JP2006044607A - Heat pump type air conditioner for automobile - Google Patents

Heat pump type air conditioner for automobile Download PDF

Info

Publication number
JP2006044607A
JP2006044607A JP2004232084A JP2004232084A JP2006044607A JP 2006044607 A JP2006044607 A JP 2006044607A JP 2004232084 A JP2004232084 A JP 2004232084A JP 2004232084 A JP2004232084 A JP 2004232084A JP 2006044607 A JP2006044607 A JP 2006044607A
Authority
JP
Japan
Prior art keywords
refrigerant
accumulator
pressure
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232084A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hanada
知之 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004232084A priority Critical patent/JP2006044607A/en
Publication of JP2006044607A publication Critical patent/JP2006044607A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type air conditioner for an automobile with high heat exchange efficiency. <P>SOLUTION: The heat pump type air conditioner for the automobile has an accumulator 20 for separating a coolant to a vapor phase coolant and a liquid phase coolant; and an internal heat exchanger 21 for performing heat exchange between the coolant 22 in the high pressure state and the coolant 23 in the low pressure state. Heat exchange is performed between the coolant flowing in the accumulator 20 and the coolant 22 in the high pressure state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はヒートポンプ式の自動車用空調装置に関し、特に、ヒートポンプ式の自動車用空調装置におけるアキュムレータと内部熱交換器の構造に関する。   The present invention relates to a heat pump type automotive air conditioner, and more particularly to a structure of an accumulator and an internal heat exchanger in a heat pump type automotive air conditioner.

従来から、アキュムレータタンクに第1減圧装置を固定し、かつ、アキュムレータタンク内に内部熱交換器を収納して、アキュムレータ、第1減圧装置及び内部熱交換器を一体化したヒートポンプ式の空調装置が知られている(例えば、特許文献1参照)。これにより、第1減圧弁と内部熱交換器とを繋ぐ配管部品を廃止することができる。従って、空調装置の部品点数及び組立工数を低減することができるので、空調装置の製造原価低減を図りつつ、車両搭載性を向上させていた。また、アキュムレータタンク及び内部熱交換器を含めた第1減圧弁の振動系の質量が大きくなり、弁体が振動しても、その他の部品が振動し難くなるので、第1減圧弁にて冷媒を減圧する際に発生する騒音を低減できる。
特開2002−206823号公報
Conventionally, there is a heat pump type air conditioner in which a first pressure reducing device is fixed to an accumulator tank, an internal heat exchanger is accommodated in the accumulator tank, and the accumulator, the first pressure reducing device and the internal heat exchanger are integrated. It is known (see, for example, Patent Document 1). Thereby, the piping components which connect the first pressure reducing valve and the internal heat exchanger can be eliminated. Therefore, since the number of parts and assembly man-hours of the air conditioner can be reduced, the vehicle mountability is improved while reducing the manufacturing cost of the air conditioner. In addition, since the mass of the vibration system of the first pressure reducing valve including the accumulator tank and the internal heat exchanger becomes large, and other components are difficult to vibrate even when the valve body vibrates, Noise generated when the pressure is reduced can be reduced.
JP 2002-206823 A

しかしながら、特許文献1に開示されたヒートポンプ式の空調装置においては、暖房時に圧縮機吸入側での冷媒温度が低いため、暖房時においては熱交換効率が悪かった。さらに、冷房時においても内部熱交換器の熱交換効率が悪かった。   However, in the heat pump type air conditioner disclosed in Patent Document 1, since the refrigerant temperature on the compressor suction side is low during heating, the heat exchange efficiency is poor during heating. Furthermore, the heat exchange efficiency of the internal heat exchanger was poor even during cooling.

本発明の特徴は、冷媒を気相冷媒と液相冷媒とに分離するアキュムレータと、高圧状態の冷媒と低圧状態の冷媒との間で熱交換を行う内部熱交換器とを有するヒートポンプ式の自動車用空調装置であって、アキュムレータを流れる冷媒と高圧状態の冷媒との間で熱交換を行うことを要旨とする。   A feature of the present invention is a heat pump type automobile having an accumulator that separates a refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and an internal heat exchanger that performs heat exchange between the high-pressure refrigerant and the low-pressure refrigerant. The gist of the present invention is to perform heat exchange between the refrigerant flowing through the accumulator and the high-pressure refrigerant.

