WO2007013439A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2007013439A1
WO2007013439A1 PCT/JP2006/314643 JP2006314643W WO2007013439A1 WO 2007013439 A1 WO2007013439 A1 WO 2007013439A1 JP 2006314643 W JP2006314643 W JP 2006314643W WO 2007013439 A1 WO2007013439 A1 WO 2007013439A1
Authority
WO
WIPO (PCT)
Prior art keywords
bent
heat exchanger
heat
heat exchange
peripheral surface
Prior art date
Application number
PCT/JP2006/314643
Other languages
French (fr)
Japanese (ja)
Inventor
Hironaka Sasaki
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to DE112006001982T priority Critical patent/DE112006001982T5/en
Publication of WO2007013439A1 publication Critical patent/WO2007013439A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the present invention relates to a heat exchanger, and more specifically, for example, a compressor, a gas cooler, an evaporator, a gas-liquid separator, a refrigerant that has come out of the gas cooler, and a refrigerant that has come out of the evaporator and has passed through the gas-liquid separator
  • a heat exchanger for example, a compressor, a gas cooler, an evaporator, a gas-liquid separator, a refrigerant that has come out of the gas cooler, and a refrigerant that has come out of the evaporator and has passed through the gas-liquid separator
  • An intermediate heat exchanger for exchanging heat and
  • the term “aluminum” includes aluminum alloys in addition to pure aluminum.
  • the term “supercritical refrigeration cycle” means a refrigeration cycle in which the refrigerant reaches a supercritical state exceeding the critical pressure on the high-pressure side. Means refrigerant used in the supercritical refrigeration cycle.
  • the supercritical refrigeration cycle has passed through the accumulator from the compressor, gas cooler, evaporator, accumulator as gas-liquid separator, expansion valve as decompressor, and high-temperature and high-pressure refrigerant and evaporator that came out of the gas cooler. It is equipped with an intermediate heat exchanger that exchanges heat with a low-temperature and low-pressure refrigerant.
  • the intermediate heat exchange in the supercritical refrigeration cycle is a heat exchanger that was not found in the conventional refrigeration cycle using a chlorofluorocarbon refrigerant, and the intermediate heat exchange is efficiently stored in the engine room of the automobile. However, it is currently considered to be placed in the engine room between the gas cooler and the evaporator.
  • a straight outer pipe As the heat exchange ⁇ used for the intermediate heat exchange ⁇ in the supercritical refrigeration cycle described above, a straight outer pipe, a straight inner pipe arranged concentrically at intervals in the outer pipe, and It is fixed to both ends of the heat exchange part, which is made up of fins that are integrally formed so as to extend in the length direction of the inner pipe, with a space in the circumferential direction on the outer peripheral surface of the inner pipe, and both the inner and outer pipes of the heat exchange part.
  • the gap between the outer and inner pipes of the heat exchange section is the first fluid passage and the inner pipe is the second fluid passage.
  • the refrigerant flowing through each passage portion can be efficiently mixed in both fluid passages.
  • the heat exchange efficiency between the flowing refrigerants may be insufficient.
  • Patent Document 1 International Publication No. 03Z085344 Pamphlet
  • An object of the present invention is to provide a heat exchange that can solve the above-described problems and can reduce the installation space.
  • the present invention has the following aspect power to achieve the above object.
  • the heat exchanging portion has a plurality of bent portions, and includes a bent portion bent in one plane including the axes of both the inner and outer tubes and the axes of the inner and outer tubes, and the above The heat exchange as described in 1) above, in which a bent part bent in another plane intersecting the plane is mixed ⁇
  • a compressor, a gas cooler, an evaporator, a gas-liquid separator, a pressure reducer, and a gas cooler force are provided, and an intermediate heat exchanger ⁇ that exchanges heat between the refrigerant that has come out and the refrigerant that has come out of the evaporator A refrigeration cycle using a supercritical refrigerant, wherein the intermediate heat exchange ⁇ is the heat exchange described in 1) above.
  • Coolant heating heat exchanger that exchanges heat between the high-temperature and high-pressure heat medium compressed by the compressor, outdoor heat exchanger, gas-liquid separator, decompressor, and engine power and engine coolant sent to the heater core And a heating cycle using a supercritical heat medium, wherein the heat exchange for heating the coolant is the heat exchange described in 1) above.
  • the engine coolant flows in the first fluid passage of the heat exchanger for heating the coolant, and the high-temperature and high-pressure heat medium compressed by the compressor also flows in the second fluid passage.
  • the heat exchange section is bent at at least one location, the total heat transfer between the fluids flowing in the first and second fluid passages of the heat exchange section. Even if the area is made as large as necessary to obtain the desired heat exchange performance, the linear spacing between the two connectors is shorter than the intermediate heat exchange described in Patent Document 1. Therefore, the linear length of the installation space for heat exchange can be made smaller than that of the heat exchanger described in Patent Document 1. For example, when it is mounted on an automobile, it can be bent into an arbitrary shape according to the empty space of the automobile, and the space in the engine room of the automobile can be used effectively.
  • the heat transfer area between the fluids flowing in the first and second fluid passages is increased, and the heat exchange efficiency is improved. Also, since the fins are formed integrally with the inner tube, the number of parts is reduced.
  • the inner tube is fixed to the outer tube, and the generation of abnormal noise due to vibration can be prevented.
  • the heat exchanger of 5) above When the heat exchanger of 5) above is mounted on a car, for example, it can be bent into any shape according to the free space of the car, making space in the engine room of the car effective. It can be used and the realization becomes high.
  • the tip end portions of some fins contact the inner peripheral surface of the bent inner portion and the bent outer portion of the outer tube. If the inner tube is sandwiched and fixed by the bent inner part and the bent outer part of the outer tube through the fins, the effect of preventing the generation of noise due to the inner tube being fixed to the outer tube is obtained. Further improvement.
  • the tip of one fin in the cross section of the bent portion of the heat exchanging portion, is in contact with the inner peripheral surface of the bent inner portion and the bent outer portion of the outer tube. If there is a fluid mixing part with a gap formed between the tip of the fin and the inner peripheral surface of the outer pipe on both sides in the circumferential direction, the axis of both the inner and outer pipes are included.
  • the bent portion bent in one plane and the bent portion bent in the other plane including the axis of both the inner and outer tubes and intersecting the plane are both the inner and outer tubes of the fluid mixing portion. The positions in the circumferential direction are different. Therefore, the fluid flowing in the first fluid passage is
  • the fluid mixing part In combination with the inertial force when passing through each bending part, the fluid mixing part will mix more efficiently, and the fluid flowing in both fluid passages due to the turbulent flow effect and the fluid temperature equalizing effect The effect of improving the heat exchange performance between the two becomes remarkable.
  • FIG. 1 shows the overall configuration of a first embodiment of a heat exchanger according to the present invention
  • FIGS. 2 to 4 show the configuration of the main part thereof.
  • Fig. 5 shows a supercritical refrigeration cycle using the heat exchanger of Fig. 1 as an intermediate heat exchanger.
  • the heat exchanger (1) has an outer tube (2) having a circular cross section and an inner tube having a circular cross section inserted concentrically into the outer tube (2) at intervals.
  • the heat exchange section (10) consisting of fins (4) provided on the outer peripheral surface of the pipe (3) and the inner pipe (3), and both pipes (2) and (3) of the heat exchange section (10)
  • With a fixed connector (5) and the heat exchanger (10), i.e. both pipes (2) (3) contain at least one axis, here the axis of both pipes (2) (3) It is bent at two points in one horizontal plane (P).
  • the bent part is indicated by (10A).
  • the outer tube (2) is also a metal, in this case, an aluminum extruded profile.
  • the inner tube (3) is also a metal, here an aluminum extruded profile, and has a plurality of fins (4) force circumferentially spaced on its outer peripheral surface and in the length direction of the inner tube (3). It is integrally formed to extend.
  • the linear part (10B) of the heat exchange part (10) excluding the bent part (10 A) there is a slight gap between the tip of the fin (4) and the outer peripheral surface of the outer pipe (2). Exists (see Figure 2). Both ends of the inner tube (3) protrude outward from the outer tube (2), and the fin (4) is cut off over the entire outer protruding portion (3a), and the finless portion (8) is removed.
  • a plurality of inner fins (9) extending over the entire length are integrally formed on the inner peripheral surface of the inner pipe (3) at intervals in the circumferential direction (see FIGS. 2 and 3).
  • the gap between the outer pipe (2) and the inner pipe (3) is the first fluid passage (6), and the inner pipe (3) is the second fluid passage (7). It has become.
  • the heat exchanging section (10) is formed by inserting a straight inner pipe (3) into a straight outer pipe (2) and then applying bending calorie. This bending cache is applied either before or after fixing the connector (5) to both pipes (2) and (3).
  • the outer pipe (2) is placed on the plane (P) with the bending center and the axis of the outer pipe (2). Slightly crushed in the direction of connecting.
  • the cross section of the bent portion (10A) of the heat exchange section (10) that is, the cross section orthogonal to the plane (P) (corresponding to the cross section along line B-B in FIG.
  • the tip of the fin (4) is in contact with the inner peripheral surface of the bent inner part (2a) and outer bent part (2b) of the outer pipe (2), and the inner bent part ( The inner pipe (3) is clamped and fixed via the fin (4) by the bent outer part (2b) and 2a).
  • the tips of some fins (4) are bent inner portions (2a) and outer bent portions (2) of the outer tube (2).
  • the gap between the tip of the fin (4) and the outer tube (2) inner circumferential surface is linear.
  • Part (10B ) Between the front end of the fin (4) and the outer peripheral surface of the outer tube (2), and the fluid mixing part (20) is formed there.
  • the connector (5) has a blocking force made of metal, here aluminum, and has a horizontal cylindrical part (5a) and a rectangular parallelepiped part connected to the upper end of the cylindrical part (5a). (5b).
  • the left connector (5) will be described.
  • an annular wall (11) is integrally formed so as to protrude rightward, so that the outer pipe fits into the end of the outer pipe (2).
  • a recess (12) is formed.
