JP2006305333A - Module for hemofiltration or hemodiafiltration - Google Patents

Module for hemofiltration or hemodiafiltration Download PDF

Info

Publication number
JP2006305333A
JP2006305333A JP2006085659A JP2006085659A JP2006305333A JP 2006305333 A JP2006305333 A JP 2006305333A JP 2006085659 A JP2006085659 A JP 2006085659A JP 2006085659 A JP2006085659 A JP 2006085659A JP 2006305333 A JP2006305333 A JP 2006305333A
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
module
fiber membrane
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085659A
Other languages
Japanese (ja)
Other versions
JP4992104B2 (en
Inventor
Yoshihiro Hatanaka
美博 畑中
Koji Niina
宏二 新名
Riyouko Nagamatsu
亮子 長松
Hiroshi Matsunami
弘 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2006085659A priority Critical patent/JP4992104B2/en
Publication of JP2006305333A publication Critical patent/JP2006305333A/en
Application granted granted Critical
Publication of JP4992104B2 publication Critical patent/JP4992104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a module for hemofiltration or hemodiafiltration dialysis which is a module using hollow fiber membrane which consists of a polysulfone polymer and polyvinylpyrrolidone, is hard to increase pressure of the blood in extracorporeal circulation circuit during a long treatment, has a long life time (membrane duration life) and a reduced albumin loss. <P>SOLUTION: In a module for extracorporeal circulation of a hollow fiber membrane type, the hollow fiber membrane consists of the polysulfone polymer and polyvinylpyrrolidone and the inside diameter of the hollow fiber membrane is 205-250 μm, elevated liquid level of the hollow fiber membrane measured by the capillary ascending method is 60 mm-120 mm in terms of the hollow fiber membrane having an inside diameter of 230 μm, furthermore, when the distance between opening ends of the hollow fiber membrane is defined as L and the minimum inside diameter of the cylindrical container is defined as D, the ratio of L/D is 3.5-6.5, and the sieving coefficient of albumin (Alb-Sc) after 3 hours in the bovine plasma filtering performance test in vitro is 0.0054 or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長時間の施行中に体外循環回路中の血液の圧上昇を起こしにくい、ライフタイム(膜寿命)が長く、かつ、アルブミン等の補液を行わずに安全かつ効率的に体外循環できる血液濾過または血液濾過透析用のモジュールに関するものである。更に詳しくは、長時間の血液循環によっても目詰まりや血液回路内の血液の圧力上昇を起こし難く、かつ、アルブミン等の補液の要らない、ポリスルホン系高分子とポリビニルピロリドンとよりなる中空糸膜を用いた血液濾過または血液濾過透析用のモジュールに関する。   The present invention is unlikely to cause an increase in blood pressure in the extracorporeal circuit during a long period of time, has a long lifetime (membrane life), and can be extracorporeally circulated safely and efficiently without using a replacement fluid such as albumin. The present invention relates to a module for hemofiltration or hemodiafiltration. More specifically, a hollow fiber membrane made of a polysulfone polymer and polyvinyl pyrrolidone that does not easily cause clogging or increase in blood pressure in the blood circuit due to long-term blood circulation and does not require a replacement fluid such as albumin. The present invention relates to a module for blood filtration or hemofiltration dialysis used.

これまで、血液透析、血液濾過、血液濾過透析などの膜分離技術を利用した血液浄化法が種々考案され、技術的にも確立されているが、これらの血液浄化療法は、慢性腎不全患者のみならず急性腎不全患者、うっ血性心不全患者等にまで適用が広まり、近年では救命救急やICU等でも広く施行されるに至っている。膜分離による血液浄化法を急性腎不全患者に対して施行する場合、基本的には従来の慢性腎不全患者に対するそれと同様に体外循環が行なわれるが、中でも、急性腎不全患者は多臓器不全を併発していたり、循環動態が不安定であるなど、慢性腎不全患者に比較して病態が悪いケースが少なくないので、通常の血液透析のような短時間かつ間歇的な治療モードを採用するには無理があった。   Until now, various blood purification methods using membrane separation technologies such as hemodialysis, blood filtration, and hemofiltration dialysis have been devised and technically established, but these blood purification therapies are only available for patients with chronic renal failure. In addition, it has been widely applied to patients with acute renal failure, congestive heart failure, and the like, and in recent years, it has been widely applied to lifesaving emergency and ICU. When the blood purification method using membrane separation is performed on patients with acute renal failure, the extracorporeal circulation is basically performed in the same manner as that for conventional patients with chronic renal failure. Since there are many cases where the condition is worse compared to patients with chronic renal failure, such as complications and unstable circulatory dynamics, it is necessary to adopt a short and intermittent treatment mode such as normal hemodialysis Was impossible.

そこで、特に急性腎不全患者に対しては、専用の血液浄化器を用いたよりきめの細かい治療として、長時間かけて少量ずつ除水や液置換を行なう「持続式血液浄化療法」と称する治療モードが主に採用されている。具体的には、この条件下で濾過や透析を行なう「持続式血液濾過」や「持続式血液濾過透析」が施行されており、「持続式血液濾過」においては、血液流速を50〜150ml/分、濾過速度を5〜50ml/分というように通常の血液濾過や血液透析よりも低く設定して施行される。また、専用の持続式血液濾過器が用いられることが多く、通常の血液透析器(膜面積がおよそ1.3〜2.1m)に比較してより小型のモジュール(膜面積がおよそ1.1m以下)が用いられる。なお、「血液濾過透析」においては、前記の血液濾過と同時に透析液を低流量で流して血液透析も併用されるが、ここでは専ら持続式血液濾過器が兼用されている。 Therefore, especially for patients with acute renal failure, as a more detailed treatment using a dedicated blood purifier, a treatment mode called “continuous blood purification therapy” in which water removal and liquid replacement are performed in small amounts over a long period of time. Is mainly adopted. Specifically, “continuous hemofiltration” and “continuous hemofiltration dialysis” that perform filtration and dialysis under these conditions are performed. In “continuous hemofiltration”, the blood flow rate is 50 to 150 ml / The filtration rate is set to 5 to 50 ml / min lower than that of normal blood filtration or hemodialysis. In addition, a dedicated continuous blood filter is often used, and a smaller module (with a membrane area of approximately 1.5 m 2 ) than a normal hemodialyzer (membrane area of approximately 1.3 to 2.1 m 2 ). 1 m 2 or less) is used. In the “hemofiltration dialysis”, hemodialysis is also used together with the above-mentioned hemofiltration by flowing a dialysate at a low flow rate. Here, however, a continuous hemofilter is also used exclusively.

このような持続式の治療モードは、例えば、心臓血管手術後、重症外傷、SIRS(systemic inflammatory response syndorome:全身性炎症反応症候群)、重症心不全にともなう急性腎不全等に応用されている。   Such a continuous treatment mode is applied to, for example, severe trauma, SIRS (systemic inflammation response syndrome) after acute cardiovascular surgery, acute renal failure associated with severe heart failure, and the like.

ところで、持続式での施行時間は、血液濾過や血液濾過透析のいずれの場合も通常の血液透析時間の4〜5時間よりはるかに長く、20時間以上〜数日間にもわたるケースが多い。そして、施行中に持続式血液濾過器が血液流路内で目詰まりを起こすことがあり、血液入口側と血液出口側での圧力損失が高くなって体外循環の途中で治療を中止せざるを得ない、あるいは、施行途中で持続式血液濾過器を交換しなければならないケースが散見された。   By the way, the duration of the continuous operation is much longer than the normal hemodialysis time of 4 to 5 hours in both cases of blood filtration and hemofiltration dialysis, and often extends from 20 hours to several days. In addition, the continuous hemofilter may become clogged in the blood flow path during the operation, and the pressure loss on the blood inlet side and the blood outlet side becomes high, so the treatment must be stopped during the extracorporeal circulation. There were some cases that could not be obtained or that the continuous blood filter had to be replaced during the operation.

このような長時間施行上の問題に対して、持続式血液濾過器等の体外循環用モジュールのライフタイムを長くするために膜材質や容器部材の抗血栓性を高め、血液凝固による目詰まりを改善する工夫が数多くなされている。しかし、膜分離性能・生物学的安全性・製造コスト等の全ての要件を満足できる医用材料をえるのは容易ではなく、実用化まで至っていないケースが多い。   In order to extend the lifetime of the extracorporeal circulation module such as a continuous blood filter, the membrane material and the container member are improved in antithrombogenicity, and clogging due to blood coagulation is prevented. There are many ideas to improve. However, it is not easy to obtain a medical material that can satisfy all requirements such as membrane separation performance, biological safety, and manufacturing cost, and there are many cases that have not yet been put into practical use.

一方、既に市販されている幾つかの持続式血液濾過器をライフタイムの観点から比較評価し、臨床現場で適切な血液濾過器を選択するための指針を与えた報告例が知られている(非特許文献1)。この文献においては、各種持続式血液濾過器の回路内圧からみたライフタイムを臨床評価しており、ポリアクリルニトリル(PAN)系の中空糸膜を用いた血液濾過器とポリスルホン(PS)系中空糸膜を用いた血液濾過器のライフタイムが長いことが報告されている。しかし、本発明者らが見出したインビトロでのライフタイムの評価方法によれば、この文献に記載の血液濾過器のライフタイムは充分に長いものとはいえなかった。特にポリスルホン系の中空糸膜を内蔵する持続式血液濾過器は、中空糸膜が疎水性高分子であるポリスルホン系高分子と親水性高分子であるポリビニルピロリドンから形成されているので、一般的に低分子蛋白質の透過性能、限外濾過量、生体適合性の全てに優れるバランスのよいものとされているが、それでもこのポリスルホン系の血液濾過器は、2日以上の長期施行を考慮するとライフタイムがまだ不十分であると言わざるを得なかった。   On the other hand, a report example is known in which several commercially available continuous blood filters are comparatively evaluated from the viewpoint of lifetime, and guidelines for selecting an appropriate blood filter in clinical practice are given ( Non-patent document 1). In this document, the lifetime of various continuous blood filters as viewed from the circuit internal pressure is clinically evaluated. Blood filters using polyacrylonitrile (PAN) hollow fiber membranes and polysulfone (PS) hollow fibers It has been reported that a blood filter using a membrane has a long lifetime. However, according to the in vitro lifetime evaluation method found by the present inventors, the lifetime of the blood filter described in this document cannot be said to be sufficiently long. In particular, a continuous blood filter incorporating a polysulfone-based hollow fiber membrane generally has a hollow fiber membrane formed of a polysulfone-based polymer that is a hydrophobic polymer and a polyvinyl pyrrolidone that is a hydrophilic polymer. Although it is considered to have a good balance of low-molecular-weight protein permeation performance, ultrafiltration amount, and biocompatibility, this polysulfone-based blood filter still has a lifetime that takes into account long-term administration over 2 days. I had to say that is still inadequate.

又、当然のことながら、持続式血液浄化療法においては、施行中にアルブミン等の様な有用な蛋白質が体外に漏れ出す(損失)することは好ましくない。従って、一般的に患者の管理が行き届いているICUでは、そうした事態に陥った場合は、アルブミン等の補液を行うことがある。しかしながら、できることならば、アルブミンのような有用蛋白質の損失はできるだけ抑え、煩雑なアルブミン等の補液操作は不要であることが望ましいので、持続式血液濾過器に望まれる性能特性としては、アルブミン等の補液を必要とされない程度の濾過性能が望まれているが、ライフタイムも十分に満足し、かつ、アルブミンの濾過性能も十分に満足するものとは言えなかった。   Naturally, in continuous blood purification therapy, it is not preferable that useful proteins such as albumin leak out of the body (loss) during the operation. Therefore, in general, an ICU that is well managed by a patient may perform a replacement fluid such as albumin in such a situation. However, if possible, it is desirable to suppress the loss of useful proteins such as albumin as much as possible, and it is desirable that complicated fluid replacement operations such as albumin are unnecessary. Therefore, performance characteristics desired for a continuous blood filter include albumin and the like. Filtration performance to the extent that no replacement fluid is required is desired, but the lifetime is sufficiently satisfactory, and it cannot be said that the filtration performance of albumin is also satisfactory.

以上述べたとおり、持続式血液浄化療法のような長時間の体外循環治療において、疎水
性高分子と親水性高分子よりなる中空糸膜、とりわけ、ポリスルホン系高分子とポリビニルピロリドンとよりなる中空糸膜を用いたモジュールであって、体外循環回路中の血液の圧上昇を起こさないライフタイムが長く、かつ、有用蛋白質であるアルブミンの損失の少ない血液濾過または血液濾過透析用のモジュールは知られていなかった。
山下芳久、鈴木洋通、集中治療 vol.12 s15−s16別冊号 2000
As described above, in a long-term extracorporeal circulation treatment such as continuous blood purification therapy, a hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer, especially a hollow fiber composed of a polysulfone polymer and polyvinylpyrrolidone. A module using a membrane, which has a long lifetime that does not cause an increase in blood pressure in the extracorporeal circuit and has little loss of albumin, a useful protein, is known for blood filtration or hemofiltration dialysis. There wasn't.
Yoshihisa Yamashita, Hiromichi Suzuki, Intensive Care vol. 12 s15-s16 separate volume 2000

本発明は、前記従来技術の問題点に鑑みて、ポリスルホン系高分子とポリビニルピロリドンよりなる中空糸膜を用いたモジュールであって、長時間の治療に於いて体外循環回路中の血液の圧上昇を起こさないライフタイム(膜寿命)が長く、かつ、有用蛋白質であるアルブミンの損失の少ない血液濾過または血液濾過透析用のモジュールを提供することを課題とする。   The present invention is a module using a hollow fiber membrane made of a polysulfone polymer and polyvinyl pyrrolidone in view of the problems of the prior art, and increases blood pressure in the extracorporeal circuit during long-term treatment. It is an object of the present invention to provide a module for blood filtration or hemofiltration dialysis that has a long lifetime (membrane life) that does not cause a loss and has little loss of albumin, which is a useful protein.

本発明者らは、上記課題を解決すべく鋭意検討した結果、内蔵される中空糸膜がポリスルホン系高分子とポリビニルピロリドンからなり、該中空糸膜の内径は205〜250μmであって、毛細管上昇法で測定した該中空糸膜の液面上昇値が内径230μmの中空糸膜に換算すると60mm〜120mmになり、該中空糸膜の開口端面間距離をL、該筒状容器の最小内径をDとしたときのL/Dが3.5〜6.5であり、in vitroにおける牛血漿濾過性能試験における3時間後のアルブミンの篩係数(Alb−Sc)が0.0054以下である血液濾過または血液濾過透析用のモジュールがライフタイムに優れており、かつ、アルブミンの損失量も少ないことを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の血液濾過用モジュールに関する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the hollow fiber membrane incorporated is made of a polysulfone polymer and polyvinyl pyrrolidone, the inner diameter of the hollow fiber membrane is 205 to 250 μm, and the capillary rises. When the liquid level rise value of the hollow fiber membrane measured by the method is converted to a hollow fiber membrane having an inner diameter of 230 μm, it becomes 60 mm to 120 mm, the distance between the open end faces of the hollow fiber membrane is L, and the minimum inner diameter of the cylindrical container is D L / D is 3.5 to 6.5, and the sieving coefficient (Alb-Sc) of albumin after 3 hours in the in vitro bovine plasma filtration performance test is 0.0054 or less. It has been found that a module for hemofiltration dialysis has an excellent lifetime and a small amount of albumin loss, and the present invention has been completed.
That is, the present invention relates to the following blood filtration module.