本発明によれば、熱交換効率が高いヒートポンプ式の自動車用空調装置を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump type motor vehicle air conditioner with high heat exchange efficiency can be provided.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一あるいは類似の部分には同一あるいは類似な符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

図1に示すように、本発明の実施の形態に係わるヒートポンプ式の自動車用空調装置は、冷媒を圧縮する圧縮機5と、車室内に配置された車室内熱交換器6(以後、「サブガスクーラ」と呼ぶ)及び蒸発器7と、冷媒の熱交換が行われる内部熱交換器とアキュムレータを備えるモジュール8と、車室外熱交換器15(以後、「ラジエータ」と呼ぶ)と、これらの部材間を接続する冷媒流路とを有する。冷媒流路上には、四方弁18、第1の逆止弁12a、第2の逆止弁12b、第3の逆止弁12c、第1の膨張弁14a、第2の膨張弁14bが配置され、これらを制御することにより、暖房運転、冷房運転、除湿運転を切り換えることができる。   As shown in FIG. 1, a heat pump type automotive air conditioner according to an embodiment of the present invention includes a compressor 5 that compresses a refrigerant, and a vehicle interior heat exchanger 6 (hereinafter referred to as “sub-vehicle”). A gas cooler), an evaporator 7, a module 8 having an internal heat exchanger and an accumulator for heat exchange of the refrigerant, an exterior heat exchanger 15 (hereinafter referred to as a "radiator"), and these members And a refrigerant flow path connecting the two. A four-way valve 18, a first check valve 12a, a second check valve 12b, a third check valve 12c, a first expansion valve 14a, and a second expansion valve 14b are disposed on the refrigerant flow path. By controlling these, heating operation, cooling operation, and dehumidifying operation can be switched.

圧縮機5は、流入する冷媒を圧縮して吐出する。四方弁18には4つの冷媒流路が接続されており、四方弁18はこれらの冷媒流路の接続を切り換えることができる。また、インテーク17aを切り換えることにより、車室内からの空気を蒸発器7に循環させるか、或いは車室外からの外気を蒸発器7に導入するかを切り換えることが出来る。また、インテーク17bを切り換えることにより、蒸発器7を通過した空気に対してサブガスクーラ6を更に通過させるか否かを切り換えることが出来る。   The compressor 5 compresses and discharges the inflowing refrigerant. Four refrigerant flow paths are connected to the four-way valve 18, and the four-way valve 18 can switch the connection of these refrigerant flow paths. Further, by switching the intake 17a, it is possible to switch between circulating air from the passenger compartment to the evaporator 7 or introducing outside air from outside the passenger compartment to the evaporator 7. Further, by switching the intake 17b, it is possible to switch whether or not the sub gas cooler 6 is further passed through the air that has passed through the evaporator 7.

図示は省略するが、所定の空調コントロールユニットが、圧縮機5、サブガスクーラ6、蒸発器7、モジュール8、第1乃至第3の逆止弁12a〜12c第1及び第2の膨張弁14a、14b、ラジエータ15、四方弁18の動作を制御することにより、車両用空調装置の暖房運転時、冷房運転時及び除湿運転時における冷媒の流路をコントロールする。冷媒として、ここでは二酸化炭素を例にとり説明する。   Although not shown, the predetermined air conditioning control unit includes a compressor 5, a sub gas cooler 6, an evaporator 7, a module 8, first to third check valves 12a to 12c, first and second expansion valves 14a, 14b, the radiator 15, and the four-way valve 18 are controlled to control the refrigerant flow path during the heating operation, the cooling operation, and the dehumidifying operation of the vehicle air conditioner. Here, carbon dioxide will be described as an example of the refrigerant.