  • One end of the connector (5) opens to a portion surrounded by the annular wall (11) on the right end surface of the cylindrical portion (5a), and the other end opens to the upper surface of the rectangular parallelepiped portion (5b).
  • a flow path (13) communicating with the first fluid path (6) is formed.
  • a hole (14) is formed.
  • the left side portion of the finless portion (8) of the inner pipe (3) is inserted into the through hole (14).
  • the left end of the finless part (8) protrudes outward from the opening on the left end face side of the cylindrical part (5a) in the through hole (14), and the finless part (8) of the inner pipe (3)
  • the outer peripheral surface is joined to the peripheral edge of the left end opening of the through hole (14) in the cylindrical portion (5a). This joining is performed by brazing, here torch brazing.
  • An annular wall (15) is integrally formed on the left end surface of the cylindrical portion (5a) of the connector (5) around the through hole (14) so as to protrude leftward.
  • the left end of the fin-free part (8) of the inner pipe (3) protrudes to the left of the annular wall (15), and the part protruding from the annular wall (15) and the annular part of the fin-free part (8)
  • a union screw (16) is arranged to cover the wall (15).
  • the annular wall (15) is fitted into the large diameter part (17a) of the right end of the through hole (17) formed in the union screw (16), and the left end of the finless part (8) is the through hole (17). Is fitted into a small diameter portion (17b) connected to the right end large diameter portion (17a).
  • the right end of the union screw (16) is fitted in an annular recess (18) formed in the peripheral portion of the annular wall (15) on the left end surface of the cylindrical portion (5a), and the union screw (16) The right end of the outer peripheral surface of the cylinder and the inner peripheral surface of the recess (18) in the cylindrical portion (5a) It is joined. This joining is performed by brazing, here torch brazing.
  • the union screw (16) of one connector (5) is used to connect a pipe for supplying fluid into the second fluid passage (7), and the union screw (16 of the other connector (5) ) Is used to connect a pipe for draining fluid from the second fluid passage (7).
  • the connector (5) has a female screw hole (19) extending downward from the upper surface of the rectangular parallelepiped portion (5b).
  • the female screw hole (19) of one connector (5) is used to connect a piping nove for supplying fluid into the first fluid passage (6), and the female screw of the other connector (5).
  • the hole (19) is used to connect a piping pipe for discharging the fluid from the first fluid passage (6).
  • the right connector (5) is opposite to the left connector (5), and is fixed to the outer tube (2) and inner tube (3) in the same way as the left connector (5). ing.
  • FIG. 5 shows a supercritical refrigeration cycle using the heat exchange (l) described above as an intermediate heat exchange.
  • the supercritical refrigeration cycle uses CO as a supercritical refrigerant.
  • Refrigerant and evaporator from the compressor (21), gas cooler (22), evaporator (23), accumulator (24) as gas-liquid separator, expansion valve (25) as decompressor, and gas cooler (22) Provide intermediate heat exchange (l) to exchange heat with the refrigerant from (23)!
  • the supercritical refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.
  • Fig. 6 shows the same configuration as that of the heat exchanger (1) of the example except that the heat exchanger (1) of the first embodiment (1) (example) and a heat exchanger that is straight as a whole are provided.
  • the heat exchange performance with heat exchange is shown.
  • the substantial length of the heat exchanging portion (10) including the bent portion (10A) in the heat exchanger of the embodiment is equal to the linear length of the heat exchanging portion of the heat exchanger of the comparative example. From the results shown in Fig. 6, the heat exchange performance of the heat exchange (l) of the example is superior to that of the comparative example ⁇ . I understand.
  • FIG. 7 shows a second embodiment of the heat exchanger according to the present invention.
  • the heat exchange section (10) that is, both pipes (2) (3) are bent at at least one place, here three places.
  • the heat exchanging part (10) is the force bent in one plane (P1) (P2) (P3) including the axes of both pipes (2) (3).
  • the planes (P1), (P2), and (P3) cross each other.
  • the outer tube (2) has a bending center. It is slightly crushed in the direction connecting the axis of the outer tube (2). Then, along the cross section of the bent portion (10A) of the heat exchange section (10), that is, the cross section orthogonal to the plane (P1XP2XP3), the tip of the fin (4) of a part of the inner pipe (3) is The inner side (2a) and the outer side (2b) of the outer pipe (2) are in contact with the inner peripheral surface of the outer side (2a) and the outer side (2b). Thus, the inner tube (3) is clamped and fixed via the fin (4).
  • the end of some fins (4) are connected to the bent inner part (2a) and outer bent part of the outer tube (2) in the cross section of the bent part (10A) of the heat exchange part (10).
  • the gap between the tip of the fin (4) and the outer tube (2) inner circumferential surface is the fin in the linear portion (10B) on both sides in the circumferential direction of the portion that abuts (2b). It is larger than the space between the tip of (4) and the outer pipe (2) and the inner peripheral surface, and a fluid mixing section (20) is formed here.
  • the planes (P1), (P2), and (P3) cross each other, the position of the fluid mixing section (20) of each bending section (1 OA) is set to both pipes (2) (3 ) Is different in the circumferential direction.
  • FIG. And super 2 shows a heating cycle using a field heat medium.
  • the heating cycle uses CO as the supercritical heat medium
  • Heat exchanger (1X30) for heating the coolant that exchanges heat between the high-temperature and high-pressure heat medium compressed by the presser (50) and compressor (50) and the engine coolant sent from the engine (51) to the heater core (52)
  • An expansion valve (53) as a pressure reducer for reducing the pressure of the heat medium that has passed through the coolant heating heat exchanger (1X30), and an outdoor heat exchanger (54) for evaporating the heat medium depressurized by the expansion valve (53)
  • an accumulator (55) as a gas-liquid separator for separating the liquid in the heat medium sent from the outdoor heat exchanger (54) to the compressor (50).
  • the heating cycle is installed in a vehicle such as an automobile as a car air conditioner.
  • carbon dioxide is used as the supercritical refrigerant and supercritical heat medium, but is not limited to this, and ethylene, ethane, nitric oxide, and the like can also be used.
  • heat exchange is performed, for example, with a compressor, a gas cooler, an evaporator, a gas-liquid separator, and a gas cooler force.
  • ⁇ and CO intermediate heat exchange
  • FIG. 1 is an overall perspective view showing a first embodiment of a heat exchanger according to the present invention.
  • FIG. 2 is an enlarged sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged sectional view taken along line BB in FIG.
  • FIG. 4 is an enlarged sectional view taken along line CC in FIG.
  • V5 A diagram showing a supercritical refrigeration cycle using the heat exchanger of the first embodiment as an intermediate heat exchanger.
  • FIG. 7 is an overall perspective view showing a second embodiment of the heat exchange according to the present invention.
  • FIG. 8 is a diagram showing a heating cycle in which the heat exchangers of the first and second embodiments are used as a heat exchanger for heating a coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger, comprising a heat exchanging part (10) having an outer tube (2), an inner tube (3), and a plurality of fins (4) integrally formed on the outer peripheral surface of the inner tube (3) extendedly in the longitudinal direction. The heat exchanging part (10) is bent at at least one position. In the cross section of the bent portion (10A) of the heat exchanging part (10), the tip parts of a part of the fins (4) are brought into contact with the inner peripheral surface of the bent inner portion (2a) and the inner peripheral surface of the bent outer portion (2b) of the outer tube (2), and the inner tube (3) is fixedly held by the bent inner portion (2a) and the bent outer portion (2b) of the outer tube (2) through the fins (4). In the cross section above, fluid mixing parts (20) having clearances between the tip parts of the fins (4) and the inner peripheral surface of the outer tube (2) are formed on the peripheral both sides of the portion where the tip parts of the part of fins (4) are brought into contact with the inner peripheral surface of the bent inner portion (2a) and the inner peripheral surface of the bent outer portion (2b) of the outer tube (2). Thus, an installation space for the heat exchanger can be rather reduced and the heat exchanging performance thereof can be increased.

Description

明 細 書  Specification
熱交換器  Heat exchanger
技術分野  Technical field
[0001] この発明は熱交^^に関し、さらに詳しくは、たとえばコンプレッサ、ガスクーラ、ェ バポレータ、気液分離器およびガスクーラから出てきた冷媒とエバポレータから出て 気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とを備えており、かつ [0001] The present invention relates to a heat exchanger, and more specifically, for example, a compressor, a gas cooler, an evaporator, a gas-liquid separator, a refrigerant that has come out of the gas cooler, and a refrigerant that has come out of the evaporator and has passed through the gas-liquid separator An intermediate heat exchanger for exchanging heat, and
COのような超臨界冷媒を用いる超臨界冷凍サイクルにおいて、中間熱交^^としIn a supercritical refrigeration cycle using a supercritical refrigerant such as CO,
2 2
て好適に用いられる熱交^^に関する。  It is related to the heat exchange ^^ used suitably.
[0002] この明細書および請求の範囲において、「アルミニウム」という用語には、純アルミ- ゥムの他にアルミニウム合金を含むものとする。また、この明細書および請求の範囲 において、「超臨界冷凍サイクル」とは、高圧側において、冷媒が臨界圧力を超えた 超臨界状態となる冷凍サイクルを意味するものとし、「超臨界冷媒」とは、超臨界冷凍 サイクルに用いられる冷媒を意味するものとする。  In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum. In this specification and claims, the term “supercritical refrigeration cycle” means a refrigeration cycle in which the refrigerant reaches a supercritical state exceeding the critical pressure on the high-pressure side. Means refrigerant used in the supercritical refrigeration cycle.
背景技術  Background art
[0003] 従来、自動車に搭載されるカーエアコンとして、コンプレッサ、コンデンサ、エバポレ ータ、気液分離器および減圧器力もなり、かつフロン系冷媒を使用する冷凍サイクル 力 なるものが広く使用されている。  [0003] Conventionally, as a car air conditioner mounted on an automobile, a compressor, a condenser, an evaporator, a gas-liquid separator, a decompressor, and a refrigeration cycle that uses a fluorocarbon refrigerant have been widely used. .