(1) 筒状容器の内部に中空糸膜の束が充填され、該中空糸膜の両端部が硬化性樹脂により該筒状容器両端部にポッティング加工されて容器両端部で開口端面となっており、該開口端面の夫々に血液の入口または出口を有するヘッダーキャップが取り付けられ、更に該中空糸膜濾過液側空間に通じる濾過液の流通口を有する中空糸膜型の体外循環用モジュールにおいて、
該中空糸膜はポリスルホン系高分子とポリビニルピロリドンからなり、
該中空糸膜の内径は205〜250μmであって、
毛細管上昇法で測定した該中空糸膜の液面上昇値が内径230μmの中空糸膜に換算すると60mm〜120mmになり、
該中空糸膜の開口端面間距離をL、該筒状容器の最小内径をDとしたときのL/Dが3.5〜6.5であることを特徴とする、血液濾過または血液濾過透析用のモジュール。
(2) in vitroにおける牛血漿濾過性能試験における3時間後のアルブミンの篩係数が0.0054以下であることを特徴とする、(1)記載の血液濾過または血液濾過透析用のモジュール。
(3) 前記血液濾過または血液濾過透析用のモジュールであって、
以下a〜dからなる体外循環用モジュールのライフタイム評価条件;
a)血液プールを30〜37℃に加温し:
b)血液濾過ポンプを配した濾過回路を体外循環モジュールの濾過側に接続し:
c)血液循環ポンプにより50ml/分の血液流量で血液を循環させ、血液濾過ポンプにより10ml/分の流量で得た濾液を血液プールに戻す血液循環を施行しながら:
d)血液循環開始から30分経過後にカルシウムイオノホアA23187を10μMとなるように循環血液に添加する:
において、体外循環用モジュールの血液入口側と出口側との圧力損失が150mmHgに到達する所要時間が200分以上であることを特徴とする、(1)〜(2)の何れかに記載の血液濾過または血液濾過透析用のモジュール。
(4) 前記中空糸膜の筒状容器への充填率が50%以上75%未満である(1)〜(3)の何れかに記載の血液濾過または血液濾過透析用のモジュール。
(5) 照射滅菌されている(1)〜(4)の何れかに記載の血液濾過または血液濾過透析用のモジュール。
(6) 抗酸化剤溶液が充填されている(1)〜(5)の何れかに記載の血液濾過または血液濾過透析用のモジュール。
(1) The inside of the cylindrical container is filled with a bundle of hollow fiber membranes, and both ends of the hollow fiber membrane are potted to both ends of the cylindrical container with a curable resin to form open end surfaces at both ends of the container. In the hollow fiber membrane type extracorporeal circulation module, a header cap having a blood inlet or outlet is attached to each of the open end faces, and further has a filtrate circulation port communicating with the hollow fiber membrane filtrate side space.
The hollow fiber membrane comprises a polysulfone polymer and polyvinyl pyrrolidone,
The hollow fiber membrane has an inner diameter of 205 to 250 μm,
When the liquid level rise value of the hollow fiber membrane measured by the capillary rise method is converted to a hollow fiber membrane having an inner diameter of 230 μm, it becomes 60 mm to 120 mm.
Blood filtration or blood filtration dialysis, wherein L / D is 3.5 to 6.5, where L is the distance between the open end faces of the hollow fiber membrane, and D is the minimum inner diameter of the cylindrical container Module.
(2) The module for blood filtration or blood filtration dialysis according to (1), wherein the sieve coefficient of albumin after 3 hours in an in vitro bovine plasma filtration performance test is 0.0054 or less.
(3) A module for blood filtration or blood filtration dialysis,
Lifetime evaluation conditions for an extracorporeal circulation module comprising:
a) Warm blood pool to 30-37 ° C .:
b) Connect a filtration circuit with a blood filtration pump to the filtration side of the extracorporeal circulation module:
c) While circulating blood at a blood flow rate of 50 ml / min with a blood circulation pump and returning the filtrate obtained at a flow rate of 10 ml / min with a blood filtration pump to the blood pool:
d) After 30 minutes from the start of blood circulation, add calcium ionophore A23187 to the circulating blood to 10 μM:
The blood according to any one of (1) to (2), wherein the time required for the pressure loss between the blood inlet side and the outlet side of the extracorporeal circulation module to reach 150 mmHg is 200 minutes or more. Module for filtration or hemofiltration dialysis.
(4) The module for blood filtration or blood filtration dialysis according to any one of (1) to (3), wherein a filling rate of the hollow fiber membrane into the cylindrical container is 50% or more and less than 75%.
(5) The module for blood filtration or blood filtration dialysis according to any one of (1) to (4), which is sterilized by irradiation.
(6) The blood filtration or blood filtration dialysis module according to any one of (1) to (5), which is filled with an antioxidant solution.

本発明によれば、モジュールに内蔵される中空糸膜がポリスルホン系高分子とポリビニルピロリドンからなり、該中空糸膜の内径は205〜250μmであって、毛細管上昇法で測定した該中空糸膜の液面上昇値が内径230μmの中空糸膜に換算すると60mm〜120mmになり、該中空糸膜の開口端面間距離をL、該筒状容器の最小内径をDとしたときのL/Dが3.5〜6.5であり、in vitroにおける牛血漿濾過性能試験における3時間後のアルブミンの篩係数(Alb−Sc)が0.0054以下である血液濾過または血液濾過透析用のモジュールがライフタイムに優れており、かつ、アルブミンの損失量も少ないので、長時間の施行中に体外循環回路中の血液の圧上昇を起こしにくく、ライフタイムが長く、かつ、アルブミン等の補液等を行わずに、安全かつ効率的に体外循環できる血液濾過または血液濾過透析用のモジュールを提供できる。   According to the present invention, the hollow fiber membrane incorporated in the module is made of a polysulfone polymer and polyvinyl pyrrolidone, the inner diameter of the hollow fiber membrane is 205 to 250 μm, and the hollow fiber membrane measured by the capillary ascending method is used. When the liquid level rise value is converted to a hollow fiber membrane having an inner diameter of 230 μm, it becomes 60 mm to 120 mm, L / D is 3 when the distance between the open end faces of the hollow fiber membrane is L, and the minimum inner diameter of the cylindrical container is D. A module for hemofiltration or hemofiltration dialysis that has a sieve coefficient (Alb-Sc) of albumin after 3 hours in an in vitro bovine plasma filtration performance test of .5 to 6.5 is 0.0054 or less. In addition, the loss of albumin is small, so it is difficult for blood pressure in the extracorporeal circuit to increase during a long period of time, and the lifetime is long. Without liquid, etc., it can provide a module for hemofiltration or hemodiafiltration which can safely and efficiently extracorporeal circulation.

以下、本発明について詳細に述べる。
本発明でいう血液濾過または血液濾過透析用モジュールとは、持続的血液浄化療法のように長時間の血液濾過や、濾過に透析を併用する血液濾過透析を行うためのものである。モジュールについては、血液濾過透析専用のモジュールはなく、専ら血液濾過用モジュールが兼用されているのが現状である。従って、以下の説明では単に「血液濾過用モジュール」と称するが、これは血液濾過透析用のモジュールも当然含んでいる。
The present invention will be described in detail below.
The blood filtration or blood filtration dialysis module referred to in the present invention is for performing long-time blood filtration such as continuous blood purification therapy, or blood filtration dialysis using dialysis in combination with filtration. As for the module, there is no module dedicated to blood filtration dialysis, and the current situation is that the module for blood filtration is exclusively used. Therefore, in the following description, it is simply referred to as “blood filtration module”, but this naturally includes a module for hemofiltration dialysis.

本発明でいう毛細管上昇法とは、中空糸膜の中空開口部の一端を水溶液に浸し、一定時間後に毛細管現象で中空部を上昇した液面の水面からの高さを測定する方法のことをいう。
具体的には、以下の(1)、(2)の前処理、すなわち(1)血液濾過モジュールの血液流出入口及び液体の出入口の夫々一方から注射用蒸留水を各々500mL流し、中空部及び中空糸膜外部を洗浄する、(2)血液濾過用モジュール内の水を十分に廃棄後、モジュールを解体し、中空糸膜を取り出して乾燥させる、の後、乾燥させた中空糸膜の中空開口部の一端を水溶液に浸し、一定時間後に毛細管現象で管状の構造体の中空部を上昇した液面の水面からの高さを測定する方法のことをいう。このような前処理を行う理由は、中空糸膜がグリセリンや充填液を含んでいるとその表面特性を正確に評価できないこと、および、実際に血液が接触する状態で評価する方が適切であることによる。
The capillary rise method referred to in the present invention is a method in which one end of a hollow opening of a hollow fiber membrane is immersed in an aqueous solution, and the height from the water surface of the liquid level that has risen by a capillary action after a certain time has risen from the water surface. Say.
Specifically, pre-processing of the following (1) and (2), that is, (1) 500 mL of distilled water for injection is flowed from each of the blood outflow inlet and the liquid inlet / outlet of the blood filtration module. (2) After thoroughly discarding the water in the blood filtration module, disassemble the module, take out the hollow fiber membrane and dry it, and then dry the hollow opening of the hollow fiber membrane Is a method of immersing one end of the liquid in an aqueous solution and measuring the height from the water surface of the liquid surface that has risen through the hollow portion of the tubular structure by capillary action after a certain time. The reason why such pretreatment is performed is that it is more appropriate that the hollow fiber membrane contains glycerin or a filling liquid so that the surface characteristics cannot be accurately evaluated, and that the evaluation is performed in a state where blood actually contacts. It depends.

毛管上昇に関しては、一般的に、以下の関係式があることが知られている。
h=2γcosθ/rρg (1)
h:液体面からの上昇位
γ:液体の表面張力
θ:接触角(固体と液体の接触面から液体と気体の接触面への角度)
r:管半径
ρ:液体の密度
g:重力加速度
Regarding capillary rise, it is generally known that there is the following relational expression.
h = 2γ cos θ / rρg (1)
h: Ascending position from the liquid level
γ: Surface tension of liquid
θ: Contact angle (angle from contact surface of solid and liquid to contact surface of liquid and gas)
r: Pipe radius
ρ: Liquid density
g: Gravity acceleration

すなわち、r(管半径)、ρ(液体密度)、h(液体面からの上昇位)を測定することによって液体の表面張力を測定することができ、この関係式(1)から、管状構造体内表面の液体に対する濡れ易さ、すなわち、親水性、疎水性の度合いは、毛細管中の液面上昇の度合いによって評価することが可能である。   That is, the surface tension of the liquid can be measured by measuring r (tube radius), ρ (liquid density), and h (ascending position from the liquid surface). From this relational expression (1), The ease of wetting of the surface with respect to the liquid, that is, the degree of hydrophilicity and hydrophobicity, can be evaluated by the degree of increase in the liquid level in the capillary tube.

したがって、中空糸膜の場合も上記の毛細管上昇法により、中空糸内表面の水溶液に対する濡れ易さ、すなわち、親水性(疎水性)の度合いを測定することができる。また、内径の異なる中空糸膜であっても、各々の毛細管中の液面上昇値と内径を測定し、式(1)の関係から基準とする中空糸膜の内径に換算する補正をすることによって、各々の中空糸の親水性(疎水性)の度合いを、基準とする内径の中空糸膜の液面上昇値として絶対比較することが可能になる。本発明では液面上昇値として中空糸膜の内径を230μmに換算した補正値を使用する。   Therefore, also in the case of a hollow fiber membrane, the ease of wetting of the inner surface of the hollow fiber with respect to the aqueous solution, that is, the degree of hydrophilicity (hydrophobicity) can be measured by the above capillary ascending method. Moreover, even for hollow fiber membranes having different inner diameters, the liquid level rise value and inner diameter in each capillary are measured, and correction is made to convert them into the reference inner diameter of the hollow fiber membrane from the relationship of equation (1). Thus, it becomes possible to make an absolute comparison of the degree of hydrophilicity (hydrophobicity) of each hollow fiber as the liquid level increase value of the hollow fiber membrane having the reference inner diameter. In the present invention, a correction value obtained by converting the inner diameter of the hollow fiber membrane to 230 μm is used as the liquid level rise value.

中空糸膜の毛管上昇値を測定するに際しては、中空糸膜の水分率や内径が測定値に影響を与えるので、水分率と内径を測定しておく必要がある。中空糸膜の水分率としては5%以下である必要があり、水分率が5%より大きいと、中空糸膜が本質的に有している内表面の疎水性の性質が現れにくくなり、その毛管上昇値は、大きな測定値を示すようになり、サンプル同士の比較を困難にしてしまう。   When measuring the capillary rise value of the hollow fiber membrane, the moisture content and the inner diameter of the hollow fiber membrane need to be measured because the moisture content and the inner diameter of the hollow fiber membrane affect the measurement value. The moisture content of the hollow fiber membrane needs to be 5% or less, and if the moisture content is greater than 5%, the hydrophobic nature of the inner surface inherent to the hollow fiber membrane is less likely to appear. The capillary rise value shows a large measured value, which makes it difficult to compare the samples.

毛細管現象による水溶液の液面上昇値を測定するに際しては、その測定時間も重要である。中空糸膜内表面がより親水性である場合は、中空部を上昇していく水溶液のスピードが速くなり、短時間での測定では測定値にばらつきがでてしまう。また、多くのサンプルを一度に測定することが難しくなる。実用的な測定時間は、中空糸膜を水溶液に浸してから5秒以上経過した時点が好ましく、より実用的には3分以内の適当な時間に設定することが好ましい。本発明では1分後の値を示す。   When measuring the level rise of an aqueous solution due to capillary action, the measurement time is also important. When the inner surface of the hollow fiber membrane is more hydrophilic, the speed of the aqueous solution rising up the hollow portion is increased, and the measurement value varies in a short time measurement. Moreover, it becomes difficult to measure many samples at once. Practical measurement time is preferably the time when 5 seconds or more have passed since the hollow fiber membrane was immersed in the aqueous solution, and more practically, it is preferably set to an appropriate time within 3 minutes. In the present invention, the value after 1 minute is shown.

中空部の水溶液の液面は、中空糸膜がある程度の透明性を有していれば肉眼で観察することができる。しかしながら、中空糸膜がポーラスになればなるほど透明性が低下し、肉眼での観察が難しくなる。その場合は、水溶液にコンゴーレッドなどのような染料を水溶液の表面張力に影響を与えない程度の量だけ加えて水溶液を着色すれば、観察が容易になる。   The liquid level of the aqueous solution in the hollow portion can be observed with the naked eye if the hollow fiber membrane has a certain degree of transparency. However, the more porous the hollow fiber membrane is, the lower the transparency becomes and the observation with the naked eye becomes difficult. In that case, if the aqueous solution is colored by adding a dye such as Congo Red to the aqueous solution in an amount that does not affect the surface tension of the aqueous solution, the observation becomes easy.

本発明の血液濾過用モジュールに内蔵される疎水性高分子と親水性高分子よりなる中空糸膜において、毛細管上昇法により測定される水溶液の上昇値の、中空糸膜の内径を230μmに換算した補正値は60mm以上であることが必要である。60mmより低いと極端にライフタイムが低くなるので、長時間施行する血液濾過用モジュールとして不適切である。水溶液の上昇値は、より好ましくは70mm以上であり、中空糸膜の吸湿性による取扱い性や製造性を考慮すると120mm以下であることが好ましい。   In the hollow fiber membrane composed of the hydrophobic polymer and the hydrophilic polymer incorporated in the blood filtration module of the present invention, the inner diameter of the hollow fiber membrane of the rising value of the aqueous solution measured by the capillary ascending method was converted to 230 μm. The correction value needs to be 60 mm or more. If it is lower than 60 mm, the lifetime will be extremely low, so it is not suitable as a blood filtration module that is performed for a long time. The rising value of the aqueous solution is more preferably 70 mm or more, and is preferably 120 mm or less in consideration of handleability and manufacturability due to the hygroscopic property of the hollow fiber membrane.

ここで、ライフタイムとは、血液濾過療法などの体外循環療法施行中に、血液濾過モジュールの中空糸膜やその他の血液流路に血球や血漿蛋白質が詰まって圧上昇が発生し、治療継続不能になることなく施行できる時間のことであり、膜寿命のことをいう。   Here, the lifetime means that during the extracorporeal circulation therapy such as hemofiltration therapy, the hollow fiber membrane of the hemofiltration module and other blood flow channels are clogged with blood cells and plasma proteins, resulting in increased pressure, and treatment cannot be continued. It is the time that can be enforced without becoming, and it means the film life.

臨床使用時のライフタイムは、本発明者等が開発した インビトロでの評価方法によって推定することができる。その方法とは、特定濃度の血小板を含む抗凝固剤添加血液をプールし、この血液を血液流路に循環させた状態で血小板活性化試薬を添加し、血液濾過用モジュールの圧力損失の変化(上昇)をモニターするものである。つまり、活性化した血液を循環した際に、血液濾過用モジュールの圧力損失が特定の値に到達する所要時間を測定し、その長短によってライフタイムを評価する加速試験であるので、この所要時間が長いほどライフタイムに優れた体外循環用モジュールと評価され、反対に短いほどライフタイムが劣る、すなわち目詰まり傾向が高いモジュールであると評価される。その際、圧力損失が特定の値に到達する所要時間が具体的にどの程度であればライフタイムに優れる(劣る)血液濾過用モジュールと判断するかは、例えば、既に臨床経験によりライフタイムの良し悪しが分かっている血液濾過用モジュールを指標に相対比較すればよい。   The lifetime during clinical use can be estimated by an in vitro evaluation method developed by the present inventors. The method involves pooling anticoagulant-containing blood containing a specific concentration of platelets, adding a platelet activating reagent in a state where this blood is circulated through the blood flow path, and changing the pressure loss of the blood filtration module ( Monitor). In other words, when the activated blood is circulated, the time required for the pressure loss of the blood filtration module to reach a specific value is measured, and this is an accelerated test that evaluates the lifetime based on the length of the time. The longer the module is evaluated as a module for extracorporeal circulation, the shorter the module is, the shorter the module is evaluated as a module having a shorter lifetime, i.e., a high clogging tendency. At that time, the specific time required for the pressure loss to reach a specific value is determined to be a blood filtration module having an excellent (inferior) lifetime, for example, based on clinical experience. What is necessary is just to make a relative comparison with the index for blood filtration modules that are known to be bad.