図2に示すように、図1のモジュール8は、冷媒を気相冷媒と液相冷媒とに分離するアキュムレータ20と、高圧状態の冷媒と低圧状態の冷媒との間で熱交換を行う内部熱交換器21とを有する。冷媒流路内には気相状態の冷媒と液相状態の冷媒が混在しており、アキュムレータ20は、冷媒流路内の冷媒の気液分離を行う。分離された液相の冷媒はアキュムレータタンクに蓄えられる。一方、内部熱交換器21は、高圧状態の冷媒が流れる高圧部22(圧縮機下流)と、低圧状態の冷媒が流れる低圧部23(圧縮機上流)とを有する。高圧部22を流れる冷媒と低圧部23を流れる冷媒との間で熱交換が行われる。   As shown in FIG. 2, the module 8 in FIG. 1 includes internal heat that exchanges heat between an accumulator 20 that separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, and a high-pressure refrigerant and a low-pressure refrigerant. And an exchanger 21. A gas phase refrigerant and a liquid phase refrigerant are mixed in the refrigerant flow path, and the accumulator 20 performs gas-liquid separation of the refrigerant in the refrigerant flow path. The separated liquid refrigerant is stored in an accumulator tank. On the other hand, the internal heat exchanger 21 has a high-pressure part 22 (downstream of the compressor) through which the high-pressure refrigerant flows and a low-pressure part 23 (upstream of the compressor) through which the low-pressure refrigerant flows. Heat exchange is performed between the refrigerant flowing through the high pressure section 22 and the refrigerant flowing through the low pressure section 23.

アキュムレータ20は円柱状の形状を有し、内部熱交換器21は円筒状の形状を有し、アキュムレータ20の外周に熱的に接触して取り囲むように配置されている。更に、高圧部22及び低圧部23はそれぞれ円筒状の形状を有し、低圧部23は、高圧部22の外側に熱的に接触して取り囲むように配置され、高圧部22は、アキュムレータ20の外側に熱的に接触して取り囲むように配置されている。このように、モジュール8はアキュムレータ20と内部熱交換器21とを一体構造としたものである。アキュムレータ20、内部熱交換器21の高圧部22、及び低圧部23のそれぞれは、円柱/円筒の上部に配置された冷媒の流入口20a、22a、23aと、流出口20b、22b、23bとを有する。冷媒は、流入口20a、22a、23aからアキュムレータ20、高圧部22、及び低圧部23へ供給され、流出口20b、22b、23bから排出される。   The accumulator 20 has a columnar shape, and the internal heat exchanger 21 has a cylindrical shape and is disposed so as to be in thermal contact with and surround the outer periphery of the accumulator 20. Further, each of the high-pressure part 22 and the low-pressure part 23 has a cylindrical shape, and the low-pressure part 23 is disposed so as to be in thermal contact with and surround the outside of the high-pressure part 22. It is arranged so as to be in thermal contact with the outside. As described above, the module 8 is an integral structure of the accumulator 20 and the internal heat exchanger 21. The accumulator 20, the high pressure part 22 and the low pressure part 23 of the internal heat exchanger 21, respectively, have refrigerant inlets 20a, 22a, 23a and outlets 20b, 22b, 23b arranged at the upper part of the cylinder / cylinder. Have. The refrigerant is supplied from the inlets 20a, 22a, and 23a to the accumulator 20, the high-pressure unit 22, and the low-pressure unit 23, and is discharged from the outlets 20b, 22b, and 23b.

次に、暖房、冷房、除湿の各運転時における図1の自動車用空調装置での冷媒の流れについて説明する。   Next, the flow of the refrigerant in the automotive air conditioner of FIG. 1 during each operation of heating, cooling, and dehumidification will be described.

図3に示すように、暖房運転時において、圧縮機5から流出する冷媒は、冷媒流路を通り、サブガスクーラ6を流れる。その後、四方弁18を通り、モジュール8内の内部熱交換器21を流れる。そして、第2の膨張弁14b、第2の逆止弁12bを通り、ラジエータ15を流れる。再び、四方弁18を通り、第3の逆止弁12c、モジュール8内のアキュムレータ20を通り、圧縮機5へ戻る。冷媒は、暖房時にこの循環路を循環する。   As shown in FIG. 3, during the heating operation, the refrigerant flowing out of the compressor 5 passes through the refrigerant flow path and flows through the sub gas cooler 6. Thereafter, it passes through the four-way valve 18 and flows through the internal heat exchanger 21 in the module 8. And it flows through the radiator 15 through the second expansion valve 14b and the second check valve 12b. Again, it passes through the four-way valve 18, passes through the third check valve 12 c and the accumulator 20 in the module 8, and returns to the compressor 5. The refrigerant circulates in this circulation path during heating.