[0004] ところが、近年においては、環境保護を目的として、 COのような超臨界冷媒を用い  [0004] However, in recent years, supercritical refrigerants such as CO have been used for environmental protection.
2  2
る超臨界冷凍サイクルをカーエアコンとして自動車に搭載することが考えられて 、る。  It is considered to install a supercritical refrigeration cycle in a car as a car air conditioner.
[0005] 超臨界冷凍サイクルは、コンプレッサ、ガスクーラ、エバポレータ、気液分離器として のアキュムレータ、減圧器としての膨張弁、およびガスクーラから出てきた高温高圧の 冷媒とエバポレータから出てアキュムレータを通過してきた低温低圧の冷媒とを熱交 換させる中間熱交^^とを備えたものである。 [0005] The supercritical refrigeration cycle has passed through the accumulator from the compressor, gas cooler, evaporator, accumulator as gas-liquid separator, expansion valve as decompressor, and high-temperature and high-pressure refrigerant and evaporator that came out of the gas cooler. It is equipped with an intermediate heat exchanger that exchanges heat with a low-temperature and low-pressure refrigerant.
[0006] ところで、超臨界冷凍サイクルにおける中間熱交 は、従来のフロン系冷媒を使 用した冷凍サイクルにはなかった熱交換器であり、自動車のエンジンルーム内に中 間熱交 を効率良く収納することが課題となっており、現在のところエンジンルー ム内のガスクーラとエバポレータとの間の部分に配置することが考えられている。 [0007] 上述した超臨界冷凍サイクルの中間熱交^^に用いられる熱交^^として、真つ 直ぐな外管、外管内に間隔をおいて同心状に配置された真っ直ぐな内管、および内 管の外周面に周方向に間隔をおき、かつ内管の長さ方向に伸びるように一体に形成 されたフィンよりなる熱交換部と、熱交換部の内外両管の両端部に固定されたコネク タとを備えており、熱交換部の外管と内管との間の間隙が第 1の流体通路となってい るとともに内管内が第 2の流体通路となっており、各コネクタに、熱交換部の第 1流体 通路を外部に通じさせる第 1流路、および第 1流路に対して独立しかつ熱交換部の 第 2流体通路を外部に通じさせる第 2流路が形成され、すべてのフィンの先端部が外 管の内周面に当接しているものが知られている (特許文献 1参照)。 [0006] By the way, the intermediate heat exchange in the supercritical refrigeration cycle is a heat exchanger that was not found in the conventional refrigeration cycle using a chlorofluorocarbon refrigerant, and the intermediate heat exchange is efficiently stored in the engine room of the automobile. However, it is currently considered to be placed in the engine room between the gas cooler and the evaporator. [0007] As the heat exchange ^^ used for the intermediate heat exchange ^^ in the supercritical refrigeration cycle described above, a straight outer pipe, a straight inner pipe arranged concentrically at intervals in the outer pipe, and It is fixed to both ends of the heat exchange part, which is made up of fins that are integrally formed so as to extend in the length direction of the inner pipe, with a space in the circumferential direction on the outer peripheral surface of the inner pipe, and both the inner and outer pipes of the heat exchange part. The gap between the outer and inner pipes of the heat exchange section is the first fluid passage and the inner pipe is the second fluid passage. A first flow path that communicates the first fluid passage of the heat exchange section to the outside, and a second flow path that is independent of the first flow path and communicates the second fluid path of the heat exchange section to the outside. It is known that the tip portions of all fins are in contact with the inner peripheral surface of the outer tube (see Patent Document 1).
[0008] 特許文献 1記載の中間熱交換器において、熱交換部の第 1流体通路内を流れる冷 媒と第 2流体通路内を流れる冷媒との間の熱交換性能を所望のものとするには、両 流体通路内を流れる流体間の伝熱面積を大きくする必要がある。し力しながら、この 場合、内外両管の長さを長くしなければならず、し力も内外両管が直管であるため、 中間熱交^^の設置スペースが比較的大きくなるという問題がある。特に、自動車に 搭載される場合には、エンジンルーム内において搭載スペース上の制約を受けるた め、中間熱交 を効率良く収納することができなくなり、実現性が低い。  [0008] In the intermediate heat exchanger described in Patent Document 1, the heat exchange performance between the refrigerant flowing in the first fluid passage of the heat exchange section and the refrigerant flowing in the second fluid passage is made desired. It is necessary to increase the heat transfer area between the fluids flowing in both fluid passages. However, in this case, the length of both the inner and outer pipes must be increased, and since both the inner and outer pipes are straight pipes, the installation space for the intermediate heat exchange ^^ becomes relatively large. is there. In particular, when installed in an automobile, there is a limitation on the installation space in the engine room, so that it is impossible to efficiently store the intermediate heat exchange, and the feasibility is low.
[0009] また、第 1流体通路は、内管に設けられたフィンにより複数の通路部分に分断され ているので、各通路部分を流れる冷媒は効率良く混合されることがなぐ両流体通路 内を流れる冷媒間での熱交換効率が不十分になるおそれがある。  [0009] Further, since the first fluid passage is divided into a plurality of passage portions by fins provided in the inner pipe, the refrigerant flowing through each passage portion can be efficiently mixed in both fluid passages. The heat exchange efficiency between the flowing refrigerants may be insufficient.
[0010] さらに、内管のすべてのフィンの先端部が外管の内周面に当接しているものの、フ インは外管に固定されていないので、場合によってはフィンと外管との間でがたつき が発生し、振動による異音が発生するおそれがある。  [0010] Furthermore, although the tips of all the fins of the inner tube are in contact with the inner peripheral surface of the outer tube, the fins are not fixed to the outer tube. There is a risk of rattling and abnormal noise due to vibration.
特許文献 1:国際公開第 03Z085344号パンフレット  Patent Document 1: International Publication No. 03Z085344 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] この発明の目的は、上記問題を解決し、設置スペースを比較的小さくすることがで きる熱交翻を提供することにある。 [0011] An object of the present invention is to provide a heat exchange that can solve the above-described problems and can reduce the installation space.
課題を解決するための手段 [0012] 本発明は、上記目的を達成するために以下の態様力もなる。 Means for solving the problem The present invention has the following aspect power to achieve the above object.
[0013] 1)外管、外管内に間隔をおいて設けられた内管、および外管と内管との間に設けら れたフィンよりなる熱交換部と、熱交換部の内外両管の両端部に固定されたコネクタ とを備えており、熱交換部の外管と内管との間の間隙が第 1の流体通路となっている とともに内管内が第 2の流体通路となっている熱交^^であって、熱交換部が、少な くとも 1箇所にぉ 、て曲げられて 、る熱交翻。  [0013] 1) An outer tube, an inner tube provided at an interval in the outer tube, and a heat exchange unit including fins provided between the outer tube and the inner tube, and both inner and outer tubes of the heat exchange unit The gap between the outer tube and the inner tube of the heat exchange section serves as the first fluid passage and the inside of the inner tube serves as the second fluid passage. The heat exchange is ^^ and the heat exchange part is bent at least in one place.
[0014] 2)フィンが、内管の外周面に周方向に間隔をおき、かつ内管の長さ方向に伸びるよ うに一体に形成されて ヽる上記 1)記載の熱交換器。  [0014] 2) The heat exchanger according to 1), wherein the fins are integrally formed so as to be spaced apart in the circumferential direction on the outer peripheral surface of the inner tube and extend in the length direction of the inner tube.
[0015] 3)熱交換部の曲げ部分の横断面において、一部のフィンの先端部が、外管の曲げ 内側部分および曲げ外側部分の内周面に当接しており、外管の曲げ内側部分およ び曲げ外側部分により、フィンを介して内管が挟着固定されている上記 2)記載の熱 交概  [0015] 3) In the cross section of the bent portion of the heat exchanging portion, the tips of some fins are in contact with the inner peripheral surface of the bent inner portion and the bent outer portion of the outer tube, The heat exchanger described in 2) above, in which the inner tube is sandwiched and fixed by the portion and the bent outer portion via the fin.
[0016] 4)熱交換部の曲げ部分の横断面において、一部のフィンの先端部が外管の曲げ 内側部分および曲げ外側部分の内周面に当接して 、る部分の周方向の両側に、そ れぞれフィンの先端部と外管の内周面との間に隙間が形成された流体混合部が設け られて!ヽる上記 3)記載の熱交^^。  [0016] 4) In the cross section of the bent portion of the heat exchanging portion, the tips of some fins are in contact with the inner peripheral surfaces of the bent inner portion and the bent outer portion of the outer tube, and both sides in the circumferential direction of the bent portion. The heat exchange described in 3) above is provided with a fluid mixing portion in which a gap is formed between the tip of the fin and the inner peripheral surface of the outer tube.
[0017] 5)熱交換部が複数の曲げ部分を有しており、内外両管の軸線を含む 1つの平面内 にお 、て曲げられた曲げ部分と、内外両管の軸線を含みかつ上記平面と交わる他の 1つの平面内において曲げられた曲げ部分とが混在している上記 1)記載の熱交^^  [0017] 5) The heat exchanging portion has a plurality of bent portions, and includes a bent portion bent in one plane including the axes of both the inner and outer tubes and the axes of the inner and outer tubes, and the above The heat exchange as described in 1) above, in which a bent part bent in another plane intersecting the plane is mixed ^^
[0018] 6)コンプレッサ、ガスクーラ、エバポレータ、気液分離器、減圧器、およびガスクーラ 力 出てきた冷媒とエバポレータカ 出てきた冷媒とを熱交換させる中間熱交^^と を備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、中間熱交^^が上 記 1)記載の熱交 力 なる冷凍サイクル。 [0018] 6) A compressor, a gas cooler, an evaporator, a gas-liquid separator, a pressure reducer, and a gas cooler force are provided, and an intermediate heat exchanger ^^ that exchanges heat between the refrigerant that has come out and the refrigerant that has come out of the evaporator A refrigeration cycle using a supercritical refrigerant, wherein the intermediate heat exchange ^^ is the heat exchange described in 1) above.