以下、本発明に係るインビトロでのライフタイム評価方法についてより具体的に説明する。本発明者等が開発したライフタイム評価方法は、血液透析等の通常の体外循環に類似した閉回路をインビトロで構成し、これに血液を循環しながら圧力上昇をモニターして実施するものである。図1にその概略構成図を示すが、血液循環ポンプ5および血液入口側圧力検出器6を配した動脈側血液回路3、体外循環用モジュール2、血液出口側圧力検出器7を配した静脈側血液回路4をこの順番に接続して血液流路1を準備し、血液流路1の動脈側および静脈側の端部を血液プール8にセットすることにより閉回路としている。   Hereinafter, the in vitro lifetime evaluation method according to the present invention will be described more specifically. The lifetime evaluation method developed by the present inventors comprises a closed circuit similar to normal extracorporeal circulation such as hemodialysis in vitro, and monitors the increase in pressure while circulating blood. . FIG. 1 shows a schematic configuration diagram thereof, in which an arterial blood circuit 3 provided with a blood circulation pump 5 and a blood inlet side pressure detector 6, an extracorporeal circulation module 2, and a vein side provided with a blood outlet side pressure detector 7. The blood circuit 4 is connected in this order to prepare the blood channel 1, and the arterial side and vein side ends of the blood channel 1 are set in the blood pool 8 to form a closed circuit.

本血液流路を構成する個々の部材、装置は通常の体外循環治療で用いられる公知のもの
を利用すればよく、例えば、軟質チューブからなる血液回路、ローラーポンプ等の送液装
置、水銀マノメーターやディジタルマノメーター等の圧力検出器を用いるとよい。また、
血液循環を行なう上で取り付けたほうが好ましいクランプやドリップチャンバー等の部品
を適宜取り付けても構わない。さらに、実際の血液濾過や血液透析を模して、前記の血液
流路に濾過回路や透析回路を併設してもよい。例えば、血液濾過ポンプ10を配した濾過
回路9を体外循環用モジュールの濾過側のノズルに接続し、一定流量で濾過しながら血液
循環を行ったり、透析液の導入回路および排出回路を体外循環用モジュールの濾過側のノ
ズルに接続すれば、血液濾過透析の条件でライフタイムの評価をすることもできる。
The individual members and devices constituting the blood flow path may be known ones that are used in normal extracorporeal circulation treatment, such as a blood circuit composed of a soft tube, a liquid delivery device such as a roller pump, a mercury manometer, A pressure detector such as a digital manometer may be used. Also,
Parts such as a clamp and a drip chamber which are preferably attached for blood circulation may be appropriately attached. Furthermore, in order to simulate actual blood filtration and hemodialysis, a filtration circuit and a dialysis circuit may be provided in the blood flow path. For example, a filtration circuit 9 provided with a blood filtration pump 10 is connected to a nozzle on the filtration side of the extracorporeal circulation module, and blood circulation is performed while filtering at a constant flow rate, or a dialysate introduction circuit and a discharge circuit are used for extracorporeal circulation. If connected to the nozzle on the filtration side of the module, the lifetime can be evaluated under the conditions of hemodiafiltration.

本発明に係るライフタイム評価方法に用いられる体外循環モジュールは、血液濾過透析器、血液濾過器、血液透析器、血漿分離器、血漿成分分離器のような中空糸膜型血液浄化器、不織布を円筒状に充填した細胞吸着器、粒子や繊維からなる吸着材を充填した成分吸着器等の何れでも構わないが、以下に述べるように、本ライフタイム評価方法は、臨床現場で長時間施行する体外循環用モジュールのライフタイムの評価に好適であるので、中空糸膜型の持続式血液濾過器が好ましい。なお、持続式血液濾過器は持続式血液濾過透析にも一般的に用いられるので、濾過に限定されるものではない。   The extracorporeal circulation module used in the lifetime evaluation method according to the present invention includes a hollow fiber membrane blood purifier such as a hemofiltration dialyzer, hemofilter, hemodialyzer, plasma separator, and plasma component separator, and a nonwoven fabric. Either a cell adsorber filled in a cylindrical shape or a component adsorber filled with an adsorbent made of particles or fibers may be used. However, as described below, this lifetime evaluation method is performed for a long time in a clinical field. Since it is suitable for evaluating the lifetime of the extracorporeal circulation module, a hollow fiber membrane type continuous blood filter is preferred. The continuous hemofilter is generally used for continuous hemodiafiltration, and is not limited to filtration.

本発明に係るライフタイム評価方法においては、前記の血液流路に血液を循環するにあたり、血液プール8に血小板濃度を特定した血液をプールし、これに血小板活性化剤を添加する必要がある。   In the lifetime evaluation method according to the present invention, when blood is circulated through the blood flow path, it is necessary to pool blood with a specified platelet concentration in the blood pool 8, and to add a platelet activator thereto.

本ライフタイム評価方法で用いられる抗凝固剤とは、体外に取り出した血液が凝固するのを阻止する薬剤であり、クエン酸系抗凝固剤(クエン酸ナトリウム、ACD−A、CPD等)、エチレンジアミンテトラアセティックアシッド(EDTA)のようなキレート剤、ヘパリン系抗凝固剤(ヘパリン、低分子ヘパリン等)、メシル酸ナファモスタット、メシル酸ガベキサート等の抗凝固剤が例示できる。中でも、ヘパリン系抗凝固剤(ヘパリン、低分子ヘパリン等)は凝固系に必須のカルシウムをキレートしないため、以下に述べる血小板活性化剤として、カルシウムイオノホアを用いる際にもっとも好ましく用いられる。   The anticoagulant used in this lifetime evaluation method is a drug that prevents the blood taken outside the body from coagulating, such as citrate anticoagulants (sodium citrate, ACD-A, CPD, etc.), ethylenediamine Examples include chelating agents such as tetraacetic acid (EDTA), heparin anticoagulants (such as heparin and low molecular weight heparin), anticoagulants such as nafamostat mesylate and gabexate mesylate. Among them, heparin anticoagulants (heparin, low molecular weight heparin, etc.) do not chelate calcium essential for the coagulation system, and are therefore most preferably used when calcium ionophore is used as a platelet activator described below.

本ライフタイム評価方法で用いられる血液は、採血された全血であり、人、牛、豚等の哺乳類の血液を用いることが好ましい。中でも牛の血液が好ましく用いられるが、これは試験に十分な量の新鮮血を入手しやすいことと、ライフタイムを評価するのに丁度よい血小板濃度であることが多く、評価に際して血小板濃度を人為的に調整する必要がないからである。抗凝固剤を添加した血液の血小板濃度は10万個/μL以上であることが必要であり、これより低濃度では血小板活性化剤を添加しても圧力上昇が起こりにくいので、短時間で評価を行なうことができない。一方、血小板濃度があまりにも高すぎると、圧力上昇が早まる傾向にあり、例えば30万個/μLを越えると所定の圧力値に到達する所用時間が短くなり、しかもばらつく傾向が高くなる。従って、血小板濃度が10〜30万個/μLの範囲にある血液をプールすることが好ましく、血小板濃度が15〜30万個/μLの血液がより好ましく、血小板濃度が22〜30万個/μLの血液が特に好ましい。   The blood used in this lifetime evaluation method is whole blood collected, and it is preferable to use blood of mammals such as humans, cows and pigs. Of these, bovine blood is preferably used. This is because it is easy to obtain a sufficient amount of fresh blood for the test, and it is often just a good platelet concentration to evaluate the lifetime. This is because there is no need to make adjustments. Blood platelets with anticoagulant added should have a platelet concentration of 100,000 cells / μL or more, and at lower concentrations, it is difficult to increase pressure even when platelet activator is added. Can not be done. On the other hand, if the platelet concentration is too high, the pressure increase tends to be accelerated, and if it exceeds 300,000 / μL, for example, the required time to reach a predetermined pressure value is shortened and the tendency to vary is increased. Therefore, it is preferable to pool blood with a platelet concentration in the range of 100-300,000 / μL, blood with a platelet concentration of 150-300,000 / μL is more preferable, and a platelet concentration of 22-300,000 / μL. The blood is particularly preferred.

本ライフタイム評価方法で用いられる血小板活性化試薬とは、血小板に作用し、血小板の凝集や血栓形成を促進化させる物質である。例示すると、カルシウムイオノホア、PAF(platelet−activaing facter)、トロンビン、エンドトキシン等が挙げられるが、カルシウムイオノホアは、循環血液の圧力上昇への作用が比較的緩やかでありながらも非添加系に比べて明確な圧力上昇を引き起こすことが可能であり、圧力上昇を安定的かつ感度良く測定できるという点で好ましい。中でもカルシウムイオンの膜透過性を高める働きを有し、カルシウムイオンに対する特異性が特に高く、生体膜における物質の担体輸送のモデルとして取り扱われることの多いカルシウムイオノホアA23187が特に好ましい。   The platelet activating reagent used in this lifetime evaluation method is a substance that acts on platelets and promotes platelet aggregation and thrombus formation. Illustrative examples include calcium ionophore, PAF (platelet-activating factor), thrombin, endotoxin, and the like, but calcium ionophore has a relatively slow effect on the increase in pressure of circulating blood compared to the non-added system. It is preferable in that it can cause a clear pressure rise and can measure the pressure rise stably and with high sensitivity. Of these, calcium ionophore A23187, which has a function of increasing the membrane permeability of calcium ions, has a particularly high specificity for calcium ions, and is often handled as a model for carrier transport of substances in biological membranes, is particularly preferable.

本ライフタイム評価方法は、前記のように、特定濃度の血小板を含む抗凝固剤添加血液をプールし、この血液を血液流路に循環させた状態で血小板活性化試薬を添加し、体外循環用モジュールの圧力損失の変化(上昇)をモニターするものである。つまり、活性化した血液を循環した際に、体外循環用モジュールの圧力損失が特定の値に到達する所要時間を測定し、その長短によってライフタイムを評価する加速試験であるので、この所要時間が長いほどライフタイムに優れた体外循環用モジュールと評価され、反対に短いほどライフタイムが劣る、すなわち目詰まり傾向が高いモジュールであると評価される。その際、圧力損失が特定の値に到達する所要時間が具体的にどの程度であればライフタイムに優れる(劣る)体外循環用モジュールと判断するかは、例えば、既に臨床経験によりライフタイムの良し悪しが分かっている体外循環用モジュールを指標に相対比較すればよい。   As described above, this lifetime evaluation method pools anticoagulant-added blood containing a specific concentration of platelets, adds a platelet activating reagent in a state where this blood is circulated through the blood flow path, and is used for extracorporeal circulation. Monitors the change (increase) in the pressure loss of the module. In other words, when the activated blood is circulated, the time required for the pressure loss of the extracorporeal circulation module to reach a specific value is measured, and this is an accelerated test that evaluates the lifetime according to its length. The longer the module is evaluated as a module for extracorporeal circulation, the shorter the module is, the shorter the module is evaluated as a module having a shorter lifetime, i.e., a high clogging tendency. At that time, the specific time required for the pressure loss to reach a specific value is determined to be a module for extracorporeal circulation with an excellent (inferior) life time. What is necessary is just to make a relative comparison with the index for the extracorporeal circulation module whose badness is known.

ここでいう圧力損失とは、体外循環用モジュールの入口付近および出口付近の血液流路に分岐管路を設けて取り付けた圧力検出器を用いて、血液の循環中に血液入口側圧力と血液出口側圧力を測定し、下記の式(2)によって算出されるものである。

体外循環用モジュールの圧力損失=血液入口側圧力−血液出口側圧力 (2)
The pressure loss here refers to the pressure at the blood inlet side and the blood outlet during circulation of blood using a pressure detector attached to the blood flow path near the inlet and the outlet of the extracorporeal circulation module. The side pressure is measured and calculated by the following equation (2).

Pressure loss of extracorporeal circulation module = Blood inlet side pressure-Blood outlet side pressure (2)

本ライフタイム評価方法においては、より安定的な評価を行うために圧力損失の上限を100〜300mmHgにすることが好ましい。圧力損失が100mmHgよりも低いと圧力上昇の有無を明確に検出し難い場合があり、反対に、圧力損失が300mmHgを越えると、通常の体外循環用モジュールにおいては既に目詰まりが発生して正常に血液循環できない場合があり、評価方法としては好ましくないからである。より好ましくは100〜250mmHg、特に好ましくは100〜200mmHgの範囲である。   In this lifetime evaluation method, it is preferable to set the upper limit of pressure loss to 100 to 300 mmHg in order to perform more stable evaluation. If the pressure loss is lower than 100 mmHg, it may be difficult to clearly detect the presence or absence of pressure rise. Conversely, if the pressure loss exceeds 300 mmHg, the normal extracorporeal circulation module is already clogged and becomes normal. This is because blood circulation may not be possible, which is not preferable as an evaluation method. More preferably, it is the range of 100-250 mmHg, Most preferably, it is the range of 100-200 mmHg.

前述の血小板活性化試薬については、血液への添加濃度を調整することが好ましく、血小板濃度が10万個/mL以上のプール血液(濃度Aとする)に、該血液中の血小板濃度を10〜20万個/μL(濃度Bとする)減少させ、かつA≧Bとなるような濃度の血小板活性化試薬を添加すればよい。こうすることにより、圧力損失が所定の値に到達する所要時間が短くなる傾向にあり、測定感度を高めかつ評価時間を短くすることができるからである。具体的には血小板活性化試薬を、添加後の血中濃度が2〜15μM程度となるように添加するとよい。   About the above-mentioned platelet activating reagent, it is preferable to adjust the concentration added to blood, and the concentration of platelets in the blood is set to 10 to 10 in pooled blood (concentration A) having a platelet concentration of 100,000 / mL or more. What is necessary is just to add the platelet activation reagent of the density | concentration which makes 200,000 piece / microliter (concentration B) decrease, and becomes A> = B. This is because the time required for the pressure loss to reach a predetermined value tends to be shortened, and the measurement sensitivity can be increased and the evaluation time can be shortened. Specifically, the platelet activating reagent may be added so that the blood concentration after addition is about 2 to 15 μM.

また、血小板活性化試薬は、体外循環用モジュールの圧力損失が安定する血液循環開始後少なくとも30分以降に加えると、圧力変化を安定化して評価精度を高めることができる。添加方法は特に問わないが、血小板活性化試薬を生理食塩水や緩衝液等に溶解して濃度既知の添加液として準備し、これを血液流路のインジェクションポートやヘパリン注入回路等の任意の場所から注入したり、あるいはプール血液に滴下し、血球カウンター等で循環血液中の血小板濃度を確認すればよい。   Further, when the platelet activating reagent is added at least 30 minutes after the start of blood circulation where the pressure loss of the extracorporeal circulation module is stabilized, the pressure change can be stabilized and the evaluation accuracy can be improved. The addition method is not particularly limited, but the platelet activation reagent is dissolved in physiological saline or a buffer solution and prepared as an addition solution with a known concentration, and this is added to any place such as an injection port of a blood flow path or a heparin injection circuit. The platelet concentration in the circulating blood may be confirmed with a blood cell counter or the like.

血液の循環条件については、実際の臨床現場における体外循環用モジュールの施行条件をできるだけ反映させることにより、より確実な評価方法となる。例えば、血液プールは30〜37℃に加温することが好ましく、体温に近くしかも血小板の活性化を進めやすい35〜37℃がより望ましい。   Regarding the blood circulation conditions, a more reliable evaluation method can be obtained by reflecting as much as possible the implementation conditions of the extracorporeal circulation module in the actual clinical site. For example, the blood pool is preferably heated to 30 to 37 ° C., more preferably 35 to 37 ° C., which is close to body temperature and facilitates platelet activation.