図4に示すように、冷房運転時において、圧縮機5から流出する冷媒は、冷媒流路を通り、サブガスクーラ6を流れる。その後、四方弁18を通り、ラジエータ15を流れる。そして、第1の逆止弁12aを通り、モジュール8内の内部熱交換器21を流れる。そして、第1の膨張弁14a、蒸発器7を通り、モジュール8内のアキュムレータ20、内部熱交換器21を流れ、圧縮機5へ戻る。冷媒は、冷房時にこの循環路を循環する。   As shown in FIG. 4, during the cooling operation, the refrigerant flowing out of the compressor 5 passes through the refrigerant flow path and flows through the sub gas cooler 6. Thereafter, it passes through the four-way valve 18 and flows through the radiator 15. Then, it passes through the first check valve 12 a and flows through the internal heat exchanger 21 in the module 8. Then, it passes through the first expansion valve 14 a and the evaporator 7, flows through the accumulator 20 and the internal heat exchanger 21 in the module 8, and returns to the compressor 5. The refrigerant circulates in this circulation path during cooling.

図5に示すように、除湿運転時において、圧縮機5から流出する冷媒は、冷媒流路を通り、サブガスクーラ6を流れる。その後、四方弁18を通り、モジュール8内の内部熱交換器21を流れる。そして、第1の膨張弁14a、蒸発器7を通り、モジュール8内のアキュムレータ20を流れ、圧縮機5へ戻る。冷媒は、除湿時にこの循環路を循環する。   As shown in FIG. 5, during the dehumidifying operation, the refrigerant flowing out of the compressor 5 passes through the refrigerant flow path and flows through the sub gas cooler 6. Thereafter, it passes through the four-way valve 18 and flows through the internal heat exchanger 21 in the module 8. Then, it passes through the first expansion valve 14 a and the evaporator 7, flows through the accumulator 20 in the module 8, and returns to the compressor 5. The refrigerant circulates in this circulation path during dehumidification.

次に、暖房、冷房、除湿の各運転時における図2のモジュール8での冷媒の流れについて説明する。   Next, the flow of the refrigerant in the module 8 of FIG. 2 during each operation of heating, cooling and dehumidification will be described.

図6に示すように、暖房運転時において、圧縮機5又はラジエータ15からの高圧状態の冷媒は、流入口22aから内部熱交換器21の高圧部22へ流入する。流出口22bから流出した冷媒は、ラジエータ15へ供給される。一方、蒸発器7又はラジエータ15からの低圧状態の冷媒は、流入口20aからアキュムレータ20へ流入し、流出口20bから流出した冷媒は、そのまま圧縮機5へ供給される。   As shown in FIG. 6, during the heating operation, the high-pressure refrigerant from the compressor 5 or the radiator 15 flows into the high-pressure portion 22 of the internal heat exchanger 21 from the inflow port 22a. The refrigerant that has flowed out of the outlet 22 b is supplied to the radiator 15. On the other hand, the low-pressure refrigerant from the evaporator 7 or the radiator 15 flows into the accumulator 20 from the inlet 20a, and the refrigerant flowing out of the outlet 20b is supplied to the compressor 5 as it is.

図7に示すように、冷房運転時において、圧縮機5又はラジエータ15からの高圧状態の冷媒は、流入口22aから内部熱交換器21の高圧部22へ流入する。流出口22bから流出した冷媒は、蒸発器7へ供給される。一方、蒸発器7又はラジエータ15からの低圧状態の冷媒は、流入口20aからアキュムレータ20へ流入する。流出口20bから流出した冷媒は、流入口23aから内部熱交換器21の低圧部23へ流入する。流出口23bから流出した冷媒は、圧縮機5へ供給される。   As shown in FIG. 7, during the cooling operation, the high-pressure refrigerant from the compressor 5 or the radiator 15 flows into the high-pressure part 22 of the internal heat exchanger 21 from the inlet 22a. The refrigerant flowing out from the outlet 22b is supplied to the evaporator 7. On the other hand, the low-pressure refrigerant from the evaporator 7 or the radiator 15 flows into the accumulator 20 from the inflow port 20a. The refrigerant that has flowed out of the outlet 20b flows into the low pressure part 23 of the internal heat exchanger 21 from the inlet 23a. The refrigerant that has flowed out of the outlet 23 b is supplied to the compressor 5.