[0019] 7)中間熱交換器の第 1流体通路内をエバポレータカ 出てきた低圧の冷媒が流れ 、同じく第 2流体通路内をガスクーラから出てきた高圧の冷媒が流れるようになつてい る上記 6)記載の冷凍サイクル。  [0019] 7) The low-pressure refrigerant coming out of the evaporator flow in the first fluid passage of the intermediate heat exchanger, and the high-pressure refrigerant coming out of the gas cooler also flows in the second fluid passage. 6) The refrigeration cycle described.
[0020] 8)超臨界冷媒がニ酸ィヒ炭素からなる上記 6)記載の冷凍サイクル。 [0021] 9)上記 6)記載の冷凍サイクルがカーエアコンとして搭載されて 、る車両。 [0020] 8) The refrigeration cycle according to 6) above, wherein the supercritical refrigerant comprises carbon dioxide. [0021] 9) A vehicle in which the refrigeration cycle described in 6) above is mounted as a car air conditioner.
10)コンプレッサ、室外熱交換器、気液分離器、減圧器、およびコンプレッサにより 圧縮された高温高圧の熱媒体とエンジン力 ヒータコアに送られるエンジン冷却液と を熱交換させる冷却液加熱用熱交^^とを備えており、かつ超臨界熱媒体を用いる 暖房サイクルであって、冷却液加熱用熱交^^が上記 1)記載の熱交 力 なる暖 房サイクル。  10) Coolant heating heat exchanger that exchanges heat between the high-temperature and high-pressure heat medium compressed by the compressor, outdoor heat exchanger, gas-liquid separator, decompressor, and engine power and engine coolant sent to the heater core And a heating cycle using a supercritical heat medium, wherein the heat exchange for heating the coolant is the heat exchange described in 1) above.
[0022] 11)冷却液加熱用熱交換器の第 1流体通路内をエンジン冷却液が流れ、同じく第 2 流体通路内をコンプレッサにより圧縮された高温高圧の熱媒体が流れるようになって V、る上記 10)記載の暖房サイクル。  [0022] 11) The engine coolant flows in the first fluid passage of the heat exchanger for heating the coolant, and the high-temperature and high-pressure heat medium compressed by the compressor also flows in the second fluid passage. The heating cycle described in 10) above.
[0023] 12)超臨界熱媒体が二酸ィ匕炭素からなる上記 10)記載の暖房サイクル。 [0023] 12) The heating cycle as described in 10) above, wherein the supercritical heat medium is composed of carbon dioxide and carbon dioxide.
[0024] 13)上記 10)記載の暖房サイクルがカーエアコンとして搭載されて 、る車両。 [0024] 13) A vehicle in which the heating cycle described in 10) above is mounted as a car air conditioner.
発明の効果  The invention's effect
[0025] 上記 1)の熱交^^によれば、熱交換部が、少なくとも 1箇所において曲げられてい るので、熱交換部の第 1および第 2流体通路内を流れる流体間の総伝熱面積を、所 望の熱交換性能を得るために必要な大きさにしたとしても、両コネクタ間の直線的な 間隔は、特許文献 1記載の中間熱交^^よりも短くなる。したがって、この熱交翻 の設置スペースの直線的な長さを特許文献 1記載の熱交換器の場合に比べて小さく することができる。し力も、たとえば自動車に搭載する場合には、自動車の空きスぺー スに合わせて任意の形状に曲げることが可能になり、自動車のエンジンルーム内の スペースを有効利用することができる。  [0025] According to the heat exchange ^ of 1) above, since the heat exchange section is bent at at least one location, the total heat transfer between the fluids flowing in the first and second fluid passages of the heat exchange section. Even if the area is made as large as necessary to obtain the desired heat exchange performance, the linear spacing between the two connectors is shorter than the intermediate heat exchange described in Patent Document 1. Therefore, the linear length of the installation space for heat exchange can be made smaller than that of the heat exchanger described in Patent Document 1. For example, when it is mounted on an automobile, it can be bent into an arbitrary shape according to the empty space of the automobile, and the space in the engine room of the automobile can be used effectively.
[0026] 上記 2)の熱交換器によれば、第 1および第 2流体通路内を流れる流体間の伝熱面 積が増大し、熱交換効率が向上する。また、フィンが内管に一体に形成されているの で、部品点数が少なくなる。  [0026] According to the heat exchanger 2), the heat transfer area between the fluids flowing in the first and second fluid passages is increased, and the heat exchange efficiency is improved. Also, since the fins are formed integrally with the inner tube, the number of parts is reduced.
[0027] 上記 3)の熱交^^によれば、内管が外管に固定されることになり、振動による異音 の発生を防止することができる。  [0027] According to the heat exchange of 3) above, the inner tube is fixed to the outer tube, and the generation of abnormal noise due to vibration can be prevented.
[0028] 上記 4)の熱交換器によれば、第 1流体通路内に流体を流すと、流体が曲げ部分を 通過する際の慣性力と相俟って、流体混合部において効率良く混合されることになり 、乱流効果と流体温度均一化効果により、特許文献 1記載の中間熱交換器に比較し て、両流体通路内を流れる流体間での熱交換性能が向上する。 [0028] According to the heat exchanger of 4) above, when a fluid is caused to flow in the first fluid passage, the fluid is mixed efficiently in the fluid mixing portion in combination with the inertial force when passing through the bent portion. Therefore, compared to the intermediate heat exchanger described in Patent Document 1, due to the turbulent flow effect and the fluid temperature equalizing effect, Thus, the heat exchange performance between the fluids flowing in both fluid passages is improved.
[0029] 上記 5)の熱交換器を、たとえば自動車に搭載する場合には、自動車の空きスぺー スに合わせて任意の形状に曲げることが可能になり、自動車のエンジンルーム内の スペースを有効利用することができて、実現性が高くなる。  [0029] When the heat exchanger of 5) above is mounted on a car, for example, it can be bent into any shape according to the free space of the car, making space in the engine room of the car effective. It can be used and the realization becomes high.
[0030] また、上記 5)の熱交換器において、熱交換部の曲げ部分の横断面において、一部 のフィンの先端部が、外管の曲げ内側部分および曲げ外側部分の内周面に当接し ており、外管の曲げ内側部分および曲げ外側部分により、フィンを介して内管が挟着 固定されている場合には、内管が外管に固定されることによる異音発生防止効果が 一層向上する。  [0030] In the heat exchanger of 5) above, in the cross section of the bent portion of the heat exchanging portion, the tip end portions of some fins contact the inner peripheral surface of the bent inner portion and the bent outer portion of the outer tube. If the inner tube is sandwiched and fixed by the bent inner part and the bent outer part of the outer tube through the fins, the effect of preventing the generation of noise due to the inner tube being fixed to the outer tube is obtained. Further improvement.
[0031] さらに、上記 5)の熱交換器において、熱交換部の曲げ部分の横断面において、一 部のフィンの先端部が外管の曲げ内側部分および曲げ外側部分の内周面に当接し ている部分の周方向の両側に、それぞれフィンの先端部と外管の内周面との間に隙 間が形成された流体混合部が設けられている上場合、内外両管の軸線を含む 1つの 平面内にお 、て曲げられた曲げ部分と、内外両管の軸線を含みかつ上記平面と交 わる他の 1つの平面内において曲げられた曲げ部分とでは、流体混合部の内外両管 の周方向の位置が異なったものになる。したがって、第 1流体通路内を流れる流体は [0031] Further, in the heat exchanger of the above 5), in the cross section of the bent portion of the heat exchanging portion, the tip of one fin is in contact with the inner peripheral surface of the bent inner portion and the bent outer portion of the outer tube. If there is a fluid mixing part with a gap formed between the tip of the fin and the inner peripheral surface of the outer pipe on both sides in the circumferential direction, the axis of both the inner and outer pipes are included. The bent portion bent in one plane and the bent portion bent in the other plane including the axis of both the inner and outer tubes and intersecting the plane are both the inner and outer tubes of the fluid mixing portion. The positions in the circumferential direction are different. Therefore, the fluid flowing in the first fluid passage is
、各曲げ部分を通過する際の慣性力と相俟って、各流体混合部において一層効率 良く混合されることになり、乱流効果と流体温度均一化効果による両流体通路内を流 れる流体間での熱交換性能向上効果が顕著になる。 In combination with the inertial force when passing through each bending part, the fluid mixing part will mix more efficiently, and the fluid flowing in both fluid passages due to the turbulent flow effect and the fluid temperature equalizing effect The effect of improving the heat exchange performance between the two becomes remarkable.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、この発明の実施形態を、図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0033] なお、以下の説明において、図 4の上下、左右をそれぞれ上下、左右というものとす る。  [0033] In the following description, the top and bottom and the left and right in FIG.
[0034] また、全図面を通じて同一部分および同一物には同一符号を付して重複する説明 を省略する。  [0034] In addition, throughout the drawings, the same parts and the same parts are denoted by the same reference numerals, and redundant description is omitted.
[0035] 図 1はこの発明による熱交換器の第 1の実施形態の全体構成を示し、図 2〜図 4は その要部の構成を示す。また、図 5は図 1の熱交換器を中間熱交換器として用いた 超臨界冷凍サイクルを示す。 [0036] 図 1〜図 4において、熱交換器 (1)は、横断面円形の外管 (2)、外管 (2)内に間隔をお いて同心状に挿入された横断面円形の内管 (3)および内管 (3)の外周面に設けられた フィン (4)よりなる熱交換部 (10)と、熱交換部 (10)の両管 (2)(3)の両端部に固定されたコ ネクタ (5)とを備えており、熱交換部 (10)、すなわち両管 (2)(3)が、少なくとも 1箇所、ここ では両管 (2)(3)の軸線を含む 1つの水平な平面 (P)内において 2箇所で曲げられてい る。曲げ部分を (10A)で示す。 FIG. 1 shows the overall configuration of a first embodiment of a heat exchanger according to the present invention, and FIGS. 2 to 4 show the configuration of the main part thereof. Fig. 5 shows a supercritical refrigeration cycle using the heat exchanger of Fig. 1 as an intermediate heat exchanger. In FIGS. 1 to 4, the heat exchanger (1) has an outer tube (2) having a circular cross section and an inner tube having a circular cross section inserted concentrically into the outer tube (2) at intervals. The heat exchange section (10) consisting of fins (4) provided on the outer peripheral surface of the pipe (3) and the inner pipe (3), and both pipes (2) and (3) of the heat exchange section (10) With a fixed connector (5) and the heat exchanger (10), i.e. both pipes (2) (3) contain at least one axis, here the axis of both pipes (2) (3) It is bent at two points in one horizontal plane (P). The bent part is indicated by (10A).