また、血液循環ポンプにより体外循環用モジュールに流す血液流量は、持続式血液濾過療法を想定する場合は50〜100ml/分が好ましく、50〜60ml/分がより好ましい。その場合、体外循環用モジュールの濾過側のノズルに、血液濾過ポンプを配した濾過回路を接続して濾過流量1〜20ml/分で濾過を行なうことが好ましく、8〜12ml/分がより好ましい。得られた濾液は血液プールに戻し、血球が濃縮されないようにする。   In addition, the blood flow rate that flows to the extracorporeal circulation module by the blood circulation pump is preferably 50 to 100 ml / min, and more preferably 50 to 60 ml / min when assuming continuous hemofiltration. In that case, it is preferable to perform filtration at a filtration flow rate of 1 to 20 ml / min by connecting a filtration circuit provided with a blood filtration pump to the filtration side nozzle of the extracorporeal circulation module, and more preferably 8 to 12 ml / min. The resulting filtrate is returned to the blood pool so that blood cells are not concentrated.

以上述べたライフタイム評価方法により、ライフタイムに優れた体外循環モジュールを選択することもできる。本発明者らの知見によれば、具体的条件として、血液プールを30〜37℃に加温し、血液濾過ポンプを配した濾過回路を体外循環モジュールの濾過側に接続し、血液循環ポンプにより50ml/分の血液流量で血液を循環させ、血液濾過ポンプにより10ml/分の流量で得た濾液を血液プールに戻す血液循環を施行しながら、血液循環開始から30分経過後にカルシウムイオノホアA23187を血中濃度が8〜15μM(血小板濃度が10〜20万/μL減少する濃度)となるように循環血液に添加する評価条件において、体外循環用モジュールの圧力損失が150mmHgに到達する所要時間が200分以上であれば、その体外循環用モジュールは、臨床においても十分長いライフタイムを示した。   By the lifetime evaluation method described above, an extracorporeal circulation module having an excellent lifetime can be selected. According to the knowledge of the present inventors, as a specific condition, the blood pool is heated to 30 to 37 ° C., and a filtration circuit provided with a blood filtration pump is connected to the filtration side of the extracorporeal circulation module. While circulating blood at a blood flow rate of 50 ml / min and performing blood circulation to return the filtrate obtained at a flow rate of 10 ml / min to the blood pool by a blood filtration pump, 30 minutes after the start of blood circulation, calcium ionophore A23187 Under the evaluation conditions in which the blood concentration is 8 to 15 μM (the concentration at which the platelet concentration decreases by 100 to 200,000 / μL), the time required for the pressure loss of the extracorporeal circulation module to reach 150 mmHg is 200. If it was more than minutes, the extracorporeal circulation module showed a sufficiently long lifetime even in clinical practice.

次に、本発明の血液濾過用モジュールの製造方法について説明する。
前記モジュールに内蔵されるポリスルホン系高分子とポリビニルピロリドンからなる中空糸膜は、公知の乾湿式紡糸方法を利用して得ることができる。このような組成の中空糸膜は、膜表面が親水化された構造となるので血液接触面において血液凝固系を活性化し難く、血液濾過用モジュールのライフタイムを長くできる。
Next, the manufacturing method of the blood filtration module of the present invention will be described.
A hollow fiber membrane comprising a polysulfone polymer and polyvinyl pyrrolidone incorporated in the module can be obtained by using a known dry and wet spinning method. The hollow fiber membrane having such a composition has a structure in which the membrane surface is hydrophilized, so that it is difficult to activate the blood coagulation system on the blood contact surface, and the lifetime of the blood filtration module can be prolonged.

ポリスルホン系高分子としては、ポリスルホン、ポリエーテルスルホン、ポリアリルエーテルスルホン等が挙げられる。これらは製膜性や強度の点から好ましく、中でも、放射線に対する滅菌耐性に優れ、かつ低透水型から高透水型までの幅広い孔径制御に優れることからも好ましい。ポリスルホン系高分子の代表的な構造式を[化1]および[化2]に示す。   Examples of the polysulfone-based polymer include polysulfone, polyethersulfone, and polyallyl ether sulfone. These are preferable from the viewpoints of film forming properties and strength, and among them, they are also preferable because they are excellent in sterilization resistance against radiation and are excellent in controlling a wide range of pore diameters from low water permeability type to high water permeability type. Typical structural formulas of polysulfone polymers are shown in [Chemical Formula 1] and [Chemical Formula 2].

ポリビニルピロリドンは、ポリスルホン系高分子との相溶性および血液適合性の観点から優れているので好ましい。   Polyvinyl pyrrolidone is preferable because it is excellent from the viewpoint of compatibility with the polysulfone polymer and blood compatibility.

疎水性高分子にポリスルホン系高分子、親水性高分子にポリビニルピロリドンまたはポリエチレングリコールを用いて乾湿式紡糸する場合は、膜構造が形成される際に親水性高分子が孔径形成材と親水化材の両方を担う。その結果、低分子蛋白質の透過性、限外濾過量、生体適合性の全てに優れる膜構造が得られやすいので、この組み合わせが最も好ましい。以下、ポリスルホン系高分子とポリビニルピロリドンの場合を例として説明する。   When dry-wet spinning is performed using a polysulfone-based polymer as the hydrophobic polymer and polyvinylpyrrolidone or polyethylene glycol as the hydrophilic polymer, the hydrophilic polymer becomes the pore size forming material and the hydrophilizing material when the membrane structure is formed. Responsible for both. As a result, a membrane structure excellent in all of low-molecular-weight protein permeability, ultrafiltration amount, and biocompatibility is easily obtained, and this combination is most preferable. Hereinafter, the case of a polysulfone polymer and polyvinylpyrrolidone will be described as an example.

乾湿式製膜を行うための製膜原液としては、ポリスルホン系高分子とポリビニルピロリドンを共通に溶解する溶剤に溶解混和した溶液が用いられる。該溶剤としては、ポリマーの溶解性や生体に対する安全性、コスト等を考えるとN,N-ジメチルアセトアミドが好ましい。   As a film-forming stock solution for dry-wet film formation, a solution in which a polysulfone polymer and polyvinylpyrrolidone are dissolved and mixed in a solvent that dissolves in common is used. As the solvent, N, N-dimethylacetamide is preferable in view of solubility of the polymer, safety to living bodies, cost and the like.

製膜原液中のポリスルホン系高分子の濃度が低すぎると、膜形成が困難となって膜強度が弱くなり、反対に高すぎると、紡糸性が悪くなったり孔径が小さくなる等の現象が生じてくるので、一般的に12〜25重量%、より好ましくは15〜20重量%である。また、ポリビニルピロリドンは、中空糸膜が形成される過程においてその一部が膜中に残存する。その割合はポリビニルピロリドンの分子量や紡糸条件により変化するので、ポリビニルピロリドンの最適な濃度は適宜検討されるべきであるが、例えば、ポリビニルピロリドンの数平均分子量が300,000以上の時には1〜15重量%、より好ましくは3〜7重量%である。   If the concentration of the polysulfone polymer in the membrane forming stock solution is too low, membrane formation becomes difficult and the strength of the membrane becomes weak. On the other hand, if the concentration is too high, phenomena such as poor spinnability and small pore size occur. Therefore, it is generally 12 to 25% by weight, more preferably 15 to 20% by weight. Moreover, a part of polyvinylpyrrolidone remains in the membrane in the process of forming the hollow fiber membrane. Since the ratio varies depending on the molecular weight of polyvinyl pyrrolidone and the spinning conditions, the optimum concentration of polyvinyl pyrrolidone should be appropriately examined. For example, when the number average molecular weight of polyvinyl pyrrolidone is 300,000 or more, 1 to 15 weights %, More preferably 3 to 7% by weight.

上記の製膜原液を内部凝固液と同時に二重環状紡口から吐出させ、空中走行部を経て凝固浴へ導くと中空糸膜が形成される。内部凝固液および凝固浴としては水を主体とした液が用いられるが、ポリスルホン系高分子の溶剤と水の混合液を用いることが好ましい。内部凝固液は、血液濾過用モジュールとしての透過性、濾過性を得るうえで、例えばN,N-ジメチルアセトアミドを用いた場合は、45〜80重量%の水溶液が好適に用いられる。   A hollow fiber membrane is formed when the membrane-forming stock solution is discharged from the double annular nozzle simultaneously with the internal coagulation solution and guided to the coagulation bath through the aerial running section. As the internal coagulation liquid and the coagulation bath, a liquid mainly composed of water is used, but it is preferable to use a mixed liquid of a polysulfone polymer solvent and water. In order to obtain permeability and filterability as a blood filtration module, for example, when N, N-dimethylacetamide is used as the internal coagulation liquid, an aqueous solution of 45 to 80% by weight is preferably used.

本発明における中空糸膜内表面の特性を発現するために、すなわち毛細管上昇法により測定される水溶液の液面上昇値の、中空糸膜の内径を230μmに換算した補正値を60mm以上にするために重要な点は、製膜原液の凝固条件を制御することである。   In order to express the characteristics of the inner surface of the hollow fiber membrane in the present invention, that is, to correct the liquid level rise value of the aqueous solution measured by the capillary rise method to 60 mm or more when the inner diameter of the hollow fiber membrane is converted to 230 μm. The important point is to control the coagulation conditions of the film-forming stock solution.

その第一点は空中走行部の走行時間の制御である。製膜原液は、紡口から吐出されてから凝固浴に浸漬されるまでの間に適度に凝固していることが好ましく、そのためには空中走行部の走行時間は0.4秒以上であることが好ましく、より好ましくは0.5秒以上である。空中走行部の走行時間は紡糸速度により管理することができる。空中部の走行時間が0.4秒未満、特に0.1秒以下になると、凝固不十分な状態で中空糸膜が凝固浴中に浸漬され、水溶性であるポリビニルピロリドンの凝固浴中へ溶出量が増加し、中空糸膜内に残存するポリビニルピロリドン量が減少して親水化が不充分になることがある。つまり、毛細管上昇法により測定される水溶液の液面上昇値の、中空糸膜の内径を230μmに換算した補正値を確実に60mm以上にするのが困難となる場合がある。反対に、その上限については空中走行距離によって異なるが、空中走行距離が50cmの場合には2.0秒を超えない範囲であることが好ましい。   The first point is the control of the travel time of the aerial travel unit. The film-forming stock solution is preferably solidified appropriately from the time it is discharged from the spinning nozzle until it is immersed in the coagulation bath, and for that purpose, the running time of the aerial running section should be 0.4 seconds or more. Is more preferable, and more preferably 0.5 seconds or more. The traveling time of the aerial traveling unit can be managed by the spinning speed. If the running time in the air is less than 0.4 seconds, especially 0.1 seconds or less, the hollow fiber membrane is immersed in the coagulation bath in an insufficiently coagulated state and eluted into the water-soluble polyvinylpyrrolidone coagulation bath. The amount increases, the amount of polyvinylpyrrolidone remaining in the hollow fiber membrane decreases, and hydrophilicity may become insufficient. That is, it may be difficult to ensure that the correction value obtained by converting the inner diameter of the hollow fiber membrane to 230 μm in the liquid level rise value of the aqueous solution measured by the capillary rise method is 60 mm or more. On the contrary, although the upper limit differs depending on the aerial travel distance, it is preferably within a range not exceeding 2.0 seconds when the aerial travel distance is 50 cm.

第二点は空中走行部分の湿度の制御である。空中走行部の相対湿度は70〜95%であることが好ましく、より好ましくは75〜90%である。相対湿度がこの範囲より低いと凝固浴に浸漬するまでに中空糸膜の形成が充分に行われず、本発明の膜表面特性を支配する適度な膜構造の形成ができない場合があり、中空糸膜間の固着を起こすなど安定した紡糸ができない。反対に、相対湿度が高すぎると外表面からの凝固が促進され、中空糸膜内の孔径も小さくなって低分子蛋白質の透過性が悪くなり好ましくない。   The second point is the control of the humidity of the airborne part. The relative humidity of the aerial travel part is preferably 70 to 95%, more preferably 75 to 90%. If the relative humidity is lower than this range, the hollow fiber membrane may not be sufficiently formed before being immersed in the coagulation bath, and an appropriate membrane structure governing the membrane surface characteristics of the present invention may not be formed. Stable spinning is not possible, such as causing sticking in between. On the other hand, if the relative humidity is too high, the coagulation from the outer surface is promoted, the pore diameter in the hollow fiber membrane is reduced, and the permeability of the low molecular protein is deteriorated.

本発明の血液濾過用モジュールにおいては、中空糸膜が前記の組成と特性を有し、しかもその内径が205〜250μmと、通常の血液透析膜のそれよりも幾分大きいことがライフタイムの点で特に重要となる。すなわち、中空糸膜の内径が205μmより小さいと、本発明のライフタイム評価方法において、血液濾過用モジュールの圧力損失が血液循環開始から150mmHgに到達する所要時間が200分より短くなり、ライフタイムの点で満足できる血液濾過用モジュールにならない。反対に、中空糸膜の内径が250μmより大きいと、前記評価方法による所要時間が200分を越えるものの、膜面積当たりの血液プライミング容量が大きくなってしまう。持続式血液濾過を適用するような循環動態の悪い患者にとって、体外に取り出される血液量は出来る限り低く抑えるべきであり、内径を大きくし過ぎるのは避けるべきである。従って、中空糸膜のより好ましい内径は210〜245μmであり、さらに好ましい内径は220〜240μmである。また、必要以上に内径を大きくすると透析効率が低下するので、血液濾過透析に使用する場合を想定すると、内径250μmを上限とするのが好ましい。   In the blood filtration module of the present invention, the hollow fiber membrane has the above composition and characteristics, and its inner diameter is 205 to 250 μm, which is somewhat larger than that of a normal hemodialysis membrane. Is particularly important. That is, when the inner diameter of the hollow fiber membrane is smaller than 205 μm, in the lifetime evaluation method of the present invention, the time required for the pressure loss of the blood filtration module to reach 150 mmHg from the start of blood circulation is shorter than 200 minutes, It is not a blood filtration module that is satisfactory in terms of points. On the other hand, when the inner diameter of the hollow fiber membrane is larger than 250 μm, the blood priming capacity per membrane area increases although the time required for the evaluation method exceeds 200 minutes. For patients with poor circulatory dynamics such as applying continuous blood filtration, the volume of blood drawn out of the body should be kept as low as possible, and excessively large internal diameters should be avoided. Therefore, the more preferable inner diameter of the hollow fiber membrane is 210 to 245 μm, and the more preferable inner diameter is 220 to 240 μm. Further, if the inner diameter is increased more than necessary, the dialysis efficiency is lowered. Therefore, assuming the use in hemofiltration dialysis, it is preferable to set the inner diameter to 250 μm as the upper limit.

本発明の血液濾過用モジュールは、前記の中空糸膜を巻き取って乾燥した束を筒状容器に充填して成型したものであるが、成型方法は中空糸膜型モジュールの公知の成型方法を参照すればよい。例えば、中空糸膜を数千本から2万本程度に束ねた中空糸膜束を濾液ポートを1つ以上有する筒状容器に挿入して充填し、中空糸膜束の端部と容器端部とを硬化性樹脂によりポッティング加工し、さらに硬化した樹脂層を切断して中空糸膜をその端部に開口させた後、両端部に血液流通口(流入口または流出口)を有するヘッダーキャップを装着することによって形成される。形成されたモジュールは、必要に応じて水や生理食塩水で容器内を充填し、γ線照射などによって滅菌することにより、患者にとって安全に使用できる。   The blood filtration module of the present invention is formed by filling a hollow bundle of the hollow fiber membrane and filling it into a cylindrical container. The molding method is a known molding method of the hollow fiber membrane module. You can refer to it. For example, a hollow fiber membrane bundle in which several thousand to 20,000 hollow fiber membranes are bundled is inserted and filled into a cylindrical container having one or more filtrate ports, and the end of the hollow fiber membrane bundle and the end of the container And a header cap having a blood circulation port (inlet or outlet) at both ends, after cutting the cured resin layer and opening the hollow fiber membrane at its end. Formed by mounting. The formed module can be used safely for the patient by filling the inside of the container with water or physiological saline as necessary and sterilizing by γ-ray irradiation or the like.