図8に示すように、除湿運転時において、圧縮機5又はラジエータ15からの高圧状態の冷媒は、流入口22aから内部熱交換器21の高圧部22へ流入する。流出口22bから流出した冷媒は、蒸発器7へ供給される。一方、蒸発器7又はラジエータ15からの低圧状態の冷媒は、流入口20aからアキュムレータ20へ流入する。流出口20bから流出した冷媒は、そのまま圧縮機5へ供給される。   As shown in FIG. 8, during the dehumidifying operation, the high-pressure refrigerant from the compressor 5 or the radiator 15 flows into the high-pressure section 22 of the internal heat exchanger 21 from the inlet 22a. The refrigerant flowing out from the outlet 22b is supplied to the evaporator 7. On the other hand, the low-pressure refrigerant from the evaporator 7 or the radiator 15 flows into the accumulator 20 from the inflow port 20a. The refrigerant flowing out from the outlet 20b is supplied to the compressor 5 as it is.

以上説明したように、本発明の実施の形態によれば、アキュムレータ20を流れる冷媒と内部熱交換器21内の高圧部22を流れる冷媒との間で熱交換を行うことで、内部熱交換器21以外でも熱交換を行うことができるため、熱交換効率が向上する。   As described above, according to the embodiment of the present invention, heat exchange is performed between the refrigerant flowing through the accumulator 20 and the refrigerant flowing through the high-pressure portion 22 in the internal heat exchanger 21, so that the internal heat exchanger Since heat exchange can be performed even if it is other than 21, heat exchange efficiency is improved.

また、アキュムレータ20の外側に内部熱交換器21の高圧部22を設置し、さらにその外側に内部熱交換器21の低圧部23を設置する、即ちアキュムレータ20と高圧部22、高圧部22と低圧部23との間でそれぞれ熱交換が行えるように設置することで、アキュムレータ20と内部熱交換器21が一体構造化でき、低圧部23で高圧部22及びアキュムレータ20を覆うことで、保温性を確保できるので、さらに熱交換効率が向上する。   Moreover, the high pressure part 22 of the internal heat exchanger 21 is installed outside the accumulator 20, and the low pressure part 23 of the internal heat exchanger 21 is installed outside thereof, that is, the accumulator 20, the high pressure part 22, the high pressure part 22 and the low pressure part. The heat accumulator 20 and the internal heat exchanger 21 can be integrated with each other by installing them so that heat can be exchanged with the parts 23, and the high pressure part 22 and the accumulator 20 are covered with the low pressure parts 23, so Since it can be secured, the heat exchange efficiency is further improved.

また、冷房運転時には高圧部22及び低圧部23とアキュムレータ20に低圧状態の冷媒が流れるように冷媒流路の切り換えを行う、即ちアキュムレータ20と高圧部22、高圧部22と低圧部23の間でそれぞれ熱交換を行うことで、モジュール8の大型化を最小限に抑えることができ、冷房時における熱交換効率が向上する。   In the cooling operation, the refrigerant flow is switched so that the low-pressure refrigerant flows through the high-pressure unit 22 and the low-pressure unit 23 and the accumulator 20, that is, between the accumulator 20 and the high-pressure unit 22, and between the high-pressure unit 22 and the low-pressure unit 23. By performing each heat exchange, the increase in size of the module 8 can be minimized, and the heat exchange efficiency during cooling is improved.

また、暖房運転時及び除湿運転時にはアキュムレータ20のみに冷媒が流れるように冷媒流路を切り換える、即ち低圧部23に冷媒を流さず、アキュムレータ20と高圧部22の間で熱交換を行うことで、圧縮機5の吸入側での冷媒の圧力を効率良く上げることができ、暖房・除湿時における熱交換効率及び空調システムの効率が向上する。   Further, at the time of heating operation and dehumidifying operation, the refrigerant flow path is switched so that the refrigerant flows only to the accumulator 20, that is, the refrigerant is not flowed to the low pressure part 23, and heat exchange is performed between the accumulator 20 and the high pressure part 22, The refrigerant pressure on the suction side of the compressor 5 can be increased efficiently, and the heat exchange efficiency and the efficiency of the air conditioning system during heating and dehumidification are improved.

上記のように、本発明は、1つの実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As described above, the present invention has been described by way of one embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

