in FIG. 6e using a cross-sectional view along section BB according to FIG. 6c. The inlet channel 78 follows a connecting channel 80 aligned perpendicular to the inlet channel 78, which extends through the interior of the cover 45 to the inner surface of the cover.

図6fは、マニホルド29とのカバー45の等角図を示しており、該マニホルドは、長手方向縁部の下の長手方向側表面70上にだけ孔71、72、73を備える。マニホルド29は、カバー縁部52と同様に湾曲しており、マニホルド29の外側縁部69の下にある縁部側表面64を除いては、基本的に矩形である。   FIG. 6 f shows an isometric view of the cover 45 with the manifold 29, which includes holes 71, 72, 73 only on the longitudinal side surface 70 below the longitudinal edges. The manifold 29 is curved like the cover edge 52 and is essentially rectangular except for the edge side surface 64 below the outer edge 69 of the manifold 29.

従来技術による2つの並行切替蒸発器を備えたHVACのブロック図である。1 is a block diagram of an HVAC with two parallel switching evaporators according to the prior art. アキュムレータ及び内部熱交換器を備えた組み合わせ構成要素と2つの二重接続ブロックとを有するブロック図である。FIG. 4 is a block diagram having a combination component with an accumulator and an internal heat exchanger and two double connection blocks. 冷媒ライン3上に配置された2つの三方ネジ留めポイントを備えた従来技術の冷媒ライン3の分岐部分の図である。FIG. 2 is a view of a bifurcation portion of a prior art refrigerant line 3 with two three-way screw points located on the refrigerant line 3. 冷媒ライン3上に配置された1つの三方ネジ留めポイントを備えた従来技術の冷媒ライン3の分岐部分の図である。FIG. 3 is a view of a branching portion of a prior art refrigerant line 3 with one three-way screw point located on the refrigerant line 3. 対向して平行に配置された二重接続要素及びネジ留めポイントを備えたマニホルドを含む、アキュムレータ及び内部熱交換器を備える組み合わせ構成要素の外観図である。1 is an external view of a combination component comprising an accumulator and an internal heat exchanger, including a manifold with double connection elements and screw points arranged oppositely in parallel. FIG. 上下に配置された二重接続要素及びネジ留めポイントを備えたマニホルドを含む、アキュムレータ及び内部熱交換器を備える組み合わせ構成要素の外観図である。1 is an external view of a combination component comprising an accumulator and an internal heat exchanger including a manifold with double connection elements and screw points arranged one above the other. 互いに対向して配置された接続部を有するマニホルドの詳細図である。FIG. 3 is a detailed view of a manifold having connecting portions disposed opposite to each other. 互いに上に配置された接続部を有するマニホルドの詳細図である。FIG. 3 is a detail view of manifolds having connections disposed on top of each other.