ここで、本発明の血液濾過用モジュールにおいて、ライフタイムを長くするうえで重要な点はモジュールの長さと胴径との比率である。すなわち、中空糸膜の開口端面間距離をL、筒状容器の最小内径をDとしたときのL/Dが3.5〜6.5であることが必要である。ここで中空糸の開口端面間距離とは、ポッティングした樹脂層の一方の中空糸膜開口端面から他方の樹脂層の開口端面までの距離をいう。厳密には、モジュールに充填されている中空糸膜の長さのことではあるが、膜のたるみ等は無視してモジュール内部の固定された距離とする。また、筒状容器の最小内径とは、中空糸膜束が充填された筒状容器の断面を真円に換算したときの直径の最小値を言う。   Here, in the blood filtration module of the present invention, an important point in extending the lifetime is the ratio between the module length and the trunk diameter. That is, it is necessary that L / D is 3.5 to 6.5 when the distance between the open end faces of the hollow fiber membrane is L and the minimum inner diameter of the cylindrical container is D. Here, the distance between the opening end faces of the hollow fibers refers to the distance from one hollow fiber membrane opening end face of the potted resin layer to the opening end face of the other resin layer. Strictly speaking, this is the length of the hollow fiber membrane filled in the module, but the slack of the membrane is ignored and the distance is fixed inside the module. The minimum inner diameter of the cylindrical container refers to the minimum value of the diameter when the cross section of the cylindrical container filled with the hollow fiber membrane bundle is converted into a perfect circle.

L/Dが3.5より小さいと、前記のライフタイム評価法において、血液濾過用モジュールの圧力損失が血液循環開始から150mmHgに到達する所要時間が200分を越え、血液濾過用モジュールのライフタイムが長くなる傾向があるが、モジュールが必要以上に太くなる結果、ヘッダーキャップ内の空間容量が大きくなって血液プライミング容量が増えるので、循環動態の悪い患者に使用するのに好ましくない。また、筒状容器の断面積が大きくなると、ポッティング樹脂の容器内壁への接着力が低下する等の懸念も生じる。反対に、L/Dが6.5を超えると、前記評価方法において、所要時間が200分よりも小さくなり、血液濾過用モジュールのライフタイムが短くなってしまう。   When L / D is less than 3.5, in the lifetime evaluation method described above, the time required for the pressure loss of the blood filtration module to reach 150 mmHg from the start of blood circulation exceeds 200 minutes, and the lifetime of the blood filtration module However, since the module becomes thicker than necessary, the space capacity in the header cap increases and the blood priming capacity increases, which is not preferable for use in patients with poor circulatory dynamics. Further, when the cross-sectional area of the cylindrical container is increased, there is a concern that the adhesive force of the potting resin to the inner wall of the container is reduced. On the contrary, if L / D exceeds 6.5, in the evaluation method, the required time is less than 200 minutes, and the lifetime of the blood filtration module is shortened.

本発明の牛血漿濾過性能試験とは、以下の方法のことをいう。
まず、抗凝固剤としてCPD溶液を血液1mlに対して0.13mlになるように添加した牛血液から遠心分離によって血漿成分だけを分離し、その血漿に対して生理食塩水を用いて総蛋白濃度を6.5±0.5g/dlに調整した血漿1Lをプールしておき、次に、血液回路を血液濾過または血液濾過透析用のモジュールの血液の入口および出口となるヘッダーキャップに接続し、前述の血漿を血液循環ポンプにより100ml/分の血漿流量で37℃にて循環させ、同時に血液濾過ポンプにより10ml/分の流量で濾過を行い、濾液は前述の血漿プールに戻す。
The bovine plasma filtration performance test of the present invention refers to the following method.
First, only plasma components are separated by centrifugation from bovine blood to which CPD solution as an anticoagulant is added to 0.13 ml with respect to 1 ml of blood, and the total protein concentration using physiological saline for the plasma 1 L of plasma adjusted to 6.5 ± 0.5 g / dl is pooled, and then the blood circuit is connected to the header caps that serve as the blood inlet and outlet of the module for hemofiltration or hemodiafiltration, The aforementioned plasma is circulated by a blood circulation pump at a plasma flow rate of 100 ml / min at 37 ° C., and simultaneously filtered by a hemofiltration pump at a flow rate of 10 ml / min, and the filtrate is returned to the aforementioned plasma pool.

一定時間後の溶質の篩係数(Sc)の測定については、例えばアルブミンの篩係数(Alb−Sc)を例にとると、濾液を一定時間後に採取し、その時の濾液中のアルブミンの濃度(CF)、ヘッダーキャップからモジュールに入る血漿中のアルブミンの濃度(CBi)、モジュールのヘッダーキャップから流出した血漿中のアルブミンの濃度(CBo)を測定することで、下記の式(3)によって、濾液採取時点でのアルブミンの篩係数(Alb−Sc)を求めることができる。

アルブミンの篩係数(Alb−Sc)=2(CF)/(CBi+CBo) (3)
For the measurement of the sieving coefficient (Sc) of a solute after a certain time, for example, taking the sieving coefficient (Alb-Sc) of albumin as an example, the filtrate is collected after a certain time, and the concentration of the albumin (CF ), The concentration of albumin in the plasma entering the module from the header cap (CBi), the concentration of albumin in the plasma flowing out from the header cap of the module (CBo), and collecting the filtrate by the following equation (3) The sieve coefficient (Alb-Sc) of albumin at the time can be obtained.

Sieve coefficient of albumin (Alb-Sc) = 2 (CF) / (CBi + CBo) (3)

本発明の血液濾過用モジュールにおいては、牛血漿濾過性能試験における3時間後のアルブミンの篩係数(Alb−Sc)が0.0054以下である必要がある。Alb−Scが0.0054を超えると、牛血漿濾過性能試験において、30時間後のアルブミンの総損失量が3gを超えてしまい、実際の臨床現場ではアルブミン製剤などの補液が必要になってきてしまうからである。   In the blood filtration module of the present invention, the sieve coefficient (Alb-Sc) of albumin after 3 hours in the bovine plasma filtration performance test needs to be 0.0054 or less. If Alb-Sc exceeds 0.0054, in the bovine plasma filtration performance test, the total loss of albumin after 30 hours exceeds 3 g, and in actual clinical settings, supplements such as albumin preparations have become necessary. Because it ends up.

30時間後のアルブミンの総損失量については、以下の(I)〜(IV)の手順に従って求めることができる。
(I)1〜30時間までの実測アルブミン濃度より篩係数を算出する。
(II)(I)の篩係数から、近似曲線を描き、近似式を求める。
(III)(II)の近似式から、1〜30時間の15分毎の篩係数を求める。
(IV)1〜30時間の平均篩係数を求め、その値を下記式(4)にあてはめる。

アルブミン総損失量(g)
=アルブミン濃度(g/ml)×平均篩係数(1-30Hrの平均値)
×濾過流量(ml/min)×時間(min) (4)
The total loss of albumin after 30 hours can be determined according to the following procedures (I) to (IV).
(I) The sieve coefficient is calculated from the measured albumin concentration for 1 to 30 hours.
(II) Draw an approximate curve from the sieve coefficient of (I) and obtain an approximate expression.
(III) From the approximate expression of (II), the sieving coefficient is obtained every 15 minutes for 1 to 30 hours.
(IV) The average sieving coefficient for 1 to 30 hours is determined, and the value is applied to the following formula (4).

Total albumin loss (g)
= Albumin concentration (g / ml) x average sieve coefficient (average value of 1-30Hr)
X Filtration flow rate (ml / min) x Time (min) (4)

上記の手順をさらに詳しく説明する。篩係数(y)は時間(x)の関数として、y= ax^(b)で表すことできるので、血液濾過モジュールの篩係数の実測値から、最小自乗法で定数a、bを計算し、血液濾過モジュールの近似式を求めることができる。この近似式を用いて、求められた平均篩係数を上記式(4)に代入することにより、アルブミンの総損失量を計算することができる。   The above procedure will be described in more detail. Since the sieve coefficient (y) can be expressed as y = ax ^ (b) as a function of time (x), the constants a and b are calculated by the least square method from the measured value of the sieve coefficient of the blood filtration module. An approximate expression of the blood filtration module can be obtained. By using this approximate expression and substituting the obtained average sieve coefficient into the above expression (4), the total loss of albumin can be calculated.

一方、アルブミンの総損失量が3gを超えると、アルブミン製剤などを補液する必要があることを考慮して、上記近似式から、30時間後のアルブミンの総損失量が3.0gを超えない、3時間後のアルブミンの篩係数(Sc)は、例えば、モジュールの持つ性能(例.濾過性能)がよりアルブミンが濾過される方向に変化した場合、ベースとした近似式の曲線は変化せずにy軸方向にスライドするものと仮定し、シミュレーションすることにより求めることができる。   On the other hand, when the total loss of albumin exceeds 3 g, considering that it is necessary to replenish the albumin preparation and the like, from the above approximate expression, the total loss of albumin after 30 hours does not exceed 3.0 g. The sieving coefficient (Sc) of albumin after 3 hours is, for example, when the performance of the module (eg, filtration performance) changes in the direction in which albumin is filtered more, and the curve of the approximate expression based on it does not change It can be determined by simulating assuming that it slides in the y-axis direction.

中空糸膜束の筒状容器への充填率とは、筒状容器に充填された中空糸膜束の充填密度のことをいい、筒状容器の最小内径部分の容器断面積に占める中空糸膜断面積の割合(%表示)で定義される。中空糸膜断面積に比べて容器断面積が大きすぎると充填率が下がり、血液濾過透析療法のように透析を併用する場合に透析効率が低下する傾向にあるので好ましくない。その観点から、充填率は50%以上が好ましく、65%以上がより好ましい。一方、充填率が高すぎると、容器に中空糸膜束を充填した際に中空糸膜を傷つけてしまうので、充填率は75%以下が好ましく、70%以下がより好ましい。   The filling rate of the hollow fiber membrane bundle into the cylindrical container refers to the filling density of the hollow fiber membrane bundle filled in the cylindrical container, and the hollow fiber membrane occupies the cross-sectional area of the container at the minimum inner diameter portion of the cylindrical container. It is defined by the ratio (in%) of the cross-sectional area. If the cross-sectional area of the container is too large compared to the cross-sectional area of the hollow fiber membrane, the filling rate decreases, and dialysis efficiency tends to decrease when dialysis is used together as in hemofiltration dialysis therapy. From this viewpoint, the filling rate is preferably 50% or more, and more preferably 65% or more. On the other hand, if the filling rate is too high, the hollow fiber membrane is damaged when the hollow fiber membrane bundle is filled in the container. Therefore, the filling rate is preferably 75% or less, and more preferably 70% or less.

このようにして得られた血液濾過用モジュールは、その内部の中空糸膜を加温した水や溶剤、それらの混合液等で洗浄することによっても、毛細管上昇法により測定される水溶液の液面上昇値を調整することが可能である。例えば、18〜25℃程度の室温付近で洗浄すると、中空糸内表面に存在するポリビニルピロリドンやグリセリン等の親水性物質を洗浄できるので、過度の親水化や膜間ばらつきの一因となるのを防止できるので好ましい。また、40〜50℃程度の温水で洗浄するとさらに洗浄力が高まり、しかし中空糸膜表面や容器、ヘッダーキャップの熱変性に殆ど影響しないので好ましい。これらのモジュール洗浄を一定のパルスで行う、あるいは逆方向の洗浄と交互に行うことも好ましい。   The blood filtration module thus obtained can be obtained by washing the hollow fiber membrane inside with warmed water or a solvent, a mixture thereof, or the like. It is possible to adjust the rising value. For example, if washing is performed at about room temperature of about 18 to 25 ° C., hydrophilic substances such as polyvinyl pyrrolidone and glycerin existing on the inner surface of the hollow fiber can be washed, which contributes to excessive hydrophilicity and variation between films. Since it can prevent, it is preferable. Further, it is preferable to wash with warm water of about 40 to 50 ° C. because the detergency is further increased, but it hardly affects the heat denaturation of the surface of the hollow fiber membrane, the container and the header cap. It is also preferable to perform these module cleanings with a constant pulse or alternately with reverse cleaning.

本発明の血液濾過用モジュールは、容器内の空間に水や生理食塩水などの水溶液を充填させても、させなくても良いが、臨床現場で使用前にプライミングを行うことを考慮すると、エア抜け性等の理由から容器内に水や生理食塩水などの水溶液を充填させておくことが好ましい。いわゆるウエットタイプである。その際、充填液として、グリセリンのようなラジカル捕捉型の有機化合物や抗酸化性の無機塩類を含んだ抗酸化剤溶液を用いることが好ましく、中でも洗浄性のよいピロ亜硫酸ナトリウム溶液を用いることが最も好ましい。これは、血液濾過用モジュールを放射線滅菌する際に、中空糸膜の酸化を抑制する上で好都合であるばかりではなく、放射線による親水性高分子の架橋や変性を適度に抑制することにより、毛細管上昇法により測定される水溶液の液面上昇値を適切な範囲に調整できることもあるからである。その理由は定かではないが、ポリビニルピロリドンやポリエチレングリコール等の線状高分子が架橋によって三次元構造化されると、その分子運動性が抑制されて親水性に影響を与えるものと推定される。   The blood filtration module of the present invention may or may not be filled with an aqueous solution such as water or physiological saline in the space in the container. However, in consideration of performing priming before use in a clinical field, It is preferable to fill the container with an aqueous solution such as water or physiological saline for reasons such as removal. This is a so-called wet type. At that time, it is preferable to use an antioxidant solution containing a radical-capturing organic compound such as glycerin or an antioxidant inorganic salt as the filling liquid, and among them, a sodium pyrosulfite solution having good detergency is used. Most preferred. This is not only convenient for suppressing the oxidation of the hollow fiber membrane when the blood filtration module is sterilized by radiation, but also by appropriately suppressing the crosslinking and modification of the hydrophilic polymer due to the radiation. This is because the liquid level rise value of the aqueous solution measured by the rise method may be adjusted to an appropriate range. The reason is not clear, but when a linear polymer such as polyvinyl pyrrolidone or polyethylene glycol is three-dimensionally structured by crosslinking, it is presumed that the molecular mobility is suppressed and the hydrophilicity is affected.

滅菌方法についてはγ線滅菌や電子線滅菌等の放射線滅菌が好ましいが、生産性を考慮するとγ線滅菌が特に好ましい。   As the sterilization method, radiation sterilization such as γ-ray sterilization and electron beam sterilization is preferable, but γ-ray sterilization is particularly preferable in view of productivity.

以下、実施例に従って本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail according to an Example, this invention is not limited to these.

[実施例1,2,3,4及び比較例1]
ポリスルホン樹脂(ソルベイ社製、P-1700)18.5重量部、ポリビニルピロリドン(アイ・エス・ピー社製、K-92)6.7重量部、ジメチルアセトアミド(以下、DMAC)74.8重量部からなる均一な紡糸原液を作成した。この紡糸原液をDMAC濃度20重量%の中空内液とともにスリット幅60μmの二重環状口金から吐出し、105cm下方に設けた60℃の水中に浸漬し70m/分の速度で巻き取った。中空糸膜厚を45μm、内径を205μmに合わせるように紡糸原液、中空内液の吐出量を調整した。7100本のフィラメントを巻き取ったところで、ロープを300mmの長さに切断後、90℃の熱水で24hrシャワー洗浄し、洗浄液においてUV吸光度220nmのピークが認められないことを確認した。次にグリセリン20%水溶液に含浸させ、85℃にて7時間熱風乾燥させた。乾燥後、再び内径、膜厚を測定し、中空糸内径が205μmに合っていることを確認した。
[Examples 1, 2, 3, 4 and Comparative Example 1]
18.5 parts by weight of a polysulfone resin (Solvay, P-1700), 6.7 parts by weight of polyvinylpyrrolidone (manufactured by ISP, K-92), 74.8 parts by weight of dimethylacetamide (hereinafter, DMAC) A uniform spinning stock solution was prepared. This spinning solution was discharged from a double annular die having a slit width of 60 μm together with a hollow inner solution having a DMAC concentration of 20% by weight, immersed in water at 60 ° C. provided 105 cm below and wound up at a speed of 70 m / min. The discharge amount of the spinning solution and the hollow inner solution was adjusted so that the hollow fiber film thickness was 45 μm and the inner diameter was 205 μm. When 7100 filaments were wound up, the rope was cut to a length of 300 mm and then shower washed with hot water at 90 ° C. for 24 hours, and it was confirmed that no peak with a UV absorbance of 220 nm was observed in the cleaning liquid. Next, it was impregnated with a 20% aqueous solution of glycerin and dried with hot air at 85 ° C. for 7 hours. After drying, the inner diameter and film thickness were measured again, and it was confirmed that the hollow fiber inner diameter matched 205 μm.