本発明の実施の形態に係わるヒートポンプ式の自動車用空調装置を示すブロック図である。1 is a block diagram showing a heat pump type automotive air conditioner according to an embodiment of the present invention. 図1のモジュール内のアキュムレータ及び内部熱交換器を示す斜視図である。It is a perspective view which shows the accumulator and internal heat exchanger in the module of FIG. 暖房運転時における図1の自動車用空調装置での冷媒の流れを示すブロック図である。It is a block diagram which shows the flow of the refrigerant | coolant in the motor vehicle air conditioner of FIG. 1 at the time of heating operation. 冷房運転時における図1の自動車用空調装置での冷媒の流れを示すブロック図である。It is a block diagram which shows the flow of the refrigerant | coolant in the motor vehicle air conditioner of FIG. 1 at the time of air_conditionaing | cooling operation. 除湿運転時における図1の自動車用空調装置での冷媒の流れを示すブロック図である。It is a block diagram which shows the flow of the refrigerant | coolant in the motor vehicle air conditioner of FIG. 1 at the time of a dehumidification driving | operation. 暖房運転時における図2のモジュールでの冷媒の流れを示す斜視図である。It is a perspective view which shows the flow of the refrigerant | coolant in the module of FIG. 2 at the time of heating operation. 冷房運転時における図2のモジュールでの冷媒の流れを示す斜視図である。It is a perspective view which shows the flow of the refrigerant | coolant in the module of FIG. 2 at the time of air_conditionaing | cooling operation. 除湿運転時における図2のモジュールでの冷媒の流れを示す斜視図である。It is a perspective view which shows the flow of the refrigerant | coolant in the module of FIG. 2 at the time of a dehumidification driving | operation.

符号の説明Explanation of symbols

5…圧縮機
6…車室内熱交換器(ラブガスクーラ)
7…蒸発器
8…モジュール
12a…第1の逆止弁
12b…第2の逆止弁
12c…第3の逆止弁
14a…第1の膨張弁
14b…第2の膨張弁
15…車室外熱交換器(ラジエータ)
17a、17b…インテーク
18…四方弁
20…アキュムレータ
20a、22a、23a…流入口
20b、22b、23b…流出口
21…内部熱交換器
22…高圧部
23…低圧部
5 ... Compressor 6 ... Vehicle interior heat exchanger (Love gas cooler)
DESCRIPTION OF SYMBOLS 7 ... Evaporator 8 ... Module 12a ... 1st check valve 12b ... 2nd check valve 12c ... 3rd check valve 14a ... 1st expansion valve 14b ... 2nd expansion valve 15 ... Car exterior heat Exchanger (radiator)
17a, 17b ... Intake 18 ... Four-way valve 20 ... Accumulator 20a, 22a, 23a ... Inlet 20b, 22b, 23b ... Outlet 21 ... Internal heat exchanger 22 ... High pressure part 23 ... Low pressure part

Claims (4)

冷媒を気相冷媒と液相冷媒とに分離するアキュムレータと、
高圧状態の冷媒と低圧状態の冷媒との間で熱交換を行う内部熱交換器とを有し、
前記アキュムレータを流れる前記冷媒と前記高圧状態の冷媒との間で熱交換を行うことを特徴とするヒートポンプ式の自動車用空調装置。
An accumulator for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant;
An internal heat exchanger that exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant;
A heat pump type automotive air conditioner that performs heat exchange between the refrigerant flowing through the accumulator and the high-pressure refrigerant.
前記アキュムレータの外側に前記高圧状態の冷媒が流れる前記内部熱交換器の高圧部を配置し、前記高圧部の外側に前記低圧状態の冷媒が流れる前記内部熱交換器の低圧部を配置することを特徴とする請求項1記載のヒートポンプ式の自動車用空調装置。   Disposing a high-pressure portion of the internal heat exchanger through which the high-pressure refrigerant flows outside the accumulator, and disposing a low-pressure portion of the internal heat exchanger through which the low-pressure refrigerant flows outside the high-pressure portion. 2. A heat pump type automotive air conditioner as claimed in claim 1. 冷房運転時には、前記アキュムレータを流れる前記冷媒と前記高圧状態の冷媒との間で熱交換を行い、前記高圧状態の冷媒と前記低圧状態の冷媒との間で熱交換を行うことを特徴とする請求項1又は2記載のヒートポンプ式の自動車用空調装置。   During cooling operation, heat exchange is performed between the refrigerant flowing through the accumulator and the high-pressure refrigerant, and heat exchange is performed between the high-pressure refrigerant and the low-pressure refrigerant. Item 3. The heat pump type automobile air conditioner according to Item 1 or 2. 暖房運転時及び除湿運転時には、前記アキュムレータを流れる前記冷媒と前記高圧状態の冷媒との間で熱交換を行うことを特徴とする請求項1又は2記載のヒートポンプ式の自動車用空調装置。   The heat pump type automotive air conditioner according to claim 1 or 2, wherein heat exchange is performed between the refrigerant flowing through the accumulator and the high-pressure refrigerant during heating operation and dehumidifying operation.
JP2004232084A 2004-08-09 2004-08-09 Heat pump type air conditioner for automobile Pending JP2006044607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232084A JP2006044607A (en) 2004-08-09 2004-08-09 Heat pump type air conditioner for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232084A JP2006044607A (en) 2004-08-09 2004-08-09 Heat pump type air conditioner for automobile