符号の説明Explanation of symbols

1 冷媒回路システム
2 コンプレッサ
3 冷媒ライン
4 ガス冷却器
5 高圧入口
6 内部熱交換器
7 高圧出口
8 マニホルド接続部
9 マニホルド
10 冷媒ライン3の第1の分岐部
11 冷媒ライン3の第2の分岐部
12 第1の膨張部材
13 第2の膨張部材
14 第1の蒸発器
15 第2の蒸発器
16 第1の入口
17 第2の入口
18 コレクタ(アキュムレータ)
19 低圧入口
20 低圧出口
21 冷媒回路システム
22 コンプレッサ
23 冷媒ライン
24 ガス冷却器
25 高圧入口
26 内部熱交換器
27 組み合わせ構成要素
28 アキュムレータ
29 マニホルド
30 第1の二重接続要素
31 第2の二重接続要素
32 第1の高圧出口
33 第2の高圧出口
34 冷媒ライン23の第1の分岐部
35 冷媒ライン23の第2の分岐部
36 第1の膨張部材
37 第2の膨張部材
38 第1の蒸発器
39 第2の蒸発器
40 第1の低圧入口
41 第2の低圧入口
42 低圧出口
43 マニホルド
44 ネジ留めポイント
45 カバー
46 円筒軸
47 カバー面
48 マニホルド29の長手方向縁部
49 鏡面対称軸
50 マニホルド29の内部縁部
51 マニホルド29の外部縁部
52 カバー縁部
53 カバー面47の軸
54 長手方向側表面
55 ネジ孔
56 低圧入口孔、円形孔
56.1 第1の低圧入口孔
56.2 第2の低圧入口孔
57 高圧出口孔、円形孔
57.1 第1の高圧出口孔
57.2 第2の高圧出口孔
58 水平軸
59 内側低圧入口マニホルド
60 内側高圧出口マニホルド
61.1 中空チャネル
61.2 中空チャネル
62 統合チャネル
63 接続チャネル
64 縁部側面
65 長手方向縁部
66 長手方向
67 内側縁部
68 カバー45の軸
69 マニホルド29の外側縁部
70 長手方向側表面
71 ネジ孔
72 低圧入口孔
73 高圧出口孔
74 上側水平軸
75 下側水平軸
76 内側低圧入口マニホルド
77 内側高圧出口マニホルド
78 入口チャネル
79 統合チャネル
80 接続チャネル
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit system 2 Compressor 3 Refrigerant line 4 Gas cooler 5 High pressure inlet 6 Internal heat exchanger 7 High pressure outlet 8 Manifold connection part 9 Manifold 10 First branch part of the refrigerant line 3 11 Second branch part of the refrigerant line 3 DESCRIPTION OF SYMBOLS 12 1st expansion member 13 2nd expansion member 14 1st evaporator 15 2nd evaporator 16 1st inlet 17 2nd inlet 18 Collector (accumulator)
DESCRIPTION OF SYMBOLS 19 Low pressure inlet 20 Low pressure outlet 21 Refrigerant circuit system 22 Compressor 23 Refrigerant line 24 Gas cooler 25 High pressure inlet 26 Internal heat exchanger 27 Combination component 28 Accumulator 29 Manifold 30 First double connection element 31 Second double connection Element 32 First high-pressure outlet 33 Second high-pressure outlet 34 First branch portion of the refrigerant line 23 35 Second branch portion of the refrigerant line 23 36 First expansion member 37 Second expansion member 38 First evaporation Vessel 39 second evaporator 40 first low pressure inlet 41 second low pressure inlet 42 low pressure outlet 43 manifold 44 screwing point 45 cover 46 cylindrical shaft 47 cover surface 48 longitudinal edge of manifold 29 49 mirror symmetry axis 50 manifold 29 inner edge 51 outer edge of manifold 29 52 cover edge 53 cover Surface 47 axis 54 longitudinal side surface 55 screw hole 56 low pressure inlet hole, circular hole 56.1 first low pressure inlet hole 56.2 second low pressure inlet hole 57 high pressure outlet hole, circular hole 57.1 first High pressure outlet hole 57.2 Second high pressure outlet hole 58 Horizontal axis 59 Inner low pressure inlet manifold 60 Inner high pressure outlet manifold 61.1 Hollow channel 61.2 Hollow channel 62 Integration channel 63 Connection channel 64 Edge side 65 Longitudinal edge 66 Longitudinal direction 67 Inner edge 68 Shaft of cover 45 69 Outer edge of manifold 29 70 Longitudinal surface 71 Screw hole 72 Low pressure inlet hole 73 High pressure outlet hole 74 Upper horizontal shaft 75 Lower horizontal shaft 76 Inner low pressure inlet manifold 77 Inner high pressure outlet manifold 78 Inlet channel 79 Integrated channel 80 Connection channel

Claims (8)