上記の中空糸膜6400本を筒状容器に挿入してポッティング加工し、有効膜面積0.7m、L/D=5.3のモジュールに成型した。筒状容器の両端部にヘッダーキャップを取り付け、γ線(25KGy)による照射滅菌を行い持続式血液濾過器(持続式血液濾過器1)を5本得た。
得られた持続式血液濾過器は、夫々生理食塩水1Lで内部を洗浄し体外循環用の回路に接続した。血小板活性化試薬の影響を確認するために、血小板活性化試薬としてカルシウムイオノホアA23187(SIGMA製)(実施例1)、PAF(SIGMA製)(実施例2)、トロンビン(Pacific Hemostasis製)(実施例3)、エンドトキシン(SIGMA製)(実施例4)の4種類を準備した。抗凝固剤としてヘパリン系抗凝固剤(三菱ウェルファーマ製)を添加した牛血液2000mL(血小板濃度25万個/μL)を血液プールとし、37℃に保ちながら血液流量50mL/分で持続式血液濾過器内を再循環させた。同時に濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。循環開始直後にカルシウムイオノホアA23187を10μmol/L、PAFを0.5μmol/L、トロンビンを3000IU/L、エンドトキシンを5μmol/Lの血中濃度になるようにそれぞれの血液プールに加え、持続式血液濾過器の入口側及び出口側の圧力変化を観察した。比較例1として血小板活性化試薬を加えない試験も行なった。
The above 6400 hollow fiber membranes were inserted into a cylindrical container and potted, and molded into a module having an effective membrane area of 0.7 m 2 and L / D = 5.3. Header caps were attached to both ends of the cylindrical container, and irradiation sterilization with γ rays (25 KGy) was performed to obtain five continuous blood filters (continuous blood filter 1).
The obtained continuous blood filter was washed with 1 L of physiological saline and connected to a circuit for extracorporeal circulation. In order to confirm the influence of the platelet activating reagent, calcium ionophore A23187 (manufactured by SIGMA) (Example 1), PAF (manufactured by SIGMA) (Example 2), thrombin (manufactured by Pacific Hemostasis) (implemented) Four types of Example 3) and endotoxin (manufactured by SIGMA) (Example 4) were prepared. A continuous blood filter with a blood flow rate of 50 mL / min while maintaining a temperature of 37 ° C. with a blood pool of 2000 mL of bovine blood (platelet concentration 250,000 / μL) to which heparin anticoagulant (manufactured by Mitsubishi Pharma) was added as an anticoagulant The inside was recirculated. At the same time, filtration was performed at a filtration flow rate of 10 mL / min, and the obtained filtrate was returned to the blood pool. Immediately after the start of circulation, calcium ionophore A23187 was added to each blood pool to a blood concentration of 10 μmol / L, PAF 0.5 μmol / L, thrombin 3000 IU / L, and endotoxin 5 μmol / L. Pressure changes on the inlet side and outlet side of the filter were observed. As Comparative Example 1, a test in which no platelet activating reagent was added was also conducted.

その結果、血小板活性化試薬を加えた実施例1〜4の持続式血液濾過器の圧力損失は初期圧力より上昇したのに対して、比較例1では持続式血液濾過器の圧力損失は変化しなかった。血小板活性化試薬の種類によって圧力上昇のレベルは様々であり、循環血液の圧力上昇を安定的に且つ感度良く測定できるという点で、カルシウムイオノホアA23187が好ましかった。結果を表1及び図2に示す。   As a result, the pressure loss of the continuous hemofilter of Examples 1 to 4 to which the platelet activating reagent was added increased from the initial pressure, whereas in Comparative Example 1, the pressure loss of the continuous hemofilter changed. There wasn't. The level of pressure increase varies depending on the type of platelet activating reagent, and calcium ionophore A23187 was preferred in that the pressure increase in circulating blood can be measured stably and with high sensitivity. The results are shown in Table 1 and FIG.

[実施例5、6、7]
実施例1と同様の製造方法で得られた持続式血液濾過器3本を、夫々生理食塩水1Lで内部を洗浄した後、体外循環回路に接続した。
カルシウムイオノホアA23187の添加量の影響を確認するため、抗凝固剤としてヘパリン系抗凝固剤を添加した牛血液2000mL(血小板濃度25/μL)を血液プールとし、37℃に保ち、血液流量50mL/分で持続式血液濾過器内を再循環させ、濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。血小板活性化試薬は、開始30分後にカルシウムイオノホアA23187を血中濃度として2μM、8μM、10μMとなるように添加し(それぞれ実施例5,6,7とする)、持続式血液濾過器の入口側と出口側の圧力変化を観察し、持続式血液濾過器の圧力損失が150mmHgに到達する所要時間を測定した。
その結果、添加した血小板活性化試薬の血中濃度によりライフタイム評価の感度を調節でき、濃度が高いほど感度も高くなることがわかる。結果を表2および図3に示す。
[Examples 5, 6, and 7]
Three continuous blood filters obtained by the same production method as in Example 1 were each washed with 1 L of physiological saline and then connected to an extracorporeal circuit.
In order to confirm the effect of the addition amount of calcium ionophore A23187, 2000 mL of bovine blood (platelet concentration 25 / μL) to which heparin anticoagulant was added as an anticoagulant was used as a blood pool, maintained at 37 ° C., and blood flow 50 mL / The inside of the continuous blood filter was recirculated in minutes, filtration was performed at a filtration flow rate of 10 mL / min, and the resulting filtrate was returned to the blood pool. The platelet activating reagent was added 30 minutes after the start with calcium ionophore A23187 in the blood concentration of 2 μM, 8 μM and 10 μM (referred to as Examples 5, 6 and 7 respectively), and the inlet of the continuous hemofilter The pressure change of the side and outlet side was observed, and the time required for the pressure loss of the continuous blood filter to reach 150 mmHg was measured.
As a result, it can be seen that the sensitivity of lifetime evaluation can be adjusted by the blood concentration of the added platelet activating reagent, and the higher the concentration, the higher the sensitivity. The results are shown in Table 2 and FIG.

[実施例8、9、10、11及び比較例2、3]
実施例1と同様の製造方法で得られた持続式血液濾過器6本を、夫々生理食塩水1Lでモジュール内を洗浄し、回路に接続した。
血小板濃度が30万/μLより高い血液、血小板濃度が10万/μL未満の血液、血小板濃度が10〜30万/μLの3種類の血液を準備した。血小板濃度の影響、血液温度の影響を確認するため、抗凝固剤としてヘパリン系抗凝固剤を添加した牛血液2000mLを血液プールとし、血液温度を25℃、37℃、40℃に保ち(それぞれ実施例8,9,10とする)、血液流量50mL/分で持続式血液濾過器内を再循環させ、濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。開始30分後にカルシウムイオノホアA23187を血中濃度10μmol/Lとなるように添加し、持続式血液濾過器の圧力損失が150mmHgに到達する所要時間を測定した。また、血液温度37℃では、血小板濃度が30万/μLより高い血液(実施例11)、および血小板濃度が10万/μL未満の血液(比較例2)で同様な実験を行った。すなわち、血小板濃度の影響、血液温度の影響を表3に示す条件で評価した。比較例3として、カルシウムイオノホアを添加しないケースをコントロールとした。
[Examples 8, 9, 10, and 11 and Comparative Examples 2 and 3]
Six continuous blood filters obtained by the same production method as in Example 1 were each washed with 1 L of physiological saline and connected to a circuit.
Three types of blood with a platelet concentration higher than 300,000 / μL, blood with a platelet concentration of less than 100,000 / μL, and blood with a platelet concentration of 100-300,000 / μL were prepared. In order to confirm the effects of platelet concentration and blood temperature, 2000 mL of bovine blood to which heparin anticoagulant was added as an anticoagulant was used as a blood pool, and the blood temperature was maintained at 25 ° C, 37 ° C, and 40 ° C. Examples 8, 9, and 10) were recirculated through the continuous hemofilter at a blood flow rate of 50 mL / min, filtered at a filtration flow rate of 10 mL / min, and the resulting filtrate was returned to the blood pool. Calcium ionophore A23187 was added 30 minutes after the start so that the blood concentration was 10 μmol / L, and the time required for the pressure loss of the continuous hemofilter to reach 150 mmHg was measured. Further, at a blood temperature of 37 ° C., the same experiment was performed with blood having a platelet concentration higher than 300,000 / μL (Example 11) and blood having a platelet concentration of less than 100,000 / μL (Comparative Example 2). That is, the effects of platelet concentration and blood temperature were evaluated under the conditions shown in Table 3. As Comparative Example 3, a case where no calcium ionophore was added was used as a control.

その結果、血小板活性化試薬を加えない比較例3の持続式血液濾過器の圧力損失は変化せず、血小板濃度が10万/μLより低い血液を用いた評価(比較例2)でも圧力損失は変化しなかった。反対に、血小板濃度が30万/μLより高い血液を用いた評価(実施例11)では150mmHgに到達する所要時間が短くなり感度は高いといえる。しかし、所要時間が100分程度まで短くなると評価系が不安定となってくるので、バラツキ等の精度上の懸念が残ると思われた。また血液の温度が高くなるに従い、150mmHgに到達する所要時間が短くなる傾向を示した(実施例8〜10)。結果を表3に示す。   As a result, the pressure loss of the continuous blood filter of Comparative Example 3 in which no platelet activating reagent was added did not change, and the pressure loss was also evaluated in evaluation using blood whose platelet concentration was lower than 100,000 / μL (Comparative Example 2). It did not change. On the contrary, in the evaluation using blood whose platelet concentration is higher than 300,000 / μL (Example 11), it can be said that the required time to reach 150 mmHg is shortened and the sensitivity is high. However, when the required time is shortened to about 100 minutes, the evaluation system becomes unstable, and it seems that there are concerns about accuracy such as variations. Moreover, the time required to reach 150 mmHg tended to decrease as the blood temperature increased (Examples 8 to 10). The results are shown in Table 3.

[実施例12、13、14及び比較例4、5]
実施例1と同様な製膜条件で、中空膜糸の膜厚は変えないようにして、内径だけを変化させた中空糸膜を得た。得られた中空糸膜は内径が205μm、230μm、250μmの3種類であった。
前記中空糸膜を用いて、実施例1と同様な製造方法により、中空糸膜の内径250μm、中空糸本数5800本の持続式血液濾過器(持続式血液濾過器3、実施例12)、中空糸膜の内径230μm、中空糸本数6400本の持続式血液濾過器(持続式血液濾過器2、実施例13)、実施例1で作製したものと同じ持続式血液濾過器1(実施例14)を準備した。また、ポリスルホン系中空糸膜を充填した持続式血液濾過器の比較対象として、X社製血液濾過器(比較例4)及びY社製血液濾過器(比較例5)を準備した。夫々の持続式血液濾過器の内部を生理食塩液500mLで洗浄し、体外循環回路と連結した。抗凝固剤としてヘパリン系抗凝固剤を添加した牛血液2000mL(血小板濃度25/μL)を血液プールとし、37℃に保ち、血液流量50mL/分で持続式血液濾過器内を再循環させ、濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。開始30分後にカルシウムイオノホアA23187を血中濃度10μMになるように添加し、持続式血液濾過器の圧力損失が150mmHgに到達する所要時間を測定した。
[Examples 12, 13, and 14 and Comparative Examples 4 and 5]
Under the same membrane forming conditions as in Example 1, a hollow fiber membrane in which only the inner diameter was changed was obtained without changing the film thickness of the hollow membrane yarn. The obtained hollow fiber membranes had three types of inner diameters of 205 μm, 230 μm, and 250 μm.
Using the hollow fiber membrane, a continuous blood filter (continuous blood filter 3, Example 12) having a hollow fiber membrane inner diameter of 250 μm and a hollow fiber number of 5800 by the same production method as in Example 1, hollow Continuous blood filter with continuous inner diameter of 230 μm and number of hollow fibers of 6400 (continuous blood filter 2, Example 13), the same continuous blood filter 1 as in Example 1 (Example 14) Prepared. In addition, as a comparison target of a continuous blood filter filled with a polysulfone-based hollow fiber membrane, a blood filter manufactured by X Company (Comparative Example 4) and a blood filter manufactured by Y Company (Comparative Example 5) were prepared. The inside of each continuous blood filter was washed with 500 mL of physiological saline and connected to an extracorporeal circuit. Bovine blood 2000ml (platelet concentration 25 / μL) with heparin anticoagulant added as an anticoagulant is used as a blood pool, maintained at 37 ° C, and recirculated through a continuous blood filter at a blood flow rate of 50mL / min. Filtration was performed at a flow rate of 10 mL / min, and the obtained filtrate was returned to the blood pool. After 30 minutes from the start, calcium ionophore A23187 was added to a blood concentration of 10 μM, and the time required for the pressure loss of the continuous blood filter to reach 150 mmHg was measured.

その結果、中空糸膜の内径が205〜250μmの中空糸を充填し、かつL/Dを5.4とした持続式血液濾過器においては、圧力損失が150mmHgに到達する所要時間が200分より長かったのに対し、内径が200μmのポリスルホン系中空糸膜が充填され、かつL/Dが7.5の市販の持続式血液濾過器は、所要時間が200分よりも短かく、ライフタイムが短いと判断された。結果を表4に示す。   As a result, in the continuous blood filter in which the hollow fiber membrane is filled with a hollow fiber having an inner diameter of 205 to 250 μm and L / D is 5.4, the time required for the pressure loss to reach 150 mmHg is 200 minutes or more. Whereas it was long, a commercially available continuous blood filter filled with a polysulfone-based hollow fiber membrane having an inner diameter of 200 μm and an L / D of 7.5 required less than 200 minutes and had a lifetime of Judged to be short. The results are shown in Table 4.

[実施例15、16及び比較例6、7、8]
ポリスルホン樹脂(ソルベイ社製、P-1700)18.5重量部、ポリビニルピロリドン(アイ・エス・ピー社製、K-92)6.5重量部、ジメチルアセトアミド(以下、DMAC)75重量部からなる均一な紡糸原液を作成した。この紡糸原液をDMAC濃度22重量%の内部凝固液とともにスリット幅60μmの二重環状口金から吐出し、100cm下方に設けた60℃の水中に浸漬し70m/分の速度で巻き取った。中空糸膜厚を45μm、内径を230μmに合わせるように紡糸原液、内部凝固液の吐出量を調整した。6400本のフィラメントを巻き取ったところで、ローブを300mmの長さに切断し、90℃熱水で24時間シャワー洗浄し、不安定なポリビニルピロリドン等の水溶性高分子がフィラメントに存在しないことを、洗浄液においてUV吸光度220nmのピークが認められないことで確認した。次にグリセリン20%水溶液に含浸させ、85℃にて7時間熱風乾燥させた。乾燥後、再び内径と膜厚を測定し、中空糸内径が230μmに合っていることを確認した。
[Examples 15 and 16 and Comparative Examples 6, 7, and 8]
It consists of 18.5 parts by weight of a polysulfone resin (manufactured by Solvay, P-1700), 6.5 parts by weight of polyvinylpyrrolidone (manufactured by ISP, K-92), and 75 parts by weight of dimethylacetamide (hereinafter referred to as DMAC). A uniform spinning stock solution was prepared. This spinning dope was discharged from a double annular die having a slit width of 60 μm together with an internal coagulation liquid having a DMAC concentration of 22% by weight, immersed in water at 60 ° C. provided 100 cm below and wound up at a speed of 70 m / min. The discharge amount of the spinning solution and the internal coagulation solution was adjusted so that the hollow fiber film thickness was 45 μm and the inner diameter was 230 μm. When 6400 filaments were wound up, the lobe was cut to a length of 300 mm, shower washed with hot water at 90 ° C. for 24 hours, and the fact that unstable water-soluble polymers such as polyvinylpyrrolidone were not present in the filaments, This was confirmed by the absence of a peak with a UV absorbance of 220 nm in the cleaning solution. Next, it was impregnated with a 20% aqueous solution of glycerin and dried with hot air at 85 ° C. for 7 hours. After drying, the inner diameter and film thickness were measured again, and it was confirmed that the hollow fiber inner diameter matched 230 μm.