[0037] 外管 (2)は、金属、ここではアルミニウム押出形材カもなる。内管 (3)は、金属、ここで はアルミニウム押出形材カもなり、その外周面に、複数のフィン (4)力 周方向に間隔 をおき、かつ内管 (3)の長さ方向に伸びるように一体に形成されている。曲げ部分 (10 A)を除いた熱交換部 (10)の直線状部分 (10B)においては、フィン (4)の先端部と外管 (2 )内周面との間には若干の隙間が存在している(図 2参照)。内管 (3)の両端部は外管 ( 2)よりも外方に突出しており、この外方突出部 (3a)の全体にわたってフィン (4)が切除さ れ、フィン無し部 (8)が設けられている。また、内管 (3)の内周面には、全長にわたる複 数のインナーフィン (9)が周方向に間隔をお 、て一体に形成されて!、る(図 2および図 3参照)。そして、外管 (2)と内管 (3)との間の間隙が第 1の流体通路 (6)となっているとと もに内管 (3)内が第 2の流体通路 (7)となっている。  [0037] The outer tube (2) is also a metal, in this case, an aluminum extruded profile. The inner tube (3) is also a metal, here an aluminum extruded profile, and has a plurality of fins (4) force circumferentially spaced on its outer peripheral surface and in the length direction of the inner tube (3). It is integrally formed to extend. In the linear part (10B) of the heat exchange part (10) excluding the bent part (10 A), there is a slight gap between the tip of the fin (4) and the outer peripheral surface of the outer pipe (2). Exists (see Figure 2). Both ends of the inner tube (3) protrude outward from the outer tube (2), and the fin (4) is cut off over the entire outer protruding portion (3a), and the finless portion (8) is removed. Is provided. Further, a plurality of inner fins (9) extending over the entire length are integrally formed on the inner peripheral surface of the inner pipe (3) at intervals in the circumferential direction (see FIGS. 2 and 3). The gap between the outer pipe (2) and the inner pipe (3) is the first fluid passage (6), and the inner pipe (3) is the second fluid passage (7). It has become.
[0038] 熱交換部 (10)は、真っ直ぐな外管 (2)内に真っ直ぐな内管 (3)を挿入した後、曲げカロ ェを施すことにより形成されている。この曲げカ卩ェは、両管 (2)(3)にコネクタ (5)を固定 する前後いずれかに施される。図 3に示すように、熱交換部 (10)の曲げ部分 (10A)に おいては、上記平面 (P)上において、外管 (2)が、曲げ中心と外管 (2)の軸線とを結ぶ 方向に若干潰れている。そして、熱交換部 (10)の曲げ部分 (10A)の横断面、すなわち 上記平面 (P)と直交する断面(図 1の B— B線断面に相当する)において、内管 (3)の一 部のフィン (4)の先端部は、外管 (2)の曲げ内側部分 (2a)および曲げ外側部分 (2b)の内 周面に当接しており、外管 (2)の曲げ内側部分 (2a)および曲げ外側部分 (2b)により、フ イン (4)を介して内管 (3)が挟着固定されている。また、熱交換部 (10)の曲げ部分 (10A) の横断面にお 、て、一部のフィン (4)の先端部が外管 (2)の曲げ内側部分 (2a)および 曲げ外側部分 (2b)に当接している部分の周方向の両側(図 3では上下両側)におい ては、それぞれフィン (4)の先端部と外管 (2)内周面との間の隙間が、直線状部分 (10B )におけるフィン (4)の先端部と外管 (2)内周面との間よりも大きくなつており、ここに流体 混合部 (20)が形成されて 、る。 [0038] The heat exchanging section (10) is formed by inserting a straight inner pipe (3) into a straight outer pipe (2) and then applying bending calorie. This bending cache is applied either before or after fixing the connector (5) to both pipes (2) and (3). As shown in FIG. 3, in the bent portion (10A) of the heat exchange section (10), the outer pipe (2) is placed on the plane (P) with the bending center and the axis of the outer pipe (2). Slightly crushed in the direction of connecting. Then, in the cross section of the bent portion (10A) of the heat exchange section (10), that is, the cross section orthogonal to the plane (P) (corresponding to the cross section along line B-B in FIG. 1), The tip of the fin (4) is in contact with the inner peripheral surface of the bent inner part (2a) and outer bent part (2b) of the outer pipe (2), and the inner bent part ( The inner pipe (3) is clamped and fixed via the fin (4) by the bent outer part (2b) and 2a). In addition, in the cross section of the bent portion (10A) of the heat exchange section (10), the tips of some fins (4) are bent inner portions (2a) and outer bent portions (2) of the outer tube (2). On both sides in the circumferential direction of the part in contact with 2b) (upper and lower sides in Fig. 3), the gap between the tip of the fin (4) and the outer tube (2) inner circumferential surface is linear. Part (10B ) Between the front end of the fin (4) and the outer peripheral surface of the outer tube (2), and the fluid mixing part (20) is formed there.
[0039] 図 4に示すように、コネクタ (5)は金属、ここではアルミニウム製のブロック力 なり、横 向き円柱状部 (5a)と、円柱状部 (5a)の上端に連なった直方体状部 (5b)とよりなる。以下 、左側のコネクタ (5)について説明する。コネクタ (5)における円柱状部 (5a)の右端面に は、環状壁 (11)が右方突出状に一体に形成されることにより、外管 (2)の端部を嵌め 入れる外管嵌入用凹所 (12)が形成されている。そして、外管 (2)の端部がコネクタ (5)の 外管嵌入用凹所 (12)内に嵌め入れられ、外管 (2)外周面と、環状壁 (11)の先端部、す なわち凹所 (12)の開口周縁部とが接合されている。この接合は、ろう付、ここではトー チろう付により行われて 、る。  [0039] As shown in FIG. 4, the connector (5) has a blocking force made of metal, here aluminum, and has a horizontal cylindrical part (5a) and a rectangular parallelepiped part connected to the upper end of the cylindrical part (5a). (5b). Hereinafter, the left connector (5) will be described. On the right end surface of the cylindrical part (5a) of the connector (5), an annular wall (11) is integrally formed so as to protrude rightward, so that the outer pipe fits into the end of the outer pipe (2). A recess (12) is formed. Then, the end of the outer tube (2) is fitted into the outer tube fitting recess (12) of the connector (5), and the outer tube (2) outer peripheral surface and the tip of the annular wall (11) That is, the opening periphery of the recess (12) is joined. This joining is performed by brazing, here torch brazing.
[0040] コネクタ (5)には一端が円柱状部 (5a)の右端面における環状壁 (11)に囲まれた部分 に開口するとともに他端が直方体状部 (5b)の上面に開口し、かつ第 1流体通路 (6)に 連通した流路 (13)が形成されている。また、コネクタ (5)の流路 (13)における円柱状部( 5a)に存在する横向き部分の左端面と円柱状部 (5a)の左端面 (外面)との間に左右方 向に伸びる貫通穴 (14)が形成されている。そして、内管 (3)のフィン無し部 (8)の左側部 分が貫通穴 (14)内に挿入されている。フィン無し部 (8)の左端部は貫通穴 (14)におけ る円柱状部 (5a)の左端面側の開口より外方に突出しており、内管 (3)のフィン無し部 (8) の外周面が、円柱状部 (5a)における貫通穴 (14)の左端開口の周縁部に接合されてい る。この接合は、ろう付、ここではトーチろう付により行われている。  [0040] One end of the connector (5) opens to a portion surrounded by the annular wall (11) on the right end surface of the cylindrical portion (5a), and the other end opens to the upper surface of the rectangular parallelepiped portion (5b). A flow path (13) communicating with the first fluid path (6) is formed. Also, a through-hole extending in the left-right direction between the left end surface of the lateral portion present in the cylindrical portion (5a) in the flow path (13) of the connector (5) and the left end surface (outer surface) of the cylindrical portion (5a) A hole (14) is formed. The left side portion of the finless portion (8) of the inner pipe (3) is inserted into the through hole (14). The left end of the finless part (8) protrudes outward from the opening on the left end face side of the cylindrical part (5a) in the through hole (14), and the finless part (8) of the inner pipe (3) The outer peripheral surface is joined to the peripheral edge of the left end opening of the through hole (14) in the cylindrical portion (5a). This joining is performed by brazing, here torch brazing.
[0041] コネクタ (5)の円柱状部 (5a)の左端面における貫通穴 (14)の周囲の部分には環状壁 ( 15)が左方突出状に一体に形成されて 、る。内管 (3)のフィン無し部 (8)の左端部は環 状壁 (15)よりも左方に突出しており、フィン無し部 (8)における環状壁 (15)よりも突出し た部分および環状壁 (15)に被さるようにユニオンねじ (16)が配置されている。環状壁( 15)はユニオンねじ (16)に形成された貫通穴 (17)の右端大径部 (17a)内に嵌め入れら れ、フィン無し部 (8)の左端部は貫通穴 (17)における右端大径部 (17a)に連なつた小径 部 (17b)内に嵌め入れられている。ユニオンねじ (16)の右端部は、円柱状部 (5a)の左 端面における環状壁 (15)の周囲の部分に形成された環状凹所 (18)内に嵌っており、 ユニオンねじ (16)の外周面の右端部と、円柱状部 (5a)における凹所 (18)の内周面とが 接合されている。この接合は、ろう付、ここではトーチろう付により行われている。一方 のコネクタ (5)のユニオンねじ (16)は第 2流体通路 (7)内に流体を供給するための配管 用パイプを接続するのに利用され、他方のコネクタ (5)のユニオンねじ (16)は第 2流体 通路 (7)内から流体を排出するための配管用パイプを接続するのに利用される。 [0041] An annular wall (15) is integrally formed on the left end surface of the cylindrical portion (5a) of the connector (5) around the through hole (14) so as to protrude leftward. The left end of the fin-free part (8) of the inner pipe (3) protrudes to the left of the annular wall (15), and the part protruding from the annular wall (15) and the annular part of the fin-free part (8) A union screw (16) is arranged to cover the wall (15). The annular wall (15) is fitted into the large diameter part (17a) of the right end of the through hole (17) formed in the union screw (16), and the left end of the finless part (8) is the through hole (17). Is fitted into a small diameter portion (17b) connected to the right end large diameter portion (17a). The right end of the union screw (16) is fitted in an annular recess (18) formed in the peripheral portion of the annular wall (15) on the left end surface of the cylindrical portion (5a), and the union screw (16) The right end of the outer peripheral surface of the cylinder and the inner peripheral surface of the recess (18) in the cylindrical portion (5a) It is joined. This joining is performed by brazing, here torch brazing. The union screw (16) of one connector (5) is used to connect a pipe for supplying fluid into the second fluid passage (7), and the union screw (16 of the other connector (5) ) Is used to connect a pipe for draining fluid from the second fluid passage (7).