特に冷媒としてCO2を利用する自動車用HVACの冷媒回路システムであって、
前記冷媒が、冷媒ライン(23)に沿ってコンプレッサ(22)及びガス冷却器(24)を通って流れ、内部熱交換器(26)及びアキュムレータ(28)を1つの構成要素に組み合わせた組み合わせ構成要素の高圧入口(25)に入り、これにより高圧側の前記内部熱交換器(26)を通過した冷媒は、低圧側で前記アキュムレータ(28)内に中間的に蓄えられて該アキュムレータから取り出された冷媒と熱接触し、これにより前記前記内部熱交換器(26)を通過した後、前記組み合わせ構成要素(27)の高圧出口(32、33)に位置する前記冷媒ライン(23)が、互いに並行に切り替えられる前記冷媒ライン(23)の2つの別々の分岐部(34、35)に分割され、各分岐部が膨張部材(36、37)と該膨張部材(36、37)の下流側にある蒸発器(38、39)とを有し、これにより互いに並行に切り替えられる前記冷媒ライン(23)の分岐部(34、35)は共に、前記蒸発器(38、39)から前記組み合わせ構成要素(27)の低圧入口(40、41)を通って前記アキュムレータ(28)に続き、その結果、前記中間的に蓄えられた冷媒は、前記冷媒ライン(23)に沿って前記組み合わせ構成要素(27)の低圧出口(42)を通って前記コンプレッサ(22)に再び達することができる、
ことを特徴とする冷媒回路システム(1)。
In particular, an automotive HVAC refrigerant circuit system that uses CO 2 as a refrigerant,
The refrigerant flows along the refrigerant line (23) through the compressor (22) and the gas cooler (24), and the internal heat exchanger (26) and the accumulator (28) are combined into one component. The refrigerant that has entered the high-pressure inlet (25) of the element and thus has passed through the internal heat exchanger (26) on the high-pressure side is intermediately stored in the accumulator (28) on the low-pressure side and is taken out from the accumulator. The refrigerant lines (23) located at the high-pressure outlets (32, 33) of the combination component (27) after being in thermal contact with the refrigerant and thus passing through the internal heat exchanger (26) are mutually connected. The refrigerant line (23), which is switched in parallel, is divided into two separate branches (34, 35), each branch being an expansion member (36, 37) and the expansion member (36, 35). 7) and the branch portions (34, 35) of the refrigerant line (23) that are switched in parallel with each other, both of the evaporators (38, 39). ) Through the low pressure inlets (40, 41) of the combination component (27) to the accumulator (28), so that the intermediate stored refrigerant passes along the refrigerant line (23). Can reach the compressor (22) again through the low pressure outlet (42) of the combination component (27);
The refrigerant circuit system (1) characterized by the above-mentioned.
前記内部熱交換器(26)及び前記アキュムレータ(28)を備えた前記組み合わせ構成要素(27)と、互いに並行に切り替えられる前記2つの分岐部(34、35)に前記組み合わせ構成要素(27)に接続するためにマニホルド(29)が配置されている、
請求項1に記載の冷媒回路システム(1)。
The combination component (27) including the internal heat exchanger (26) and the accumulator (28) and the two branch portions (34, 35) switched in parallel to the combination component (27) A manifold (29) is arranged for connection,
The refrigerant circuit system (1) according to claim 1.
前記マニホルド(29)が、前記冷媒ライン(23)の第1の分岐部(34)において前記第1の膨張部材(36)及び前記第1の蒸発器(38)に接続するための接続部を有する第1の二重接続要素(30)を備えている、
請求項2に記載の冷媒回路システム(1)。
A connecting portion for connecting the manifold (29) to the first expansion member (36) and the first evaporator (38) at the first branch portion (34) of the refrigerant line (23). A first double connection element (30) having
The refrigerant circuit system (1) according to claim 2.
前記マニホルド(29)が、前記冷媒ライン(23)の第2の分岐部(35)において前記第2の膨張部材(37)及び前記第2の蒸発器(39)に接続するための接続部を有する第2の二重接続要素(31)を備えている、
請求項3に記載の冷媒回路システム(1)。
A connecting portion for connecting the manifold (29) to the second expansion member (37) and the second evaporator (39) at the second branch portion (35) of the refrigerant line (23). A second double connection element (31) having
The refrigerant circuit system (1) according to claim 3.
前記第1の二重接続要素(30)が、前記第2の二重接続要素(31)と平行に対向して配置されている、
請求項4に記載の冷媒回路システム(1)。
The first double connection element (30) is arranged in parallel and opposite to the second double connection element (31);
The refrigerant circuit system (1) according to claim 4.
前記第1の二重接続要素(30)及び前記第2の二重接続要素(31)が、互いの上に平行に配置されている、
請求項4に記載の冷媒回路システム(1)。
The first double connection element (30) and the second double connection element (31) are arranged parallel to each other;
The refrigerant circuit system (1) according to claim 4.
前記二重接続要素(30、31)の各々が、締結用に1つのネジを必要とする、
請求項3ないし6のいずれか1項に記載の冷媒回路システム(1)。
Each of the double connection elements (30, 31) requires one screw for fastening,
The refrigerant circuit system (1) according to any one of claims 3 to 6.
前記二重接続要素(30、31)の各々が、締結用に2つのネジを必要とする、
請求項3ないし7のいずれか1項に記載の冷媒回路システム(1)。
Each of the double connection elements (30, 31) requires two screws for fastening,
The refrigerant circuit system (1) according to any one of claims 3 to 7.
JP2007207442A 2006-08-11 2007-08-09 Refrigerant circuit system Active JP4657266B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006038728.7A DE102006038728B4 (en) 2006-08-11 2006-08-11 Refrigerant cycle system

Publications (2)

Publication Number Publication Date
JP2008044607A true JP2008044607A (en) 2008-02-28
JP4657266B2 JP4657266B2 (en) 2011-03-23

Family

ID=38954880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207442A Active JP4657266B2 (en) 2006-08-11 2007-08-09 Refrigerant circuit system

Country Status (3)