Publications (1)

Publication Number Publication Date
JP2006044607A true JP2006044607A (en) 2006-02-16

Family

ID=36023653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232084A Pending JP2006044607A (en) 2004-08-09 2004-08-09 Heat pump type air conditioner for automobile

Country Status (1)

Country Link
JP (1) JP2006044607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044607A (en) * 2006-08-11 2008-02-28 Visteon Global Technologies Inc Refrigerant circuit system
JP2008110752A (en) * 2006-10-27 2008-05-15 Visteon Global Technologies Inc Accumulator and mounting device for combination module comprising internal heat exchanger
WO2013035130A1 (en) * 2011-09-06 2013-03-14 株式会社ヴァレオジャパン Vehicle air-conditioning apparatus
WO2014171107A1 (en) * 2013-04-18 2014-10-23 株式会社デンソー Refrigeration cycle device
WO2020137236A1 (en) * 2018-12-26 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioning device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044607A (en) * 2006-08-11 2008-02-28 Visteon Global Technologies Inc Refrigerant circuit system
JP4657266B2 (en) * 2006-08-11 2011-03-23 ビステオン グローバル テクノロジーズ インコーポレイテッド Refrigerant circuit system
JP2008110752A (en) * 2006-10-27 2008-05-15 Visteon Global Technologies Inc Accumulator and mounting device for combination module comprising internal heat exchanger
WO2013035130A1 (en) * 2011-09-06 2013-03-14 株式会社ヴァレオジャパン Vehicle air-conditioning apparatus
JP5367186B2 (en) * 2011-09-06 2013-12-11 株式会社ヴァレオジャパン Air conditioner for vehicles
US9902235B2 (en) 2011-09-06 2018-02-27 Valeo Japan Co., Ltd. Vehicle air-conditioning apparatus
WO2014171107A1 (en) * 2013-04-18 2014-10-23 株式会社デンソー Refrigeration cycle device
JP2014211265A (en) * 2013-04-18 2014-11-13 株式会社デンソー Refrigeration cycle device
CN105121977A (en) * 2013-04-18 2015-12-02 株式会社电装 Refrigeration cycle device
CN105121977B (en) * 2013-04-18 2017-03-08 株式会社电装 Refrigerating circulatory device
US10000108B2 (en) 2013-04-18 2018-06-19 Denso Corporation Refrigeration cycle device
WO2020137236A1 (en) * 2018-12-26 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioning device

Similar Documents

Publication Publication Date Title
US8393162B2 (en) Temperature control system for seat of vehicles
US20140096560A1 (en) Cooling system for vehicle
US11338646B2 (en) Device for distributing the coolant in an air-conditioning system of a motor vehicle
US10113804B2 (en) Heat exchanger and air conditioning device
JP2001059420A (en) Heat exchanger
JPWO2014156585A1 (en) Air conditioner for vehicles
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP7330482B2 (en) heat pump system
JP6357322B2 (en) Automotive air conditioner
JP6357321B2 (en) Automotive air conditioner
JP2006044607A (en) Heat pump type air conditioner for automobile
JP2005289095A (en) Vehicular air-conditioner
JP2001277842A (en) Air conditioner for automobile
JP2007518624A (en) Air conditioner
JP6459807B2 (en) Ejector refrigeration cycle
JP2017040421A (en) Heat exchanger and heat pump system
US10300767B2 (en) Heat exchanger and radiator-condenser unit
US6363742B1 (en) Accumulator for an air conditioning system
JP5235515B2 (en) Air conditioner for vehicles
JP2019073252A (en) Vehicle air conditioner
US20220049780A1 (en) Multifunctional expansion valve
US20240060705A1 (en) Refrigerant circulation apparatus
US20230143363A1 (en) Refrigerant module of integrated thermal management system for vehicle
JP2007118760A (en) Accumulator for vehicular air conditioner and vehicular air conditioner
WO2016031155A1 (en) Ejector-type refrigeration cycle