上記の中空糸6400本を筒状容器に挿入してポッティング加工し、有効膜面積0.7m、L/D=5.4のモジュールに成型した。モジュールの両端にヘッダーキャップを取り付けた後、このモジュールの血液側及び濾液側を(1)20℃の水3Lで洗浄したもの(実施例15)、(2)50℃の水3Lで洗浄したもの(実施例16)、(3)60℃の水9Lでの洗浄を2回繰り返したもの(比較例6)の3種類のモジュールを製造した。続いて、それぞれのモジュールにピロ亜硫酸ナトリウム300ppmと炭酸ナトリウム100ppmを溶解させた水溶液を充填し、25kGyのγ線を照射して3種類のポリスルホン系血液濾過用モジュールを得た。 The above 6400 hollow fibers were inserted into a cylindrical container and potted, and molded into a module having an effective membrane area of 0.7 m 2 and L / D = 5.4. After the header caps were attached to both ends of the module, the blood side and filtrate side of this module were (1) washed with 3 L of water at 20 ° C. (Example 15), (2) washed with 3 L of water at 50 ° C. (Example 16), (3) Three types of modules (comparative example 6) were manufactured in which washing with 9 L of water at 60 ° C. was repeated twice. Subsequently, each module was filled with an aqueous solution in which 300 ppm of sodium pyrosulfite and 100 ppm of sodium carbonate were dissolved, and irradiated with 25 kGy of γ rays to obtain three types of polysulfone blood filtration modules.

これ以外に比較例として、X社の市販ポリスルホン系血液濾過用モジュール(比較例7)、およびY社の市販ポリスルホン系血液濾過用モジュール(比較例8)を準備した。いずれのモジュールも中空糸膜の内径は200μm、L/Dは7.5であった。
上記の血液濾過用モジュールの血液側および濾液側をそれぞれ注射用蒸留水500mlで洗浄し、十分に水を廃棄した後、モジュールを解体して中空糸膜を取り出した。中空糸膜を乾燥機にて乾燥させ、各々の中空糸膜の水分率が5%以下であることを確認した。
両面テープを貼ったガラス板に、ガラス板の片端に中空糸膜の末端を揃えるように各々の中空糸膜を10本ずつ鉛直に並べて貼り付けた。その後、ガラス板に末端を揃えた側の中空糸膜の端部約5mmを0.1%のコンゴーレッド水溶液に浸漬し、1分後に水溶液の上昇した液面の水面からの距離を測定し、その平均値を求めた。また、比較例7および8の中空糸膜については、その内径が230μmに相当するように液面上昇値の補正値も求めた。その結果を表5に示した。
In addition to this, as a comparative example, a commercially available polysulfone blood filtration module (Comparative Example 7) manufactured by Company X and a commercially available polysulfone blood filtration module (Comparative Example 8) manufactured by Company Y were prepared. In any module, the inner diameter of the hollow fiber membrane was 200 μm, and L / D was 7.5.
The blood side and the filtrate side of the blood filtration module were each washed with 500 ml of distilled water for injection, and after sufficiently discarding the water, the module was disassembled and the hollow fiber membrane was taken out. The hollow fiber membrane was dried with a drier, and it was confirmed that the moisture content of each hollow fiber membrane was 5% or less.
Ten hollow fiber membranes were vertically aligned and attached to a glass plate to which a double-sided tape was attached, so that the ends of the hollow fiber membranes were aligned with one end of the glass plate. After that, about 5 mm of the end of the hollow fiber membrane on the side aligned with the glass plate was immersed in a 0.1% Congo red aqueous solution, and after 1 minute, the distance from the water surface of the liquid surface where the aqueous solution rose, The average value was obtained. Further, for the hollow fiber membranes of Comparative Examples 7 and 8, the correction value of the liquid level increase value was also determined so that the inner diameter thereof corresponded to 230 μm. The results are shown in Table 5.

一方、モジュールのライフタイムをインビトロで評価するために、上記の5種類のモジュールと同等の血液濾過用モジュールを準備し、それらの血液側および濾液側をそれぞれ生理食塩水500mlで洗浄した。次に、図1に示す循環回路を用いて、抗凝固剤としてヘパリン系抗凝固剤(三菱ウェルファーマ製)を添加した牛血液2000mL(血小板濃度25万個/μL)を血液プールとし、37℃に保ちながら血液流量50mL/分で血液濾過用モジュール内を再循環させた。同時に濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。循環開始直後に、カルシウムイオノホアA23187(SIGMA製)を10μmol/Lの血中濃度になるように血液プールに加え、血液濾過用モジュールの血液入口側及び血液出口側の圧力変化を観察した。圧力損失が150mmHgに到達した時間を測定し、その時間をライフタイムとした。その結果を表5に示した。   On the other hand, in order to evaluate the lifetime of the module in vitro, a blood filtration module equivalent to the above five types of modules was prepared, and the blood side and the filtrate side were respectively washed with 500 ml of physiological saline. Next, using the circulation circuit shown in FIG. 1, 2000 mL of bovine blood (platelet concentration 250,000 / μL) to which heparin-based anticoagulant (manufactured by Mitsubishi Pharma) was added as an anticoagulant was used as a blood pool at 37 ° C. While being maintained, the blood filtration module was recirculated at a blood flow rate of 50 mL / min. At the same time, filtration was performed at a filtration flow rate of 10 mL / min, and the obtained filtrate was returned to the blood pool. Immediately after the start of circulation, calcium ionophore A23187 (manufactured by SIGMA) was added to the blood pool to a blood concentration of 10 μmol / L, and pressure changes on the blood inlet side and blood outlet side of the blood filtration module were observed. The time when the pressure loss reached 150 mmHg was measured, and the time was defined as the lifetime. The results are shown in Table 5.

以上の結果より、液面上昇値が60mm以上であると血液濾過用モジュールのライフタイムが長く、反対に60mmを下ると急激にライフタイムが低下することもわかる。また、滅菌前のモジュールを洗浄処理する際に、洗浄温度や洗浄量を変えることにより、中空糸膜の液面上昇値を調整できることもわかる。   From the above results, it can be seen that when the liquid level rise value is 60 mm or more, the lifetime of the blood filtration module is long, and conversely, when it falls below 60 mm, the lifetime is drastically lowered. It can also be seen that the liquid level rise value of the hollow fiber membrane can be adjusted by changing the washing temperature and quantity when washing the module before sterilization.

[実施例17、18、19及び比較例9、10]
実施例15と同様な製膜条件で、中空膜糸の膜厚は45μmで変えないようにして、内径が205μm、230μm、250μm,200μm、180μmの5種類の中空糸膜を作製した。
前記中空糸膜を用いて、実施例16と同様な製造方法により、L/Dが5.4になるように、中空糸膜の内径250μm、中空糸本数5800本の持続式血液濾過器(持続式血液濾過器8、実施例17)、中空糸膜の内径230μm、中空糸本数6400本の持続式血液濾過器(持続式血液濾過器7、実施例18)、中空糸膜の内径205μm、中空糸本数7100本の持続式血液濾過器(持続式血液濾過器6、実施例19)、中空糸膜の内径200μm、中空糸本数7300本の持続式血液濾過器(持続式血液濾過器5、比較例9)、中空糸膜の内径180μm、中空糸本数8100本の持続式血液濾過器(持続式血液濾過器4、比較例10)を準備した。
[Examples 17, 18, and 19 and Comparative Examples 9 and 10]
Five types of hollow fiber membranes having inner diameters of 205 μm, 230 μm, 250 μm, 200 μm, and 180 μm were produced under the same film forming conditions as in Example 15 so that the film thickness of the hollow membrane yarn was not changed at 45 μm.
Using the hollow fiber membrane, a continuous blood filter having a hollow fiber membrane inner diameter of 250 μm and a hollow fiber number of 5800 (sustained) so that L / D is 5.4 by the same production method as in Example 16. Type blood filter 8, Example 17), hollow fiber membrane inner diameter 230 μm, number of hollow fiber 6400 continuous blood filter (continuous blood filter 7, Example 18), hollow fiber membrane inner diameter 205 μm, hollow 7100 continuous blood filter (continuous blood filter 6, Example 19), hollow fiber membrane inner diameter 200 μm, 7300 hollow fiber continuous blood filter (continuous blood filter 5, comparison) Example 9) A continuous blood filter (continuous blood filter 4, Comparative Example 10) having an inner diameter of a hollow fiber membrane of 180 μm and a number of hollow fibers of 8100 was prepared.

夫々の持続式血液濾過器に内蔵されている中空糸の毛細管上昇法による内径230μmに換算した液面上昇値は、実施例15と同様にして測定した。
夫々の持続式血液濾過器の牛血漿濾過性能試験は、CPD溶液を牛血液1mlに対して0.13mlになるように添加した牛血液から分離した牛血漿の総蛋白濃度を6.5g/dlに調整し、血漿1Lを血漿プールとし、37℃に保ちながら血漿流量100ml/分で持続式血液濾過器内を再循環させた。同時に濾過流量10ml/分で濾過を行い、得られた濾液は血漿プールに戻し、3時間後のアルブミンの篩い係数(Alb−Sc)を計測した。
The liquid level rise value converted into an inner diameter of 230 μm by the capillary rise method of the hollow fiber incorporated in each continuous blood filter was measured in the same manner as in Example 15.
The bovine plasma filtration performance test of each continuous blood filter was conducted by measuring the total protein concentration of bovine plasma separated from bovine blood to which CPD solution was added to 0.13 ml per 1 ml of bovine blood, at 6.5 g / dl. The plasma was used as a plasma pool and was recirculated through the continuous hemofilter at a plasma flow rate of 100 ml / min while maintaining the temperature at 37 ° C. Simultaneously, filtration was performed at a filtration flow rate of 10 ml / min, and the obtained filtrate was returned to the plasma pool, and the sieving coefficient (Alb-Sc) of albumin after 3 hours was measured.

in vitroにおけるライフタイムの評価については、夫々の持続式血液濾過器の内部を生理食塩液500mLで洗浄し、体外循環回路と連結した。抗凝固剤としてヘパリン系抗凝固剤を添加した牛血液2000mL(血小板濃度25万個/μL)を血液プールとし、37℃に保ち、血液流量50mL/分で持続式血液濾過器内を再循環させ、濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。開始30分後にカルシウムイオノホアA23187を血中濃度10μMになるように添加し、持続式血液濾過器の圧力損失が150mmHgに到達する所要時間を測定した。夫々の結果を表6に示す。   For in vitro lifetime evaluation, the inside of each continuous hemofilter was washed with 500 mL of physiological saline and connected to an extracorporeal circuit. A blood pool of 2000 mL of bovine blood (platelet concentration 250,000 / μL) added with a heparin anticoagulant as an anticoagulant is kept at 37 ° C. and recirculated in a continuous hemofilter at a blood flow rate of 50 mL / min. Filtration was performed at a filtration flow rate of 10 mL / min, and the obtained filtrate was returned to the blood pool. After 30 minutes from the start, calcium ionophore A23187 was added to a blood concentration of 10 μM, and the time required for the pressure loss of the continuous blood filter to reach 150 mmHg was measured. The respective results are shown in Table 6.

表6の結果より、中空糸膜の内径が205μmの以上の持続式血液濾過器においては、圧力損失が150mmHgに到達する所要時間が200分より長かったのに対し、内径が200μm以下の持続式血液濾過器は、所要時間が200分よりも短かく、ライフタイムが短いと判断された。   From the results in Table 6, in the continuous blood filter having an inner diameter of the hollow fiber membrane of 205 μm or more, the time required for the pressure loss to reach 150 mmHg was longer than 200 minutes, whereas the continuous blood filter having an inner diameter of 200 μm or less. The blood filter was judged to have a short lifetime, less than 200 minutes.

[実施例20、21、22および比較例11、12]
実施例18と同様な製膜条件で、中空膜糸の膜厚45μmで変えないようにして、内径が230μmの中空糸膜を作製した。
前記中空糸膜を用いて、実施例16と同様な製造方法により、各々の持続式濾過器の膜面積が0.7m2一定になるようにして、L/Dが4.3の持続式血液濾過器(持続式血液濾過器9、実施例20)、L/Dが5.4の持続式血液濾過器(持続式血液濾過器10、実施例21)、L/Dが6.5の持続式血液濾過器(持続式血液濾過器11、実施例22)、L/Dが7.5の持続式血液濾過器(持続式血液濾過器12、比較例11)、L/Dが10の持続式血液濾過器(持続式血液濾過器13、比較例12)を準備した。
[Examples 20, 21, and 22 and Comparative Examples 11 and 12]
A hollow fiber membrane having an inner diameter of 230 μm was produced under the same film forming conditions as in Example 18 so that the thickness of the hollow membrane yarn was not changed by 45 μm.
Using the hollow fiber membrane, by the same manufacturing method as in Example 16, the membrane area of each continuous filter was kept constant at 0.7 m2, and the continuous blood filtration with L / D of 4.3 (Continuous blood filter 9, Example 20), continuous blood filter with L / D of 5.4 (continuous blood filter 10, Example 21), continuous with L / D of 6.5 Blood filter (continuous blood filter 11, Example 22), continuous blood filter with L / D of 7.5 (continuous blood filter 12, comparative example 11), continuous type with L / D of 10 A blood filter (continuous blood filter 13, Comparative Example 12) was prepared.

夫々の持続式血液濾過器に内蔵されている中空糸の毛細管上昇法による内径230μmに換算した液面上昇値は、実施例15と同様にして測定した。
夫々の持続式血液濾過器の牛血漿濾過性能試験は、CPD溶液を牛血液1mlに対して0.13mlになるように添加した牛血液から分離した牛血漿の総蛋白濃度を6.5g/dlに調整し、血漿1Lを血漿プールとし、37℃に保ちながら血漿流量100ml/分で持続式血液濾過器内を再循環させた。同時に濾過流量10ml/分で濾過を行い、得られた濾液は血漿プールに戻し、3時間後のアルブミンの篩い係数(Alb−Sc)を計測した。
in vitroにおけるライフタイムの評価については、夫々の持続式血液濾過器の内部を生理食塩液500mLで洗浄し、体外循環回路と連結した。抗凝固剤としてヘパリン系抗凝固剤を添加した牛血液2000mL(血小板濃度25万個/μL)を血液プールとし、37℃に保ち、血液流量50mL/分で持続式血液濾過器内を再循環させ、濾過流量10mL/分で濾過を行い、得られた濾液は血液プールに戻した。開始30分後にカルシウムイオノホアA23187を血中濃度10μMになるように添加し、持続式血液濾過器の圧力損失が150mmHgに到達する所要時間を測定した。
The liquid level rise value converted into an inner diameter of 230 μm by the capillary rise method of the hollow fiber incorporated in each continuous blood filter was measured in the same manner as in Example 15.
The bovine plasma filtration performance test of each continuous blood filter was conducted by measuring the total protein concentration of bovine plasma separated from bovine blood to which CPD solution was added to 0.13 ml per 1 ml of bovine blood, at 6.5 g / dl. The plasma was used as a plasma pool and was recirculated through the continuous hemofilter at a plasma flow rate of 100 ml / min while maintaining the temperature at 37 ° C. Simultaneously, filtration was performed at a filtration flow rate of 10 ml / min, and the obtained filtrate was returned to the plasma pool, and the sieving coefficient (Alb-Sc) of albumin after 3 hours was measured.
For in vitro lifetime evaluation, the inside of each continuous hemofilter was washed with 500 mL of physiological saline and connected to an extracorporeal circuit. A blood pool of 2000 mL of bovine blood (platelet concentration 250,000 / μL) added with a heparin anticoagulant as an anticoagulant is kept at 37 ° C. and recirculated in a continuous hemofilter at a blood flow rate of 50 mL / min. Filtration was performed at a filtration flow rate of 10 mL / min, and the obtained filtrate was returned to the blood pool. After 30 minutes from the start, calcium ionophore A23187 was added to a blood concentration of 10 μM, and the time required for the pressure loss of the continuous blood filter to reach 150 mmHg was measured.

その結果、中空糸膜の内径が230μmの持続式血液濾過器においては、いずれのL/Dの持続式血液濾過器も圧力損失が150mmHgに到達する所要時間が200分より長かったが、とりわけ、L/Dが6.5以下のものは、所要時間が400分よりも長く、ライフタイムが極めて長いと判断された。結果を表7に示す。   As a result, in the continuous hemofilter whose inner diameter of the hollow fiber membrane is 230 μm, the time required for the pressure loss to reach 150 mmHg was longer than 200 minutes in any of the continuous hemofilters of L / D, When L / D was 6.5 or less, the required time was longer than 400 minutes, and the lifetime was judged to be extremely long. The results are shown in Table 7.