Country Link
US (1) US20080034787A1 (en)
JP (1) JP4657266B2 (en)
DE (1) DE102006038728B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130385A (en) * 2011-11-24 2013-07-04 Fuji Koki Corp Gas-liquid separator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953917B1 (en) * 2009-12-10 2012-01-20 Hutchinson INTERNAL THERMAL EXCHANGER FOR AIR CONDITIONING CIRCUIT OF MOTOR VEHICLE AND SUCH CIRCUIT
CA2892937A1 (en) * 2012-11-30 2014-06-05 Basf Se Storage unit for a drive system in a vehicle
DE112015002958T5 (en) * 2014-07-29 2017-03-16 Borgwarner Inc., Patent Department COMBINED HEAT AND PRESSURE MEMORY

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100678A (en) * 1990-08-20 1992-04-02 Sadao Shimizu Manufacture of joint for welded piping having plural fluid paths with optional radius inside
JPH10220672A (en) * 1997-02-04 1998-08-21 Mitsubishi Kagaku Sanshi Corp Fluid branch block
JP2000142090A (en) * 1998-11-17 2000-05-23 Denso Corp Air conditioner for vehicle
JP2002206823A (en) * 2000-11-09 2002-07-26 Denso Corp Accumulator module
JP2002320816A (en) * 2001-04-26 2002-11-05 Toshiba Plant Kensetsu Co Ltd Purge gas distributor
JP2003004341A (en) * 2001-06-26 2003-01-08 Tgk Co Ltd Expansion valve
JP2004058958A (en) * 2002-07-31 2004-02-26 Keihin Corp Vehicle air-conditioner
JP2006044607A (en) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd Heat pump type air conditioner for automobile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488413A (en) * 1983-01-17 1984-12-18 Edward Bottum Suction accumulator structure
US5063994A (en) * 1990-06-26 1991-11-12 Level 1 Technologies, Inc. Reflux fluid heated patient line
US6463757B1 (en) * 2001-05-24 2002-10-15 Halla Climate Controls Canada, Inc. Internal heat exchanger accumulator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100678A (en) * 1990-08-20 1992-04-02 Sadao Shimizu Manufacture of joint for welded piping having plural fluid paths with optional radius inside
JPH10220672A (en) * 1997-02-04 1998-08-21 Mitsubishi Kagaku Sanshi Corp Fluid branch block
JP2000142090A (en) * 1998-11-17 2000-05-23 Denso Corp Air conditioner for vehicle
JP2002206823A (en) * 2000-11-09 2002-07-26 Denso Corp Accumulator module
JP2002320816A (en) * 2001-04-26 2002-11-05 Toshiba Plant Kensetsu Co Ltd Purge gas distributor
JP2003004341A (en) * 2001-06-26 2003-01-08 Tgk Co Ltd Expansion valve
JP2004058958A (en) * 2002-07-31 2004-02-26 Keihin Corp Vehicle air-conditioner
JP2006044607A (en) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd Heat pump type air conditioner for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130385A (en) * 2011-11-24 2013-07-04 Fuji Koki Corp Gas-liquid separator

Also Published As

Publication number Publication date
US20080034787A1 (en) 2008-02-14
JP4657266B2 (en) 2011-03-23
DE102006038728B4 (en) 2016-06-30
DE102006038728A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
ES2447776T3 (en) Heat exchanger and cooling air conditioner
US20100243200A1 (en) Suction line heat exchanger module and method of operating the same
WO2007013439A1 (en) Heat exchanger
US20160138871A1 (en) Duplex heat exchanger
JP6843256B2 (en) Refrigerant distributor and air conditioner
US20080164015A1 (en) Contra-tapered tank design for cross-counterflow radiator
JP2007163004A (en) Heat exchanger
WO2008023543A1 (en) Air conditioner for vehicle
JP2002340485A (en) Heat exchanger for vehicle
US20080202157A1 (en) Internal heat exchanger for automotive air conditioner
JP2006329511A (en) Heat exchanger
JP4657266B2 (en) Refrigerant circuit system
US6814135B2 (en) Stacked-type evaporator
CN103542619A (en) Heat exchanger unit
JP2011190982A (en) Heat exchanger
JP2008122070A (en) Heat exchanger used as evaporator of air-conditioning unit for vehicle
JP4667134B2 (en) Air conditioner for vehicles
US20160109192A1 (en) Interior heat exchanger
US20140151004A1 (en) Internal Heat Exchanger for an Air Conditioning System
JP2505009Y2 (en) Vehicle cooling system
JP2006097911A (en) Heat exchanger
JP2012510600A (en) Coil type heat exchanger and air conditioner equipped with this coil type heat exchanger
JP2004058863A (en) Air conditioner for vehicle
US20230364972A1 (en) Integrated refrigerant control modules

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250