[0042] コネクタ (5)には、直方体状部 (5b)の上面から下方に伸びるめねじ穴 (19)が形成され ている。一方のコネクタ (5)のめねじ穴 (19)は第 1流体通路 (6)内に流体を供給するた めの配管用ノイブを接続するのに利用され、他方のコネクタ (5)のめねじ穴 (19)は第 1 流体通路 (6)内から流体を排出するための配管用パイプを接続するのに利用される。  [0042] The connector (5) has a female screw hole (19) extending downward from the upper surface of the rectangular parallelepiped portion (5b). The female screw hole (19) of one connector (5) is used to connect a piping nove for supplying fluid into the first fluid passage (6), and the female screw of the other connector (5). The hole (19) is used to connect a piping pipe for discharging the fluid from the first fluid passage (6).
[0043] 右側のコネクタ (5)は左側のコネクタ (5)と左右逆向きの構成であり、左側コネクタ (5) の場合と同様にして外管 (2)および内管 (3)に固定されている。  [0043] The right connector (5) is opposite to the left connector (5), and is fixed to the outer tube (2) and inner tube (3) in the same way as the left connector (5). ing.
[0044] 図 5は、上述した熱交 (l)を中間熱交 として用いた超臨界冷凍サイクルを 示す。  [0044] FIG. 5 shows a supercritical refrigeration cycle using the heat exchange (l) described above as an intermediate heat exchange.
[0045] 図 5において、超臨界冷凍サイクルは超臨界冷媒として COを用いるものであり、コ  In FIG. 5, the supercritical refrigeration cycle uses CO as a supercritical refrigerant.
2  2
ンプレッサ (21)、ガスクーラ (22)、エバポレータ (23)、気液分離器としてのアキュムレー タ (24)、減圧器としての膨張弁 (25)、およびガスクーラ (22)から出てきた冷媒とエバポ レータ (23)から出てきた冷媒とを熱交換させる中間熱交 (l)を備えて!/、る。超臨界 冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。  Refrigerant and evaporator from the compressor (21), gas cooler (22), evaporator (23), accumulator (24) as gas-liquid separator, expansion valve (25) as decompressor, and gas cooler (22) Provide intermediate heat exchange (l) to exchange heat with the refrigerant from (23)! The supercritical refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.
[0046] 中間熱交換器 (1)の第 1流体通路 (6)内をエバポレータ (23)から出てアキュムレータ (2 4)を通過してきた低圧の冷媒が流れ、同じく第 2流体通路 (7)内をガスクーラ (22)から 出てきた高圧の冷媒が流れるようになつている。そして、第 1流体通路 (6)内を流れる 冷媒は、各曲げ部分 (10A)を通過する際の慣性力と相俟って、流体混合部 (20)にお いて混合されることになり、乱流効果と流体温度均一化効果により、両流体通路 (6)(7) 内を流れる冷媒間での熱交換性能が向上する。  [0046] The low-pressure refrigerant that has flowed out of the evaporator (23) and passed through the accumulator (2 4) flows through the first fluid passage (6) of the intermediate heat exchanger (1), and the second fluid passage (7) The high-pressure refrigerant from the gas cooler (22) flows through the inside. Then, the refrigerant flowing in the first fluid passage (6) is mixed in the fluid mixing section (20) together with the inertial force when passing through each bending portion (10A), Due to the turbulent flow effect and fluid temperature equalizing effect, the heat exchange performance between the refrigerants flowing in both fluid passages (6) and (7) is improved.
[0047] 図 6に、第 1の実施形態の熱交換器 (1) (実施例)と、全体が真っ直ぐな熱交換部を 備えた以外は実施例の熱交翻 (1)と同じ構成の熱交翻 (比較例)との熱交換性能 を示す。ここで、実施例の熱交 ひ)における曲げ部分 (10A)を含んだ熱交換部 (10) の実質長は、比較例の熱交換器の熱交換部の直線長さに等しい。図 6に示す結果 から、実施例の熱交 (l)の熱交換性能は、比較例の熱交^^よりも優れているこ とが分かる。 [0047] Fig. 6 shows the same configuration as that of the heat exchanger (1) of the example except that the heat exchanger (1) of the first embodiment (1) (example) and a heat exchanger that is straight as a whole are provided. The heat exchange performance with heat exchange (comparative example) is shown. Here, the substantial length of the heat exchanging portion (10) including the bent portion (10A) in the heat exchanger of the embodiment is equal to the linear length of the heat exchanging portion of the heat exchanger of the comparative example. From the results shown in Fig. 6, the heat exchange performance of the heat exchange (l) of the example is superior to that of the comparative example ^^. I understand.
[0048] 図 7は、この発明による熱交換器の第 2の実施形態を示す。  FIG. 7 shows a second embodiment of the heat exchanger according to the present invention.
[0049] 図 7に示す実施形態の熱交換器 (30)の場合、熱交換部 (10)、すなわち両管 (2)(3)が 、少なくとも 1箇所、ここでは 3箇所で曲げられている。各曲げ部分 (10A)においては、 熱交換部 (10)は、両管 (2)(3)の軸線を含む 1つの平面 (P1)(P2)(P3)内で曲げられてい る力 これらの平面 (P1)(P2)(P3)は相互に交わるようになって 、る。  [0049] In the case of the heat exchanger (30) of the embodiment shown in Fig. 7, the heat exchange section (10), that is, both pipes (2) (3) are bent at at least one place, here three places. . In each bent part (10A), the heat exchanging part (10) is the force bent in one plane (P1) (P2) (P3) including the axes of both pipes (2) (3). The planes (P1), (P2), and (P3) cross each other.
[0050] 図示は省略したが、上述した第 1の実施形態の場合と同様に、各曲げ部分 (10A)に おいては、上記平面 (P1XP2XP3)上において、外管 (2)が、曲げ中心と外管 (2)の軸線 とを結ぶ方向に若干潰れている。そして、熱交換部 (10)の曲げ部分 (10A)の横断面、 すなわち上記平面 (P1XP2XP3)と直交する断面にぉ 、て、内管 (3)の一部のフィン (4) の先端部は、外管 (2)の曲げ内側部分 (2a)および曲げ外側部分 (2b)の内周面に当接 しており、外管 (2)の曲げ内側部分 (2a)および曲げ外側部分 (2b)により、フィン (4)を介 して内管 (3)が挟着固定されている。また、熱交換部 (10)の曲げ部分 (10A)の横断面に ぉ 、て、一部のフィン (4)の先端部が外管 (2)の曲げ内側部分 (2a)および曲げ外側部 分 (2b)に当接して 、る部分の周方向の両側においては、それぞれフィン (4)の先端部 と外管 (2)内周面との間の隙間が、直線状部分 (10B)におけるフィン (4)の先端部と外 管 (2)内周面との間よりも大きくなつており、ここに流体混合部 (20)が形成されている。 ここでは、上記平面 (P1)(P2)(P3)が相互に交わるようになっているので、各曲げ部分 (1 OA)の流体混合部 (20)の位置は、両管 (2)(3)の周方向に異なって 、る。  [0050] Although not shown, as in the case of the first embodiment described above, in each bent portion (10A), on the plane (P1XP2XP3), the outer tube (2) has a bending center. It is slightly crushed in the direction connecting the axis of the outer tube (2). Then, along the cross section of the bent portion (10A) of the heat exchange section (10), that is, the cross section orthogonal to the plane (P1XP2XP3), the tip of the fin (4) of a part of the inner pipe (3) is The inner side (2a) and the outer side (2b) of the outer pipe (2) are in contact with the inner peripheral surface of the outer side (2a) and the outer side (2b). Thus, the inner tube (3) is clamped and fixed via the fin (4). In addition, the end of some fins (4) are connected to the bent inner part (2a) and outer bent part of the outer tube (2) in the cross section of the bent part (10A) of the heat exchange part (10). The gap between the tip of the fin (4) and the outer tube (2) inner circumferential surface is the fin in the linear portion (10B) on both sides in the circumferential direction of the portion that abuts (2b). It is larger than the space between the tip of (4) and the outer pipe (2) and the inner peripheral surface, and a fluid mixing section (20) is formed here. Here, since the planes (P1), (P2), and (P3) cross each other, the position of the fluid mixing section (20) of each bending section (1 OA) is set to both pipes (2) (3 ) Is different in the circumferential direction.