[実施例23]<アルブミンScの経時変化と30時間試験のAlb総損失量の計算>
実施例15,16、18の持続式血液濾過器を用いて、牛血漿を用いて30時間の牛血漿濾過性能試験を行った。牛血漿の総蛋白濃度を6.5g/dlに調整し、血漿1Lを血漿プールとし、37℃に保ちながら血漿流量50ml/分で持続式血液濾過器内を再循環させた。同時に濾過流量10ml/分で濾過を行い、得られた濾液は血漿プールに戻した。その後、1時間、3時間、10時間、20時間、30時間後のアルブミンの篩い係数(Sc)を計測した。その結果を表8に示す。
[Example 23] <Calculation of albumin Sc over time and total Alb loss in 30 hour test>
Using the continuous blood filter of Examples 15, 16, and 18, a 30-hour bovine plasma filtration performance test was performed using bovine plasma. The total protein concentration of the bovine plasma was adjusted to 6.5 g / dl, 1 L of plasma was used as a plasma pool, and the plasma was recirculated through the continuous hemofilter at a plasma flow rate of 50 ml / min while maintaining 37 ° C. At the same time, filtration was performed at a filtration flow rate of 10 ml / min, and the obtained filtrate was returned to the plasma pool. Thereafter, the sieving coefficient (Sc) of albumin after 1 hour, 3 hours, 10 hours, 20 hours, and 30 hours was measured. The results are shown in Table 8.

これらの結果から、アルブミンの総損失量(30時間積算値)を以下の(I)〜(IV)の手順に従って求めた。
(I)1〜30時間までの実測アルブミン濃度より篩係数を算出する。
(II)(I)の篩係数から、近似曲線を描き、近似式を求める。
(III)(II)の近似式から、1〜30時間の15分毎の篩係数を求める。
(IV)1〜30時間の平均篩係数を求め、その値を下記式にあてはめる。
アルブミン総損失量(g)=アルブミン濃度(g/ml)×平均篩係数(1-30Hrの平均値)×濾過流量(ml/min)×時間(min)
From these results, the total loss of albumin (30-hour integrated value) was determined according to the following procedures (I) to (IV).
(I) The sieve coefficient is calculated from the measured albumin concentration for 1 to 30 hours.
(II) Draw an approximate curve from the sieve coefficient of (I) and obtain an approximate expression.
(III) From the approximate expression of (II), the sieving coefficient is obtained every 15 minutes for 1 to 30 hours.
(IV) The average sieving coefficient for 1 to 30 hours is obtained, and the value is applied to the following formula.
Total albumin loss (g) = albumin concentration (g / ml) × average sieve coefficient (average value of 1-30 Hr) × filtration flow rate (ml / min) × time (min)

上記の手順に従って、表8に示される本発明の血液濾過モジュールの篩係数の実測値から、求めた(II)の近似式は、
y= 0.0066x^(−0.4579)
と計算された。この近似式を用いて、1〜30時間の平均篩係数を求めると0.0022と計算された。アルブミン濃度としてヒト血漿中の平均アルブミン濃度0.045(g/ml)を用い、上記式より求められたアルブミンの総損失量は、1.82gと計算された。
一方、上記近似式から、30時間後のアルブミンの総損失量が3.0gを超えない、3時間後のアルブミンの篩係数(Sc)は、シミュレーションの結果、0.0054と計算された。
According to the above procedure, from the measured value of the sieve coefficient of the blood filtration module of the present invention shown in Table 8, the approximate expression of (II) obtained is
y = 0.0066x ^ (-0.4579)
It was calculated. Using this approximate expression, the average sieving coefficient for 1 to 30 hours was calculated to be 0.0022. Using the average albumin concentration 0.045 (g / ml) in human plasma as the albumin concentration, the total loss of albumin calculated from the above formula was calculated to be 1.82 g.
On the other hand, from the above approximate expression, the sieving coefficient (Sc) of albumin after 3 hours in which the total loss of albumin after 30 hours does not exceed 3.0 g was calculated as 0.0054 as a result of simulation.

本発明の血液濾過用モジュールは、モジュールのライフタイムが長く、かつ、アルブミンの損失量も少ないので、持続式療法のように長時間に渡る血液濾過療法や血液濾過透析療法に有効に用いることができる。   The blood filtration module of the present invention has a long module lifetime and a small amount of albumin loss, so that it can be effectively used for long-term blood filtration therapy and blood filtration dialysis therapy like continuous therapy. it can.

本発明のライフタイム評価方法を行なう回路構成を示す概略図である。It is the schematic which shows the circuit structure which performs the lifetime evaluation method of this invention. 血小板活性化試薬添加後のモジュール内圧力損失の変化を示すグラフである。It is a graph which shows the change of the pressure loss in a module after platelet activation reagent addition. 血小板活性化試薬を濃度別に添加した後のモジュール内圧力損失変化を示すグラフである。It is a graph which shows the pressure loss change in a module after adding platelet activating reagent according to concentration.

符号の説明Explanation of symbols

1 ・・・ 血液流路
2 ・・・ 体外循環用モジュール
3 ・・・ 動脈側血液回路
4 ・・・ 静脈側血液回路
5 ・・・ 血液循環ポンプ
6 ・・・ 血液入口側圧力検出器
7 ・・・ 血液出口側圧力検出器
8 ・・・ 血液プール
9 ・・・ 濾過側回路
10・・・ 血液濾過ポンプ


DESCRIPTION OF SYMBOLS 1 ... Blood flow path 2 ... Extracorporeal circulation module 3 ... Arterial side blood circuit 4 ... Vein side blood circuit 5 ... Blood circulation pump 6 ... Blood inlet side pressure detector 7 .. Blood outlet side pressure detector 8 ... Blood pool 9 ... Filtration side circuit 10 ... Blood filtration pump


Claims (6)

筒状容器の内部に中空糸膜の束が充填され、該中空糸膜の両端部が硬化性樹脂により該筒状容器両端部にポッティング加工されて容器両端部で開口端面となっており、該開口端面の夫々に血液の入口または出口を有するヘッダーキャップが取り付けられ、更に該中空糸膜濾過液側空間に通じる濾過液の流通口を有する中空糸膜型の体外循環用モジュールにおいて、
該中空糸膜はポリスルホン系高分子とポリビニルピロリドンからなり、
該中空糸膜の内径は205〜250μmであって、
毛細管上昇法で測定した該中空糸膜の液面上昇値が内径230μmの中空糸膜に換算すると60mm〜120mmになり、
該中空糸膜の開口端面間距離をL、該筒状容器の最小内径をDとしたときのL/Dが3.5〜6.5であることを特徴とする、血液濾過または血液濾過透析用のモジュール。
The inside of the cylindrical container is filled with a bundle of hollow fiber membranes, and both ends of the hollow fiber membrane are potted to both ends of the cylindrical container with a curable resin to form open end surfaces at both ends of the container, In a hollow fiber membrane type extracorporeal circulation module having header caps having blood inlets or outlets attached to the respective open end faces, and further having a filtrate circulation port leading to the hollow fiber membrane filtrate side space,
The hollow fiber membrane comprises a polysulfone polymer and polyvinyl pyrrolidone,
The hollow fiber membrane has an inner diameter of 205 to 250 μm,
When the liquid level rise value of the hollow fiber membrane measured by the capillary rise method is converted to a hollow fiber membrane having an inner diameter of 230 μm, it becomes 60 mm to 120 mm.
Blood filtration or blood filtration dialysis, wherein L / D is 3.5 to 6.5, where L is the distance between the open end faces of the hollow fiber membrane, and D is the minimum inner diameter of the cylindrical container Module.
in vitroにおける牛血漿濾過性能試験における3時間後のアルブミンの篩係数が0.0054以下であることを特徴とする、請求項1記載の血液濾過または血液濾過透析用のモジュール。   The module for hemofiltration or hemodiafiltration according to claim 1, wherein the sieving coefficient of albumin after 3 hours in the in vitro bovine plasma filtration performance test is 0.0054 or less. 前記血液濾過または血液濾過透析用のモジュールであって、
以下a〜dからなる体外循環用モジュールのライフタイム評価条件;
a)血液プールを30〜37℃に加温し:
b)血液濾過ポンプを配した濾過回路を体外循環モジュールの濾過側に接続し:
c)血液循環ポンプにより50ml/分の血液流量で血液を循環させ、血液濾過ポンプにより10ml/分の流量で得た濾液を血液プールに戻す血液循環を施行しながら:
d)血液循環開始から30分経過後にカルシウムイオノホアA23187を10μMとなるように循環血液に添加する:
において、体外循環用モジュールの血液入口側と出口側との圧力損失が150mmHgに到達する所要時間が200分以上であることを特徴とする、請求項1〜2の何れかに記載の血液濾過または血液濾過透析用のモジュール。
A module for blood filtration or hemodiafiltration,
Lifetime evaluation conditions for an extracorporeal circulation module comprising:
a) Warm blood pool to 30-37 ° C .:
b) Connect a filtration circuit with a blood filtration pump to the filtration side of the extracorporeal circulation module:
c) While circulating blood at a blood flow rate of 50 ml / min with a blood circulation pump and returning the filtrate obtained at a flow rate of 10 ml / min with a blood filtration pump to the blood pool:
d) After 30 minutes from the start of blood circulation, add calcium ionophore A23187 to the circulating blood to 10 μM:
The blood filtration according to claim 1, wherein the time required for the pressure loss between the blood inlet side and the outlet side of the extracorporeal circulation module to reach 150 mmHg is 200 minutes or more. Module for hemofiltration dialysis.
前記中空糸膜の筒状容器への充填率が50%以上75%未満である請求項1〜3の何れかに記載の血液濾過または血液濾過透析用のモジュール。   The module for blood filtration or blood filtration dialysis according to any one of claims 1 to 3, wherein a filling rate of the hollow fiber membrane into the cylindrical container is 50% or more and less than 75%. 照射滅菌されている請求項1〜4の何れかに記載の血液濾過または血液濾過透析用のモジュール。   The module for blood filtration or blood filtration dialysis according to any one of claims 1 to 4, which is sterilized by irradiation. 抗酸化剤溶液が充填されている請求項1〜5の何れかに記載の血液濾過または血液濾過透析用のモジュール。
The module for blood filtration or blood filtration dialysis according to any one of claims 1 to 5, which is filled with an antioxidant solution.
JP2006085659A 2005-03-29 2006-03-27 Module for hemofiltration or hemodiafiltration Active JP4992104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085659A JP4992104B2 (en) 2005-03-29 2006-03-27 Module for hemofiltration or hemodiafiltration

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005093799 2005-03-29
JP2005093799 2005-03-29
JP2005093800 2005-03-29
JP2005093800 2005-03-29
JP2006085659A JP4992104B2 (en) 2005-03-29 2006-03-27 Module for hemofiltration or hemodiafiltration

Publications (2)

Publication Number Publication Date
JP2006305333A true JP2006305333A (en) 2006-11-09
JP4992104B2 JP4992104B2 (en) 2012-08-08

Family

ID=37472876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085659A Active JP4992104B2 (en) 2005-03-29 2006-03-27 Module for hemofiltration or hemodiafiltration

Country Status (1)

Country Link
JP (1) JP4992104B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193916A (en) * 2010-03-17 2011-10-06 Asahi Kasei Kuraray Medical Co Ltd Blood purifier
WO2014034456A1 (en) * 2012-08-30 2014-03-06 株式会社カネカ Method for producing cell concentrate
JP2015077369A (en) * 2013-10-18 2015-04-23 旭化成メディカル株式会社 BLOOD β-AMYLOID REMOVING SYSTEM
JP2016154809A (en) * 2015-02-26 2016-09-01 旭化成メディカル株式会社 Concentrator
JP2017035644A (en) * 2015-08-06 2017-02-16 旭化成メディカル株式会社 Hollow fiber membrane module and production method of the same
US9603356B2 (en) 2011-10-24 2017-03-28 Kaneka Corporation Method for producing cell concentrate
JP2018017720A (en) * 2016-07-13 2018-02-01 旭化成メディカル株式会社 Method of evaluating biocompatibility of hollow fiber
EP4129358A4 (en) * 2020-03-31 2023-09-13 Asahi Kasei Medical Co., Ltd. Closed circulation system test apparatus for blood purification device using whole blood

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300636A (en) * 1991-03-28 1992-10-23 Toray Ind Inc Polysulfone-based permselective hollow yarn membrane and its manufacture
JPH09154936A (en) * 1994-12-16 1997-06-17 Toyobo Co Ltd Blood purifying module, blood purifying membrane and production thereof
JPH09220281A (en) * 1996-12-20 1997-08-26 Asahi Medical Co Ltd Sterilizing method for body fluid treating device and sterilized body fluid treating device
JP2000070360A (en) * 1994-09-02 2000-03-07 Terumo Corp Hollow fiber membrane type dialyzer
JP2002143298A (en) * 2000-11-16 2002-05-21 Toray Ind Inc Blood treatment apparatus
JP2002533169A (en) * 1998-12-29 2002-10-08 オキュロジックス コーポレイション Rheological treatment method and associated apheresis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300636A (en) * 1991-03-28 1992-10-23 Toray Ind Inc Polysulfone-based permselective hollow yarn membrane and its manufacture
JP2000070360A (en) * 1994-09-02 2000-03-07 Terumo Corp Hollow fiber membrane type dialyzer
JPH09154936A (en) * 1994-12-16 1997-06-17 Toyobo Co Ltd Blood purifying module, blood purifying membrane and production thereof
JPH09220281A (en) * 1996-12-20 1997-08-26 Asahi Medical Co Ltd Sterilizing method for body fluid treating device and sterilized body fluid treating device
JP2002533169A (en) * 1998-12-29 2002-10-08 オキュロジックス コーポレイション Rheological treatment method and associated apheresis system
JP2002143298A (en) * 2000-11-16 2002-05-21 Toray Ind Inc Blood treatment apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193916A (en) * 2010-03-17 2011-10-06 Asahi Kasei Kuraray Medical Co Ltd Blood purifier
US9603356B2 (en) 2011-10-24 2017-03-28 Kaneka Corporation Method for producing cell concentrate
WO2014034456A1 (en) * 2012-08-30 2014-03-06 株式会社カネカ Method for producing cell concentrate
JPWO2014034456A1 (en) * 2012-08-30 2016-08-08 株式会社カネカ Method for producing cell concentrate
US10006842B2 (en) 2012-08-30 2018-06-26 Kaneka Corporation Method for producing cell concentrate
JP2015077369A (en) * 2013-10-18 2015-04-23 旭化成メディカル株式会社 BLOOD β-AMYLOID REMOVING SYSTEM
JP2016154809A (en) * 2015-02-26 2016-09-01 旭化成メディカル株式会社 Concentrator
JP2017035644A (en) * 2015-08-06 2017-02-16 旭化成メディカル株式会社 Hollow fiber membrane module and production method of the same
JP2018017720A (en) * 2016-07-13 2018-02-01 旭化成メディカル株式会社 Method of evaluating biocompatibility of hollow fiber
EP4129358A4 (en) * 2020-03-31 2023-09-13 Asahi Kasei Medical Co., Ltd. Closed circulation system test apparatus for blood purification device using whole blood

Also Published As

Publication number Publication date
JP4992104B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
JP4992104B2 (en) Module for hemofiltration or hemodiafiltration
US8136675B2 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
JP5694298B2 (en) Method for preparing membranes with improved performance
JP5619878B2 (en) Membrane with improved performance
AU2008303785B2 (en) Hydrophilic membranes with a non-ionic surfactant
US10029216B2 (en) Hollow-fiber membrane blood purification device
JP4061798B2 (en) Semipermeable membrane for blood treatment and dialyzer for blood treatment using the same
JP4848663B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
JP4190079B2 (en) Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney
JP6078641B2 (en) Hollow fiber membrane for blood treatment and method for producing the hollow fiber membrane for blood treatment
WO1994011095A1 (en) High flux hollow fiber membrane
JP4923902B2 (en) Hollow fiber membrane for blood purification and method for producing the same
JP4211169B2 (en) Dialysis machine for blood treatment
JP3934340B2 (en) Blood purifier
JP2006288942A (en) Method for coating hollow-fiber hemocatharsis membrane with surface modifier, surface modifier coated hollow-fiber hemocatharsis membrane and surface modifier coated hollow-fiber hemocatharsis appliance
JP2012019891A (en) Method for manufacturing hollow fiber membrane for blood processing
JP6383631B2 (en) Hollow fiber membrane blood purifier
JP6190714B2 (en) Hollow fiber membrane blood purification device
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
JP6817240B2 (en) Hollow fiber membrane type blood purifier
JP2000210544A (en) Production of semipermeable membrane
Göhl et al. PC-PE Hollow-Fiber Membrane: Structure, Performance Characteristics and Manufacturing
JP2011041830A (en) Hollow fiber membrane for blood purification, and method of manufacturing the same
JP5408197B2 (en) Method for producing hollow fiber membrane for blood purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350