[0051] その他の構成は第 1の実施形態の熱交換器 (1)と同じであり、第 1の実施形態の場 合と同様に、超臨界冷凍サイクルの中間熱交 として好適に用いられる。中間熱 交翻として用いられた場合、各曲げ部分 (10A)の流体混合部 (20)の位置は、両管 (2 )(3)の周方向に異なっているので、第 1流体通路 (6)内を流れる冷媒は、各曲げ部分( 10A)を通過する際の慣性力と相俟って、流体混合部 (20)において一層効率良く混合 されることになり、乱流効果と流体温度均一化効果による両流体通路 (6)(7)内を流れ る冷媒間での熱交換性能向上効果が、第 1の実施形態の場合よりも優れたものにな る。  [0051] Other configurations are the same as those of the heat exchanger (1) of the first embodiment, and are suitably used as intermediate heat exchange in the supercritical refrigeration cycle, as in the case of the first embodiment. When used as intermediate heat exchange, the position of the fluid mixing section (20) of each bending section (10A) differs in the circumferential direction of both pipes (2) and (3). ) The refrigerant flowing in the fluid is mixed more efficiently in the fluid mixing part (20) in combination with the inertial force when passing through each bending part (10A), and the turbulent flow effect and the uniform fluid temperature are obtained. The effect of improving the heat exchange performance between the refrigerants flowing in the two fluid passages (6) and (7) due to the crystallization effect is superior to the case of the first embodiment.
[0052] 図 8は、
Figure imgf000011_0001
かつ超臨 界熱媒体を用いる暖房サイクルを示す。
[0052] FIG.
Figure imgf000011_0001
And super 2 shows a heating cycle using a field heat medium.
[0053] 図 8において、暖房サイクルは、超臨界熱媒体として COを用いるものであり、コン  [0053] In Fig. 8, the heating cycle uses CO as the supercritical heat medium, and
2  2
プレッサ (50)、コンプレッサ (50)により圧縮された高温高圧の熱媒体とエンジン (51)か らヒータコア (52)に送られるエンジン冷却液とを熱交換させる冷却液加熱用熱交翻 (1X30)、冷却液加熱用熱交換器 (1X30)を通過した熱媒体を減圧する減圧器としての 膨張弁 (53)、膨張弁 (53)で減圧された熱媒体を蒸発させる室外熱交換器 (54)、および 室外熱交換器 (54)からコンプレッサ (50)に送られる熱媒体中の液体を分離する気液 分離器としてのアキュムレータ (55)を備えている。暖房サイクルは、カーエアコンとして 車両、たとえば自動車に搭載される。  Heat exchanger (1X30) for heating the coolant that exchanges heat between the high-temperature and high-pressure heat medium compressed by the presser (50) and compressor (50) and the engine coolant sent from the engine (51) to the heater core (52) An expansion valve (53) as a pressure reducer for reducing the pressure of the heat medium that has passed through the coolant heating heat exchanger (1X30), and an outdoor heat exchanger (54) for evaporating the heat medium depressurized by the expansion valve (53) And an accumulator (55) as a gas-liquid separator for separating the liquid in the heat medium sent from the outdoor heat exchanger (54) to the compressor (50). The heating cycle is installed in a vehicle such as an automobile as a car air conditioner.
[0054] 冷却液加熱用熱交換器 (1X30)の第 1流体通路 (6)内をエンジン冷却液が流れ、同じ く第 2流体通路 (7)内をコンプレッサ (50)により圧縮された高温高圧の熱媒体が流れる ようになっている。 [0054] High-temperature and high-pressure, in which engine coolant flows in the first fluid passage (6) of the heat exchanger (1X30) for heating the coolant, and is compressed in the second fluid passage (7) by the compressor (50). The heat medium flows.
[0055] なお、この暖房サイクルにおいて、コンプレッサ (50)、膨張弁 (53)およびアキュムレー タ (55)として、図 5に示す超臨界冷凍サイクルのコンプレッサ (21)、減圧器としての膨 張弁 (25)および気液分離器としてのアキュムレータ (24)が共用されるとともに、室外熱 交翻 (54)としてガスクーラ (22)が共用されるように、配管および切り替え弁などが設 けられることがある。  [0055] In this heating cycle, as the compressor (50), the expansion valve (53) and the accumulator (55), the compressor (21) of the supercritical refrigeration cycle shown in Fig. 5 and the expansion valve ( 25) and accumulator (24) as a gas-liquid separator are shared, and piping and switching valves may be installed so that the gas cooler (22) is shared as outdoor heat exchange (54) .
[0056] 上記において、超臨界冷媒および超臨界熱媒体としては、二酸化炭素が使用され ているが、これに限定されるものではなぐエチレン、ェタン、酸化窒素なども使用可 能である。  [0056] In the above, carbon dioxide is used as the supercritical refrigerant and supercritical heat medium, but is not limited to this, and ethylene, ethane, nitric oxide, and the like can also be used.
産業上の利用可能性  Industrial applicability
[0057] この発明は熱交^^は、たとえばコンプレッサ、ガスクーラ、エバポレータ、気液分 離器およびガスクーラ力 出てきた冷媒とエバポレータカ 出て気液分離器を通過し てきた冷媒とを熱交換させる中間熱交^^とを備えており、かつ CO [0057] In the present invention, heat exchange is performed, for example, with a compressor, a gas cooler, an evaporator, a gas-liquid separator, and a gas cooler force. With intermediate heat exchange ^^ and CO
2のような超臨界 冷媒を用いる超臨界冷凍サイクルにお 、て、中間熱交^^として好適に用いられる 図面の簡単な説明  In the supercritical refrigeration cycle using a supercritical refrigerant such as 2, it can be used as intermediate heat exchange ^^
[0058] [図 1]この発明による熱交換器の第 1の実施形態を示す全体斜視図である。 [図 2]図 1の A— A線拡大断面図である。 FIG. 1 is an overall perspective view showing a first embodiment of a heat exchanger according to the present invention. FIG. 2 is an enlarged sectional view taken along line AA in FIG.
[図 3]図 1の B— B線拡大断面図である。 FIG. 3 is an enlarged sectional view taken along line BB in FIG.
[図 4]図 1の C C線拡大断面図である。 FIG. 4 is an enlarged sectional view taken along line CC in FIG.
圆 5]第 1の実施形態の熱交換器を中間熱交換器として用いた超臨界冷凍サイクル を示す図である。 V5] A diagram showing a supercritical refrigeration cycle using the heat exchanger of the first embodiment as an intermediate heat exchanger.
圆 6]第 1の実施形態の熱交換器を用いて行った実験例および比較例を示すグラフ である。 6] A graph showing an experimental example and a comparative example performed using the heat exchanger of the first embodiment.
圆 7]この発明による熱交^^の第 2の実施形態を示す全体斜視図である。 [7] FIG. 7 is an overall perspective view showing a second embodiment of the heat exchange according to the present invention.
圆 8]第 1および第 2の実施形態の熱交換器を冷却液加熱用熱交換器として用いた 暖房サイクルを示す図である。 [8] FIG. 8 is a diagram showing a heating cycle in which the heat exchangers of the first and second embodiments are used as a heat exchanger for heating a coolant.

Claims

請求の範囲 The scope of the claims
[1] 外管、外管内に間隔をおいて設けられた内管、および外管と内管との間に設けられ たフィンよりなる熱交換部と、熱交換部の内外両管の両端部に固定されたコネクタと を備えており、熱交換部の外管と内管との間の間隙が第 1の流体通路となっていると ともに内管内が第 2の流体通路となっている熱交^^であって、熱交換部が、少なく とも 1箇所において曲げられて 、る熱交^^。  [1] A heat exchanging section consisting of an outer pipe, an inner pipe provided at intervals in the outer pipe, and fins provided between the outer pipe and the inner pipe, and both ends of the inner and outer pipes of the heat exchanging section And a connector between the outer tube and the inner tube of the heat exchanging portion serving as the first fluid passage and the inner tube serving as the second fluid passage. Heat exchange, where the heat exchanger is bent in at least one place.
[2] フィンが、内管の外周面に周方向に間隔をおき、かつ内管の長さ方向に伸びるように 一体に形成されて ヽる請求項 1記載の熱交換器。 [2] The heat exchanger according to claim 1, wherein the fins are integrally formed so as to be circumferentially spaced on the outer peripheral surface of the inner tube and extend in the length direction of the inner tube.
[3] 熱交換部の曲げ部分の横断面において、一部のフィンの先端部が、外管の曲げ内 側部分および曲げ外側部分の内周面に当接しており、外管の曲げ内側部分および 曲げ外側部分により、フィンを介して内管が挟着固定されている請求項 2記載の熱交 概 [3] In the cross section of the bent part of the heat exchange part, the tip of some fins is in contact with the inner peripheral surface of the inner bent part and the outer bent part of the outer pipe, and the bent inner part of the outer pipe The heat exchanger according to claim 2, wherein the inner pipe is sandwiched and fixed by a bent outer portion via a fin.
[4] 熱交換部の曲げ部分の横断面において、一部のフィンの先端部が外管の曲げ内側 部分および曲げ外側部分の内周面に当接して 、る部分の周方向の両側に、それぞ れフィンの先端部と外管の内周面との間に隙間が形成された流体混合部が設けられ て ヽる請求項 3記載の熱交^^。  [4] In the cross section of the bent portion of the heat exchange part, the tip of some fins abuts the inner peripheral surface of the bent inner part and the outer bent part of the outer tube, 4. The heat exchange according to claim 3, wherein a fluid mixing portion is provided in which a gap is formed between the tip portion of the fin and the inner peripheral surface of the outer tube.
[5] 熱交換部が複数の曲げ部分を有しており、内外両管の軸線を含む 1つの平面内に ぉ 、て曲げられた曲げ部分と、内外両管の軸線を含みかつ上記平面と交わる他の 1 つの平面内において曲げられた曲げ部分とが混在している請求項 1記載の熱交換  [5] The heat exchanging portion has a plurality of bent portions, and the bent portion is bent in one plane including the axes of both the inner and outer tubes, and the plane including the axes of both the inner and outer tubes and the plane. The heat exchange according to claim 1, wherein a bent portion bent in one other plane is mixed.
[6] コンプレッサ、ガスクーラ、エバポレータ、気液分離器、減圧器、およびガスクーラから 出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交^^とを備 えており、かつ超臨界冷媒を用いる冷凍サイクルであって、中間熱交換器が請求項 1 記載の熱交^^力 なる冷凍サイクル。 [6] Supercritical with compressor, gas cooler, evaporator, gas-liquid separator, decompressor, and intermediate heat exchange ^^ that exchanges heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator The refrigeration cycle using a refrigerant, wherein the intermediate heat exchanger has a heat exchange power according to claim 1.
[7] 中間熱交換器の第 1流体通路内をエバポレータカ 出てきた低圧の冷媒が流れ、同 じく第 2流体通路内をガスクーラから出てきた高圧の冷媒が流れるようになつている請 求項 6記載の冷凍サイクル。  [7] The low-pressure refrigerant coming out of the evaporator flow in the first fluid passage of the intermediate heat exchanger and the high-pressure refrigerant coming out of the gas cooler in the second fluid passage. The refrigeration cycle according to claim 6.
[8] 超臨界冷媒がニ酸ィヒ炭素力 なる請求項 6記載の冷凍サイクル。 [8] The refrigeration cycle according to claim 6, wherein the supercritical refrigerant is carbon dioxide nitric acid.
[9] 請求項 6記載の冷凍サイクルがカーエアコンとして搭載されて 、る車両。 [9] A vehicle in which the refrigeration cycle according to claim 6 is mounted as a car air conditioner.
[10] コンプレッサ、室外熱交^^、気液分離器、減圧器、およびコンプレッサにより圧縮さ れた高温高圧の熱媒体とエンジンからヒータコアに送られるエンジン冷却液とを熱交 換させる冷却液加熱用熱交^^とを備えており、かつ超臨界熱媒体を用いる暖房サ イタルであって、冷却液加熱用熱交^^が請求項 1記載の熱交 力 なる暖房サ イタル。 [10] Coolant heating that exchanges heat between the high-temperature and high-pressure heat medium compressed by the compressor, outdoor heat exchanger, gas-liquid separator, decompressor, and compressor and the engine coolant sent from the engine to the heater core The heating cycle comprising a heat exchanger for heating and using a supercritical heat medium, wherein the heat exchanger for heating the coolant is the heat exchanger according to claim 1.
[11] 冷却液加熱用熱交換器の第 1流体通路内をエンジン冷却液が流れ、同じく第 2流体 通路内をコンプレッサにより圧縮された高温高圧の熱媒体が流れるようになつている 請求項 10記載の暖房サイクル。  11. The engine coolant flows in the first fluid passage of the heat exchanger for heating the coolant, and the high-temperature and high-pressure heat medium compressed by the compressor flows in the second fluid passage as well. The heating cycle described.
[12] 超臨界熱媒体が二酸ィ匕炭素力もなる請求項 10記載の暖房サイクル。 12. The heating cycle according to claim 10, wherein the supercritical heat medium also has a diacid-carbon power.
[13] 請求項 10記載の暖房サイクルがカーエアコンとして搭載されている車両。 [13] A vehicle on which the heating cycle according to claim 10 is mounted as a car air conditioner.
PCT/JP2006/314643 2005-07-28 2006-07-25 Heat exchanger WO2007013439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112006001982T DE112006001982T5 (en) 2005-07-28 2006-07-25 heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-218206 2005-07-28
JP2005218206A JP2007032949A (en) 2005-07-28 2005-07-28 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2007013439A1 true WO2007013439A1 (en) 2007-02-01

Family

ID=37683335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314643 WO2007013439A1 (en) 2005-07-28 2006-07-25 Heat exchanger

Country Status (3)

Country Link
JP (1) JP2007032949A (en)
DE (1) DE112006001982T5 (en)
WO (1) WO2007013439A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985945A1 (en) 2007-04-27 2008-10-29 Hutchinson Internal heat exchanger for an automobile air-conditioning circuit, such circuit and method of connecting two connectors to this exchanger
EP2333472A1 (en) 2009-12-10 2011-06-15 Hutchinson Internal heat exchanger for a vehicule air conditioning circuit and such circuit
WO2012092454A1 (en) * 2010-12-29 2012-07-05 Parker Hannifin Corporation Internal heat exchanger
EP2706321A3 (en) * 2012-09-05 2014-08-27 Hs R & A Co., Ltd. Dual pipe for heat exchange
CN105387736A (en) * 2015-12-17 2016-03-09 英特换热设备(浙江)有限公司 Efficient heat exchanger employing reinforced spiral pipe
US20170045315A1 (en) * 2014-04-30 2017-02-16 Fmc Kongsberg Subsea As Subsea cooler
CN108225058A (en) * 2017-12-27 2018-06-29 青岛海尔智能技术研发有限公司 Air-conditioning heat exchanger
EP3848660A1 (en) 2020-01-09 2021-07-14 Hutchinson Sealed connection for a connector to a coaxial tubular heat exchanger
WO2021241422A1 (en) * 2020-05-27 2021-12-02 株式会社デンソーエアシステムズ Internal heat exchanger, and method for producing internal heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091320B1 (en) * 2007-05-11 2022-11-30 The Chemours Company FC, LLC A vapor compression heat transfer system
KR100836824B1 (en) 2007-04-06 2008-06-11 삼성전자주식회사 Refrigerant cycle device
JP2009041798A (en) * 2007-08-07 2009-02-26 Showa Denko Kk Heat exchanger
JP2009115415A (en) * 2007-11-08 2009-05-28 Calsonic Kansei Corp Supercritical refrigerating cycle
US20130299143A1 (en) * 2011-12-29 2013-11-14 Contitech Kuehner Gmbh & Cie. Kg Internal heat exchanger
CN104359339A (en) * 2014-11-18 2015-02-18 福建省万旗非金属材料有限公司 Recovery equipment for nano calcium carbonate carbon dioxide waste heat
JP2017198392A (en) * 2016-04-27 2017-11-02 株式会社ヴァレオジャパン Double tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129161U (en) * 1987-02-13 1988-08-24
JP2002130963A (en) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd Intercooler and air conditioning device for co2 refrigerant vehicle
JP2004217086A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2005164210A (en) * 2003-11-28 2005-06-23 Yoshida Kikai Kogyo Kk Heat exchanger, multiple pipe for use in the device, and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129161U (en) * 1987-02-13 1988-08-24
JP2002130963A (en) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd Intercooler and air conditioning device for co2 refrigerant vehicle
JP2004217086A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2005164210A (en) * 2003-11-28 2005-06-23 Yoshida Kikai Kogyo Kk Heat exchanger, multiple pipe for use in the device, and manufacturing method of the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915561A1 (en) * 2007-04-27 2008-10-31 Hutchinson Sa INTERNAL THERMAL EXCHANGER FOR A MOTOR VEHICLE AIR CONDITIONING CIRCUIT, ONE SUCH CIRCUIT AND METHOD FOR CONNECTING TWO CONNECTORS TO THIS EXCHANGER
EP1985945A1 (en) 2007-04-27 2008-10-29 Hutchinson Internal heat exchanger for an automobile air-conditioning circuit, such circuit and method of connecting two connectors to this exchanger
EP2333472A1 (en) 2009-12-10 2011-06-15 Hutchinson Internal heat exchanger for a vehicule air conditioning circuit and such circuit
WO2012092454A1 (en) * 2010-12-29 2012-07-05 Parker Hannifin Corporation Internal heat exchanger
CN103348208A (en) * 2010-12-29 2013-10-09 康蒂泰克屈纳有限及两合公司 Internal heat exchanger
EP2706321A3 (en) * 2012-09-05 2014-08-27 Hs R & A Co., Ltd. Dual pipe for heat exchange
US9513061B2 (en) 2012-09-05 2016-12-06 Hs R & A Co., Ltd. Dual pipe for heat exchange
US20170045315A1 (en) * 2014-04-30 2017-02-16 Fmc Kongsberg Subsea As Subsea cooler
CN105387736A (en) * 2015-12-17 2016-03-09 英特换热设备(浙江)有限公司 Efficient heat exchanger employing reinforced spiral pipe
WO2017101235A1 (en) * 2015-12-17 2017-06-22 英特换热设备(浙江)有限公司 Enhanced high-efficiency spiral tube heat exchanger
CN108225058A (en) * 2017-12-27 2018-06-29 青岛海尔智能技术研发有限公司 Air-conditioning heat exchanger
EP3848660A1 (en) 2020-01-09 2021-07-14 Hutchinson Sealed connection for a connector to a coaxial tubular heat exchanger
FR3106201A1 (en) 2020-01-09 2021-07-16 Hutchinson WATERPROOF CONNECTION OF A CONNECTOR TO A TUBULAR COAXIAL HEAT EXCHANGER
US11365939B2 (en) 2020-01-09 2022-06-21 Hutchinson Sealed connection of a connector to a coaxial tubular heat exchanger
WO2021241422A1 (en) * 2020-05-27 2021-12-02 株式会社デンソーエアシステムズ Internal heat exchanger, and method for producing internal heat exchanger

Also Published As

Publication number Publication date
JP2007032949A (en) 2007-02-08
DE112006001982T5 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2007013439A1 (en) Heat exchanger
EP2602578B1 (en) Heat exchanger and refrigeration and air conditioning device
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
EP1867944B1 (en) Heat exchanger
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
JP6767637B2 (en) Heat exchanger and freezing system using it
WO2006059544A1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
KR20080063150A (en) Heat exchanger
WO2002025189A1 (en) Heat exchanger and method of manufacturing the heat exchanger
JP2006003071A (en) Heat exchanger
JP2006322636A (en) Heat exchanger
JP4179092B2 (en) Heat exchanger
JP2009041798A (en) Heat exchanger
WO2011162170A1 (en) Double tube for heat exchanger
JP2006097911A (en) Heat exchanger
JP5003968B2 (en) Heat exchanger tube for subcooler and method for manufacturing the same
GB2508842A (en) Double wall tube heat exchanger
JP2013061138A (en) Intermediate heat exchanger
JP2006153437A (en) Heat exchanger
JP2008044607A (en) Refrigerant circuit system
JP2008309443A (en) Heat transfer pipe connecting structure
WO2012017777A1 (en) Double pipe for heat exchanger
JP2004183960A (en) Heat exchanger
JP2002228387A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060019821

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001982

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06781555

Country of ref document: EP

Kind code of ref document: A1